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Multifractional processes are stochastic processes with non-stationary increments whose local regularity and self-similarity properties change from point to point. The paradigmatic example of them is the classical Multifractional Brownian Motions (MBM) {M(t)} t∈R of Benassi, Jaffard, Lévy Véhel, Peltier and Roux, which was constructed in the mid 90's just by replacing the constant Hurst parameter H of the well-known Fractional Brownian Motion by a deterministic function H(t) having some smoothness. More then 10 years later, using a different construction method, which basically relies on nonhomogeneous fractional integration and differentiation operators, Surgailis introduced two non-classical Gaussian multifactional processes denoted by {X(t)} t∈R and {Y (t)} t∈R .

In our article, under a rather weak condition on the functional parameter H(•), we show that {M(t)} t∈R and {X(t)} t∈R as well as {M(t)} t∈R and {Y (t)} t∈R only differ by a part which is locally more regular than {M(t)} t∈R itself. Thus it turns out that the two non-classical multifractional processes {X(t)} t∈R and {Y (t)} t∈R have exactly the same local path behavior as that of the classical MBM {M(t)} t∈R .

= {B H (t)} t∈R N . Though FBF is a useful model, a serious limitation of it comes from the fact that local behavior of its paths does not change from point to point. More precisely, roughness of paths of a continuous nowhere differentiable real-valued stochastic field {Z(t)} t∈R N around some fixed point τ ∈ R N is usually measured through the pointwise Hölder exponent at τ ρ Z (τ ) := sup r ∈ [0, 1] ; lim sup

t→τ |Z(t) -Z(τ )| |t -τ | r < +∞ , (1.1) 
or through the local Hölder exponent at τ ρ Z (τ ) := sup r ∈ [0, 1] ; lim sup (t ,t )→(τ,τ )

|Z(t ) -Z(t )| |t -t | r < +∞ . (1.2)
Observe that, one always has that ρ Z (τ ) ≤ ρ Z (τ ) , for all τ ∈ R N .

(1.3)

Local roughness of paths of the FBF {B H (t)} t∈R N does not change from point to point since it is known (see for instance [START_REF] Xiao | Hölder conditions for the local times and the Hausdorff measure of the level sets of Gaussian random fields[END_REF][START_REF] Berman | Gaussian sample functions: uniform dimension and Hölder conditions nowhere[END_REF][START_REF]Local nondeterminism and local times of Gaussian processes[END_REF][START_REF] Pitt | Local times for Gaussian vector fields[END_REF][START_REF] Ayache | Multifractional stochastic fields : wavelet strategies in multifractional frameworks[END_REF]) that there exists an universal event Ω * of probability 1 such that one has

ρ B H (τ, ω) = ρ B H (τ, ω) = H , for all (τ, ω) ∈ R N × Ω * .
In order to overcome this limitation of FBF, it has been proposed in [START_REF] Benassi | Elliptic Gaussian random processes[END_REF][START_REF] Peltier | Multifractional Brownian motion: definition and preliminary results[END_REF] to replace its constant Hurst parameter H by H(t), where H(•) denotes a continuous function on R N with values in some compact interval included in (0, 1). This idea has led to Multifractional Brownian Field {M(t)} t∈R N which is more commonly called multivariate Multifractional Brownian Motion (MBM). Throughout our article we always assume that the continuous function H(•) satisfies the usual condition: ρ H (τ ) > H(τ ) , for all τ ∈ R N , (1.4) where ρ H (τ ) denotes the local Hölder exponent of the function H(•) at τ . Under the condition (1.4), it has shown (see [START_REF] Ayache | Wavelet construction of Generalized Multifractional Processes[END_REF][START_REF] Ayache | Multifractional stochastic fields : wavelet strategies in multifractional frameworks[END_REF]) that there exists an universal event Ω * * of probability 1 such that one has ρ M (τ, ω) = ρ M (τ, ω) = H(τ ) , for all (τ, ω) ∈ R N × Ω * * .

(1.5) Also, under the same condition, it has shown (see [START_REF] Benassi | Elliptic Gaussian random processes[END_REF][START_REF] Ayache | Multifractional stochastic fields : wavelet strategies in multifractional frameworks[END_REF]) that, at every fixed point τ ∈ R N , the stochastic field {M(t)} t∈R N is strongly locally asymptotically self-similar of exponent H(τ ). This means that, for some positive constant c(τ ) and for any fixed positive real number T , when λ → 0 + , the stochastic field

λ -H(τ ) (M(τ +λu)-M(τ )) u∈R N converges in distribution to {c(τ )B H(τ ) (u)} u∈R N in C [-T, T ] N the
Banach space of the real-valued continuous functions on the cube [-T, T ] N equipped with the uniform norm.

From now on, we assume that N = 1 and that H(•) is a continuous function on the real line with values in some compact interval included in the open interval (1/2, 1). Since we are mainly concerned with the non-classical Gaussian multifractional processes introduced by Surgailis in his article [START_REF] Surgailis | Nonhomogeneous fractional integration and multifractional processes[END_REF], it is convenient to use from now on the same notations as in this article. Therefore, we denote by α(•) the continuous function from R into [α inf , α sup ] ⊂ (0, 1/2) defined as:

α(x) = H(x) -1/2 , for all x ∈ R. (1.6) 
Similarly to the article [START_REF] Surgailis | Nonhomogeneous fractional integration and multifractional processes[END_REF], we always suppose that α(•) satisfies the uniform Dini condition:

sup t∈R 1 -1 |α(t) -α(t + u)| |u| du < +∞ , (1.7) 
and also the condition:

ρ α (τ ) > α(τ ) + 1/2 , for all τ ∈ R. (1.8)
Observe that (1.8) is nothing else than the condition (1.4) with N = 1 expressed in terms of the function α(•).

We are now going to give, in terms of the function α(•), the precise definition of the classical Gaussian MBM {M(t)} t∈R initially introduced in [START_REF] Peltier | Multifractional Brownian motion: definition and preliminary results[END_REF], as well as those of the two non-classical Surgailis Gaussian multifractional processes {X(t)} t∈R and {Y (t)} t∈R constructed in [START_REF] Surgailis | Nonhomogeneous fractional integration and multifractional processes[END_REF]. To this end, we make use of the usual convention: for all (y, θ) ∈ R 2 , one has (y) θ + := y θ if y > 0 and (y) θ + = 0 else.

(1.9)

The classical MBM {M(t)} t∈R with continuous paths is defined, for each t ∈ R, through the Wiener integral:

M(t) := R 1 Γ(1 + α(t)) (t -s) α(t) + -(-s) α(t) + dB(s) , (1.10) 
where Γ(•) is the well-known "Gamma" function defined as: Γ(x) := +∞ 0 y x-1 e -y dy , for each x ∈ (0, +∞).

Notice that it easily follows from (1.9), (1.10), and the equality Γ(x+1) = xΓ(x), for all x ∈ (0, +∞), that, for every t ∈ R, one has

M(t) = R t 0 1 Γ(α(t)) (τ -s) α(t)-1 + dτ dB(s) . (1.11)
The two non-classical Surgailis multifractional processes {X(t)} t∈R and {Y (t)} t∈R with continuous paths are, for every t ∈ R, defined through the Wiener integrals:

X(t) := R t 0 1 Γ(α(τ )) (τ -s) α(τ )-1 + e H-(s,τ ) dτ dB(s) (1.12)
and

Y (t) := R 1 Γ(1 + α(s)) (t -s) α(s) + e -H+(s,t) -(-s) α(s) + e -H+(s,0) dB(s) , (1.13) 
where, for all real numbers s and t satisfying s < t, one has set 

H -(s, t) := t s α(u) -α(t) t -u du and H + (s, t) := t s α(s) -α(v) v -s dv. (1.
ρ R (τ, ω) > α(τ ) + 1/2 = H(τ ) = ρ M (τ, ω) , for all (τ, ω) ∈ R × Ω . (1.17)
Theorem 1.2 Assume that the conditions (1.7) and (1.8) are satisfied. Then, there exists an universal event Ω of probability 1 such that one has 

ρ D (τ, ω) > α(τ ) + 1/2 = H(τ ) = ρ M (τ, ω) , for all (τ, ω) ∈ R × Ω . (1.
ρ Y (τ, ω) = ρ Y (τ, ω) = α(τ ) + 1/2 = H(τ ) , for all (τ, ω) ∈ R × Ω .
Corollary 1.5 Assume that the conditions (1.7) and (1.8) are satisfied. Then, at every fixed point τ ∈ R, the stochastic process {X(t)} t∈R is strongly locally asymptotically self-similar of exponent H(τ ) = α(τ ) + 1/2. More precisely, for some positive constant c(τ ) and for any fixed positive real number T , when λ → 0 + , the stochastic process λ -H(τ ) (X(τ + λu) -X(τ )) u∈R converges in distribution to {c(τ )B H(τ ) (u)} u∈R in C [-T, T ] the Banach space of the realvalued continuous functions over the compact [-T, T ] equipped with the uniform norm.

Proof It follows from (1.15) that, for each fixed positive real number λ, the stochastic process λ -H(τ ) (X(τ +λu)-X(τ )) u∈R N can be expressed as the sum of the two processes λ -H(τ ) (M(τ +λu)-M(τ )) u∈R N and λ -H(τ ) (R(τ +λu)-R(τ )) u∈R N . One already knows from [START_REF] Benassi | Elliptic Gaussian random processes[END_REF][START_REF] Ayache | Multifractional stochastic fields : wavelet strategies in multifractional frameworks[END_REF] that the process λ -H(τ

) (M(τ + λu)-M(τ )) u∈R N converges in distribution to {c(τ )B H(τ ) (u)} u∈R in C [-T, T ]
when λ → 0 + . Thus, for proving the corollary it is enough to show that the process λ -H(τ ) (R(τ + λu) -R(τ )) u∈R N , viewed as a random variable with values in the space C [-T, T ] , converges almost surely to 0 in this space when λ → 0 + . The latter fact results from Theorem 1.1, (1.3) and (1.1) which entail that, for each ω ∈ Ω (the same event of probability 1 as in Theorem 1.1), there are 3 positive finite constants C 0 (ω), ε 0 (ω) and η 0 (ω) such that, for all real number v satisfying |v| ≤ η 0 (ω), one has R(τ

+ v, ω) -R(τ, ω) ≤ C 0 (ω)|v| H(τ )+ε0(ω) .
Corollary 1.6 Assume that the conditions (1.7) and (1.8) are satisfied. Then, at every fixed point τ ∈ R N , the stochastic process {Y (t)} t∈R is strongly locally asymptotically self-similar of exponent H(τ ) = α(τ ) + 1/2.

The proof of Corollary 1.6 is skipped since it is very similar to that of Corollary 1.5 except that Theorem 1.2 and (1.16) have to be used instead of Theorem 1.1 and (1.15).

Proof of Theorem 1.1

Let us first point out that the proof of Theorems 1.1 mainly relies on the following proposition which is a classical result derived from the equivalence of Gaussian moments and the well-known Kolmogorov-Chentsov Hölder continuity theorem (see e.g. [START_REF] Karatzas | Brownian motion and stochastic calculus[END_REF][START_REF] Khoshnevisan | Multiparameter processes: an introduction to random fields[END_REF]). Proposition 2.1 Let {Z(t)} t∈R be a real-valued Gaussian process with continuous1 paths. Suppose that, for some compact interval I ⊂ R and for some constants c > 0 and ζ ∈ (0, 1], the inequality

E|Z(t ) -Z(t )| 2 ≤ c|t -t | 2ζ
holds for all t , t ∈ I. Then, with probability 1, the paths of {Z(t)} t∈R satisfy on I a uniform Hölder condition of any order β ∈ (0, ζ). More precisely, there exists Ω I an event of probability 1, which a priori depends on I, such that one has

sup t ,t ∈I |Z(t , ω) -Z(t , ω)| |t -t | β < +∞ , for all (ω, β) ∈ Ω I × (0, ζ). (2.1)
Remark 2.2 For proving Theorem 1.1 it is enough to show that, for all fixed t 0 ∈ R, there are 3 constants ε t0 > 0, η t0 > 0 and c t0 ≥ 0, which may depend on t 0 , such that

E|R(t ) -R(t )| 2 ≤ c t0 |t -t | 2(α(t0)+1/2+3εt 0 ) , for all t , t ∈ I(t 0 , η t0 /2), (2.2) 
where

I(t 0 , η t0 /2) := [t 0 -η t0 /2, t 0 + η t0 /2]. Indeed, in view of Proposition 2.1, it results from (2.
2) that there exists Ω t0 an event of probability 1 such that sup t ,t ∈I(t0,ηt 0 /2)

|R(t , ω) -R(t , ω)| |t -t | α(t0)+1/2+2εt 0 < +∞ , for all ω ∈ Ω t0 . (2.3) 
Observe that, using the continuity at t 0 of the function α(•), one can choose η t0 small enough so that

|α(t) -α(t 0 )| ≤ ε t0 , for all t ∈ I(t 0 , η t0 /2). (2.4)
Next, let I(t 0 , η t0 /2) be the open interval, containing t 0 and included in I(t 0 , η t0 /2), defined as I(t 0 , η t0 /2) := (t 0 -η t0 /2, t 0 + η t0 /2). One clearly has that R = t0∈R I(t 0 , η t0 /2). Therefore, the local compactness of R implies that

R = m∈N I(t 0,m , η t0,m /2) , (2.5) 
for some sequence (t 0,m ) m∈N of real numbers. Next, one denotes by Ω the event of probabiliy 1 defined as

Ω := m∈N Ω t0,m ∩ Ω * * ,
where Ω * * is the same event of probability 1 as in (1.5) with N = 1. Let (τ, ω) ∈ R × Ω be arbitrary and fixed. One knows from (2.5) that there are m(τ ) ∈ N and η(τ ) ∈ (0, 1) such that

I τ, η(τ ) ⊂ I t 0, m(τ ) , η t 0, m(τ ) /2 . (2.6)
Thus, it follows from (2.6), (2.4) and (2.3) that

sup t ,t ∈I(τ, η(τ )) |R(t , ω) -R(t , ω)| |t -t | α(τ )+1/2+εt 0, m(τ ) ≤ sup t ,t ∈I(t 0, m(τ ) ,ηt 0, m(τ ) /2) |R(t , ω) -R(t , ω)| |t -t | α(t 0, m(τ ) )+1/2+2εt 0, m(τ ) < +∞ . (2.7)
Finally, (2.7), (1.2), (1.5), and (1.6) imply that (1.17) is satisfied.

From now on, the goal is to prove that, for any fixed t 0 ∈ R, the inequality (2.2) holds. To this end, one will make an extensive use of the following lemma borrowed from [START_REF] Surgailis | Nonhomogeneous fractional integration and multifractional processes[END_REF].

Lemma 2.3 One assumes that the continuous function α(•) satisfies the condition (1.7), and one denotes by α sup the constant in the interval [α inf , α sup ] ⊂ (0, 1/2) defined as:

α sup := lim sup t-s→+∞ 1 t -s t s α(u)du .
Then, for all fixed (strictly) positive real numbers ε and ν, there is a constant C (which depends on ε and ν) such that the inequalities

(t -s) α(t) e H-(s,t) ≤ C (t -s) αsup+ε (2.8)
and

(t -s) α(s) e -H+(s,t) ≤ C (t -s) αsup+ε (2.9)
hold for all real numbers s and t satisfying t -s ≥ ν.

Notice that, one knows from (1.8) that the open interval (α(t 0 )+1/2, ρ α (t 0 )) is non-empty. Let γ ∈ (α(t 0 ) + 1/2, ρ α (t 0 )) be arbitrary and fixed. Then, one can derive from the definition of local Hölder exponent (see (1.2)) that there are two constants k α ≥ 0 and δ ∈ (0, 1/2], such that one has

|α(x) -α(y)| ≤ k α |x -y| γ , for all x, y ∈ I(t 0 , 2δ) := [t 0 -2δ, t 0 + 2δ].
(2.10)

Remark 2.4 In all the sequel, one assumes that the two arbitrary and fixed positive real numbers ε and η are small enough so that they satisfy the following 4 conditions:

ε < 8 -1 × min α inf , 1/2 -α sup , γ -(α(t 0 ) + 1/2) , (2.11) 
η < δ/2 ≤ 1/4 , (2.12 
) 

η 2ε ≤ δ/2 -η
σ 2 R (t, h) := E|R(t + h) -R(t)| 2 . (2.16)
It can easily be seen that for proving (2.2), it is enough to show that there exists a positive finite constant C 0 not depending on t and h such that one has

σ 2 R (t, h) ≤ C 0 h 2(α(t0)+1/2+ε) .
(2.17) Using (2.16), (1.15), (1.11), (1.12) and the isometry property of Wiener integral, one gets that

σ 2 R (t, h) = R t+h 0 1 Γ(α(t + h)) (τ -s) α(t+h)-1 + dτ - t 0 1 Γ(α(t)) (τ -s) α(t)-1 + dτ - t+h t 1 Γ(α(τ )) (τ -s) α(τ )-1 + e H-(s,τ ) dτ 2 ds = R t+h 0 1 Γ(α(t + h)) (τ -s) α(t+h)-1 + - 1 Γ(α(t)) (τ -s) α(t)-1 + dτ + t+h t 1 Γ(α(t)) (τ -s) α(t)-1 + - 1 Γ(α(τ )) (τ -s) α(τ )-1 + e H-(s,τ ) dτ 2 ds.
Then, it follows from the inequality

(u + v) 2 ≤ 2u 2 + 2v 2 , for all (u, v) ∈ R 2 , (2.18) that σ 2 R (t, h) ≤ 2λ 1 (t, h) + 2λ 2 (t, h) , (2.19) 
where

λ 1 (t, h) := R t+h 0 1 Γ(α(t + h)) (τ -s) α(t+h)-1 + dτ - 1 Γ(α(t)) (τ -s) α(t)-1 + dτ 2 ds (2.20)
and

λ 2 (t, h) := R t+h t 1 Γ(α(t)) (τ -s) α(t)-1 + - 1 Γ(α(τ )) (τ -s) α(τ )-1 + e H-(s,τ ) dτ 2 ds.
(2.21)

The following lemma provides an appropriate upper bound for λ 1 (t, h).

Lemma 2.6 There is a constant C 1 , not depending on t and h, such that

λ 1 (t, h) ≤ C 1 h 2γ . (2.22) Proof Let us set λ 1 1 (t, h) := t+h -∞ t+h 0 1 Γ(α(t + h)) - 1 Γ(α(t)) (τ -s) α(t+h)-1 + dτ 2 ds (2.23) and λ 2 1 (t, h) := t+h -∞ t+h 0 1 Γ(α(t)) (τ -s) α(t+h)-1 + -(τ -s) α(t)-1 + dτ 2 ds .
(2.24)

Then one can derive from (2.20), (2.23), (2.24) and (2.18) that

λ 1 (t, h) ≤ 2 λ 1 1 (t, h) + λ 2 1 (t, h) . (2.25)
Let us first show that one has for some constant c 0 , not depending on t and h, λ

1 1 (t, h) ≤ c 0 h 2γ . (2.26) Applying on the interval [α(t) ∧ α(t + h), α(t) ∨ α(t + h)] ⊆ [α inf , α sup ] ⊂ (0, 1/2)
the mean value theorem to the infinitely differentiable positive function x → 1/Γ(x), and using the inequality (2.15), one obtains that

1 Γ(α(t + h)) - 1 Γ(α(t)) ≤ c 1 h γ , (2.27) 
where the positive constant c 1 does not depend on t and h. Then combining (2.23) and (2.27) with inequality α(t + h) ≥ α inf one gets that

λ 1 1 (t, h) ≤ c 2 1 h 2γ t+h -∞ t+h 0 (τ -s) α(t+h)-1 + dτ 2 ds ≤ c 2 1 h 2γ α(t + h) 2 t+h -∞ (t + h -s) α(t+h) -(-s) α(t+h) + 2 ds ≤ c 2 1 h 2γ α 2 inf +∞ 0 s α(t+h) -(s -t -h) α(t+h) + 2
ds.

(2.28)

Next, one studies two cases t + h ≥ 0 and t + h < 0. In the case where t + h ≥ 0 one has

+∞ 0 s α(t+h) -(s -t -h) α(t+h) + 2 ds = t+h 0 s 2α(t+h) ds + +∞ 0 (s + t + h) α(t+h) -s α(t+h) 2 ds = (t + h) 2α(t+h)+1 2α(t + h) + 1 + (t + h) 2α(t+h)+1 +∞ 0 (s + 1) α(t+h) -s α(t+h) 2 ds. 
(2.29)

Next, observe that, for each fixed real number s ≥ 1, by applying on the interval [s, s + 1] the mean value theorem to the infinitely differentiable function x → x α(t+h) , one obtains that (s + 1) α(t+h) -s α(t+h) ≤ s αsup-1 , for all s ≥ 1.

Therefore, one has that

+∞ 0 (s + 1) α(t+h) -s α(t+h) 2 ds ≤ 1 0 ds + +∞ 1 s 2αsup-2 ds = c 2 . (2.30)
Next, one denotes by c 0 the constant defined as:

c 0 := c 2 1 α 2 inf (|t 0 | + η) 2α inf +1 + (|t 0 | + η) 2αsup+1 1 2α inf + 1 + c 2 .
Then, using (2.28), (2.29), (2.30) and the fact t 

+ h ∈ I(t 0 , η/2) := [t 0 -η/2, t 0 + η/2],
s α(t+h) -(s -t -h) α(t+h) + 2 ds = (-(t + h)) 2α(t+h)+1 +∞ 0 (s + 1) α(t+h) -s α(t+h) 2 ds ≤ c 2 (|t 0 | + η) 2α inf +1 + (|t 0 | + η) 2αsup+1 ( 
λ 2 1 (t, h) ≤ c 2 4 |α(t + h) -α(t)| 2 Γ 2 inf t+h -∞ t+h 0 (τ -s) α inf -1-ε + + (τ -s) αsup-1+ε + dτ 2 ds ≤ c 2 4 k 2 α (α inf -ε) 2 Γ 2 inf +∞ 0 s α inf -ε -(s -t -h) α inf -ε + + s αsup+ε -(s -t -h) αsup+ε + 2 ds h 2γ .
(2.35)

In the case where t + h ≥ 0, one has

+∞ 0 s α inf -ε -(s -t -h) α inf -ε + + s αsup+ε -(s -t -h) αsup+ε + 2 ds = t+h 0 s α inf -ε + s αsup+ε 2 ds + +∞ 0 (s + t + h) α inf -ε -s α inf -ε + (s + t + h) αsup+ε -s αsup+ε 2 ds ≤ 2 |t0|+η 0 s 2(α inf -ε) + s 2(αsup+ε) ds + 2 +∞ 0 (s + t + h) α inf -ε -s α inf -ε 2 ds + 2 +∞ 0 (s + t + h) αsup+ε -s αsup+ε 2 ds ≤ 4 1 + |t 0 | + η 2 + 2(t + h) 2(α inf -ε)+1 +∞ 0 (s + 1) α inf -ε -s α inf -ε 2 ds + 2(t + h) 2(αsup+ε)+1 +∞ 0 (s + 1) αsup+ε -s αsup+ε 2 ds ≤ c 5 , (2.36) 
where c 5 is the finite constant, not depending on t and h, defined as:

c 5 := 4 1 + |t 0 | + η 2 1 + +∞ 0 (s + 1) α inf -ε -s α inf -ε 2 ds + +∞ 0 (s + 1) αsup+ε -s αsup+ε 2 ds .
In the case where t + h < 0, one has

+∞ 0 s α inf -ε -(s -t -h) α inf -ε + + s αsup+ε -(s -t -h) αsup-ε + 2 ds ≤ 2(-(t + h)) 2(α inf -ε)+1 +∞ 0 (s + 1) α inf -ε -s α inf -ε 2 ds + 2(-(t + h)) 2(αsup+ε)+1 +∞ 0 (s + 1) αsup+ε -s αsup+ε 2 ds ≤ c 5 .
(2.37) Let us now focus on λ 2 (t, h) defined in (2.21). Using the inequality

(u + v + w) 2 ≤ 3(u 2 + v 2 + w 2 ), for all (u, v, w) ∈ R 3 , (2.38) one has that λ 2 (t, h) ≤ 3λ 1 2 (t, h) + 3 Γ -2 inf λ 2 2 (t, h) + 3 Γ -2 inf λ 3 2 (t, h), (2.39) 
where

λ 1 2 (t, h) := R t+h t 1 Γ(α(t)) - 1 Γ(α(τ )) (τ -s) α(t)-1 + dτ 2 ds , (2.40) λ 2 2 (t, h) := R t+h t (τ -s) α(t)-1 + -(τ -s) α(τ )-1 + e H-(s,τ ) dτ 2 ds (2.41) and λ 3 2 (t, h) := R t+h t (τ -s) α(t)-1 + e H-(s,τ ) -1 dτ 2 ds . (2.42)
In view of (2.39), our next goal is to obtain three lemmas which will allow us to conveniently bound from above λ 1 2 (t, h), λ 2 2 (t, h) and λ 3 2 (t, h). Lemma 2.7 There is a constant C 1 2 , not depending on t and h, such that

λ 1 2 (t, h) ≤ C 1 2 h 2(γ+α inf )+1 .
Proof Similarly to (2.27), it can be shown that there is a constant c 1 , not depending on t, h and τ , such that, for all τ ∈ [t, t + h], one has 

1 Γ(α(t)) - 1 Γ(α(τ )) ≤ c 1 |t -τ | γ ≤ c 1 h γ . ( 2 
α(t)-1 + dτ 2 ds = 1 α(t) 2 +∞ 0 (s + h) α(t) -s α(t) 2 ds + h 0 s 2α(t) ds ≤ h 2α inf +1 α 2 inf +∞ 0 (s + 1) α(t) -s α(t) 2 ds + 1 2α inf + 1 ≤ h 2α inf +1 α 2 inf c 2 + 1 2α inf + 1 , ( 2 
(τ -s) α(t)-1 -(τ -s) α(τ )-1 ≤ c 1 h γ (τ -s) α(t0)-1-2ε + (τ -s) α(t0)-1+2ε , (2.46) 
where the constant c 1 does not depend on t and h. Next, one sets

K -(t 0 ) := sup |H -(a, b)| , (a, b) ∈ I(t 0 , δ) and a < b .
(2.47)

Observe that K -(t 0 ) is a finite constant. Indeed, one can derive from (1.14) and (2.10) that, for all (a, b) ∈ I(t 0 , δ) satisfying a < b, one has

|H -(a, b)| ≤ b a |α(u) -α(b)| b -u du ≤ k α b a du (b -u) 1-γ = k α 2δ 0 dv v 1-γ < +∞.
It results from (2.41), (2.46), (2.47), the inequalities (τ -s) + ≤ 4η ≤ 1, for all (τ, s) ∈ I(t 0 , 2η) 2 ⊂ I(t 0 , δ) 2 (see (2.12)), and the inequality

τ -s ≥ η/2 , for all (τ, s) ∈ R 2 s.t. τ ∈ [t, t + h] ⊆ I(t 0 , η/2) and s ≤ t + h -3η/2 , (2.48) that λ 2 2 (t, h) ≤ c 2 1 h 2γ t+h -∞ t+h t (τ -s) α(t0)-1-2ε + + (τ -s) α(t0)-1+2ε + e H-(s,τ ) dτ 2 ds ≤ c 2 1 4e 2K-(t0) t+h t+h-3η/2 t+h t (τ -s) α(t0)-1-2ε + dτ 2 ds + 1 + (2/η) 4ε 2 t+h-3η/2 -∞ t+h t (τ -s) α(t0)-1+2ε e H-(s,τ ) dτ 2 ds h 2γ .
(2.49)

Let us now prove that each one of the two integrals in the right-hand side of the last inequality can be bounded from above by a finite constant not depending on t and h. In view of (2.11) one has

t+h t+h-3η/2 t+h t (τ -s) α(t0)-1-2ε + dτ 2 ds ≤ 1 (α inf -2ε) 2 t+h t+h-3η/2 (t + h -s) α(t0)-2ε -(t -s) α(t0)-2ε + 2 ds ≤ 1 (α inf -2ε) 2 t+h t+h-3η/2 (t + h -s) 2α(t0)-4ε ds = 1 (α inf -2ε) 2 3η/2 0 z 2α(t0)-4ε dz := c 2 .
(2.50)

On the other hand, one can derive from (2.48), Lemma 2.3 (with ν = η/2) and (2.14) that

t+h-3η/2 -∞ t+h t (τ -s) α(t0)-1+2ε e H-(s,τ ) dτ 2 ds = t+h-3η/2 -∞ t+h t (τ -s) α(t0)-α(τ ) (τ -s) α(τ )-1+2ε e H-(s,τ ) dτ 2 ds ≤ C 2 t+h-3η/2 -∞ t+h t (τ -s) αsup-1+4ε + (τ -s) αsup-1+2ε dτ 2 ds ≤ c 3 , (2.51) 
where C is the same finite constant as in (2.8), and c 3 is the finite constant not depending on t and h defined as:

c 3 := C α sup 2 +∞ 0 (s + 1) αsup+4ε -s αsup+4ε + (s + 1) αsup+2ε -s αsup+2ε 2 ds.
Finally, putting together (2.49), (2.50) and (2.51) one obtains the lemma.

Lemma 2.9 There is a constant C 3 2 , not depending on t and h, such that

λ 3 2 (t, h) ≤ C 3 2 h 2(α(t0)+1/2+ε) .
Proof One can derive from (2.42) that

λ 3 2 (t, h) = µ 1 (t, h) + µ 2 (t, h) + µ 3 (t, h), (2.52) 
where 

µ 1 (t, h) := t-δ/2 -∞ t+h t (τ -s) α(t)-1 e H-(s,τ ) -1 dτ 2 ds , (2.53) µ 2 (t, h) := t-h 2ε t-δ/2 t+h t (τ -s) α(t)-1 e H-(s,τ ) -
µ 1 (t, h) ≤ 2 t-δ/2 -∞ t+h t (τ -s) α(t)-1 e H-(s,τ ) dτ 2 ds + 2 t-δ/2 -∞ t+h t (τ -s) α(t)-1 dτ 2 ds ≤ 2C 2 (2/δ) 4ε t-δ/2 -∞ t+h t (τ -s) αsup+2ε-1 dτ 2 ds + 2 t-δ/2 -∞ t+h t (τ -s) α(t)-1 dτ 2 ds ≤ 2C 2 (2/δ) 4ε (α sup + 2ε) 2 +∞ δ/2 (s + h) αsup+2ε -s αsup+2ε 2 ds + 2 α(t) 2 +∞ δ/2 (s + h) α(t) -s α(t) 2 ds ≤ 2C 2 (2/δ) 4ε +∞ δ/2 s 2αsup+4ε-2 ds + 2 +∞ δ/2 s 2αsup-2 ds h 2 .
(2.56)

Next, observe that it follows from (2.12) and the inclusion [t, t + h] ⊆ I(t 0 , η/2) that [t -δ/2, t -h 2ε ] ⊂ I(t 0 , δ). Thus, using (2.54), (2.47), the mean value theorem and (2.11), one gets that

µ 2 (t, h) ≤ (e K-(t0) + 1) 2 t-h 2ε t-δ/2 t+h t (τ -s) α(t)-1 dτ 2 ds ≤ (e K-(t0) + 1) 2 α(t) 2 δ/2 h 2ε (s + h) α(t) -s α(t) 2 ds ≤ e K-(t0) + 1 2 h 2 δ/2 h 2ε s 2α(t)-2 ds ≤ e K-(t0) + 1 2 1 -2α sup h 2-2ε ≤ e K-(t0) + 1 2 1 -2α sup h 2(α(t0)+1/2+ε) .
(2.57)

In order to bound from above µ 3 (t, h), one denotes by E -(t 0 ) the finite constant defined as: 

E -(t 0 ) := sup e x -1 x , x ∈ R and 0 < |x| ≤ K -(t 0 ) . ( 2 
∈ [t -h 2ε , t + h] × [t, t + h] satisfying s < τ , one has e H-(s,τ ) -1 ≤ E -(t 0 ) |H -(s, τ )| ≤ E -(t 0 ) k α τ s (τ -u) γ-1 du = E -(t 0 ) k α γ (τ -s) γ .
(2.59) Thus, one can derive from (2.55) and (2.59) that

µ 3 (t, h) ≤ E -(t 0 ) k α γ(γ + α inf ) 2 t+h t-h 2ε (t + h -s) γ+α(t) -(t -s) γ+α(t) + 2 ds .
(2.60) Moreover, standard computations, the mean value theorem, the inequality γ > 1/2 and the inequalities 0 < α inf ≤ α sup allow to show that

t+h t-h 2ε (t + h -s) γ+α(t) -(t -s) γ+α(t) + 2 ds ≤ h 2ε 0 (h + s) γ+α(t) -s γ+α(t) 2 ds + h 0 s 2(γ+α(t)) ds ≤ h 2 (γ + α(t)) 2 h 2ε 0 (s + 1) 2(γ+α(t)-1) + s -2(1-γ-α(t)) ds + h 2(γ+α(t))+1 ≤ h 2 (γ + α sup + 1) 2 1 0 (s + 1) 2(γ+αsup-1) + s -2(1-γ-α inf ) ds + 1 . (2.61)
Then (2.60) and (2.61) entail that, for some constant c 1 not depending on t and h, one has

µ 3 (t, h) ≤ c 1 h 2 . (2.62) Finally, putting together (2.52), (2.56), (2.57), (2.62) and (2.11) 
one obtains the lemma.

We are now in a position to prove the inequality (2.17).

Remark 2.10 Combining (2.39) and (2.11) with Lemmas 2.7, 2.8 and 2.9 one obtains that

λ 2 (t, h) ≤ C 2 h 2(α(t0)+1/2+ε) , (2.63) 
where the constant

C 2 := 3(C 1 2 +Γ -2 inf C 2 2 +Γ -2 inf C 3 2
). Thus, it results from (2.19), Lemma 2.6, (2.63) and (2.11) that

σ 2 R (t, h) ≤ 2(C 1 + C 2 )h 2(α(t0)+1/2+ε
) , which shows that (2.17) is satisfied.

3 Proof of Theorem 1.2 Remark 3.1 By arguing as in Remark 2.2 it turns out that for proving Theorem 1.2 it is enough to show that, for all fixed t 0 ∈ R, there are 3 constants ε t0 > 0, η t0 > 0 and c t0 ≥ 0, which may depend on t 0 , such that

E|D(t ) -D(t )| 2 ≤ c t0 |t -t | 2(α(t0)+1/2+3εt 0 )
, for all t , t ∈ I(t 0 , η t0 /2).

(3.1) Remark 3.2 In all the sequel, one assumes that t 0 ∈ R is arbitrary and fixed and that δ ∈ (0, 1/2] is the same as in (2.10). Also, one assumes that the two arbitrary and fixed positive real numbers ε and η are small enough so that they satisfy the 3 conditions (2.11), (2.12) and (2.14).

Remark 3.3

In all the sequel one denotes by t and t + h, where h ∈ (0, 1], two arbitrary real numbers belonging to the interval I(t 0 , η/2), and one sets

σ 2 D (t, h) := E|D(t + h) -D(t)| 2 . (3.2) 
It can easily be seen that for proving (3.1), it is enough to show that there exists a positive finite constant C 0 not depending on t and h such that one has

σ 2 D (t, h) ≤ C 0 h 2(α(t0)+1/2+ε) . (3.3) 
Using (3.2), (1.16), (1.13), (1.10), the isometry property of Wiener integral, and (2.18) one gets that

σ 2 D (t, h) ≤ 2Λ 0 (t, h) + 2Λ 1 (t, h) + Λ 2 (t, h) + Λ 3 (t, h) , (3.4) 
where

Λ 0 (t, h) := t-η -∞ 1 Γ(1 + α(t + h)) (t + h -s) α(t+h) -(-s) α(t+h) + (3.5) 
- 1 Γ(1 + α(t)) (t -s) α(t) -(-s) α(t) + 2 ds , Λ 1 (t, h) := t-η -∞ 1 Γ(1 + α(s)) (t + h -s) α(s) e -H+(s,t+h) - 1 Γ(1 + α(s)) (t -s) α(s) e -H+(s,t) 2 ds , (3.6) 
Λ 2 (t, h) := t t-η 1 Γ(1 + α(s)) (t + h -s) α(s) e -H+(s,t+h) - 1 Γ(1 + α(s)) (t -s) α(s) e -H+(s,t) (3.7) 
- 1 Γ(1 + α(t + h)) (t + h -s) α(t+h) + 1 Γ(1 + α(t)) (t -s) α(t) 2 ds and Λ 3 (t, h) := t+h t 1 Γ(1 + α(s)) (t + h -s) α(s) e -H+(s,t+h) - 1 Γ(1 + α(t + h)) (t + h -s) α(t+h) 2 ds. (3.8) 
The following lemma provides an appropriate upper bound for Λ 0 (t, h).

Lemma 3.4 There is a constant C 0 , not depending on t and h, such that

Λ 0 (t, h) ≤ C 0 h 2γ . (3.9) 
Proof It follows from (3.5), (2.20), (2.18), (2.34) and the equality Γ(x + 1) = xΓ(x), for all x ∈ (0, +∞), that

Λ 0 (t, h) ≤ 2λ 1 (t, h) + 2Γ -2 inf Λ 0 (t, h) , (3.10) 
where

Λ 0 (t, h) := t-η -∞ (t + h -s) α(t) -(t -s) α(t) 2 ds .
Moreover, using the mean value theorem, one has that

Λ 0 (t, h) ≤ c h 2 , (3.11) 
where the finite constant c := +∞ η s 2(αsup-1) + s 2(α inf -1) ds. Finally, putting together (3.10), (2.22) and (3.11), one gets (3.9).

The following lemma provides an appropriate upper bound for Λ 1 (t, h). Lemma 3.5 There is a constant C 1 , not depending on t and h, such that

Λ 1 (t, h) ≤ C 1 h 2 .
(3.12)

Proof One can derive from (3.6), (2.34) and (2.18) that

Λ 1 (t, h) ≤ 2 Γ -2 inf Λ 1 1 (t, h) + Λ 2 1 (t, h) , (3.13) 
where Λ Let us first focus on Λ 1 1 (t, h). It can easily be seen that e -H+(-s,t+h) -e -H+(-s,t) = e -H+(-s,t+h) 1 -e H+(-s,t+h)-H+(- (t + h + s) 2α(-s) e -H+(-s,t+h) -e -H+(-s,t) 2 ds

≤ c 1 h 2 +∞ -t+η
(t + h + s) 2α(-s) e -2H+(-s,t+h) (s + t) 2 ds.

Thus, using (2.9), in which t and s are replaced by t + h and -s, and the fact that h ∈ (0, 1], one gets that Λ (t + h -s) α(s) e -H+(s,t+h) -1 Γ(1 + α(s)) (t -s) α(s) e -H+(s,t)

(3.22) - 1 Γ(1 + α(t + h)) (t + h -s) α(t+h) + 1 Γ(1 + α(t)) (t -s) α(t) 2 ds and Λ 2 2 (t, h) := t t-ηh 1/2 1 Γ(1 + α(s)) (t + h -s) α(s) e -H+(s,t+h) - 1 Γ(1 + α(s)) (t -s) α(s) e -H+(s,t) (3.23) - 1 Γ(1 + α(t + h)) (t + h -s) α(t+h) + 1 Γ(1 + α(t)) (t -s) α(t) 2 ds.
The following lemma provides an appropriate upper bound for Λ 1 2 (t, h) defined in (3.22).

Λ 1 2 (t, h) ≤ C 1 2 h 2γ + h 2(α(t0)+1/2)+7ε . (3.24)
Proof It follows from (3.22), (2.38), (2.34) and the equality Γ(x + 1) = xΓ(x), for all x ∈ (0, +∞), that

Λ 1 2 (t, h) ≤ 3 Γ -2 inf Λ 1,1 2 (t, h) + Γ -2 inf Λ 1,2 2 (t, h) + Λ 1,3 2 (t, h) , (3.25) 
where Λ 

:= t-ηh 1/2 t-η 1 Γ(1 + α(t + h)) (t + h -s) α(t+h) - 1 Γ(1 + α(t)) (t -s) α(t) 2 ds. (3.28) 
Let us first focus on Λ 1,1 2 (t, h). One clearly has that e -H+(s,t+h) -e -H+(s,t) 2 = e -2H+(s,t+h) 1 -e H+(s,t+h)-H+( 

(s, t + h) -H + (s, t)| ≤ t+h t |α(s) -α(v)| v -s dv ≤ k α γ -1 (t + h -s) γ -(t -s) γ ≤ k α η γ-1 h (1+γ)/2 (3.30) and |H + (s, t + h)| ≤ t+h s |α(s) -α(v)| v -s dv ≤ k α t+h s (v -s) γ-1 dv = k α γ -1 (t + h -s) γ ≤ k α γ -1 (η + 1) γ . ( 3 
Λ 1,3 2 (t, h) ≤ 3 t-ηh 1/2 t-η 1 Γ(1 + α(t + h)) - 1 Γ(1 + α(t)) 2 (t + h -s) 2α(t+h) ds + 3 Γ -2 inf t-ηh 1/2 t-η (t + h -s) α(t+h) -(t -s) α(t+h) 2 ds + 3 Γ -2 inf t-ηh 1/2 t-η (t -s) α(t+h) -(t -s) α(t) 2 ds . (3.34)
Rather similarly to (2.26), it can be shown that, for some constant c 3 not depending on t and h, one has

t-ηh 1/2 t-η 1 Γ(1 + α(t + h)) - 1 Γ(1 + α(t)) 2 (t + h -s) 2α(t+h) ds ≤ c 3 h 2γ .
(3.35) Rather similarly to (3.33), it can be shown that for some constant c 4 not depending on t and h, one has 

t-ηh 1/2 t-η (t + h -s) α(t+h) -(t -s) α(t+h) 2 ds ≤ c 4 h 2(α(t0
2 2 (t, h) ≤ 2 Λ 2,0 2 (t, h) + Λ 2,1 2 (t, h) , (3.39) 
where, for j = 0 or j = 1,

Λ 2,j 2 (t, h) := t t-ηh 1/2 1 Γ(1 + α(t + jh)) (t + jh -s) α(t+jh) (3.40) - 1 Γ(1 + α(s)) (t + jh -s) α(s) e -H+(s,t+jh) 2 ds .
In view of (3.39), in order to show that (3.38) is satisfied, it is enough to prove that, for each j ∈ {0, 1}, the following inequality, in which c denotes a (finite) constant not depending on t and h, holds We are now in a position to prove the inequality (3.3).

Λ 2,j 2 (t, h) ≤ c h 2(α(t0)+1/2)+6ε . ( 3 
2,j 2 (t, h) ≤ 3 ϕ 1,j (t, h) + Γ -2 inf ϕ 2,j (t, h) + Γ -2 inf ϕ 3,j (t, h) , (3.42) 
Remark 3.9 Putting together (3.4), (3.9), (3.12), (3.21), (3.24), (3.38), (3.50), the fact that h ∈ (0, 1], the fact that γ ∈ (1/2, 1) and (2.11), it follows that (3.3) is satisfied.
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  Introduction and statement of the main resultsLet H ∈ (0, 1), the Fractional Brownian Field (FBF) of Hurst parameter H, which is also called multivariate Fractional Brownian Motion, is a real-valued 1 centred continuous Gaussian field on R N denoted by {B H (t)} t∈R N having, for all t , t ∈ R N , the covariance:Cov(B H (t ), B H (t )) = E(B H (t )B H (t )) = c(H) |t | 2H + |t | 2H -|t -t | 2H ,where c(H) is a positive constant only depending on H, and | • | is the Euclidian norm. One refers to e.g. Chapter 1 of the book[START_REF] Ayache | Multifractional stochastic fields : wavelet strategies in multifractional frameworks[END_REF] for a detailed presentation FBF. Notice that, up to a multiplicative constant, {B H (t)} t∈R N is in distribution the unique Gaussian field which satisfies the following three fundamental properties: self-similaritity that is for all fixed positive real number a one has {B H (at)} t∈R N d = {a H B H (t)} t∈R N ,where the symbol d = means equality of finite-dimensional distributions; stationarity of increments, that is for each fixed t ∈ R N one has {B H (t + t) -B H (t)} t∈R N d = {B H (t)} t∈R N ; and isotropy, that is for every fixed orthogonal matrix Q of size N one has {B H (Qt)} t∈R N

  it follows that (2.26) is satisfied. Let us now turn to the case where t + h < 0. In this case one has

	+∞
	0

  .45) where the constant c 2 , which does not depend on t and h, is the same constant as in (2.30). Finally combining (2.44) and (2.45) one obtains the lemma.

	Lemma 2.8 There is a constant C 2 2 , not depending on t and h, such that
	λ 2 2 (t, h) ≤ C 2 2 h 2γ .
	Proof First observe that using the mean value theorem, (2.14), (2.33) and
	(2.15) , one has for all τ ∈ [t, t + h] and s < τ

  1 dτ

	and									
	µ 3 (t, h) :=	t+h t-h 2ε	t	t+h	(τ -s)	α(t)-1 +	e H-(s,τ ) -1 dτ	2	ds .	(2.55)
	Observe that one knows from (2.13) and the inequalities 0 < h ≤ η, that
	t -h 2ε > t -δ/2. Using (2.53), (2.18), Lemma 2.3 with ν = δ/2, (2.14), the
	mean value theorem and (2.11), one obtains that			
								2	
									ds ,	(2.54)

  (t, h) defined in (3.27), one can derive from (3.31), the mean value theorem, the inclusion [t -η, t -ηh 1/2 ] ⊂ I(t 0 , 2η), (2.14) and (2.11) that

	As regards Λ 1,2 2 Λ 1,2 2 (t, h) ≤ c 2 h 2	t-ηh 1/2	(t -s) 2(α(t0)-ε-1) ds ≤ c 2 h 2(α(t0)+1/2)+7ε , (3.33)
		t-η	
	where c 2 and c 2 are two (finite) constants not depending on t and h. As regards Λ 1,3 2 (t, h) defined in (3.28), one can derive from (2.38), and (2.34)
	that		
				.31)
	Thus, putting together (3.26), (3.29), (3.30), (3.17), (3.31) and α(s) ∈ [α inf , α sup ],
	one gets, for some (finite) constant c 1 not depending on t and h, that
			Λ 1,1 2 (t, h) ≤ c 1 h 1+γ .	(3.32)

  ≤ c 1 h 1/2(1+2γ+2α(t0)-2ε) ≤ c 1 h 2(α(t0)+1/2)+7ε , where c 1 and c 1 are two (finite) constants not depending on t and h. Next, observe that, similarly to(3.31), it can be shown that there exists a (finite) constant c 2 , not depending on t, h and s, such that, for all s ∈ [t -ηh 1/2 , t], one has|H + (s, t + jh)| ≤ c 2 h γ/2 .(t + jh -s) 2α(t+jh) ds ≤ c 3 h 2(α(t0)+1/2)+7ε ,(3.48) where c 3 and c 3 are two (finite) constants not depending on t and h. Next, using (3.45), (3.47), the mean value theorem, (2.15), (2.33), (2.14) and (2.11), one gets thatϕ 3,j (t, h) ≤ c 4 h γ ≤ c 4 h 1/2(1+2γ+2α(t0)-4ε) ≤ c 4 h 2(α(t0)+1/2)+6ε ,where c 4 and c 4 are two (finite) constants not depending on t and h. Finally, putting together (3.42), (3.46), (3.48) and (3.49), one obtains (3.41).The following lemma provides an appropriate upper bound for Λ 3 (t, h) defined in (3.8). There is a constant C 3 , not depending on t and h, such thatΛ 3 (t, h) ≤ C 3 h 2+14ε .(3.50) -s) 2α(s+t) e -2H+(s+t,t+h) ds ,Observe that, similarly to (3.31), it can be shown that there exists a (finite) constant c 1 , not depending on t, h and s, such that, for all s ∈ [0, h], one has|H + (s + t, t + h)| ≤ c 1 h γ . (3.55) One can derive from (3.52), (3.55), the mean value theorem and (2.15) that -s) 2α(s+t) ds ≤ c 2 h 2(γ+α inf )+1 , (3.56) where c 2 is a (finite) constant not depending on t and h. Moreover, it follows from (3.53), (3.55) and (3.17) that -s) 2α(t+s) ds ≤ c 3 h 2(γ+α inf )+1 , (3.57) where c 3 is a (finite) constant not depending on t and h. Furthermore, using (3.54), the mean value theorem, (2.15), (2.33) and (2.11) one has thatΛ 3 3 (t, h) ≤ c 4 h 2γ h 0 s 2(α inf -ε) ds ≤ c 4 h 2(γ+α inf -ε)+1 , (3.58) where c 4 is a (finite) constant not depending on t and h. Finally, putting together (3.51), (3.56), (3.57), (3.58), the inequality 2γ > 1 and the inequality α inf > 8ε (see (2.11)), one obtains (3.50).

						h
	(3.47) Thus, one can derive from (3.44), (3.47), (3.17), (2.12), (2.14) and (2.11) that ϕ 2,j (t, h) ≤ c 3 h γ t t-ηh 1/2 Λ 1 3 (t, h) ≤ c 2 h 2γ 0 h (h Λ 2 3 (t, h) ≤ c 3 h 2γ (h
						0
						t
							(t + jh -s) 2α(t0)-4ε ds	(3.49)
						t-ηh 1/2
	t t-ηh 1/2 Lemma 3.8 Proof It follows from (3.8), (2.38) and (2.34) that 1 Γ(1 + α(t + jh)) -1 Γ(1 + α(s))	2	(t + jh -s) 2α(t+jh) ds , (3.43)
	ϕ 2,j (t, h) :=	t Λ 3 (t, h) ≤ 3 Λ 1 (t + jh -s) 2α(t+jh) 1 -e -H+(s,t+jh) 2 ds 3 (t, h) + Γ -2 inf Λ 2 3 (t, h) + Γ -2 inf Λ 3 3 (t, h) ,	(3.44) (3.51)
		t-ηh 1/2		
	where and ϕ 3,j (t, h) := Λ 1 3 (t, h) := 0	h	t	1 Γ(1 + α(s + t))	-	1 Γ(1 + α(t + h))
			t-ηh 1/2			(3.52)
							(3.45)
	It results from (3.43), the mean value theorem, (2.15), (2.12), (2.14) and (2.11) Λ 2 3 (t, h) := 2 ds (3.53)
	that and					
	ϕ 1,j (t, h) ≤ c 1 Λ 3 3 (t, h) :=	0	t t-ηh 1/2 h (h -s) α(t+s) -(h -s) α(t+h) 2 (t + jh -s) 2γ+2α(t+jh) ds	ds .	(3.46) (3.54)

where

ϕ 1,j (t, h) := (t + jh -s) α(t+h) -(t + jh -s) α(s) 2

e -2H+(s,t+jh) ds .

2

(h h 0 (h -s) 2α(t+s) e -H+(s+t,t+h) -1

For the sake of simplicity, we can make this continuity assumption since we already know that the paths of the Gaussian processes {R(t)} t∈R and {D(t)} t∈R , defined through (1.15) and (1.16), are continuous functions and we are interested in their local Hölder regularity. Notice that when the assumption of continuity of the paths of {Z(t)} t∈R is dropped then (2.1) holds for a well-chosen modification { Z(t)} t∈I of {Z(t)} t∈I .