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Introduction

Inverse problem is a situation where the cause is deduced from the consequences. This thematic has been the subject of numerous works in the domain of conductive heat transfer. It is an ill-posed problem, and as such is often solved by iterative procedures, which are time-consuming by nature.

As the temperature increases, heat transfer by radiation becomes signicant and has to be modeled rigorously. The inherent complexity of radiative heat transfer leads to intricate numerical models which, combined with an iterative inverse procedure, results in unbearable computation time. Thus, as revealed by the literature, geometric complexity remains trivial when compared to a realistic industrial installation.

The most general modeling considers radiation trough semi-transparent media, able to absorb and emit their own heat ux in all directions. The number of degrees of freedom (DoF) explodes, as the thermal scene has to be meshed in its entirety and as the number of variables needed to represent the physics increases. Thus, whatever the considered models and the resolutions schemes, inverse problems stays limited to simple 2D congurations [START_REF] Kim | Inverse radiationconduction design problem in a participating concentric cylindrical medium[END_REF][START_REF] Mishra | Performance evaluation of four radiative transfer methods in solving multi-dimensional radiation and/or conduction heat transfer problems[END_REF].

Nevertheless, a whole range of high temperature thermal problems does not necessitate such complex models, as the media is either air, which can be viewed as a non-participating media, or even vacuum, in aerospace applications for example. For such problems, only the solid parts of the scene have to be meshed. First works concerning inverse radiative problems appeared in the 2000s. Conduction was neglected and radiative heat ux was computed by the radiosity method.

In general, the thermal characteristics of a heating surface were recovered from the ones of a target surface. The entire panel of inverse techniques has been tested for 2D congurations [START_REF] Fan | Solution of the inverse radiative load problem in a twodimensional system[END_REF][START_REF] Daun | Inverse design methods for radiative transfer systems[END_REF]. From the 2010s, more sophisticated works related on furnace design. The position and the power delivered by radiant panels were optimized in order to satisfy objectives on a heated object [START_REF] Safavinejad | Optimal number and location of heaters in 2-d radiant enclosures composed of specular and diuse surfaces using microgenetic algorithm[END_REF][START_REF] Brittes | A hybrid inverse method for the thermal design of radiative heating systems[END_REF][START_REF] Chopade | Eects of locations of a 3-d design object in a 3-d radiant furnace for prescribed uniform thermal conditions[END_REF][START_REF] Chopade | Uniform thermal conditions on 3-d object: Optimal power estimation of panel heaters in a 3-d radiant enclosure[END_REF][START_REF] Castro | Design of radiative enclosures by using topology optimization[END_REF].

With the same radiative modeling, Farahmand et al. [START_REF] Farahmand | Geometric optimization of radiative enclosures using pso algorithm[END_REF] performed a shape optimization of an enclosure from the knowledge of a source and a target, in order to satisfy a desired temperature and heat ux. In the aerospace domain, the problem of the aging of the protective materials of a spacecraft has been addressed in [START_REF] Nenarokomov | Estimation of environmental inuence on spacecraft materials radiative properties by inverse problems technique[END_REF]. Global radiative properties (absorption coecient and emissivity) were identied using a simplied discrete thermal model which considers the inertia of the materials and all of the external thermal stresses according to a given trajectory of the spacecraft. Some authors also focused on diuse spectral models, in which thermal characteristics depends on the wavelength. Bayat et al. for example used a conjugate gradient method to identify the power emitted by a radiant panel from the temperature of a target [START_REF] Bayat | Inverse boundary design of a radiant furnace with diusespectral design surface[END_REF].

Inverse problems involving combined heat transfers have also been investigated. The coupling of radiative heat transfer with natural convection in a bi-dimensional cavity has been proposed in [START_REF] Dashti | with egm approach in conjugate natural convection with surface radiation in a two-dimensional enclosure[END_REF]. Radiative heat transfer has also been coupled with conduction in [START_REF] Nenarokomov | Space structures insulating material's thermophysical and radiation properties estimation[END_REF]: Thermal properties of a 1D wall have been recovered in the context of space studies. Finally, Dehghani et al. [START_REF] Dehghani | Inverse estimation of boundary conditions on radiant enclosures by temperature measurement on a solid object[END_REF] identied the temperature of a wall from temperature measurements of a heated piece, in a geometry made of two rectangles.

To overcome the computational diculty engendered by complex geometries, reduced models can be employed. In particular, modal methods maintain the integrity of the geometry while decreasing the number of DoF necessary to describe the problem. Temperature is searched as a weighted sum of a limited number of spatial functions known in advance. Thermal problem resolution reduces to the computation of the weighting coecients (also referred to as excitation states).

The Modal Identication Method has been used to solve inverse heat conduction problems [START_REF] Girault | Estimation of time-varying heat sources through inversion of a low order model built with the modal identication method from in-situ temperature measurements[END_REF][START_REF] Bouderbala | Mim, fem and experimental investigations of the thermal drift in an ultra-high precision set-up for dimensional metrology at the nanometre accuracy level[END_REF].

Recently Girault et al. [START_REF] Girault | Reduced order models for conduction and radiation inside semi-transparent media via the modal identication method[END_REF] have extended this method to radiative heat transfer to identify thermophysical parameters of semi-transparent grey media for an axi-symmetric geometry. In a similar way, Proper Orthogonal Decomposition has been applied to inverse problem involving radiation in semi-transparent media. Park et al. identied radiative properties of gas [START_REF] Park | Solution of the inverse radiation problem using a conjugate gradient method[END_REF], heat sources [START_REF] Park | Sequential solution of a three-dimensional inverse radiation problem[END_REF] or the heat transfer coecient between a gas and its surrounding wall [START_REF] Park | An inverse radiation problem of estimating heat-transfer coecient in participating media[END_REF]. Using Single Value Decomposition, a diuse spectral model in a 3D geometry has been considered in [START_REF] Homann | Inverse design of thermal systems with spectrally dependent emissivities[END_REF].

The approach adopted in the present paper is the Amalgam Reduced Order Modal Model (AROMM) [START_REF] Quéméner | The generalized amalgam method for modal reduction[END_REF][START_REF] Grosjean | A modal substructuring method for nonconformal mesh. application to an electronic board[END_REF]. In previous works [START_REF] Carmona | Estimation of heat ux by using reduced model and the adjoint method. application to a brake disc rotating[END_REF][START_REF] Carmona | Spatio-temporal identication of heat ux density using reduced models. application to a brake pad[END_REF][START_REF] Castillo | Identication of insulating materials thermal properties by inverse method using reduced order model[END_REF], the interest of this method for solving inverse heat conduction problems has been established, especially when they are characterized by a complex geometry requiring a large number of nodes and/or a real time identication target. Particularly, the reduced base is independent of the boundary conditions, and time-dependent exchange coecient has been considered. This independence towards boundary conditions makes this method appropriate for radiative dominated problems. In this context, Gaume et al. [START_REF] Gaume | Modal reduction for a problem of heat transfer with radiation in an enclosure[END_REF] combine AROMM and radiosity methods to solve direct problem within a complex geometry placed in a non-participating media. The authors showed that the resulting reduced model induces an important gain in terms of computation time, while allowing the reconstruction of the whole temperature eld with a satisfying precision. Thus, AROMM method can be an adequate tool for inverse problems where radiation and conduction are involved.

The objective of the present work is to use AROMM method to recover the temperature of radiant panels of an industrial furnace from a few measurements, and from there, by taking advantage of the modal formulation, to deduce the entire thermal eld of the scene. A technique is thus obtained that allows on-line monitoring of the heating of an object, whatever its geometry. The paper is organized as follows: the studied conguration is presented in section 2, and the modal formulation in section 3. Section 4 is dedicated to the inverse formulation applied to modal formalism.

Finally, results are discussed in section 5. Section 6 oers a conclusion to the paper.

Problem position

Physical conguration

An industrial furnace with thin walls is considered (Fig. 1). The heated object is characterized by a footprint (overall dimensions) of 0.4 × 0.4 × 1 m 3 .The insulation is modeled via a low value
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The considered geometry of the global heat exchange coecient with the surroundings h ext = 1 W.m -2 .K -1 . The outside temperature is supposed to be constant at T ext = 293.15K. The convective exchanges between the indoor surfaces Ω int of the furnace are represented by a constant coecient h int = 5 W.m -2 .K -1 and a uid temperature T int (T ) that depends on the temperature of all internal surfaces. Assuming that the heat capacity of the internal uid is negligible compared to that of the walls, a simple heat balance provides the expression of indoor temperature:

T int (T ) = Ω int h int T dΩ Ω int h int dΩ . (1) 
Two radiant tubes dissipate an infra-red radiative heat ux. The power radiated by each tube is driven by the temperature T gas (t) of their intern gas whose value depends on time. The heat exchange between the gas and the tube walls Ω tube is modeled by a global heat exchange coecient h gas = 10, 000 W.m -2 .K -1 . Then, the tube walls heat by radiation a titanium object with a complex shape placed on a stand. The dierent thermophysical properties of these elements are given in Table 1. In this rst study, they are considered constant .

The objective of this study is to recover the temperature of the gas inside the radiant tube from 80 temperature measurements on easily accessible points. Once the heat source has been identied, the whole temperature eld of the titanium object can be retrieved. Whatever the temporal scenario of the temperature of the tubes, the initial temperature is T 0 = 293.15K, and the heating of the furnace lasts 5 × 10 4 s. The intrinsic diculty of inverse problem is deepen by the high temperature
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Mathematical model 2.2.1. Radiative heat ux

Given the high temperature level, heat exchange by radiation is preponderant. It is modelled by the radiosity method [START_REF] Ait-Taleb | Numerical simulation of coupled heat transfers by conduction, natural convection and radiation in hollow structures heated from below or above[END_REF][START_REF] Antar | Thermal radiation role in conjugate heat transfer across a multiple-cavity building block[END_REF]. The considered surface is rst discretized in N p elementary surfaces Ω e j , on which the radiative ux is considered constant, ϕ rad = ϕ j . These elementary surfaces are named `patches'. The radiosity method relates the mean ux ϕ i exchanged by patch Ω e i to the set of mean temperatures T j , with j ∈ [1,

N p ] : ∀j ∈ [1, N p ] Np i=1 δ ji ε i - 1 ε i -1 F ji ϕ i = - Np i=1 (δ ji -F ji ) σT 4 i , (2) 
where δ ji is the Kronecker delta and F ji are the view factors. This sign convention ensures that exchanged ux ϕ i is negative if the surface i emits more ux than it absorbs. Relation (2) can be written in matrix form :

A ϕ = B T 4 . (3) 
The mean ux exchanged by a patch ϕ j expresses as:

ϕ j = Np i=1 r ji T 4 i , (4) 
where r ji are the elements of R rad [N p , N p ] = A -1 B.

Variational Formulation

Considering the thinness of the walls and dierent objects, the Biot number is very small, and the temperature gradient in the thickness is neglected. A shell model can be used, as in references [START_REF] Carmona | Estimation of heat ux by using reduced model and the adjoint method. application to a brake disc rotating[END_REF][START_REF] Gaume | Modal reduction for a problem of heat transfer with radiation in an enclosure[END_REF], and its weak formulation is written as :

Ω e c ∂T ∂t f dΩ = - Ω e k ∇T • ∇f dΩ + Ω int ϕ f dΩ + Ωext ϕ f dΩ + Ω tube ϕ f dΩ , (5) 
where f ∈ H 1 (Ω) is the test function of the variational formulation on surface Ω, e is the thickness, c thermal heat capacity and k the thermal conductivity. Surfaces Ω ext , Ω int and Ω tube of domain Ω are represented in Figure 1. ϕ is the heat ux exchanged by convection and radiation, and is expressed as :

∀T ∈ Ω, ϕ = h(T f -T ) + ϕ, (6) 
with T f the temperature of the surrounding uid and h the associated heat exchanged coecient.

The variational formulation nally reads as :

100 nd T ∈ H 1 (Ω) such that ∀f ∈ H 1 (Ω), Ω e c ∂T ∂t f dΩ = - Ω e k ∇T • ∇f dΩ - Ω int h int T f dΩ - Ωext h ext T f dΩ - Ω tube h gas T f dΩ + Ω int h int T int (T ) f dΩ + Ωext h ext T ext f dΩ + Np j=1 Np i=1 r ji T 4 i Ω e j f dΩ + T gas (t) Ω tube h gas f, dΩ , (7) 
After spatial discretization, a matrix formulation of Eq. ( 7) is obtained:

C dT dt = [K + H] T + U cpl T int (T) + U 0 + R rad T 4 + T gas (t) U tube . (8) 
In this equation:

Vector T contains the temperature value at the N discretization points.

C, K and H are [N × N ] symmetric sparse matrices: C is the thermal inertia matrix, K the conductivity matrix and H gathers the dierent convection terms on Ω ext , Ω int and Ω tube .

Vector U 0 corresponds to the external known solicitations and U cpl represents the convective exchange with the air inside the furnace, at temperature T int (T). This last term is computed thanks to the discretization of Eq. ( 1):

T int (T) = D T . (9) 
Vector T 

T = U R T , (10) 
Finally, vector U tube of dimension [N ] stands for the heat source generated by the gas combustion inside the radiant tubes.

The whole thermal scene can be retrieved by solving the set of equations ( 8), ( 9) and [START_REF] Farahmand | Geometric optimization of radiative enclosures using pso algorithm[END_REF] for a given gas temperature T gas . These equations can also be employed in an iterative process to identify T gas from the temperature measurement on a few accessible points. However, considering the size of the matrix problem but mostly the radiative term, the duration of this computation is not compatible with an on-line monitoring objective. The key would be to replace this large size model by a reduced one, able to reproduce the physics in its complexity but with short computation times.

Reduced Modal Model

Principle

Modal methods are based on the projection of the temperature on a limited number N of known spatial functions V i (M )

T (M, t) ≈ T (M, t) = N i=1 x i (t) V i (M ) . ( 11 
)
Excitation states x i (t) become the unknowns of the problem. Following that principle, AROMM method is based on two steps, briey presented here (details are found in [START_REF] Quéméner | The generalized amalgam method for modal reduction[END_REF] and [START_REF] Gaume | Modal reduction for a problem of heat transfer with radiation in an enclosure[END_REF]).

A modal base composed of N modes V i (M ) is computed. In this study, modes are solution of the Neumann eigenvalue problem :

-

Ω e k ∇V i • ∇f dΩ = z i Ω e c V i f dΩ , (12) 
where z i is the eigenvalue associated to eigenmode V i . The characteristic time associated to mode i is dened as

τ i = -1 z i
. It represents the ability of a mode to reproduce a fast dynamic.

The reduction step is performed by the amalgam method [START_REF] Quéméner | The generalized amalgam method for modal reduction[END_REF]. In this method, dominant modes V i,0 are selected among the initial modes. The remaining modes, called minors (noted V i,p ), are aggregated to the dominant ones, instead of being discarded. The resulting reduced modes, named amalgamated modes, are then a linear combination of the original modes:

∀i ∈ 1, ... N V i (M ) = V i,0 (M ) + N i p=1 α i,p V i,p (M ) . ( 13 
)
The distribution of the original modes V i in the reduced basis V i , and the determination of the weighting coecient α i,p are obtained by minimizing in the modal space an energy criteria based on a given thermal eld evolution T ref (t, M ) called the reference simulation. However the characteristic time associated to an amalgamated mode is the one of its dominant mode.

The reduction process inhibits the responses to fast dynamics. 125

Reduced modal formulation

State equations are deduced from the variational formulation ( 7) : Temperature is replaced by its modal decomposition [START_REF] Nenarokomov | Estimation of environmental inuence on spacecraft materials radiative properties by inverse problems technique[END_REF], while test functions f are replaced by the reduced modes V i (M ).

The following system of coupled ordinary dierential equations is obtained :

∀p, q ∈ [1, N ] N p=1 ∂ x p ∂t Ω e c V p V q dΩ = - N p=1 x p Ω e k ∇ V p • ∇ V q dΩ - N p=1 x p   Ω int h int V p V q dΩ + Ωext h ext V p V q dΩ + Ω tube h gas V p V q dΩ   + N p=1 Ω int h int T int V q dΩ + N p=1 Ωext h ext T ext V q dΩ + N p=1 Np j=1 Np i=1 r ji T 4 i Ω e j V q dΩ + T gas (t) N p=1 Ω tube h gas V q dΩ . (14) 
In these equations, indoor temperature T int and the N p mean temperatures T i are also expressed under modal formulation :

T int = N i=1 x i Ω int h int V i dΩ Ω int h int dΩ , T i = N j=1 x j Ω e i V j dΩ Ω e i dΩ . (15) 
After spatial discretization, a matrix formulation of Eqs. ( 14) and ( 15) is obtained :

L d X dt = (M K + M H ) X + N 0 + M rad T 4 + T gas (t) N tube , (16) 
T = U R V X , (17) 
Matrix V [N, N ] gathers reduced vectors V i . Equations ( 16)-( 17) are evolved in time by a rst-order backward Euler scheme with constant time steps. The reduction of the dimensions of the matrices is accompanied by a swift resolution of the initial thermal problem. The resulting temperature T eld is easily retrieved from the excitation states:

Matrices L = V T C V, M K = V T K V, and M H = V T (H + U cpl D) V
T = V X (18) 
Obviously, computation time and precision depend on the reduction order N . All these functions (Finite Element and AROMM method) are programmed in a homemade code in C ++.

Results

Geometry depicted in Fig. 1 is rst discretized on a P1 nite element mesh. It consists of 135 N = 12, 167 nodes forming 24, 202 triangle elements and 44, 838 patches for radiation 1 . A complete base V i , i ∈ [1, N ] is computed from Eq. ( 12). The reduced base V j , j ∈ [1, N ] (Eq. ( 13)) is then synthesized from the following reference problem:

1 All calculations were performed on a laptop with a 6-core Intel ® Xeon ® E-2176M @2.7GHz and 64GB of RAM.

all surfaces are assumed black bodies ε = 1, gas temperature into the radiant tubes is xed at T gas = 973.15K, the duration of the process is short τ = 120 s.

The resulting reduced model is now utilized to perform another simulation, characterized by the following parameters :

surfaces are now diuse gray bodies (see Table 1 for emissivity values)

gas temperature is increased to T gas = 1273K, the duration process is also increased τ = 5 × 10 4 s, which corresponds to the time needed to reach the steady state.

The ensuing temperatures are compared to the ones obtained from Eqs. ( 8) to [START_REF] Farahmand | Geometric optimization of radiative enclosures using pso algorithm[END_REF]. To quantify the accuracy of the reduced model, the following quantities are dened :

σ max = max t,Ω |T -T | , ε max = max t,Ω |T -T | max t,Ω (T ) -min t,Ω (T ) , σ = 1 V 1 τ Ω 0 τ 0 |T -T | dt dΩ (19) 
Domain Ω corresponds either to the whole thermal scene, or is restricted to the object placed on the stand. Results are presented in Table 2 for several order of reduction.

Full scene Heated object 

N σ max (K) ε max (%) σ (K) σ max (K) ε max (%) σ (K) t CP U (s)

Inverse problem

General procedure

The purpose of this study is to retrieve the time evolution of the gas temperature inside the radiant panel T gas (t) from temperature measurements at N mes points located on the furnace. The procedure is schematized by Fig. 2. Measurements are gathered in the data matrix Y. From an initial guessed input value T gas (t), Eq. ( 16) is solved to get X. Data are then compared with the outputs of the reduced model Y :

Y = E V X ( 20 
)
where E is a simple boolean matrix called selection matrix. A minimization algorithm procures a new guess for T gas (t), which provides new outputs Y. The iterative procedure is stopped when a criteria is met on the following functional :

J (T gas ) = Npts Nt (Y(t) -Y(T gas , t)) 2 (21) 
where N pts is the number of measuring points and N t number of time steps.

The optimization is done through the (trust-region-reective ) algorithm implemented in the MATLAB function "lsqcurvet ". Trust region algorithms are particularly robust for non convex problems [31] [27].

T gaz Measurement Y J (T gas )

T gaz Reduced Model Y

Optimization algorithms

Figure 2: General scheme of the gas temperature estimation by reduced model

Data generation

The present study is fully numeric : temperatures are issued from a nite element simulation, altered with a white noise characterized by a standard deviation σ N of 2 or 5 K. The time evolution of temperature T gas is depicted on gure 3. This scenario aggregates several possible types of solicitation : at levels, linear progression, periodicity. For information, measurement at point A 175 (Fig. 1) with σ N = 5 K is also represented on Fig. 3. Although the radiative transfer is the main generator, conduction can not be neglected : the temperature response at point A is delayed by about 1000 s compared to T gas . 

Radiation sensitivity of reduced model

Measurement points location is obviously a key parameter for the inverse procedure. Their response to the variation of T gas must be sensitive, while being located on a protected area of the furnace, and not on the heated object itself. The criteria to select the appropriate location is the reduced sensitivity, dened as :

S * = T gas ∂Y ∂T gas (22) 
The study has been conducted on the whole possible measurement points, and for three dierent 180 levels of temperature T gas , namely 473 K, 673 K and 1273 K (that is to say all the node of Finite Element mesh limited to the stand and walls of the furnace). For clarity, results focus on the 2 most sensitive points for the wall and the stand(respectively points A and C, see Fig. 1). measurement on the stand leads to a higher sensitivity than on the wall by a ratio 1.6.

Therefore points A and B are selected.

determination of data acquisition frequency is delicate, considering the strong dependence of sensitivity to T gas . The acquisition period is xed to 200 s. For the lower temperature level, this implies a sensitivity of 6.5 K, which is lightly above the standard deviation of the measurement white noise (chosen between 2 and 5 K).

The error induced by the reduction should not exceed the measurement noise, especially at the measurement points. For points A and B, the following quadratic error is dened as:

σ A,B M SE = J (T gas ) N pts N t (23) 
For the validation simulation (see Table 2), and for a reduced model characterized by N = 20, σ A,B M SE = 1.7 K and for a more precise model N = 50, σ A,B M SE = 0.5 K. Both models comply with the specications : a computation time compatible with on-line identication and an error below the measurement noise.

Identication strategy with a time window of variable size

Temperature value at each time steps has to be identied, which leads to a insurmountable number of parameters (i.e. 250) if done at once. Furthermore, one has to wait until the end of the process to start the identication which is clearly out of scope for an on-line identication.

Thus, the identication procedure is based on previous works (see Carmona et al. [START_REF] Carmona | Estimation of heat ux by using reduced model and the adjoint method. application to a brake disc rotating[END_REF]) and uses sliding time windows. The size of the window should be large enough to contain sucient data to permit an accurate identication. On the other hand, the larger the window, the larger the number of parameter to be identied, and thus the longer the computation time. Since the accuracy on the identied variable grows with the size of the time window, this size has to be be adapted to the computation time of the identication process. To conciliate quick start and accuracy, a more elaborate identication strategy is imagined, in which the size of the time window is variable. Phase 1: the rst step corresponds to a small time window (∆T ident = 1 000 s i.e. 5 measurement time steps). With this rst step, the estimate of the gas temperature is coarse, but is within 20% (Fig. 6 (a)).

Phase 2: For the following steps, the time identication window grows linearly from 1000 s to 3000 s. Since the data is enriched at each of these steps, the rst results quickly obtained at the end of the rst 1000 seconds of the process are rened over time (Fig. 6 (b) and (c)). It is noticed that the estimate at the nal step of the dierent window is inaccurate.

Phase 3: As the maximum size of the window is reached, the sliding begins, with a delay of 200 s (Fig. 6 (d) to (f )). As the objective is to have an on-line identied temperature, the identication process is stopped after 200 s of computation (corresponding to the acquisition period), whatever the degree of convergence. 

Identication of T gas 225

The identication procedure is executed for a rst case characterized by a reduced model of order N (id) = 20, and a measurement noise of σ N = 2 K. Figure 6 depicts the identication results over time. Results are very satisfying, as the time evolution is retrieved with a maximum error about 10%. At the beginning of the process, the radiant temperature is low (293.15 K), and so is the sensitivity. This explains the relative inaccuracy at the rst 2000 s. For a better visualization of 230 the identication procedure, a video animation is procured with the Supplemental Data available online (Identication N (id) = 20 σ N = 2 K).

The impact of the reduction order N (id) and the measurement noise σ N is studied. To quantify the results, the following quantities are dened: 

Table 3 summarizes these errors as well as the CPU times required to solve the inverse problem.

Whatever the chosen parameters, results are satisfying as quadratic relative errors ε Tgas M SE stays below 5% while computation time is below the process duration of 50 × 10 4 s. As expected, the errors increases with the measurement noise. However, the accuracy degrades as the order of the reduced model grows, especially on the maximum error ε Tgas max , which is counter-intuitive. Indeed, two phenomenons are at stake here. Without doubt, the increase of the order engenders a model more representative of the physics, in its geometric and temporal complexity. However, as the order increases, the model is augmented with modes able to respond to fast dynamics. The reduced model will be able to interpret the high frequency measurement noise by spurious oscillations of the radiant temperature. This is exemplied by Fig. 7 which depicts the identied radiant temperature (as well as its error) for two levels of measurement noise and two orders of the reduced model. Preliminary attempts are thus necessary to determine the optimum reduction order, just as, in other context, they are necessary to nd out the correct Thikonov regularization parameter.

RM Order From these results, a reduced model of order N (id) = 20 is chosen.

σ N (K) σ Tgas max (K) ε Tgas max (%) σ Tgas M SE (K) ε Tgas M SE (%) t CP U (s) 20 

Reconstruction of the thermal eld of the piece

Once the temperature T gas is identied, it can be used as input for a direct simulation to recover the temperature eld of the whole thermal scene. As this simulation is done once, a reduced model with a higher order (noted N (rec) ) can be used in order to get a more accurate estimation of the temperature. Simulations have been conducted for various order N (rec) and for several inputs T gas : the exact values, and the identied ones with a measurement noise of σ = 2K and σ = 5K and N (id) = 20. These results have been compared to those obtained by a nite element simulation with the exact input T gas . Figure 8 presents the error σ (dened by Eq. ( 19)) localized on the heated object.

Figure 8: Mean error σ of reconstruction for the piece with T gas identied ( N (id) =20) and real T gas Reduced simulations that use the exact temperature T gas lead to consistent results as the error decreases as the order of the model increases. The magnitude of the errors are in agreement with those indicated in Table 2. Results issued from reduced simulations that use identied temperature need a more rened analysis. The error does not behave monotonously with the reduction order : a minimum appears at N rec = 150. Indeed, reduction acts as a low pass lter. Therefore, a low order reduced model can not respond to the spurious oscillations of the identied temperature. As its order increases, the reduced model becomes more accurate, but also more sensitive to this high frequency uctuations caused by identication errors.

The noise on the measurement temperature has a notable eect on the recovered temperature eld, as the mean error goes from σ = 1.75 K for σ N = 2 K to σ = 2.9 K for σ N = 5 K. It is quite noticeable that the mean error committed on the temperature eld of the heated object has the same magnitude than the standard deviation of the added noise. 

Conclusion

This paper dealt with an object with a complex shape subjected to a heat treatment in an furnace. The objective of this study was to recover on-line the time evolution of the temperature eld on the whole object. The main obstacle is the radiative heat transfer, preponderant in this study, which leads to complex numerical models. To overcome this lock, AROMM method has been used to identify the temperature of radiant tubes, but also to recover the temperature eld on the whole object.

Regarding the identication phase, the location of the measurement points has been determined from the sensitivity towards the gas temperature. The sensitivity also permits to set the acquisition period. In order to limit the number of parameter to identify, a sliding time window strategy has been adopted : combined with the AROMM method, this strategy enables an on-line identication.

The optimum order of the reduced model stays limited to ensure the convergence of the identication procedure in the imposed acquisition period of 200 s. In addition, a low order reduced model lters measurement noise and naturally regulates the identied temperature. Other parameters such as thermophysical quantities or convection coecients are assumed to be well known.

Once the gas temperature has been identied, it has been used as input for a direct simulation to recover the temperature eld on the object. A reduced model with a higher reduction order has been used to improve the accuracy. A optimum reduction order appears : it balances the natural increase of the accuracy with the order and the ltering of the spurious oscillations of the identied temperature.

The whole identication procedure lasts less than 5 000 s, which is ten times smaller the duration of the thermal process (50 000 s). The whole thermal eld of the heated object is refreshed every 200 s with an average precision of σ = 2.9 K, which is below the measurement noise.

This study shows the interest of the AROMM method for an indirect temperature measurement problem in a complex case (complex geometry, radiation). These initial results pave the way to its implementation in a control loop and could be reinforced by including more non-linear parameters and their uncertainties..

  are dense matrices of reduced dimension [ N , N ], while matrix M rad = V T R rad is of dimension [N patch , N ]. This last matrix is not fully reduced as it involves radiative exchange between patches 130 Reduced vectors N 0 = V T U 0 and N tube = V T U tube are of dimension [ N ].
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 3 Figure 3: Real temperature T gas and temperature measurement at point A with σ N = 5

Figure 4 :

 4 Figure 4: Sensitivity study at two measurement points and for dierent T gas temperature levels
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 5 Fig. 5 illustrates this strategy, whose outcomes are represented on Fig. 6 (in this last gure, Fig. 6(a) to (d) focused on the initialization phase):
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 15 Figure 5: Identication strategy with a variable size window
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 9 Figure 9 represents temperature and error elds with N rec = 150 modes, for a measurement noise 270

Figure 9 :

 9 Figure 9: Temperature and error elds at t = 6 000 s for reconstruction with N (rec) = 150 modes in the case of identication with N (id) = 20 modes and σ N = 5 K.

Table 1 :

 1 Thermophysical characteristics of the dierent components

	Stand Wall Tube Reector	35 × 10 6 3.95 × 10 6 0.18 × 10 6 3.4 × 10 6 3.95 × 10 6	21.9 16.3 45 45 16.3	0.8 0.95 0.95 0.95 0.3	0.001 0.005 0.01 0.01 0.001

range, as each surface inside the furnace radiates towards every other surfaces.

4

  of dimension [N p ] contains mean temperatures of every patch Ω e i . Radiation matrix R rad [N × N p ] allots the mean heat ux density from the N p patches to the N nodes.

Table 2 :

 2 Eciency of reduced models

	Gain

the inverse procedure is particularly greedy in terms of computation time, but necessitates a good accuracy only at the measurement points : a low order model is chosen in order to comply with the on-line objective, construction of the reduced model (full base computation, reference solution and amalgam procedure) : t CP U ≈ 7mn.

Table 3 :

 3 Computation time for identication of T gas (t)