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Abstract

Multifractional processes are stochastic processes with non-stationary in-
crements whose local regularity and self-similarity properties change from
point to point. The paradigmatic example of them is the classical Multi-
fractional Brownian Motions (MBM) {M(t)}t∈R of Benassi, Jaffard, Lévy
Véhel, Peltier and Roux, which was constructed in the mid 90’s just by
replacing the constant Hurst parameter H of the well-known Fractional
Brownian Motion by a deterministic function H(t) having some smooth-
ness. More then 10 years later, using a different construction method,
which basically relies on nonhomogeneous fractional integration and dif-
ferentiation operators, Surgailis introduced two non-classical Gaussian
multifactional processes denoted by {X(t)}t∈R and {Y (t)}t∈R.

In our article, under a rather weak condition on the functional param-
eter H(·), we show that {M(t)}t∈R and {X(t)}t∈R as well as {M(t)}t∈R
and {Y (t)}t∈R only differ by a part which is locally more regular than
{M(t)}t∈R itself. Thus it turns out that the two non-classical multifrac-
tional processes {X(t)}t∈R and {Y (t)}t∈R have exactly the same local path
behavior as that of the classical MBM {M(t)}t∈R.

Key Words. Gaussian processes, variable Hurst parameter, local and pointwise Hölder

regularity, local self-similarity
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1 Introduction and statement of the main re-
sults

Let H ∈ (0, 1), the Fractional Brownian Field (FBF) of Hurst parameter H,
which is also called multivariate Fractional Brownian Motion, is a real-valued
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centred continuous Gaussian field on RN denoted by {BH(t)}t∈RN having, for
all t′, t′′ ∈ RN , the covariance:

Cov(BH(t′), BH(t′′)) = E(BH(t′)BH(t′′)) = c(H)
(
|t′|2H + |t′′|2H−|t′− t′′|2H

)
,

where c(H) is a positive constant only depending on H, and | · | is the Eu-
clidian norm. One refers to e.g. Chapter 1 of the book [1] for a detailed
presentation FBF. Notice that, up to a multiplicative constant, {BH(t)}t∈RN
is in distribution the unique Gaussian field which satisfies the following three
fundamental properties: self-similaritity that is for all fixed positive real num-

ber a one has {BH(at)}t∈RN
d
= {aHBH(t)}t∈RN , where the symbol

d
= means

equality of finite-dimensional distributions; stationarity of increments, that is

for each fixed t ∈ RN one has {BH(t + t) − BH(t)}t∈RN
d
= {BH(t)}t∈RN ;

and isotropy, that is for every fixed orthogonal matrix Q of size N one has

{BH(Qt)}t∈RN
d
= {BH(t)}t∈RN . Though FBF is a useful model, a serious limi-

tation of it comes from the fact that local behavior of its paths does not change
from point to point. More precisely, roughness of paths of a continuous nowhere
differentiable real-valued stochastic field {Z(t)}t∈RN around some fixed point
τ ∈ RN is usually measured through the pointwise Hölder exponent at τ

ρZ(τ) := sup

{
r ∈ [0, 1] ; lim sup

t→τ

|Z(t)− Z(τ)|
|t− τ |r

< +∞
}
, (1.1)

or through the local Hölder exponent at τ

ρ̃Z(τ) := sup

{
r̃ ∈ [0, 1] ; lim sup

(t′,t′′)→(τ,τ)

|Z(t′)− Z(t′′)|
|t′ − t′′|r̃

< +∞

}
. (1.2)

Observe that, one always has that

ρ̃Z(τ) ≤ ρZ(τ) , for all τ ∈ RN . (1.3)

Local roughness of paths of the FBF {BH(t)}t∈RN does not change from point
to point since it is known (see for instance [11, 4, 5, 9, 1]) that there exists an
universal event Ω∗ of probability 1 such that one has

ρ̃BH
(τ, ω) = ρBH

(τ, ω) = H , for all (τ, ω) ∈ RN × Ω∗.

In order to overcome this limitation of FBF, it has been proposed in [3, 8] to re-
place its constant Hurst parameter H by H(t), where H(·) denotes a continuous
function on RN with values in some compact interval included in (0, 1). This idea
has led to Multifractional Brownian Field {M(t)}t∈RN which is more commonly
called multivariate Multifractional Brownian Motion (MBM). Throughout our
article we always assume that the continuous function H(·) satisfies the usual
condition:

ρ̃H(τ) > H(τ) , for all τ ∈ RN , (1.4)
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where ρ̃H(τ) denotes the local Hölder exponent of the function H(·) at τ . Under
the condition (1.4), it has shown (see [2, 1]) that there exists an universal event
Ω∗∗ of probability 1 such that one has

ρ̃M(τ, ω) = ρM(τ, ω) = H(τ) , for all (τ, ω) ∈ RN × Ω∗∗. (1.5)

Also, under the same condition, it has shown (see [3, 1]) that, at every fixed
point τ ∈ RN , the stochastic field {M(t)}t∈RN is strongly locally asymptotically
self-similar of exponent H(τ). This means that, for some positive constant
c(τ) and for any fixed positive real number T , when λ→ 0+, the stochastic field{
λ−H(τ)(M(τ+λu)−M(τ))

}
u∈RN converges in distribution to {c(τ)BH(τ)(u)}u∈RN

in C
(
[−T, T ]N

)
the Banach space of the real-valued continuous functions on the

cube [−T, T ]N equipped with the uniform norm.
From now on, we assume that N = 1 and that H(·) is a continuous function

on the real line with values in some compact interval included in the open in-
terval (1/2, 1). Since we are mainly concerned with the non-classical Gaussian
multifractional processes introduced by Surgailis in his article [10], it is conve-
nient to use from now on the same notations as in this article. Therefore, we
denote by α(·) the continuous function from R into [αinf , αsup] ⊂ (0, 1/2) defined
as:

α(x) = H(x)− 1/2 , for all x ∈ R. (1.6)

Similarly to the article [10], we always suppose that α(·) satisfies the uniform
Dini condition:

sup
t∈R

∫ 1

−1

|α(t)− α(t+ u)|
|u|

du < +∞ , (1.7)

and also the condition:

ρ̃α(τ) > α(τ) + 1/2 , for all τ ∈ R. (1.8)

Observe that (1.8) is nothing else than the condition (1.4) with N = 1 expressed
in terms of the function α(·).

We are now going to give, in terms of the function α(·), the precise definition
of the classical Gaussian MBM {M(t)}t∈R initially introduced in [8], as well
as those of the two non-classical Surgailis Gaussian multifractional processes
{X(t)}t∈R and {Y (t)}t∈R constructed in [10]. To this end, we make use of the
usual convention:

for all (y, θ) ∈ R2, one has (y)θ+ := yθ if y > 0 and (y)θ+ = 0 else. (1.9)

The classical MBM {M(t)}t∈R with continuous paths is defined, for each t ∈ R,
through the Wiener integral:

M(t) :=

∫
R

1

Γ(1 + α(t))

(
(t− s)α(t)+ − (−s)α(t)+

)
dB(s) , (1.10)

where Γ(·) is the well-known ”Gamma” function defined as:

Γ(x) :=

∫ +∞

0

yx−1 e−y dy , for each x ∈ (0,+∞).
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Notice that it easily follows from (1.9), (1.10), and the equality Γ(x+1) = xΓ(x),
for all x ∈ (0,+∞), that, for every t ∈ R, one has

M(t) =

∫
R

(∫ t

0

1

Γ(α(t))
(τ − s)α(t)−1+ dτ

)
dB(s) . (1.11)

The two non-classical Surgailis multifractional processes {X(t)}t∈R and {Y (t)}t∈R
with continuous paths are, for every t ∈ R, defined through the Wiener integrals:

X(t) :=

∫
R

(∫ t

0

1

Γ(α(τ))
(τ − s)α(τ)−1+ eH−(s,τ)dτ

)
dB(s) (1.12)

and

Y (t) :=

∫
R

1

Γ(1 + α(s))

(
(t− s)α(s)+ e−H+(s,t) − (−s)α(s)+ e−H+(s,0)

)
dB(s) ,

(1.13)

where, for all real numbers s and t satisfying s < t, one has set

H−(s, t) :=

∫ t

s

α(u)− α(t)

t− u
du and H+(s, t) :=

∫ t

s

α(s)− α(v)

v − s
dv. (1.14)

It is natural to seek to compare the classical MBM {M(t)}t∈R with each one of
the two non-classical multifractional processes {X(t)}t∈R and {Y (t)}t∈R. This
leads us to introduce the two centred Gaussian processes with continuous paths
{R(t)}t∈R and {D(t)}t∈R defined, for all t ∈ R, as:

R(t) := X(t)−M(t) (1.15)

and

D(t) := Y (t)−M(t). (1.16)

The following two theorems are the two main results of our article. Roughly
speaking they show that {R(t)}t∈R and {D(t)}t∈R are locally more regular than
{M(t)}t∈R. Thus, it turns out that {X(t)}t∈R and {Y (t)}t∈R have exactly the
same local path behavior as {M(t)}t∈R.

Theorem 1.1 Assume that the conditions (1.7) and (1.8) are satisfied. Then,
there exists an universal event Ω′ of probability 1 such that one has

ρ̃R(τ, ω) > α(τ) + 1/2 = H(τ) = ρM(τ, ω) , for all (τ, ω) ∈ R× Ω′. (1.17)

Theorem 1.2 Assume that the conditions (1.7) and (1.8) are satisfied. Then,
there exists an universal event Ω′′ of probability 1 such that one has

ρ̃D(τ, ω) > α(τ) + 1/2 = H(τ) = ρM(τ, ω) , for all (τ, ω) ∈ R× Ω′′. (1.18)

It easily follows from Theorem 1.1, (1.15), (1.5), (1.1), (1.2) and (1.3) that:
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Corollary 1.3 Assume that the conditions (1.7) and (1.8) are satisfied, and
that Ω′ is the same event of probability 1 as in Theorem 1.1. Then, one has

ρX(τ, ω) = ρ̃X(τ, ω) = α(τ) + 1/2 = H(τ) , for all (τ, ω) ∈ R× Ω′.

It easily follows from Theorem 1.2, (1.16), (1.5), (1.1), (1.2) and (1.3) that:

Corollary 1.4 Assume that the conditions (1.7) and (1.8) are satisfied, and
that Ω′′ is the same event of probability 1 as in Theorem 1.2. Then, one has

ρY (τ, ω) = ρ̃Y (τ, ω) = α(τ) + 1/2 = H(τ) , for all (τ, ω) ∈ R× Ω′′.

Corollary 1.5 Assume that the conditions (1.7) and (1.8) are satisfied. Then,
at every fixed point τ ∈ R, the stochastic process {X(t)}t∈R is strongly locally
asymptotically self-similar of exponent H(τ) = α(τ) + 1/2. More precisely,
for some positive constant c(τ) and for any fixed positive real number T , when
λ → 0+, the stochastic process

{
λ−H(τ)(X(τ + λu) − X(τ))

}
u∈R converges in

distribution to {c(τ)BH(τ)(u)}u∈R in C
(
[−T, T ]

)
the Banach space of the real-

valued continuous functions over the compact [−T, T ] equipped with the uniform
norm.

Proof It follows from (1.15) that, for each fixed positive real number λ, the
stochastic process

{
λ−H(τ)(X(τ+λu)−X(τ))

}
u∈RN can be expressed as the sum

of the two processes
{
λ−H(τ)(M(τ+λu)−M(τ))

}
u∈RN and

{
λ−H(τ)(R(τ+λu)−

R(τ))
}
u∈RN . One already knows from [3, 1] that the process

{
λ−H(τ)(M(τ +

λu)−M(τ))
}
u∈RN converges in distribution to {c(τ)BH(τ)(u)}u∈R in C

(
[−T, T ]

)
when λ→ 0+. Thus, for proving the corollary it is enough to show that the pro-
cess

{
λ−H(τ)(R(τ+λu)−R(τ))

}
u∈RN , viewed as a random variable with values

in the space C
(
[−T, T ]

)
, converges almost surely to 0 in this space when λ→ 0+.

The latter fact results from Theorem 1.1, (1.3) and (1.1) which entail that, for
each ω ∈ Ω′ (the same event of probability 1 as in Theorem 1.1), there are 3
positive finite constants C0(ω), ε0(ω) and η0(ω) such that, for all real number v
satisfying |v| ≤ η0(ω), one has

∣∣R(τ + v, ω)−R(τ, ω)
∣∣ ≤ C0(ω)|v|H(τ)+ε0(ω). �

Corollary 1.6 Assume that the conditions (1.7) and (1.8) are satisfied. Then,
at every fixed point τ ∈ RN , the stochastic process {Y (t)}t∈R is strongly locally
asymptotically self-similar of exponent H(τ) = α(τ) + 1/2.

The proof of Corollary 1.6 is skipped since it is very similar to that of Corol-
lary 1.5 except that Theorem 1.2 and (1.16) have to be used instead of Theo-
rem 1.1 and (1.15).

2 Proof of Theorem 1.1

Let us first point out that the proof of Theorems 1.1 mainly relies on the fol-
lowing proposition which is a classical result derived from the equivalence of
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Gaussian moments and the well-known Kolmogorov-Chentsov Hölder continu-
ity theorem (see e.g. [6, 7]).

Proposition 2.1 Let {Z(t)}t∈R be a real-valued Gaussian process with contin-
uous 1 paths. Suppose that, for some compact interval I ⊂ R and for some
constants c > 0 and ζ ∈ (0, 1], the inequality

E|Z(t′)− Z(t′′)|2 ≤ c|t′ − t′′|2ζ

holds for all t′, t′′ ∈ I. Then, with probability 1, the paths of {Z(t)}t∈R satisfy
on I a uniform Hölder condition of any order β ∈ (0, ζ). More precisely, there
exists Ω′I an event of probability 1, which a priori depends on I, such that one
has

sup
t′,t′′∈I

|Z(t′, ω)− Z(t′′, ω)|
|t′ − t′′|β

< +∞ , for all (ω, β) ∈ Ω′I × (0, ζ). (2.1)

Remark 2.2 For proving Theorem 1.1 it is enough to show that, for all fixed
t0 ∈ R, there are 3 constants εt0 > 0, ηt0 > 0 and ct0 ≥ 0, which may depend
on t0, such that

E|R(t′)−R(t′′)|2 ≤ ct0 |t′ − t′′|2(α(t0)+1/2+3εt0 ) , for all t′, t′′ ∈ I(t0, ηt0/2),
(2.2)

where I(t0, ηt0/2) := [t0 − ηt0/2, t0 + ηt0/2]. Indeed, in view of Proposition 2.1,
it results from (2.2) that there exists Ω′t0 an event of probability 1 such that

sup
t′,t′′∈I(t0,ηt0/2)

|R(t′, ω)−R(t′′, ω)|
|t′ − t′′|α(t0)+1/2+2εt0

< +∞ , for all ω ∈ Ω′t0 . (2.3)

Observe that, using the continuity at t0 of the function α(·), one can choose ηt0
small enough so that

|α(t)− α(t0)| ≤ εt0 , for all t ∈ I(t0, ηt0/2). (2.4)

Next, let I̊(t0, ηt0/2) be the open interval, containing t0 and included in I(t0, ηt0/2),
defined as I̊(t0, ηt0/2) := (t0 − ηt0/2, t0 + ηt0/2). One clearly has that R =⋃
t0∈R I̊(t0, ηt0/2). Therefore, the local compactness of R implies that

R =
⋃
m∈N

I̊(t0,m, ηt0,m/2) , (2.5)

for some sequence (t0,m)m∈N of real numbers. Next, one denotes by Ω′ the event
of probabiliy 1 defined as

Ω′ :=
( ⋂
m∈N

Ωt0,m

)
∩ Ω∗∗ ,

1For the sake of simplicity, we can make this continuity assumption since we already know
that the paths of the Gaussian processes {R(t)}t∈R and {D(t)}t∈R, defined through (1.15) and
(1.16), are continuous functions and we are interested in their local Hölder regularity. Notice
that when the assumption of continuity of the paths of {Z(t)}t∈R is dropped then (2.1) holds

for a well-chosen modification {Z̃(t)}t∈I of {Z(t)}t∈I .
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where Ω∗∗ is the same event of probability 1 as in (1.5) with N = 1. Let
(τ, ω) ∈ R × Ω′ be arbitrary and fixed. One knows from (2.5) that there are
m̃(τ) ∈ N and η̃(τ) ∈ (0, 1) such that

I
(
τ, η̃(τ)

)
⊂ I̊
(
t0,m̃(τ), ηt0,m̃(τ)

/2
)
. (2.6)

Thus, it follows from (2.6), (2.4) and (2.3) that

sup
t′,t′′∈I(τ,η̃(τ))

|R(t′, ω)−R(t′′, ω)|
|t′ − t′′|α(τ)+1/2+εt0,m̃(τ)

≤ sup
t′,t′′∈I(t0,m̃(τ),ηt0,m̃(τ)

/2)

|R(t′, ω)−R(t′′, ω)|
|t′ − t′′|α(t0,m̃(τ))+1/2+2εt0,m̃(τ)

< +∞ . (2.7)

Finally, (2.7), (1.2), (1.5), and (1.6) imply that (1.17) is satisfied.

From now on, the goal is to prove that, for any fixed t0 ∈ R, the inequality
(2.2) holds. To this end, one will make an extensive use of the following lemma
borrowed from [10].

Lemma 2.3 One assumes that the continuous function α(·) satisfies the con-
dition (1.7), and one denotes by αsup the constant in the interval [αinf , αsup] ⊂
(0, 1/2) defined as:

αsup := lim sup
t−s→+∞

1

t− s

∫ t

s

α(u)du .

Then, for all fixed (strictly) positive real numbers ε and ν, there is a constant
C (which depends on ε and ν) such that the inequalities

(t− s)α(t)eH−(s,t) ≤ C (t− s)αsup+ε (2.8)

and

(t− s)α(s)e−H+(s,t) ≤ C (t− s)αsup+ε (2.9)

hold for all real numbers s and t satisfying t− s ≥ ν.

Notice that, one knows from (1.8) that the open interval (α(t0)+1/2, ρ̃α(t0))
is non-empty. Let γ ∈ (α(t0) + 1/2, ρ̃α(t0)) be arbitrary and fixed. Then, one
can derive from the definition of local Hölder exponent (see (1.2)) that there
are two constants kα ≥ 0 and δ ∈ (0, 1/2], such that one has

|α(x)− α(y)| ≤ kα|x− y|γ , for all x, y ∈ I(t0, 2δ) := [t0 − 2δ, t0 + 2δ].
(2.10)
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Remark 2.4 In all the sequel, one assumes that the two arbitrary and fixed
positive real numbers ε and η are small enough so that they satisfy the following
4 conditions:

ε < 8−1 ×min
{
αinf , 1/2− αsup , γ − (α(t0) + 1/2)

}
, (2.11)

η < δ/2 ≤ 1/4 , (2.12)

η2ε ≤ δ/2− η/2 (2.13)

and

|α(x)− α(y)| ≤ ε , for all x, y ∈ I(t0, 2η). (2.14)

Observe that a straightforward consequence of (2.10) and (2.12) is that

|α(x)− α(y)| ≤ kα|x− y|γ , for all x, y ∈ I(t0, 2η). (2.15)

Remark 2.5 In all the sequel, t0 ∈ R is arbitrary and fixed; one denotes by t
and t+ h, where h ∈ (0, 1], two arbitrary real numbers belonging to the interval
I(t0, η/2), and one sets

σ2
R(t, h) := E|R(t+ h)−R(t)|2. (2.16)

It can easily be seen that for proving (2.2), it is enough to show that there exists
a positive finite constant C0 not depending on t and h such that one has

σ2
R(t, h) ≤ C0 h

2(α(t0)+1/2+ε) . (2.17)

Using (2.16), (1.15), (1.11), (1.12) and the isometry property of Wiener
integral, one gets that

σ2
R(t, h) =

∫
R

[ ∫ t+h

0

1

Γ(α(t+ h))
(τ − s)α(t+h)−1+ dτ −

∫ t

0

1

Γ(α(t))
(τ − s)α(t)−1+ dτ

−
∫ t+h

t

1

Γ(α(τ))
(τ − s)α(τ)−1+ eH−(s,τ)dτ

]2
ds

=

∫
R

[ ∫ t+h

0

(
1

Γ(α(t+ h))
(τ − s)α(t+h)−1+ − 1

Γ(α(t))
(τ − s)α(t)−1+

)
dτ

+

∫ t+h

t

(
1

Γ(α(t))
(τ − s)α(t)−1+ − 1

Γ(α(τ))
(τ − s)α(τ)−1+ eH−(s,τ)

)
dτ

]2
ds.

Then, it follows from the inequality

(u+ v)2 ≤ 2u2 + 2v2 , for all (u, v) ∈ R2, (2.18)

that

σ2
R(t, h) ≤ 2λ1(t, h) + 2λ2(t, h) , (2.19)
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where

λ1(t, h) :=

∫
R

[ ∫ t+h

0

(
1

Γ(α(t+ h))
(τ − s)α(t+h)−1+ dτ − 1

Γ(α(t))
(τ − s)α(t)−1+

)
dτ

]2
ds

(2.20)

and

λ2(t, h) :=

∫
R

[ ∫ t+h

t

(
1

Γ(α(t))
(τ − s)α(t)−1+ − 1

Γ(α(τ))
(τ − s)α(τ)−1+ eH−(s,τ)

)
dτ

]2
ds.

(2.21)

The following lemma provides an appropriate upper bound for λ1(t, h).

Lemma 2.6 There is a constant C1, not depending on t and h, such that

λ1(t, h) ≤ C1h
2γ . (2.22)

Proof Let us set

λ11(t, h) :=

∫ t+h

−∞

(∫ t+h

0

(
1

Γ(α(t+ h))
− 1

Γ(α(t))

)
(τ − s)α(t+h)−1+ dτ

)2

ds

(2.23)

and

λ21(t, h) :=

∫ t+h

−∞

(∫ t+h

0

1

Γ(α(t))

(
(τ − s)α(t+h)−1+ − (τ − s)α(t)−1+

)
dτ

)2

ds .

(2.24)

Then one can derive from (2.20), (2.23), (2.24) and (2.18) that

λ1(t, h) ≤ 2
(
λ11(t, h) + λ21(t, h)

)
. (2.25)

Let us first show that one has for some constant c0, not depending on t and
h,

λ11(t, h) ≤ c0h2γ . (2.26)

Applying on the interval [α(t)∧α(t+h), α(t)∨α(t+h)] ⊆ [αinf , αsup] ⊂ (0, 1/2)
the mean value theorem to the infinitely differentiable positive function x 7→
1/Γ(x), and using the inequality (2.15), one obtains that∣∣∣∣ 1

Γ(α(t+ h))
− 1

Γ(α(t))

∣∣∣∣ ≤ c1hγ , (2.27)
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where the positive constant c1 does not depend on t and h. Then combining
(2.23) and (2.27) with inequality α(t+ h) ≥ αinf one gets that

λ11(t, h) ≤ c21 h2γ
∫ t+h

−∞

(∫ t+h

0

(τ − s)α(t+h)−1+ dτ

)2

ds

≤ c21h
2γ

α(t+ h)2

∫ t+h

−∞

(
(t+ h− s)α(t+h) − (−s)α(t+h)+

)2

ds

≤ c21h
2γ

α2
inf

∫ +∞

0

(
sα(t+h) − (s− t− h)

α(t+h)
+

)2

ds. (2.28)

Next, one studies two cases t+h ≥ 0 and t+h < 0. In the case where t+h ≥ 0
one has∫ +∞

0

(
sα(t+h) − (s− t− h)

α(t+h)
+

)2

ds

=

∫ t+h

0

s2α(t+h)ds+

∫ +∞

0

(
(s+ t+ h)α(t+h) − sα(t+h)

)2

ds

=
(t+ h)2α(t+h)+1

2α(t+ h) + 1
+ (t+ h)2α(t+h)+1

∫ +∞

0

(
(s+ 1)α(t+h) − sα(t+h)

)2

ds.

(2.29)

Next, observe that, for each fixed real number s ≥ 1, by applying on the interval
[s, s + 1] the mean value theorem to the infinitely differentiable function x 7→
xα(t+h), one obtains that∣∣(s+ 1)α(t+h) − sα(t+h)

∣∣ ≤ sαsup−1 , for all s ≥ 1.

Therefore, one has that

∫ +∞

0

(
(s+ 1)α(t+h) − sα(t+h)

)2

ds ≤
∫ 1

0

ds+

∫ +∞

1

s2αsup−2 ds = c2. (2.30)

Next, one denotes by c0 the constant defined as:

c0 :=
c21
α2
inf

(
(|t0|+ η)2αinf+1 + (|t0|+ η)2αsup+1

)( 1

2αinf + 1
+ c2

)
.

Then, using (2.28), (2.29), (2.30) and the fact t+h ∈ I(t0, η/2) := [t0−η/2, t0+
η/2], it follows that (2.26) is satisfied. Let us now turn to the case where

10



t+ h < 0. In this case one has∫ +∞

0

(
sα(t+h) − (s− t− h)

α(t+h)
+

)2

ds

= (−(t+ h))2α(t+h)+1

∫ +∞

0

(
(s+ 1)α(t+h) − sα(t+h)

)2

ds

≤ c2
(

(|t0|+ η)2αinf+1 + (|t0|+ η)2αsup+1
)

(2.31)

Thus combining (2.28) and (2.31) it turns out that (2.26) is satisfied in this case
as well.

Let us now prove that one has for some constant c3, not depending on t and
h,

λ21(t, h) ≤ c3h2γ . (2.32)

Let c4 be a positive constant, only depending on ε, such that one has∣∣ log(x)
∣∣ ≤ c4(x ∨ x−1)ε , for all x ∈ (0,+∞). (2.33)

Moreover, let Γinf be the positive constant defined as

Γinf := inf
z∈(0,+∞)

Γ(z) > 0. (2.34)

One mentions in passing that Γinf is larger than 1/2. Using (2.24), the mean
value theorem, (2.33), (2.15) and (2.11) one obtains that

λ21(t, h) ≤ c24 |α(t+ h)− α(t)|2

Γ2
inf

∫ t+h

−∞

(∫ t+h

0

(
(τ − s)αinf−1−ε

+ + (τ − s)αsup−1+ε
+

)
dτ

)2

ds

≤

[
c24 k

2
α

(αinf − ε)2Γ2
inf

∫ +∞

0

(
sαinf−ε − (s− t− h)αinf−ε

+ + sαsup+ε − (s− t− h)
αsup+ε
+

)2

ds

]
h2γ .

(2.35)
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In the case where t+ h ≥ 0, one has∫ +∞

0

(
sαinf−ε − (s− t− h)αinf−ε

+ + sαsup+ε − (s− t− h)
αsup+ε
+

)2

ds

=

∫ t+h

0

(
sαinf−ε + sαsup+ε

)2
ds

+

∫ +∞

0

(
(s+ t+ h)αinf−ε − sαinf−ε + (s+ t+ h)αsup+ε − sαsup+ε

)2

ds

≤ 2

∫ |t0|+η
0

(
s2(αinf−ε) + s2(αsup+ε)

)
ds+ 2

∫ +∞

0

(
(s+ t+ h)αinf−ε − sαinf−ε

)2

ds

+ 2

∫ +∞

0

(
(s+ t+ h)αsup+ε − sαsup+ε

)2

ds

≤ 4
(
1 + |t0|+ η

)2
+ 2(t+ h)2(αinf−ε)+1

∫ +∞

0

(
(s+ 1)αinf−ε − sαinf−ε

)2

ds

+ 2(t+ h)2(αsup+ε)+1

∫ +∞

0

(
(s+ 1)αsup+ε − sαsup+ε

)2

ds

≤ c5 ,
(2.36)

where c5 is the finite constant, not depending on t and h, defined as:

c5 := 4
(
1 + |t0|+ η

)2(
1 +

∫ +∞

0

(
(s+ 1)αinf−ε − sαinf−ε

)2
ds

+

∫ +∞

0

(
(s+ 1)αsup+ε − sαsup+ε

)2
ds

)
.

In the case where t+ h < 0, one has∫ +∞

0

(
sαinf−ε − (s− t− h)αinf−ε

+ + sαsup+ε − (s− t− h)
αsup−ε
+

)2

ds

≤ 2(−(t+ h))2(αinf−ε)+1

∫ +∞

0

(
(s+ 1)αinf−ε − sαinf−ε

)2

ds

+ 2(−(t+ h))2(αsup+ε)+1

∫ +∞

0

(
(s+ 1)αsup+ε − sαsup+ε

)2

ds

≤ c5 .
(2.37)
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Thus, (2.35), (2.36), and (2.37) entail that (2.32) holds.
Finally, combining (2.26) and (2.32) with (2.25), one gets (2.22). �

Let us now focus on λ2(t, h) defined in (2.21). Using the inequality

(u+ v + w)2 ≤ 3(u2 + v2 + w2), for all (u, v, w) ∈ R3, (2.38)

one has that

λ2(t, h) ≤ 3λ12(t, h) + 3 Γ−2inf λ
2
2(t, h) + 3 Γ−2inf λ

3
2(t, h), (2.39)

where

λ12(t, h) :=

∫
R

(∫ t+h

t

(
1

Γ(α(t))
− 1

Γ(α(τ))

)
(τ − s)α(t)−1+ dτ

)2

ds , (2.40)

λ22(t, h) :=

∫
R

(∫ t+h

t

∣∣∣(τ − s)α(t)−1+ − (τ − s)α(τ)−1+

∣∣∣ eH−(s,τ)dτ)2

ds (2.41)

and

λ32(t, h) :=

∫
R

(∫ t+h

t

(τ − s)α(t)−1+

∣∣∣eH−(s,τ) − 1
∣∣∣ dτ)2

ds . (2.42)

In view of (2.39), our next goal is to obtain three lemmas which will allow
us to conveniently bound from above λ12(t, h), λ22(t, h) and λ32(t, h).

Lemma 2.7 There is a constant C1
2 , not depending on t and h, such that

λ12(t, h) ≤ C1
2h

2(γ+αinf )+1.

Proof Similarly to (2.27), it can be shown that there is a constant c1, not
depending on t, h and τ , such that, for all τ ∈ [t, t+ h], one has∣∣∣∣ 1

Γ(α(t))
− 1

Γ(α(τ))

∣∣∣∣ ≤ c1|t− τ |γ ≤ c1hγ . (2.43)

Next combining (2.40) and (2.43), one gets that

λ12(t, h) ≤

[
c21

∫
R

(∫ t+h

t

(τ − s)α(t)−1+ dτ

)2

ds

]
h2γ . (2.44)

Moreover, one has∫
R

(∫ t+h

t

(τ − s)α(t)−1+ dτ

)2

ds =
1

α(t)2

(∫ +∞

0

(
(s+ h)α(t) − sα(t)

)2
ds+

∫ h

0

s2α(t)ds

)

≤ h2αinf+1

α2
inf

(∫ +∞

0

(
(s+ 1)α(t) − sα(t)

)2
ds+

1

2αinf + 1

)

≤ h2αinf+1

α2
inf

(
c2 +

1

2αinf + 1

)
, (2.45)
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where the constant c2, which does not depend on t and h, is the same constant
as in (2.30). Finally combining (2.44) and (2.45) one obtains the lemma. �

Lemma 2.8 There is a constant C2
2 , not depending on t and h, such that

λ22(t, h) ≤ C2
2h

2γ .

Proof First observe that using the mean value theorem, (2.14), (2.33) and
(2.15) , one has for all τ ∈ [t, t+ h] and s < τ∣∣(τ − s)α(t)−1 − (τ − s)α(τ)−1

∣∣ ≤ c1hγ((τ − s)α(t0)−1−2ε + (τ − s)α(t0)−1+2ε
)
,

(2.46)

where the constant c1 does not depend on t and h. Next, one sets

K−(t0) := sup
{
|H−(a, b)| , (a, b) ∈ I(t0, δ) and a < b

}
. (2.47)

Observe that K−(t0) is a finite constant. Indeed, one can derive from (1.14)
and (2.10) that, for all (a, b) ∈ I(t0, δ) satisfying a < b, one has

|H−(a, b)| ≤
∫ b

a

|α(u)− α(b)|
b− u

du ≤ kα
∫ b

a

du

(b− u)1−γ
= kα

∫ 2δ

0

dv

v1−γ
< +∞.

It results from (2.41), (2.46), (2.47), the inequalities (τ − s)+ ≤ 4η ≤ 1, for all
(τ, s) ∈ I(t0, 2η)2 ⊂ I(t0, δ)

2 (see (2.12)), and the inequality

τ − s ≥ η/2 , for all (τ, s) ∈ R2 s.t. τ ∈ [t, t+ h] ⊆ I(t0, η/2) and s ≤ t+ h− 3η/2 ,

(2.48)

that

λ22(t, h) ≤ c21 h2γ
∫ t+h

−∞

(∫ t+h

t

(
(τ − s)α(t0)−1−2ε+ + (τ − s)α(t0)−1+2ε

+

)
eH−(s,τ)dτ

)2

ds

≤ c21

[
4e2K−(t0)

∫ t+h

t+h−3η/2

(∫ t+h

t

(τ − s)α(t0)−1−2ε+ dτ

)2

ds

+
(

1 + (2/η)4ε
)2 ∫ t+h−3η/2

−∞

(∫ t+h

t

(τ − s)α(t0)−1+2εeH−(s,τ)dτ

)2

ds

]
h2γ .

(2.49)

Let us now prove that each one of the two integrals in the right-hand side of the
last inequality can be bounded from above by a finite constant not depending
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on t and h. In view of (2.11) one has∫ t+h

t+h−3η/2

(∫ t+h

t

(τ − s)α(t0)−1−2ε+ dτ

)2

ds

≤ 1

(αinf − 2ε)2

∫ t+h

t+h−3η/2

(
(t+ h− s)α(t0)−2ε − (t− s)α(t0)−2ε+

)2

ds

≤ 1

(αinf − 2ε)2

∫ t+h

t+h−3η/2
(t+ h− s)2α(t0)−4εds

=
1

(αinf − 2ε)2

∫ 3η/2

0

z2α(t0)−4εdz := c2 . (2.50)

On the other hand, one can derive from (2.48), Lemma 2.3 (with ν = η/2) and
(2.14) that∫ t+h−3η/2

−∞

(∫ t+h

t

(τ − s)α(t0)−1+2εeH−(s,τ)dτ

)2

ds

=

∫ t+h−3η/2

−∞

(∫ t+h

t

(τ − s)α(t0)−α(τ)(τ − s)α(τ)−1+2εeH−(s,τ)dτ

)2

ds

≤ C2

∫ t+h−3η/2

−∞

(∫ t+h

t

(
(τ − s)αsup−1+4ε + (τ − s)αsup−1+2ε

)
dτ

)2

ds ≤ c3 ,

(2.51)

where C is the same finite constant as in (2.8), and c3 is the finite constant not
depending on t and h defined as:

c3 :=

(
C

αsup

)2 ∫ +∞

0

(
(s+ 1)αsup+4ε− sαsup+4ε + (s+ 1)αsup+2ε− sαsup+2ε

)2
ds.

Finally, putting together (2.49), (2.50) and (2.51) one obtains the lemma. �

Lemma 2.9 There is a constant C3
2 , not depending on t and h, such that

λ32(t, h) ≤ C3
2h

2(α(t0)+1/2+ε).

Proof One can derive from (2.42) that

λ32(t, h) = µ1(t, h) + µ2(t, h) + µ3(t, h), (2.52)

where

µ1(t, h) :=

∫ t−δ/2

−∞

(∫ t+h

t

(τ − s)α(t)−1
∣∣∣eH−(s,τ) − 1

∣∣∣ dτ)2

ds , (2.53)

µ2(t, h) :=

∫ t−h2ε

t−δ/2

(∫ t+h

t

(τ − s)α(t)−1
∣∣∣eH−(s,τ) − 1

∣∣∣ dτ)2

ds , (2.54)
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and

µ3(t, h) :=

∫ t+h

t−h2ε

(∫ t+h

t

(τ − s)α(t)−1+

∣∣∣eH−(s,τ) − 1
∣∣∣ dτ)2

ds . (2.55)

Observe that one knows from (2.13) and the inequalities 0 < h ≤ η, that
t − h2ε > t − δ/2. Using (2.53), (2.18), Lemma 2.3 with ν = δ/2, (2.14), the
mean value theorem and (2.11), one obtains that

µ1(t, h) ≤ 2

∫ t−δ/2

−∞

(∫ t+h

t

(τ − s)α(t)−1eH−(s,τ)dτ

)2

ds+ 2

∫ t−δ/2

−∞

(∫ t+h

t

(τ − s)α(t)−1dτ

)2

ds

≤ 2C2(2/δ)4ε
∫ t−δ/2

−∞

(∫ t+h

t

(τ − s)αsup+2ε−1dτ

)2

ds+ 2

∫ t−δ/2

−∞

(∫ t+h

t

(τ − s)α(t)−1dτ

)2

ds

≤ 2C2(2/δ)4ε

(αsup + 2ε)2

∫ +∞

δ/2

(
(s+ h)αsup+2ε − sαsup+2ε

)2

ds+
2

α(t)2

∫ +∞

δ/2

(
(s+ h)α(t) − sα(t)

)2

ds

≤

[
2C2(2/δ)4ε

∫ +∞

δ/2

s2αsup+4ε−2ds+ 2

∫ +∞

δ/2

s2αsup−2ds

]
h2.

(2.56)

Next, observe that it follows from (2.12) and the inclusion [t, t+ h] ⊆ I(t0, η/2)
that [t − δ/2, t − h2ε] ⊂ I(t0, δ). Thus, using (2.54), (2.47), the mean value
theorem and (2.11), one gets that

µ2(t, h) ≤ (eK−(t0) + 1)2
∫ t−h2ε

t−δ/2

(∫ t+h

t

(τ − s)α(t)−1dτ

)2

ds

≤ (eK−(t0) + 1)2

α(t)2

∫ δ/2

h2ε

(
(s+ h)α(t) − sα(t)

)2

ds ≤
(
eK−(t0) + 1

)2
h2
∫ δ/2

h2ε

s2α(t)−2ds

≤
(
eK−(t0) + 1

)2
1− 2αsup

h2−2ε ≤
(
eK−(t0) + 1

)2
1− 2αsup

h2(α(t0)+1/2+ε).

(2.57)

In order to bound from above µ3(t, h), one denotes by E−(t0) the finite constant
defined as:

E−(t0) := sup

{∣∣∣ex − 1

x

∣∣∣ , x ∈ R and 0 < |x| ≤ K−(t0)

}
. (2.58)

Observe that the inclusion [t − h2ε, t + h] ⊂ I(t0, δ), (2.47), (2.58), (1.14) and
(2.10) entail that, for all (s, τ) ∈ [t− h2ε, t+ h]× [t, t+ h] satisfying s < τ , one
has∣∣eH−(s,τ) − 1

∣∣ ≤ E−(t0) |H−(s, τ)| ≤ E−(t0) kα

∫ τ

s

(τ − u)γ−1du =
E−(t0) kα

γ
(τ − s)γ .

(2.59)
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Thus, one can derive from (2.55) and (2.59) that

µ3(t, h) ≤
(

E−(t0) kα
γ(γ + αinf)

)2 ∫ t+h

t−h2ε

(
(t+ h− s)γ+α(t) − (t− s)γ+α(t)+

)2

ds .

(2.60)

Moreover, standard computations, the mean value theorem, the inequality γ >
1/2 and the inequalities 0 < αinf ≤ αsup allow to show that∫ t+h

t−h2ε

(
(t+ h− s)γ+α(t) − (t− s)γ+α(t)+

)2

ds

≤
∫ h2ε

0

(
(h+ s)γ+α(t) − sγ+α(t)

)2

ds+

∫ h

0

s2(γ+α(t))ds

≤ h2(γ + α(t))2
∫ h2ε

0

(
(s+ 1)2(γ+α(t)−1) + s−2(1−γ−α(t))

)
ds+ h2(γ+α(t))+1

≤ h2(γ + αsup + 1)2

[∫ 1

0

(
(s+ 1)2(γ+αsup−1) + s−2(1−γ−αinf )

)
ds+ 1

]
. (2.61)

Then (2.60) and (2.61) entail that, for some constant c1 not depending on t and
h, one has

µ3(t, h) ≤ c1h2 . (2.62)

Finally, putting together (2.52), (2.56), (2.57), (2.62) and (2.11) one obtains the
lemma. �

We are now in a position to prove the inequality (2.17).

Remark 2.10 Combining (2.39) and (2.11) with Lemmas 2.7, 2.8 and 2.9 one
obtains that

λ2(t, h) ≤ C2 h
2(α(t0)+1/2+ε) , (2.63)

where the constant C2 := 3(C1
2 +Γ−2inf C

2
2 +Γ−2inf C

3
2 ). Thus, it results from (2.19),

Lemma 2.6, (2.63) and (2.11) that

σ2
R(t, h) ≤ 2(C1 + C2)h2(α(t0)+1/2+ε) ,

which shows that (2.17) is satisfied.

3 Proof of Theorem 1.2

Remark 3.1 By arguing as in Remark 2.2 it turns out that for proving Theorem
1.2 it is enough to show that, for all fixed t0 ∈ R, there are 3 constants εt0 > 0,
ηt0 > 0 and ct0 ≥ 0, which may depend on t0, such that

E|D(t′)−D(t′′)|2 ≤ ct0 |t′ − t′′|2(α(t0)+1/2+3εt0 ) , for all t′, t′′ ∈ I(t0, ηt0/2).
(3.1)
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Remark 3.2 In all the sequel, one assumes that t0 ∈ R is arbitrary and fixed
and that δ ∈ (0, 1/2] is the same as in (2.10). Also, one assumes that the two
arbitrary and fixed positive real numbers ε and η are small enough so that they
satisfy the 3 conditions (2.11), (2.12) and (2.14).

Remark 3.3 In all the sequel one denotes by t and t+ h, where h ∈ (0, 1], two
arbitrary real numbers belonging to the interval I(t0, η/2), and one sets

σ2
D(t, h) := E|D(t+ h)−D(t)|2. (3.2)

It can easily be seen that for proving (3.1), it is enough to show that there exists

a positive finite constant C̃0 not depending on t and h such that one has

σ2
D(t, h) ≤ C̃0 h

2(α(t0)+1/2+ε) . (3.3)

Using (3.2), (1.16), (1.13), (1.10), the isometry property of Wiener integral,
and (2.18) one gets that

σ2
D(t, h) ≤ 2Λ0(t, h) + 2Λ1(t, h) + Λ2(t, h) + Λ3(t, h) , (3.4)

where

Λ0(t, h) :=

∫ t−η

−∞

(
1

Γ(1 + α(t+ h))

(
(t+ h− s)α(t+h) − (−s)α(t+h)+

)
(3.5)

− 1

Γ(1 + α(t))

(
(t− s)α(t) − (−s)α(t)+

))2

ds ,

Λ1(t, h) :=

∫ t−η

−∞

(
1

Γ(1 + α(s))
(t+ h− s)α(s)e−H+(s,t+h) − 1

Γ(1 + α(s))
(t− s)α(s)e−H+(s,t)

)2

ds ,

(3.6)

Λ2(t, h) :=

∫ t

t−η

(
1

Γ(1 + α(s))
(t+ h− s)α(s)e−H+(s,t+h) − 1

Γ(1 + α(s))
(t− s)α(s)e−H+(s,t)

(3.7)

− 1

Γ(1 + α(t+ h))
(t+ h− s)α(t+h) +

1

Γ(1 + α(t))
(t− s)α(t)

)2

ds

and

Λ3(t, h) :=

∫ t+h

t

(
1

Γ(1 + α(s))
(t+ h− s)α(s)e−H+(s,t+h) − 1

Γ(1 + α(t+ h))
(t+ h− s)α(t+h)

)2

ds.

(3.8)

The following lemma provides an appropriate upper bound for Λ0(t, h).

Lemma 3.4 There is a constant C0, not depending on t and h, such that

Λ0(t, h) ≤ C0h
2γ . (3.9)
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Proof It follows from (3.5), (2.20), (2.18), (2.34) and the equality Γ(x+ 1) =
xΓ(x), for all x ∈ (0,+∞), that

Λ0(t, h) ≤ 2λ1(t, h) + 2Γ−2inf Λ̃0(t, h) , (3.10)

where

Λ̃0(t, h) :=

∫ t−η

−∞

(
(t+ h− s)α(t) − (t− s)α(t)

)2
ds .

Moreover, using the mean value theorem, one has that

Λ̃0(t, h) ≤ c h2 , (3.11)

where the finite constant c :=
∫ +∞
η

(
s2(αsup−1) + s2(αinf−1)

)
ds. Finally, putting

together (3.10), (2.22) and (3.11), one gets (3.9). �

The following lemma provides an appropriate upper bound for Λ1(t, h).

Lemma 3.5 There is a constant C1, not depending on t and h, such that

Λ1(t, h) ≤ C1h
2. (3.12)

Proof One can derive from (3.6), (2.34) and (2.18) that

Λ1(t, h) ≤ 2 Γ−2inf

(
Λ1
1(t, h) + Λ2

1(t, h)
)
, (3.13)

where

Λ1
1(t, h) =

∫ +∞

−t+η
(t+ h+ s)2α(−s)

(
e−H+(−s,t+h) − e−H+(−s,t)

)2
ds (3.14)

and

Λ2
1(t, h) =

∫ +∞

−t+η
e−2H+(−s,t)

(
(t+ h+ s)α(−s) − (t+ s)α(−s)

)2
ds . (3.15)

Let us first focus on Λ1
1(t, h). It can easily be seen that

e−H+(−s,t+h) − e−H+(−s,t) = e−H+(−s,t+h)
(

1− eH+(−s,t+h)−H+(−s,t)
)

(3.16)

and that

sup
|x|≤M0

∣∣∣∣1− exx

∣∣∣∣ < +∞ , for each fixed M0 ∈ (0,+∞). (3.17)

Moreover, in view of (1.14) and the fact that α(·) is with values in [αinf , αsup] ⊂
(0, 1/2) one has, for all real number s ≥ −t+ η, that

|H+(−s, t+ h)−H+(−s, t)| =

∣∣∣∣∣
∫ h

0

α(−s)− α(v + t)

v + t+ s
dv

∣∣∣∣∣ ≤ h

2(s+ t)
. (3.18)
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Then, putting together (3.14), (3.16), (3.17) and (3.18), one obtains, for some
finite constant c1 not depending on t and h, that

Λ1
1(t, h) ≤

∫ +∞

−t+η
(t+ h+ s)2α(−s)

(
e−H+(−s,t+h) − e−H+(−s,t)

)2
ds

≤ c1h2
∫ +∞

−t+η

(t+ h+ s)2α(−s)e−2H+(−s,t+h)

(s+ t)2
ds.

Thus, using (2.9), in which t and s are replaced by t + h and −s, and the fact
that h ∈ (0, 1], one gets that

Λ1
1(t, h) ≤

[
c1C

2

∫ +∞

η

(s+ 1)2αsup+2ε

s2
ds

]
h2 . (3.19)

Notice that thanks to (2.11) the integral in the right-hand side of (3.19) since
αsup ≤ αsup.

On the other hand, it follows from (3.15), the mean value theorem, and (2.9)
that

Λ2
1(t, h) ≤ h2

∫ +∞

−t+η
e−2H+(−s,t) (t+ s)2α(−s)−2ds ≤

[
C2

∫ +∞

η

s2αsup+2ε−2ds

]
h2.

(3.20)

Finally, combining (3.19) and (3.20) with (3.13) one gets (3.12). �

In order to derive an appropriate upper bound for Λ2(t, h), defined in (3.7),
let us express it as:

Λ2(t, h) = Λ1
2(t, h) + Λ2

2(t, h) , (3.21)

where

Λ1
2(t, h) :=

∫ t−ηh1/2

t−η

(
1

Γ(1 + α(s))
(t+ h− s)α(s)e−H+(s,t+h) − 1

Γ(1 + α(s))
(t− s)α(s)e−H+(s,t)

(3.22)

− 1

Γ(1 + α(t+ h))
(t+ h− s)α(t+h) +

1

Γ(1 + α(t))
(t− s)α(t)

)2

ds

and

Λ2
2(t, h) :=

∫ t

t−ηh1/2

(
1

Γ(1 + α(s))
(t+ h− s)α(s)e−H+(s,t+h) − 1

Γ(1 + α(s))
(t− s)α(s)e−H+(s,t)

(3.23)

− 1

Γ(1 + α(t+ h))
(t+ h− s)α(t+h) +

1

Γ(1 + α(t))
(t− s)α(t)

)2

ds.

The following lemma provides an appropriate upper bound for Λ1
2(t, h) de-

fined in (3.22).
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Lemma 3.6 There is a constant C1
2 , not depending on t and h, such that

Λ1
2(t, h) ≤ C1

2

(
h2γ + h2(α(t0)+1/2)+7ε

)
. (3.24)

Proof It follows from (3.22), (2.38), (2.34) and the equality Γ(x+1) = xΓ(x),
for all x ∈ (0,+∞), that

Λ1
2(t, h) ≤ 3

(
Γ−2inf Λ1,1

2 (t, h) + Γ−2inf Λ1,2
2 (t, h) + Λ1,3

2 (t, h)
)
, (3.25)

where

Λ1,1
2 (t, h) :=

∫ t−ηh1/2

t−η
(t+ h− s)2α(s)

(
e−H+(s,t+h) − e−H+(s,t)

)2
ds , (3.26)

Λ1,2
2 (t, h) :=

∫ t−ηh1/2

t−η

(
(t+ h− s)α(s) − (t− s)α(s)

)2
e−2H+(s,t)ds (3.27)

and

Λ1,3
2 (t, h) :=

∫ t−ηh1/2

t−η

(
1

Γ(1 + α(t+ h))
(t+ h− s)α(t+h) − 1

Γ(1 + α(t))
(t− s)α(t)

)2

ds.

(3.28)

Let us first focus on Λ1,1
2 (t, h). One clearly has that(

e−H+(s,t+h) − e−H+(s,t)
)2

= e−2H+(s,t+h)
(

1− eH+(s,t+h)−H+(s,t)
)2
. (3.29)

Moreover, in view of the inclusions [t, t+ h] ⊂ I(t0, η/2) and [t− η, t− ηh1/2] ⊂
I(t0, 2η), one can derive from (1.14), (2.15) and the mean value theorem that
one has, for all s ∈ [t− η, t− ηh1/2],

|H+(s, t+ h)−H+(s, t)| ≤
∫ t+h

t

|α(s)− α(v)|
v − s

dv

≤ kαγ−1
(

(t+ h− s)γ − (t− s)γ
)
≤ kα ηγ−1 h(1+γ)/2 (3.30)

and

|H+(s, t+ h)| ≤
∫ t+h

s

|α(s)− α(v)|
v − s

dv

≤ kα
∫ t+h

s

(v − s)γ−1dv = kαγ
−1 (t+ h− s)γ ≤ kαγ−1 (η + 1)γ .

(3.31)

Thus, putting together (3.26), (3.29), (3.30), (3.17), (3.31) and α(s) ∈ [αinf , αsup],
one gets, for some (finite) constant c1 not depending on t and h, that

Λ1,1
2 (t, h) ≤ c1h1+γ . (3.32)
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As regards Λ1,2
2 (t, h) defined in (3.27), one can derive from (3.31), the mean

value theorem, the inclusion [t− η, t− ηh1/2] ⊂ I(t0, 2η), (2.14) and (2.11) that

Λ1,2
2 (t, h) ≤ c2h2

∫ t−ηh1/2

t−η
(t− s)2(α(t0)−ε−1)ds ≤ c′2h2(α(t0)+1/2)+7ε , (3.33)

where c2 and c′2 are two (finite) constants not depending on t and h.
As regards Λ1,3

2 (t, h) defined in (3.28), one can derive from (2.38), and (2.34)
that

Λ1,3
2 (t, h) ≤ 3

∫ t−ηh1/2

t−η

(
1

Γ(1 + α(t+ h))
− 1

Γ(1 + α(t))

)2

(t+ h− s)2α(t+h)ds

+ 3 Γ−2inf

∫ t−ηh1/2

t−η

(
(t+ h− s)α(t+h) − (t− s)α(t+h)

)2
ds

+ 3 Γ−2inf

∫ t−ηh1/2

t−η

(
(t− s)α(t+h) − (t− s)α(t)

)2
ds . (3.34)

Rather similarly to (2.26), it can be shown that, for some constant c3 not de-
pending on t and h, one has∫ t−ηh1/2

t−η

(
1

Γ(1 + α(t+ h))
− 1

Γ(1 + α(t))

)2

(t+ h− s)2α(t+h)ds ≤ c3h2γ .

(3.35)
Rather similarly to (3.33), it can be shown that for some constant c4 not de-
pending on t and h, one has∫ t−ηh1/2

t−η

(
(t+ h− s)α(t+h) − (t− s)α(t+h)

)2
ds ≤ c4h2(α(t0)+1/2)+7ε . (3.36)

Rather similarly to (2.35), it can be shown that for some constant c5 not de-
pending on t and h, one has∫ t−ηh1/2

t−η

(
(t− s)α(t+h) − (t− s)α(t)

)2
ds ≤ c5h2γ . (3.37)

Finally, putting together (3.25), (3.32), (3.33), (3.34), (3.35), (3.36), (3.37)
and the fact that γ ∈ (1/2, 1), it follows that (3.24) holds. �

The following lemma provides an appropriate upper bound for Λ2
2(t, h) de-

fined in (3.23).

Lemma 3.7 There is a constant C2
2 , not depending on t and h, such that

Λ2
2(t, h) ≤ C2

2 h
2(α(t0)+1/2)+6ε . (3.38)
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Proof Using (3.23) and (2.18), one has that

Λ2
2(t, h) ≤ 2

(
Λ2,0
2 (t, h) + Λ2,1

2 (t, h)
)
, (3.39)

where, for j = 0 or j = 1,

Λ2,j
2 (t, h) :=

∫ t

t−ηh1/2

(
1

Γ(1 + α(t+ jh))
(t+ jh− s)α(t+jh) (3.40)

− 1

Γ(1 + α(s))
(t+ jh− s)α(s)e−H+(s,t+jh)

)2

ds .

In view of (3.39), in order to show that (3.38) is satisfied, it is enough to prove
that, for each j ∈ {0, 1}, the following inequality, in which c denotes a (finite)
constant not depending on t and h, holds

Λ2,j
2 (t, h) ≤ c h2(α(t0)+1/2)+6ε . (3.41)

It follows from (3.40), (2.38) and (2.34) that

Λ2,j
2 (t, h) ≤ 3

(
ϕ1,j(t, h) + Γ−2inf ϕ2,j(t, h) + Γ−2inf ϕ3,j(t, h)

)
, (3.42)

where

ϕ1,j(t, h) :=

∫ t

t−ηh1/2

(
1

Γ(1 + α(t+ jh))
− 1

Γ(1 + α(s))

)2

(t+ jh− s)2α(t+jh)ds ,

(3.43)

ϕ2,j(t, h) :=

∫ t

t−ηh1/2

(t+ jh− s)2α(t+jh)
(
1− e−H+(s,t+jh)

)2
ds (3.44)

and

ϕ3,j(t, h) :=

∫ t

t−ηh1/2

(
(t+ jh− s)α(t+h) − (t+ jh− s)α(s)

)2
e−2H+(s,t+jh)ds .

(3.45)

It results from (3.43), the mean value theorem, (2.15), (2.12), (2.14) and (2.11)
that

ϕ1,j(t, h) ≤ c1
∫ t

t−ηh1/2

(t+ jh− s)2γ+2α(t+jh)ds (3.46)

≤ c′1h1/2(1+2γ+2α(t0)−2ε) ≤ c′1h2(α(t0)+1/2)+7ε ,

where c1 and c′1 are two (finite) constants not depending on t and h. Next,
observe that, similarly to (3.31), it can be shown that there exists a (finite)
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constant c2, not depending on t, h and s, such that, for all s ∈ [t−ηh1/2, t], one
has

|H+(s, t+ jh)| ≤ c2 hγ/2 . (3.47)

Thus, one can derive from (3.44), (3.47), (3.17), (2.12), (2.14) and (2.11) that

ϕ2,j(t, h) ≤ c3 hγ
∫ t

t−ηh1/2

(t+ jh− s)2α(t+jh)ds ≤ c′3h2(α(t0)+1/2)+7ε , (3.48)

where c3 and c′3 are two (finite) constants not depending on t and h. Next,
using (3.45), (3.47), the mean value theorem, (2.15), (2.33), (2.14) and (2.11),
one gets that

ϕ3,j(t, h) ≤ c4hγ
∫ t

t−ηh1/2

(t+ jh− s)2α(t0)−4εds (3.49)

≤ c′4h1/2(1+2γ+2α(t0)−4ε) ≤ c′4h2(α(t0)+1/2)+6ε ,

where c4 and c′4 are two (finite) constants not depending on t and h. Finally,
putting together (3.42), (3.46), (3.48) and (3.49), one obtains (3.41). �

The following lemma provides an appropriate upper bound for Λ3(t, h) de-
fined in (3.8).

Lemma 3.8 There is a constant C3, not depending on t and h, such that

Λ3(t, h) ≤ C3h
2+14ε . (3.50)

Proof It follows from (3.8), (2.38) and (2.34) that

Λ3(t, h) ≤ 3
(

Λ1
3(t, h) + Γ−2inf Λ2

3(t, h) + Γ−2inf Λ3
3(t, h)

)
, (3.51)

where

Λ1
3(t, h) :=

∫ h

0

(
1

Γ(1 + α(s+ t))
− 1

Γ(1 + α(t+ h))

)2

(h− s)2α(s+t)e−2H+(s+t,t+h)ds ,

(3.52)

Λ2
3(t, h) :=

∫ h

0

(h− s)2α(t+s)
(
e−H+(s+t,t+h) − 1

)2
ds (3.53)

and

Λ3
3(t, h) :=

∫ h

0

(
(h− s)α(t+s) − (h− s)α(t+h)

)2
ds . (3.54)

Observe that, similarly to (3.31), it can be shown that there exists a (finite)
constant c1, not depending on t, h and s, such that, for all s ∈ [0, h], one has

|H+(s+ t, t+ h)| ≤ c1 hγ . (3.55)
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One can derive from (3.52), (3.55), the mean value theorem and (2.15) that

Λ1
3(t, h) ≤ c2h2γ

∫ h

0

(h− s)2α(s+t)ds ≤ c2h2(γ+αinf )+1 , (3.56)

where c2 is a (finite) constant not depending on t and h. Moreover, it follows
from (3.53), (3.55) and (3.17) that

Λ2
3(t, h) ≤ c3h2γ

∫ h

0

(h− s)2α(t+s)ds ≤ c3h2(γ+αinf )+1 , (3.57)

where c3 is a (finite) constant not depending on t and h. Furthermore, using
(3.54), the mean value theorem, (2.15), (2.33) and (2.11) one has that

Λ3
3(t, h) ≤ c4h2γ

∫ h

0

s2(αinf−ε)ds ≤ c4h2(γ+αinf−ε)+1 , (3.58)

where c4 is a (finite) constant not depending on t and h. Finally, putting
together (3.51), (3.56), (3.57), (3.58), the inequality 2γ > 1 and the inequality
αinf > 8ε (see (2.11)), one obtains (3.50). �

We are now in a position to prove the inequality (3.3).

Remark 3.9 Putting together (3.4), (3.9), (3.12), (3.21), (3.24), (3.38), (3.50),
the fact that h ∈ (0, 1], the fact that γ ∈ (1/2, 1) and (2.11), it follows that (3.3)
is satisfied.
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[11] Y. Xiao, Hölder conditions for the local times and the Hausdorff measure
of the level sets of Gaussian random fields, Probability Theory and Related
Fields 109 (1997), 129–157.

26


