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Introduction

Let Ω ⊂ R 2 be an open and bounded set in the plane and let us denote by λ 1 (Ω) its first eigenvalue for the Laplacian-Dirichlet (see below for the precise definition) and µ 1 (Ω) its first non-trivial eigenvalue for the Laplacian-Neumann. Does there exist a domain Ω of area, say π satisfying λ 1 (Ω) = 20 and µ 1 (Ω) = 3 ? Among them, is there a convex domain? For that kind of question, it is very convenient to plot the so-called Blaschke-Santaló diagrams defined by ). This kind of diagram has been sintroduced by W. Blaschke in convex geometry and intensively studied by L. Santaló for quantities like the area, the perimeter, the diameter, the inradius... For spectral quantities, this kind of work is more recent, let us mention for example some diagrams that have been recently established for quantities like (λ 1 (Ω), λ 2 (Ω)) (the Dirichlet eigenvalues) in [START_REF] Antunes | On the range of the first two Dirichlet and Neumann eigenvalues of the Laplacian[END_REF], [START_REF] Bucur | On the attainable eigenvalues of the Laplace operator[END_REF], (µ 1 (Ω), µ 2 (Ω)) (the Neumann eigenvalues) in [START_REF] Antunes | On the range of the first two Dirichlet and Neumann eigenvalues of the Laplacian[END_REF], (λ 1 (Ω), T (Ω)) (where T (Ω) is the torsion of Ω 1 ) in [START_REF] Berg | On the relations between principal eigenvalue and torsional rigidity[END_REF], [START_REF] Buttazzo | An application of the continuous Steiner symmetrization to Blaschke-Santaló diagrams[END_REF] or [START_REF] Lucardesi | On Blaschke-Santaló diagrams for the torsional rigidity and the first Dirichlet eigenvalue[END_REF], (P (Ω), λ 1 (Ω)) (here P (Ω) is the perimeter) in [START_REF] Ftouhi | Blaschke-Santaló diagram for volume, perimeter, and first Dirichlet eigenvalue[END_REF].

Let us now fix the notations: the Laplace-Dirichlet problem on Ω consists in solving the eigenvalue problem

-∆u = λu in Ω u = 0 on ∂Ω.
For Ω open and bounded, the spectrum is discrete and the sequence of eigenvalues (counted with their multiplicities) go to infinity

0 < λ 1 (Ω) ≤ λ 2 (Ω) ≤ • • • → +∞.
The Laplace-Neumann eigenvalue problem on Ω consists in solving the eigenvalue problem -∆u = µu in Ω ∂ ν u = 0 on ∂Ω.

where ν stands for the outward unit normal at the boundary. We assume here Ω to be a Lipschitz bounded open set. Since the Sobolev embedding H 1 (Ω) → L 2 (Ω) is compact in that case, the spectrum of the Neumann problem is discrete and the eigenvalues (counted with their multiplicities) go to infinity. The first eigenvalue is zero, associated to constant functions.

0 = µ 0 (Ω) ≤ µ 1 (Ω) ≤ µ 2 (Ω) ≤ • • • → +∞.
We denote by µ 1 (Ω) the next or first non-trivial eigenvalue. Note that µ 1 (Ω) = 0 if and only if Ω is disconnected. We recall the variational characterization of the Neumann eigenvalues, that for the first non zero eigenvalue reads as follows

(3) µ 1 (Ω) = min Ω |∇u| 2 dx Ω u 2 dx : u ∈ H 1 (Ω), Ω udx = 0 ,
and the minimum is attained at the eigenfunctions associated to µ 1 (Ω).

In Section 2, we describe the diagram E defined in [START_REF] Agmon | Lectures on elliptic boundary value problems[END_REF]. It turns out that it is (almost) completely characterized by the two classical inequalities: the Faber-Krahn inequality, see [START_REF] Faber | Beweis, dass unter allen homogenen membranen von gleicher fläche und gleicher spannung die kreisförmige den tiefsten Grundton gibt[END_REF], [START_REF] Krahn | Uber minimaleigenschaften der krugel in drei un mehr dimensionen[END_REF]:

(4) ∀Ω∈ O, |Ω|λ 1 (Ω) ≥ |B|λ 1 (B)
where B is any ball and the Weinberger inequality, see [START_REF] Weinberger | An isoperimetric inequality for the N -dimensional free membrane problem[END_REF], [START_REF] Szegő | Inequalities for certain eigenvalues of a membrane of given area[END_REF] (5)

∀Ω ∈ O, |Ω|µ 1 (Ω) ≤ |B|µ 1 (B),
where we define O to be the class of open bounded subsets of Lipschitz boundary of R 2 . When we say completely characterized, we mean that it is a complete set of inequalities: in other words, the closure of the diagram E coincides actually with the strip [|B|λ 1 (B), +∞)×[0, |B|µ 1 (B)]. We will denote by A = (|B|λ 1 (B), |B|µ 1 (B)) = (πj 2 0,1 , πj 2 11 ) the upper left vertex corresponding to the ball, where j 0,1 ∼ 2.405 is the first zero of the Bessel function J 0 while j 11 ∼ 1.841 is the first zero of the derivative of the Bessel function J 1 , see e.g. [START_REF] Henrot | Extremum problems for eigenvalues of elliptic operators[END_REF].

Then we study the diagram E C defined in [START_REF] Anderson | A reevaluation of an efficient algorithm for determining the convex hull of a finite planar set[END_REF]. It is more complicated, but we give two explicit curves (hyperbola) that bound the diagram from above and from below. In particular, coming back to the question raised at the beginning of this Introduction, we can answer:

• yes, it could exist a plane domain of area π satisfying λ 1 (Ω) = 20 and µ 1 (Ω) = 3.

Indeed, the point [START_REF] Jaglom | Convex figures[END_REF][START_REF] Antunes | On the range of the first two Dirichlet and Neumann eigenvalues of the Laplacian[END_REF] belongs to the strip [|B|λ 1 (B), +∞) × [0, |B|µ 1 (B)], but since we are only able to prove that this strip is the closure of the set E, we cannot claim that it corresponds to a set Ω. • no, there does not exist a convex domain satisfying this.

The diagram for the general case

2.1. Convergence of eigenvalues. It will be useful in the sequel to have simple criteria ensuring convergence of the Neumann and Dirichlet eigenvalues for a sequence of domains. In the Dirichlet case, the situation is well understood and we can state for example the following theorem, see [START_REF] Henrot | Shape variation and optimization[END_REF] or [START_REF] Henrot | Extremum problems for eigenvalues of elliptic operators[END_REF]. 

∀k, λ k (Ω n ) → λ k (Ω).
In the Neumann case, we need to put much stronger assumption on the sequence of domains Ω n . A classical one in that context is the uniform cone condition, see [START_REF] Agmon | Lectures on elliptic boundary value problems[END_REF], [START_REF] Chenais | On the existence of a solution in a domain identification problem[END_REF], [START_REF] Henrot | Shape variation and optimization[END_REF]: Definition 2.2. Let y be a point in R N , ξ a unit vector and ε a positive real number. Let C(y, ξ, ε) be the cone of vertex y (without its vertex), of direction ξ and dimension ε defined by

C(y, ξ, ε) = {z ∈ R N , (z -y, ξ) ≥ cos(ε)|z -y| and 0 < |z -y| < ε}.
An open set Ω is said to have the uniform (ε)-cone property if ∀x ∈ ∂Ω, ∃ξ x unit vector such that : ∀y ∈ Ω ∩ B(x, ε) C(y, ξ x , ε) ⊂ Ω. Now we work with a sequence of sets Ω n which all have the uniform (ε)-cone property for the same ε. An equivalent definition is to say that the domains Ω n are all uniformly Lipschitz, with the same Lipschitz constant. Let D be a ball containing all the sets Ω n (that can be seen as an assumption). It is well known that the cone property (or the Lipschitz regularity) ensures an existence of an extension operator

P n : H 1 (Ω n ) → H 1 (D)
The important point proved by D. Chenais in [START_REF] Chenais | On the existence of a solution in a domain identification problem[END_REF] is the following: Lemma 2.3. If the sets Ω n have the uniform (ε)-cone property (for the same ε), then there exists a constant M such that P n ≤ M .

We can deduce the following convergence theorem for the first Neumann eigenvalue: Theorem 2.4. Let Ω n ⊂ D be a sequence of open sets having the uniform ε-cone property (for the same ε). Let us assume that there exists an open set Ω such that χ Ωn (the sequence of corresponding characteristic functions) converges in L 1 (D) to χ Ω . Then

µ 1 (Ω n ) → µ 1 (Ω).
Actually, the convergence holds true for all eigenvalues, but here we only need convergence of µ 1 , thus we state it in that case.

Proof. Since χ Ωn → χ Ω , we have |Ω n | → |Ω| and then, we can assume |Ω n | ≥ |Ω|/2. Let us observe first that, according to Weinberger inequality (5), the sequence µ 1 (Ω n ) is bounded by a constant M 1 = 2πj 11 2 /|Ω|. Thus, we can assume that, up to a subsequence that we still index by n, we have µ 1 (Ω n ) converges to some number µ. Let us denote by u n the normalized eigenfunction associated to

µ 1 (Ω n ) i.e. Ωn u 2 n dx = 1, Ωn |∇u n | 2 dx = µ 1 (Ω n ),

Ωn

u n dx = 0 and ũn = P n (u n ) its extension to D through the extension operator P n . From Lemma 2.3, we get

ũn H 1 (D) ≤ M u n H 1 (Ωn) = M 1 + µ 1 (Ω n ) ≤ M 1 + M 1 .
Therefore, there exists a function u ∞ ∈ H 1 (D) and a subsequence, still denoted with the same index, such that ũn converges strongly in L 2 (D) and weakly in H 1 (D) to u ∞ . Let us consider a fixed v ∈ H 1 (D), passing to the limit in the variational formulation

Ωn ∇u n .∇vdx = D χ Ωn ∇ũ n .∇vdx = µ 1 (Ω n ) D χ Ωn ũn vdx yields Ω ∇u ∞ .∇vdx = µ Ω u ∞ vdx.
Moreover, passing to the limit in the same way provides the following identities

Ω u ∞ dx = 0 Ω u 2 ∞ dx = 1
this shows that u ∞ is neither zero, nor constant. It follows that µ is a nontrivial Neumann eigenfunction of Ω and therefore

(6) µ 1 (Ω) ≤ lim inf µ 1 (Ω n ).
On the other hand, let u be the normalized eigenfunction associated to µ 1 (Ω), P (u) its extension to D and let us consider v n the restriction of

P (u) to Ω n (which is a function in H 1 (Ω n )).
We denote by M n its mean value defined as 1 |Ωn| Ωn v n dx. We observe that we have the following convergences:

M n → 1 |Ω| Ω udx = 0, Ωn v 2 n dx → Ω u 2 dx = 1 and Ωn |∇v n | 2 dx → Ω |∇P (u)| 2 dx = Ω |∇u| 2 dx = µ 1 (Ω).
Thus taking v n -M n as a test function in the variational formulation of µ 1 (Ω n ) and passing to the limit provides

lim sup µ 1 (Ω n ) ≤ lim sup Ωn |∇v n | 2 dx Ωn (v n -M n ) 2 dx = µ 1 (Ω)
together with [START_REF] Brasco | Spectral inequalities in quantitative form[END_REF] this provides the expected continuity.

2.2.

The diagram E. We recall that the diagram we want to plot is

E = {(x, y) where x = |Ω|λ 1 (Ω), y = |Ω|µ 1 (Ω), Ω ⊂ R 2 }
where Ω is any bounded, open set suitably smooth (e.g. Lipschitz) in order that the Neumann spectrum is well defined. Faber-Krahn (4) and Weinberger (5) inequalities imply that the upper left vertex of the diagram is the point

A = (|B|λ 1 (B), |B|µ 1 (B)) = (πj 2 0,1 , πj 1,1 2 ).
We begin with the following lemma that is based on homogenization theory:

Lemma 2.5. Let (x 0 , y 0 ) ∈ E, then the half line {(x, y 0 ), x ≥ x 0 } ⊂ Ē, where Ē is the closure of E.
Proof. For the proof, we recall the construction of a sequence of perforated domains introduced by Cioranescu-Murat in [START_REF] Cioranescu | A strange term coming from nowhere[END_REF] (we give the statement in two dimensions, but it is true in any dimension with a different normalization). Let C 0 > 0 be fixed. For every ε > 0, consider the ball T ε = B rε (0) with a radius given by r ε = exp(-C 0 /ε 2 ). Now we consider the perforated domain ( 7)

Ω ε = Ω \ ∪ z∈Z 2 (2εz + T ε ) .
Note that the removed holes form a periodic set in the plane, with period 2ε. Now it is proved in [START_REF] Cioranescu | A strange term coming from nowhere[END_REF] that the torsion functions on the domains Ω ε (that is the solution of -∆u = 1 in Ω ε and u = 0 on the boundary) converge weakly in H 1 0 (Ω) (and strongly in L 2 (Ω)) to the solution u * of

-∆u * + π 2C 0 u * = 1 in Ω u * ∈ H 1 0 (Ω) .
.

As a consequence we have (see [START_REF] Henrot | Extremum problems for eigenvalues of elliptic operators[END_REF]Theorem 2.3.2])

λ 1 (Ω ε ) → λ 1 (Ω) + π
2C 0 while a simple computation of the total area of the holes provides |Ω ε | → |Ω|. Therefore, x(Ω ε ) → x 0 + π|Ω| 2C 0 and C 0 being arbitrary, we can attain any value of x greater than x 0 . On the other hand, the behavior of the Neumann eigenvalues is simpler: it can be proved, see [START_REF] Vanninathan | Homogenization of eigenvalue problems in perforated domains[END_REF] that µ 1 (Ω ε ) → µ 1 (Ω), therefore y(Ω ε ) → y 0 , this concludes the proof of Lemma 2.5. Following Lemma 2.5, we need now to have a precise look on the left of the diagram. For that purpose, we prove: Lemma 2.6. Let η > 0 be given, then there is a path in E connecting the points A = (|B|λ 1 (B), |B|µ 1 (B)) corresponding to the ball with the point

C = (|B|λ 1 (B), 0) that is completely contained in the rectangle [|B|λ 1 (B), |B|λ 1 (B) + η] × [0, |B|µ 1 (B)].
Proof. The proof is based on an explicit construction together with a sequence of domains à la Courant-Hilbert whose Neumann eigenvalue goes to zero while its Dirichlet eigenvalue goes to the eigenvalue of the ball.

Let us start with the unit disc D and, for a given (small) number ε > 0, let us denote by Ω ε the union of the unit disc with the rectangle (0, 1 + 2ε) × (-ε 6 /2, +ε 6 /2) and the small disc of center (1 + 2ε, 0) and radius ε, see Figure 1.

× × 1 ε ε 6 ε Figure 1. The domain Ω ε
The area of Ω ε is less than π(1 + ε 2 ) + ε 7 while, by monotonicity of Dirichlet eigenvalues with respect to inclusion λ

1 (Ω ε ) ≤ λ 1 (D). Therefore, if we choose ε such that ε 2 ≤ η/(2πλ 1 (D)) we ensure x(Ω ε ) ≤ |B|λ 1 (B) + η.
Now, in a first step, we continuously deform the unit disc up to arriving on Ω ε . We can assume that the sequence we make is increasing (for inclusion) and we can also do it by preserving the uniform ε-cone property (see Definition 2.2) ensuring continuity of the Neumann eigenvalue and of the Dirichlet eigenvalue. This continuous deformation makes a first continuous path between the point A and the point A ε = (x(Ω ε ), y(Ω ε )) and by monotonicity, this path stays inside the rectangle [|B|λ 1 (B),

|B|λ 1 (B) + η] × [0, |B|µ 1 (B)].
In a second step, we make ε goes to zero. By Sverak's theorem 2.1, we infer λ 1 (Ω ε ) → λ 1 (D) continuously (and the same for the areas), so x(Ω ε ) → πλ 1 (D) continuously. The Neumann eigenvalue µ 1 (Ω ε ) also varies continuously, according to Theorem 2.4 since for each fixed ε, the family of domains satisfy a uniform cone condition in a neighborhood of Ω ε . Now, let us consider, as a test function, the following continuous function v defined on Ω ε and depending only on the variable x:

v ε (x) =    -1 in D a ε (x -1) -1 in the channel εa ε -1
in the small disc of radius ε where we choose a ε in order to have Ωε v ε dX = 0. A simple computation provides

a ε ∼ 1/ε 3 when ε → 0. Moreover, Ωε v 2 ε (X)dX ≥ D v 2 ε (X)dx = π,
therefore, the variational characterization (3) of µ 1 yields

µ 1 (Ω ε ) ≤ ε 7 a 2 ε π → 0 when ε goes to 0.
This finishes the proof.

From Lemmas 2.5 and 2.6, we infer:

Theorem 2.7. The closure of the diagram E defined by

E = {(x, y) where x = |Ω|λ 1 (Ω), y = |Ω|µ 1 (Ω), Ω ⊂ R 2 } is the strip [|B|λ 1 (B), +∞) × [0, |B|µ 1 (B)
] (where B is any disc).

Remark 2.8. It is not clear to see whether the set E is closed in the general case, see Theorem 3.1 below for the convex case. In the case of purely Dirichlet eigenvalues (the diagram (λ 1 (Ω), λ 2 (Ω)) in [START_REF] Bucur | On the attainable eigenvalues of the Laplace operator[END_REF] the authors can prove the closeness of the diagram using arguments of weak γ-convergence that are not true for Neumann eigenvalues. The difficulty comes mainly from the weird behavior of Neumann eigenvalues with respect to set variations.

Remark 2.9. For sake of simplicity, we have stated all the previous results for plane domains. It is straightforward to extend these results in any dimension. In particular Theorem 2.7 remains true in any dimension. We leave the details to the reader.

3.

The diagram for the convex case 3.1. Qualitative properties. As we will see, the diagram E C corresponding to plane convex subsets cannot be found explicitly, but we are going to give some qualitative properties and bounds allowing to have a more precise idea of this diagram. We will also give some numerical experiments. We define K to be the class of open bounded convex sets of R 2 with non-empty interior.

Let us start with a topological property (difficult to prove without the convexity assumption as mentioned in Remark 2.8).

Theorem 3.1. The set E C is closed. In particular, the shape optimization problems

min{µ 1 (Ω), Ω∈ K, λ 1 (Ω) = x 0 , |Ω| = A 0 } and max{µ 1 (Ω), Ω∈ K, λ 1 (Ω) = x 0 , |Ω| = A 0 } have a solution.
Proof. Let (x n , y n ) be a sequence of points in E C corresponding to a sequence of (bounded) convex open sets Ω n . We assume that (x n , y n ) converges to some point (x 0 , y 0 ). By scale invariance of the coordinates x and y (namely x and y are invariant by homothety: x(tΩ) = x(Ω)), we can assume without loss of generality, that the diameter of Ω n is fixed, equal to 1. Then the sequence Ω n stays in a fixed ball of radius 2 and from the Blaschke selection theorem (or compactness property of the Hausdorff convergence, see [17, Theorem 2.2.25]) we know that, up to a subsequence, Ω n converges (for the Hausdorff metric or for characteristic functions) to some convex open set Ω. Moreover, we will see below in Theorem 3.3 that for all n, x n y n > π 4 /4, therefore y 0 = 0 and Ω is not the empty set. We immediately deduce the following convergences:

• |Ω n | → |Ω| by convergence of the characteristic functions, • λ 1 (Ω n ) → λ 1 (Ω) by Sverak Theorem 2.1.
For the Neumann eigenvalue, let us consider a fixed compact ball B included into the limit domain Ω. By a classical stability result, see [17, Proposition 2.2.17], we know that B ⊂ Ω n for n large enough. Therefore, following [17, Theorem 2.4.4], we see that all the convex sets Ω n satisfy a uniform ε-cone property (with the same ε depending only on the radius of B). Using Theorem 2.4 we conclude that µ 1 (Ω n ) → µ 1 (Ω). Therefore (x 0 , y 0 ) = (|Ω|λ 1 (Ω), |Ω|µ 1 (Ω)) ∈ E C proving the closeness of this set.

The result on the existence of minimizers or maximizers follow immediately from the closeness (by taking minimizing or maximizing sequences). Remark 3.2. It is interesting to note that numerical simulations of Section 3.2 suggest that the diagram E C is simply connected and even horizontally and vertically convex (which is a stronger statement): indeed, one can conjecture that the diagram E C is exactly the set of points located between the curves of two continuous and strictly decreasing functions (see Figure 2). These curves are defined as the images of the solutions of the minimum and the maximum problem presented at Theorem 3.1. The reader should be aware that proving such properties can be very challenging, especially when dealing with diagrams in the class of convex sets, we refer for example to [3, Conjecture 5] for the couple (λ 1 (Ω), λ 2 (Ω)) (the Dirichlet eigenvalues) and [23, Open problem 2] for the couple (λ 1 (Ω), T (Ω)) (where T (Ω) is the torsion). A strategy based on some perturbation lemmas and judicious choices of continuous paths constructed via Mikowski sums has been introduced in [START_REF] Ftouhi | Blaschke-Santaló diagram for volume, perimeter, and first Dirichlet eigenvalue[END_REF]. Unfortunately, proving such perturbation lemmas seems to be quite challenging for the involved functionals λ 1 and µ 1 . As for the case of open sets, we point out the Open Problem 3 stated in [START_REF] Berg | On the relations between principal eigenvalue and torsional rigidity[END_REF] and very recently solved in [START_REF] Buttazzo | An application of the continuous Steiner symmetrization to Blaschke-Santaló diagrams[END_REF]. Now we want to bound the diagram E C by two hyperbola. To that purpose, we introduce and study the following scaling invariant functional

F (Ω) := x(Ω)y(Ω) = |Ω| 2 λ 1 (Ω)µ 1 (Ω).
By Theorem 2.7, we have for general open sets inf F (Ω) = 0 and sup F (Ω) = +∞. Now, for planar convex sets, we have:

Theorem 3.3. ∀Ω∈ K, π 4 4 < F (Ω) < 9π 2 j 2 01
Proof. Lower bound We denote by A(Ω) = A the area of a convex domain, r(Ω) = r its inradius and D(Ω) = D its diameter. For the lower bound, we have by Hersch inequality [START_REF] Hersch | Sur la fréquence fondamentale d'une membrane vibrante: évaluations par défaut et principe de maximum[END_REF]:

λ 1 (Ω) ≥ π 2 4 × 1 r 2 ,
and by Payne-Weinberger inequality [START_REF] Payne | An optimal Poincaré inequality for convex domains[END_REF] µ

1 (Ω) > π 2 D 2 ,
then, we deduce F (Ω) ≥ π 4 A 2 4r 2 D 2 . Now, to estimate the geometric quantity in the right-hand side, we use a result, by M. Hernandez-Cifre and G. Salinas [START_REF] Hernández Cifre | Some optimization problems for planar convex figures[END_REF], see also [START_REF] Delyon | The missing (A, D, r) diagram[END_REF] that can be written:

A ≥ r d 2 -4r 2 + r 2 π -2 arccos 2r d .
This implies

F (Ω) > π 4 4 × A dr 2 ≥ π 4 4 × r √ d 2 -4r 2 + r 2 π -2 arccos 2r d dr 2 = π 4 4 ×   1 - 2r d 2 + r d π -2 arccos 2r d   2 ≥ min x∈ 0, 1 4 π 4 4 × 1 -x 2 + x 2 (π -2 arccos (x)) 2 = π 4 4 .

Upper bound

For the upper bound we first give a recent result obtained in [START_REF] Henrot | Maximizing P 2 µ1 among symmetric convex sets[END_REF] and we give the proof by sake of completeness: Proposition 3.4. Let Ω be any smooth and bounded open set in the plane. Let us denote by A its area and w its minimal width (the minimal distance between two parallel lines enclosing Ω). Then

(8) µ 1 (Ω) ≤ π 2 w 2 A 2
, with equality for rectangles.

Proof. Let us consider the minimal strip enclosing Ω. Without loss of generality, we can take this strip as horizontal limited by the two lines y = 0 and y = w. Let us now consider the family of rectangles (a, a + A/w) × (0, w) of area A = |Ω|. Let us denote by L = A/w the length of the rectangle. Let us now consider a potential test function defined as

v a (x, y) =    -1 if x ≤ a cos π L (x -a + L) if a < x < a + L +1 if x ≥ a + L.
For negative values of a with sufficiently large |a|, Ω is contained in the region x ≥ a+L thus Ω v a (x, y)dX > 0, while, for sufficiently large and positive values of a, Ω v a (x, y)dX < 0. Therefore, by continuity, there exists a value of a for which Ω v a (x, y)dX = 0. We choose this value and estimate µ 1 (Ω) from above thanks to this test function v a . Denoting by R a the rectangle (a, a + L) × (0, w) and using the fact that v a is constant outside R a , we have on the one-hand

Ω |∇v a | 2 dX = Ω∩Ra |∇v a | 2 dX ≤ Ra |∇v a | 2 dX = π 2 w 2 A 2 A 2 .
On the other hand

Ω v 2 a dX = Ra v 2 a dX - Ra\Ω v 2 a dX + Ω\Ra v 2 a dX ≤ Ra v 2 a dX -|R a \ Ω| + |Ω \ R a | = A 2 .
where we used the fact that |R a \ Ω| = |Ω \ R a | because Ω and R a have the same area.

The estimate (8) follows.

We come back to the proof of the upper bound. We combine [START_REF] Buttazzo | An application of the continuous Steiner symmetrization to Blaschke-Santaló diagrams[END_REF] with the inequality

λ 1 (Ω) ≤ j 2 01 r 2 ≤ 9j 2 01 ω 2 ,
the first inequality comes from the inclusion of the incircle into Ω and the second geometric inequality, saturated by the equilateral triangle, can be found in the classical book of convex geometry [START_REF] Jaglom | Convex figures[END_REF]. Thus, we infer

F (Ω) = |Ω| 2 λ 1 (Ω)µ 1 (Ω) ≤ π 2 ω 2 × 9j 2 01 ω 2 = 9π 2 j 2 01 .
The following inclusion is a direct corollary of Theorem 3.3.

Corollary 3.4.1. The set E C is contained in the region (x, y)| x ≥ |B|λ 1 (B) and π 4 4x < y ≤ min |B|µ 1 (B), 9π 2 j 2 01 x ,
where B is any disc of R 2 .

Let us finish this part by a remark on the behavior of the diagram near the point A corresponding to discs. To see this property, it suffices to consider a sequence Ω ε of convex domains, converging to the unit disk D and such that the ratio

πµ 1 (D) -|Ω ε |µ 1 (Ω ε ) |Ω ε |λ 1 (Ω ε ) -πλ 1 (D) → +∞.
For that purpose, the sequence of ellipses, centered at the origin and with semi-axis of length 1 + ε and 1 is convenient. Indeed, it is known, see for example [6, Section 7.2.6] and [START_REF] Brasco | Spectral inequalities in quantitative form[END_REF]Remark 7.39] that we have the following estimates

|Ω ε |λ 1 (Ω ε ) -πλ 1 (D) ≤ C 1 ε 2 and πµ 1 (D) -|Ω ε |µ 1 (Ω ε ) ≥ C 2 ε
, for some positive constants C 1 and C 2 . The result follows.

3.2. Some numerical experiments and conjectures. In this section, we use numerical experiments to obtain more information on the diagram E C and state some interesting conjectures.

We want to provide a numerical approximation of the diagram E C . To do so, a natural idea is to generate a large number of convex sets (more precisely polygons) for each we compute the first Dirichlet and Neumann eigenvalues via a classical finite element method. Nevertheless, the task of (properly) generating random convex polygons is quite challenging and interesting on its own. The main difficulty is that one wants to design an efficient and fast algorithm that allows to obtain a uniform distribution of the generated random convex polygons. For more clarification, let us discuss two different (naive) approaches:

• one easy way to generate random convex polygons is by rejection sampling. We generate a random set of points in a square; if they form a convex polygon, we return it, otherwise we try again. Unfortunately, the probability of a set of n points uniformly generated inside a given square to be in convex position is equal

to p n = ( 2n-2 n-1 ) n! 2
, see [START_REF] Valtr | Probability that n random points are in convex position[END_REF]. Thus, the random variable X n corresponding to the expected number of iterations needed to obtain a convex distribution follows a geometric law of parameter p n , which means that its expectation is given by

E(X n ) = 1 pn = n! ( 2n-2 n-1 ) 2 
. For example, if N = 20, the expected number of iterations is approximately equal to 2.10 9 , and since one iteration is performed in an average of 0.7 seconds, this means that the algorithm will need about 50 years to provide one convex polygon with 20 sides. • Another natural approach is to generate random points and take their convex hull.

This method is quite fast, as one can compute the convex hull of N points in a O(N log(N )) time (see [START_REF] Anderson | A reevaluation of an efficient algorithm for determining the convex hull of a finite planar set[END_REF] for example), but it is not quite relevant since it yields to a biased distribution. In order to avoid the issues stated above, we use an algorithm presented in [25], that is based on the work of P. Valtr [START_REF] Valtr | Probability that n random points are in convex position[END_REF], where the author computes the probability of a set of n points uniformly generated inside a given square to be in convex position and remarks (in Section 4) that the proof yields a fast and non-biased method to generate random convex sets inside a given square. We also refer to [25] for a nice description of the steps of the method and a beautiful animation where one can follow each step, one also will find an implementation of Valtr's algorithm in Java that we decided to translate in Matlab to use in the PDEtool. To obtain the different figures below, we generate 10 5 random convex polygons of unit area and number of sides between 3 and 30 for which we compute the first Dirichlet and Neumann eigenvalues, by a classical finite element method. The eigenvalues computations were performed using Matlab's toolbox for solving partial differential equations PDEtool on a personal computer The average time needed to compute one eigenvalue is approximately equal to 0.75 second. We then obtain a cloud of dots that provides an approximation of the diagram E C , see Figure 2. This approach has been used in several works, we refer for example to [START_REF] Antunes | On the range of the first two Dirichlet and Neumann eigenvalues of the Laplacian[END_REF], [START_REF] Ftouhi | On the Cheeger inequality for convex sets[END_REF] and [START_REF] Ftouhi | Blaschke-Santaló diagram for volume, perimeter, and first Dirichlet eigenvalue[END_REF]. It is always interesting to have information on the boundaries of Blaschke-Santaló diagrams and the extremal domains (which correspond to points of the boundaries). For the present (λ 1 , µ 1 )-diagram E C , numerical experiments (see Figure 3) suggest the following conjecture: Conjecture 1.

• Except for the ball, the domains laying on the upper boundary of E C are polygonal (i.e. the solution of the problem max{µ 1 (Ω), Ω convex , λ 1 (Ω) = x 0 , |Ω| = 1}, where x 0 > λ 1 (B), is a polygon).

• The regular polygons are located on the upper boundary of the diagram E C . • We denote by T e the equilateral triangle of unit area. There exists x 0 > λ 1 (T e ) such that:

if ∈ [λ 1 (T e ), x 0 ), then the solution of the problem max{µ 1 (Ω), Ω convex , λ 1 (Ω) = , |Ω| = 1} is given by a superequilateral triangle (which is isosceles with aperture greater that π/3). -If ∈ (x 0 , +∞), then the solution of the problem max{µ 1 (Ω), Ω convex , λ 1 (Ω) =

, |Ω| = 1} is given by a rectangle. -The solution of the problem max{µ 1 (Ω), Ω convex , λ 1 (Ω) = x 0 , |Ω| = 1} is given by both a rectangle and a superequilateral triangle. 4 (see the case of equality in [START_REF] Kröger | On upper bounds for high order Neumann eigenvalues of convex domains in Euclidean space[END_REF]Theorem 1] for the first equivalence and [START_REF] Borisov | Asymptotics of Dirichlet eigenvalues and eigenfunctions of the Laplacian on thin domains in R d[END_REF] for the second one). We summarize the above discussion in the following conjecture:

Conjecture 2.
∀Ω∈ K, π 2 j 2 0,1 < F (Ω) ≤ F (B) = π 2 j 2 0,1 j 2 1,1 , where B is any disk of R 2 . The upper bound is an equality only for balls and the lower bound is asymptotically reached by any family of thin vanishing rhombi. we see that w k /r k → 2 as soon as D k → +∞ (because the right-hand side is bounded).

Coming back to the eigenvalues, we have: Thus, the result of ( 10) is a contradiction with the assumption that (Ω k ) is a maximizing sequence, which proves that (up to translations) there exists a bounded box D ⊂ R 2 that contains all the Ω k . Thus, by Blaschke selection theorem (see for example [START_REF] Schneider | Convex Bodies: The Brunn-Minkowski Theory[END_REF]Theorem 1.8.7]), there exists a convex set Ω * such that (Ω k ) converges to Ω * (up to a subsequence) for the Hausdorff distance. By continuity of the area and the Dirichlet and Neumann eigenvalues for the Hausdorff distance in convex sets, we deduce that:

λ 1 (Ω k ) ∼
F (Ω * ) = lim k→+∞ F (Ω k ) = sup Ω∈K F (Ω).
This ends the proof.

( 1 )

 1 E = {(x, y) where x = |Ω|λ 1 (Ω), y = |Ω|µ 1 (Ω), Ω ∈ O}, and (2) E C = {(x, y) where x = |Ω|λ 1 (Ω), y = |Ω|µ 1 (Ω), Ω ∈ K} where O is the class of open bounded subsets of Lipschitz boundary of R 2 and K is the class of open bounded convex sets of R 2 with non-empty interior. These diagrams describe all the possible values of the couple (λ 1 , µ 1
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 21 Sverak). Let Ω n ⊂ R 2 be a sequence of bounded open sets converging for the Hausdorff metric to an open set Ω. Assume that the number of connected components of the complement set of Ω n is uniformly bounded, then the Dirichlet eigenvalues converge:

Proposition 3 . 5 .

 35 The diagram E C has a vertical tangent at the point A = (x(B), y(B)).

Figure 2 .

 2 Figure 2. Approximation of the diagram E C obtained by generating 10 5 random convex polygon.
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 321212 Figure 3. Numerical simulations that support Conjecture 1 Let us now focus on the inequalities of Theorem 3.3. It is interesting to visualise those inequalities in the Blaschke-Santaló diagram that helps us to guess the optimal bounds of the scaling invariant functional F (Ω) = |Ω| 2 λ 1 (Ω)µ 1 (Ω) introduced in Theorem 3.3. It is clear that inequalities of the type F (Ω) ≤ c 0 (or F (Ω) ≥ c 0 ) can be read in the diagram as the curve of a hyperbola x -→ c 0 x that will delimit a region which contains E C . • The lowest hyperbola that we managed to draw above the diagram corresponds to the choice of c 0 = F (B) (where B is a ball), which suggests that among bounded planar convex sets, F is maximized by balls, this provides a sharp upper bound, see Conjecture 2 and Figure 4. • As for the lower bound, numerical evidence suggests that for thin domains, rhombi are located in the lower part of the diagram E C , this suggest that the infimum of F
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 436 Figure 4. Graphical visualization of the inequalities of Theorem 3.3 and the conjectures of Conjecture 2

F (Ω k ) ≤ lim sup k→+∞ π 4 4 × w k r k 2 = π 4 < π 2 j 2 1,1 j 2 0, 1 =

 24221 of[START_REF] Ftouhi | On the Cheeger inequality for convex sets[END_REF] Proposition 5.1]. Thus, by combining this equivalence with the inequality (8), we obtain: F (B).
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