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Abstract
Knowledge compilation (KC) languages find a growing number of practical uses, including in
Constraint Programming (CP) and in Machine Learning (ML). In most applications, one natural
question is how to explain the decisions made by models represented by a KC language. This paper
shows that for many of the best known KC languages, well-known classes of explanations can be
computed in polynomial time. These classes include deterministic decomposable negation normal
form (d-DNNF), and so any KC language that is strictly less succinct than d-DNNF. Furthermore,
the paper also investigates the conditions under which polynomial time computation of explanations
can be extended to KC languages more succinct than d-DNNF.
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1 Introduction

The growing use of machine learning (ML) models in practical applications raises a number
of concerns related with fairness, robustness, but also explainability [35, 59, 41]. Recent
years have witnessed a number of works on computing explanations for the predictions
made by ML models1. Approaches to computing explanations can be broadly categorized as
heuristic [47, 36, 48], which offer no formal guarantees of rigor, and non-heuristic [52, 27, 15, 4],
which in contrast offer strong guarantees of rigor. Non-heuristic explanation approaches can
be further categorized into compilation-based [52, 53, 15] and oracle-based [27, 37].

Compilation-based approaches resort to knowledge compilation (KC) languages, often to
compile the decision function associated with an ML classifier [52, 53]. As a result, more
recent work studied KC languages from the perspective of explainability, with the purpose of

1 There is a fast growing body of work on the explainability of ML models. Example references include [23,
49, 50, 39, 38, 2, 40, 60, 42].
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2 Efficient Explanations for KC Languages

understanding the complexity of computing explanations [4, 6, 3] but also with the goal of
identifying examples of queries of interest [4, 3]. Observe that besides serving to compile
the decision function of some classifier, functions represented with KC languages can also
be viewed as classifiers. In addition, explanations for the behavior of functions expressed in
KC languages find applications other than explaining ML models, including explanations
in constraint programming [1, 7, 17, 8, 21]. Furthermore, although recent work [4, 6, 3]
analyzed the complexity of explainability queries for different KC languages, it is also the
case that it is unknown which KC languages allow the expressible functions to be explained
efficiently, and which do not. On the one hand, [4, 3] proposes conditions not met by most
KC languages. On the other hand [6] studies restricted cases of KC languages, but focusing
on smallest PI-explanations. Also, since one key motivation for the use of KC languages is
the efficiency of reasoning, namely with respect to specific queries and transformations [16],
a natural question is whether similar results can be obtained in the setting of explainability.

This paper studies the computational complexity of computing PI-explanations [52] and
contrastive explanations [39] for classifiers represented with KC languages. Concretely, the
paper shows that for any KC language that implements in polynomial time the well-known
queries of consistency (CO) and validity (VA), and the transformation of conditioning (CD),
then one PI-explanation or one contrastive explanation can be computed in polynomial time.
This requirement is strictly less stringent than another one proposed in earlier work [4]. As a
result, for a large number of KC languages, that include d-DNNF, one PI-explanation or
one contrastive explanation can be computed in polynomial time. The result immediately
generalizes to KC languages less succinct than d-DNNF, e.g. OBDD, SDD, to name a few.
Moreover, for the concrete case of SDDs, the paper shows that practical optimizations lead
to clear performance gains. Besides computing one explanation, one is often interested is
obtained multiple explanations, thus allowing a decision maker to get a better understanding
of the reasons supporting a decision. As a result, the paper also proposes a MARCO-like [34]
algorithm for the enumeration of both AXps and CXps. Furthermore, the paper studies the
computational complexity of explaining generalizations of decision sets [32], and proposes
conditions under which explanations can be computed in polynomial time. Finally, the
paper studies multi-class classifiers, and again proposes conditions for finding explanations
in polynomial time.

The paper is organized as follows. Section 2 introduces the definitions and notation
used throughout the paper. Section 3 shows that for a large class of KC languages, one PI-
explanation and one contrastive explanation can be computed in polynomial time. Concretely,
the paper shows that d-DNNF can be explained in polynomial time, and so any less succinct
language can also be explained in polynomial time. Furthermore, the paper shows that
sentential decision diagrams (SDDs) enable practical optimizations that yield more efficient
algorithms in practice. In addition, Section 3 shows how to enumerate explanations requiring
one NP oracle call for each computed explanation. Section 4 investigates a number of
generalized classifiers, which can be built from KC languages used as building blocks.
Section 5 assesses the computation of explanations of d-DNNF’s and SDDs in practical
settings. Section 6 concludes the paper.

2 Preliminaries

Classification problems & formal explanations. This paper considers classification prob-
lems, which are defined on a set of features (or attributes) F = {1, . . . , m} and a set of
classes K = {c1, c2, . . . , cK}. Each feature i ∈ F takes values from a domain Di. In general,
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domains can be boolean, integer or real-valued, but in this paper we restrict Di = {0, 1} and
K = {0, 1}. (In the context of KC languages, we will replace 0 by ⊥ and 1 by ⊤. This applies
to domains and classes.) Feature space is defined as F = D1 × D2 × . . . × Dm = {0, 1}m.
The notation x = (x1, . . . , xm) denotes an arbitrary point in feature space, where each
xi is a variable taking values from Di. The set of variables associated with features is
X = {x1, . . . , xm}. Moreover, the notation v = (v1, . . . , vm) represents a specific point in
feature space, where each vi is a constant representing one concrete value from Di = {0, 1}.
An instance (or example) denotes a pair (v, c), where v ∈ F and c ∈ K. (We also use the
term instance to refer to v, leaving c implicit.) An ML classifier C is characterized by a
classification function κ that maps feature space F into the set of classes K, i.e. κ : F→ K.
(It is assumed throughout that κ is not constant, i.e. there are at least two points v1 and v2
in feature space, where κ(v1) ̸= κ(v2).)

We now define formal explanations. Prime implicant (PI) explanations [52] denote a
minimal set of literals (relating a feature value xi and a constant vi ∈ Di) that are sufficient for
the prediction2. Formally, given v = (v1, . . . , vm) ∈ F with κ(v) = c, a weak (or non-minimal)
abductive explanation (weak AXp) is any subset X ⊆ F such that,

∀(x ∈ F).
[∧

i∈X
(xi = vi)

]
→(κ(x) = c) (1)

Any subset-minimal weak AXp is referred to as an AXp. AXps can be viewed as answering
a ‘Why?’ question, i.e. why is some prediction made given some point in feature space. A
different view of explanations is a contrastive explanation [39], which answers a ‘Why Not?’
question, i.e. which features can be changed to change the prediction. A formal definition of
contrastive explanation (CXp) is proposed in recent work [26]. Given v = (v1, . . . , vm) ∈ F
with κ(v) = c, a weak (or non-minimal) CXp is any subset Y ⊆ F such that,

∃(x ∈ F).
∧

j∈F\Y
(xj = vj) ∧ (κ(x) ̸= c) (2)

Any subset-minimal weak CXp is referred to as a CXp. Building on the results of R. Reiter in
model-based diagnosis [46], [26] proves a minimal hitting set (MHS) duality relation between
AXps and CXps, i.e. AXps are MHSes of CXps and vice-versa.

Knowledge compilation map. Following earlier work [13, 16, 24], we define negated normal
form (NNF), decomposable NNF (DNNF), deterministic DNNF (d-DNNF), decision DNNF
(dec-DNNF), and also smooth d-DNNF (sd-DNNF).

▶ Definition 1 (KC languages [16]). 3 The following KC languages are studied in the paper:
The language negated normal form (NNF) is the set of all directed acyclic graphs, where
each leaf node is labeled with either ⊤, ⊥, xi or ¬xi, for xi ∈ X. Each internal node is
labeled with either ∧ (or AND) or ∨ (or OR).
The language decomposable NNF (DNNF) is the set of all NNFs, where for every node
labeled with ∧, α = α1 ∧ · · · ∧ αk, no variables are shared between the conjuncts αj.

2 PI-explanations are related with abduction, and so are also referred to as abductive explanations
(AXp) [27]. More recently, PI-explanations have been studied from a knowledge compilation perspect-
ive [4, 3].

3 We introduce KC languages that have been studied in earlier works [16, 20, 14, 43, 31]. For the sake
of brevity, we define only the KC languages that are analyzed in greater detail in the paper. For
the additional KC languages that are mentioned in the paper, the following references give standard
definitions: OBDD [16], PI [16], IP [16], renH-C [20], AFF [20], SDD [14], dFSD [43], and EADT [31].
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A d-DNNF is a DNNF, where for every node labeled with ∨, β = β1 ∨ · · · ∨ βk, each pair
βp, βq, with p ̸= q, is inconsistent, i.e. βp ∧ βq ⊨⊥.
An sd-DNNF is a d-DNNF, where for every node labeled with ∨, β = β1 ∨ · · · ∨ βk, each
pair βp, βq is defined on the same set of variables.

The focus of this paper is d-DNNF, but for simplicity of algorithms, sd-DNNF is often
considered [13]. Moreover, the definition of SDD is assumed [14, 9] (which is briefly overview
in Subsection 3.4).

Throughout the paper, a term ρ denotes a conjunction of literals. A term ρ is consistent
(ρ⊭⊥) if the term is satisfied in at least one point in feature space.

For the purposes of this paper, we will consider exclusively the queries CO and VA, and
the transformation CD, which we define next. Let L denote a subset of NNF. Hence, we
have the following standard definitions [16].

▶ Definition 2 (Conditioning [16]). 4 Let ∆ represent a propositional formula and let ρ denote
a consistent term. The conditioning of ∆ on ρ, denoted ∆|ρ is the formula obtained by
replacing each variable xi by ⊤ (resp. ⊥) if xi (resp. ¬xi) is a positive (resp. negative) literal
of ρ.

▶ Definition 3 (Queries & transformations [16]). The following queries and transformations
are used throughout with respect to a KC language L:

L satisfies the consistency (validity) query CO (VA) iff there exists a polynomial-time
algorithm that maps every formula ∆ from L to 1 if ∆ is consistent (valid), and to 0
otherwise.
L satisfies the conditioning transformation CD iff there exists a polynomial-time algorithm
that maps every formula ∆ from L and every consistent term ρ into a formula that is
logically equivalent to ∆|ρ.

There are additional queries and transformations of interest [16], but these are beyond the
goals of this paper. d-DNNF has been studied in detail from the perspective of the knowledge
compilation (KC) map [16]. Hence, it is known that d-DNNF satisfies the queries CO, VA,
CE, IM, CT, ME, and the transformation CD.

▶ Example 4. Figure 1 shows the running example used throughout the paper. F =
{1, 2, 3, 4}, X = {x1, x2, x3, x4}, and κ(x1, x2, x3, x4) = ((x1∧x4)∨ (¬x1∧x4))∧ (x3∨ (¬x3∧
x2)). Moreover, the paper considers the concrete instance (v, c) = ((0, 0, 0, 0), 0).

Canonical KC languages. Some widely used KC languages are canonical, i.e. equivalent
functions have the same representation. Concrete examples include5 reduced ordered decision
diagrams (OBDDs) [10, 16], reduced ordered multi-valued decision diagrams MDDs [54, 7],
but also sentential decision diagrams SDDs [14]. (Although we use the acronyms that are
used in the literature, all these canonical representations involve some fixed order of the
variables, and the resulting representation is reduced.) As shown later, for the purposes
of this paper, canonicity can play a crucial role in reducing the complexity of explanation
algorithms.

4 We introduce the KC queries and transformations that are relevant for the results in the paper. There
are additional queries (e.g. CE, IM, EQ, SE, CT, ME) and transformations (e.g. FO, SFO, ∧∧∧C,
∧∧∧BC, ∨∨∨C, ∨∨∨BC, ¬¬¬C), but are omitted for the sake of brevity. The interested reader is referred for
example to [16].

5 The paper briefly covers examples of canonical KC languages but, for the sake of brevity, does not
define them. Definitions can be found in the references provided.
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∧

∨

∧

x1 x4

∧

¬x1

∨

x3 ∧

¬x3 x2

(a) d-DNNF C for κ(x1, x2, x3, x4) = ((x1 ∧ x4) ∨ (¬x1 ∧ x4)) ∧ (x3 ∨ (¬x3 ∧ x2)).

x1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1
x2 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1
x3 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1
x4 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

κ(x1, x2, x3, x4) 0 0 0 1 0 1 0 1 0 0 0 1 0 1 0 1

(b) Truth table for d-DNNF C. Throughout the paper, the instance considered is v = (0, 0, 0, 0), with
prediction c = 0.

Figure 1 Running example (adapted from [17]).

Related Work. PI-explanations have been studied in a growing number of works [52, 53,
27, 28, 15, 4, 6, 26, 57, 37, 3]. Some of these earlier works studied PI-explanations for KC
languages [52, 53, 15, 4, 6, 3]. However, results on the efficient computation of explanations
for well-known KC languages are scarce. For example, [52, 53, 15] propose compilation
algorithms (which are worst-case exponential) to generate the PI-explanations from OBDDs.
Concretely, a classifier is compiled into an OBDD, which is then compiled into an OBDD
representing the PI-explanations of the original classifier. Furthermore, [4] proves that if a KC
language satisfies CD, FO, and IM, then one PI-explanation can be computed in polynomial
time. Unfortunately, a large number of KC languages of interest do not simultaneously
satisfy CD, FO, and IM. This is the case for example with OBDD, SDD, d-DNNF, among
others. Moreover, [4] proves that there are polynomial time algorithms for d-DNNF for
a number of XAI-relevant queries, with the exception of DPI (deriving a prime implicant
explanation). Finally, Barceló et al. [6] focus on smallest PI-explanations, and prove a
number of NP-hardness results.

Knowledge compilation (KC) languages also find a growing range of applications in
constraint programming. Concrete examples include the compilation of constraints into
Multi-Valued Decision Diagrams [22, 17] (and their use in the context of multi-objective
optimization [7], among a number of other use cases) or d-DNNFs [17], but also for restoring
consistency and computing explanations of dynamic CSPs [1], among others. Although
explanations for classifiers find a growing interest in ML and related fields, explanations
of KC languages can also find a wider range of applications, including reasoning about
compiled constraints. Moreover, even though recent years have witnessed a growing interest
in finding explanations of machine learning (ML) models [35, 23, 59, 41], explanations have
been studied from different perspectives and in different branches of AI at least since the
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Algorithm 1 Finding one AXp
Input: Classifier κ, instance v
Output: AXp S

1: procedure oneAXp(κ, v)
2: S ← {1, . . . , m}
3: for i ∈ {1, . . . , m} do
4: if isWeakAXp(S \ {i}, κ(xs,v) = c) then
5: S ← S \ {i}
6: return S

80s [51, 19, 45], including more recently in constraint programming [1, 8, 21]. The use of NP
oracles for computing explanations has also been investigated in recent years [27, 37], where
the NP oracle can represent a CP/SMT/MILP reasoner. (With a mild abuse of notation,
when we refer to an NP oracle it is assumed that for the accepted instances, a witness will
be returned by the oracle.)

3 Explanations for d-DNNF & Related Languages

As will be shown in this section, there is a tight connection between the definitions of AXp
and CXp (see (1) and (2)) and the queries VA, CO and the transformation CD. Indeed,
for (1) and (2), CD can serve to impose that the values of some features (i, represented by
variable xi) are fixed to some value vi. In addition, VA (resp. CO) is used to decide (1), after
conditioning, when c = 1 (resp. c = 0). Similarly, VA (resp. CO) is used to decide (2), again
after conditioning, when c = 1 (resp. c = 0). Thus, for languages respecting the (poly-time)
queries VA and CO and the (poly-time) transformation CD, one can compute one AXp
and one CXp in polynomial time. The next sections formalize this intuition. Furthermore,
even though our focus is the d-DNNF KC language, we also show that results in this section
apply to any KC language respecting the queries CO, VA and the transformation CD.

3.1 Finding one AXp
This section details an algorithm to find one AXp. We identify any S ⊆ {1, . . . , m} with its
corresponding bit-vector s = (s1, . . . , sm) where si = 1 ⇔ i ∈ S. Given vectors x, v, s, we
can construct the vector xs,v (in which s is a selector between the two vectors x and v) such
that

xs,v
i = (xi ∧ si) ∨ (vi ∧ si) (3)

To find an AXp, i.e. a subset-minimal weak AXp, Algorithm 1 is used. (Algorithm 1
is a general greedy algorithm that is well-known and used in a wide range of settings, e.g.
minimal unsatisfiable core extraction in CSPs [11, 5]; to the best of our knowledge, its use in
finding AXps (and also CXps) of KC languages is novel. An alternative would be to use the
QuickXplain algorithm [30].)

Considering s and v as constants, when c = 1, κ(xs,v) is valid iff S is a weak AXp of
κ(v) = c. Furthermore, when c = 0, κ(xs,v) is inconsistent iff S is a weak AXp of κ(v) = c.
We therefore have the following proposition.

▶ Proposition 5. For a classifier implemented with some KC language L, finding one AXp
is polynomial-time provided the following three operations can be performed in polynomial
time:
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∧

∨

∧

∨

∧

s1 ⊥

∧

¬s1 x1

∨

∧

s4 ⊥

∧

¬s4 x4

∧

∨

∧

s1 ⊤

∧

¬s1 ¬x1

∨

∨

∧

s3 ⊥

∧

¬s3 x3

∧

∨

∧

s3 ⊤

∧

¬s3 ¬x3

∨

∧

s2 ⊥

∧

¬s2 x2

Figure 2 Modified d-DNNF, computing κ(xs,v) for the instance v = (0, 0, 0, 0). For any pick of
elements to include in the weak AXp, s represents constant values.

1. construction of κ(xs,v) from κ, s and v.
2. testing validity of κ(xs,v).
3. testing consistency of κ(xs,v).

▶ Corollary 6. Finding one AXp of a decision taken by a d-DNNF is polynomial-time.

Proof. It is sufficient to show that d-DNNF’s satisfy the conditions of Proposition 5. It is
well known that testing consistency and validity d-DNNF’s can be achieved in polynomial
time [16]. To transform a d-DNNF calculating κ(v) into a d-DNNF calculating κ(xs,v), we
need to replace each leaf labelled xi by a leaf labelled (xi ∧ si) ∨ (vi ∧ si) and each leaf
labelled xi by a leaf labelled (xi ∧ si) ∨ (vi ∧ si). Note that s and v are constants during
this construction. Thus, we simplify these formulas to obtain either a literal or a constant
according to the different cases:

si = 0: label (xi ∧ si) ∨ (vi ∧ si) is xi and label (xi ∧ si) ∨ (vi ∧ si) is xi. In other words,
the label of the leaf node is unchanged.
si = 1: label (xi ∧ si)∨ (vi ∧ si) is the (constant) value of vi and label (xi ∧ si)∨ (vi ∧ si)
is the (constant) value of vi.

Indeed, this is just conditioning (CD, i.e. fixing a subset of the variables xi, given by the set
S, to vi) and it is well known that CD is a polytime operation on d-DNNFs [16]. ◀

▶ Corollary 7. Finding one AXp of a decision taken by a classifier is polynomial-time if the
classifier is given in one of the following languages: cd-PDAG [56], SDD [14], OBDD [16],
PI [16], IP [16], renH-C [20], AFF [20], dFSD [43], and EADT [31].

Proof. It suffices to show that the languages listed above satisfy the conditions of Proposi-
tion 5. According to [16], the queries CO and VA together with the transformation CD can
all be performed in polynomial time for any of the languages listed above. This is exactly
what we need to satisfy the three conditions of Proposition 5. ◀

▶ Example 8. The operation of the algorithm is illustrated for the d-DNNF from Example 4.
By applying (3), the d-DNNF of Figure 2 is obtained. The execution of the algorithm is
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i s κ(xs,v) Justification Decision
1 (0, 1, 1, 1) 0 s4 = 1: left branch takes value 0, and so κ(xs,v) = 0 Drop 1
2 (0, 0, 1, 1) 0 s4 = 1: left branch takes value 0, and so κ(xs,v) = 0 Drop 2
3 (0, 0, 0, 1) 0 s4 = 1: left branch takes value 0, and so κ(xs,v) = 0 Drop 3
4 (0, 0, 0, 0) 1 Simply set x = (1, 1, 1, 1), and so κ(xs,v) = 1 Keep 4

Table 1 Example of finding one AXp

Algorithm 2 Finding one CXp
Input: Classifier κ, instance v
Output: CXp S

1: procedure oneCXp(κ, v)
2: S ← {1, . . . , m}
3: for i ∈ {1, . . . , m} do
4: if isWeakCXp(S \ {i}, κ(xs,v) = c) then
5: S ← S \ {i}
6: return S

summarized in Table 1. By inspection, we can observe that the value computed by the
d-DNNF will be 0 as long as s4 = 1, i.e. as long as 4 is part of the weak AXp. If removed
from the weak AXp, one can find an assignment to x, which sets κ(xs,v) = 1. The computed
AXp is S = {4}.

3.2 Finding one CXp
To compute one CXp, (2) is used. In this case, we identify any S ⊆ {1, . . . , m} with its
corresponding bit-vector s where si = 1⇔ i ∈ F \ S. Moreover, we adapt the approach used
for computing one AXp, as shown in Algorithm 2. (Observe that the main difference is the
relationship between S and s, and the test for a weak CXp, that uses (2) with Y = S. Also,
recall from Section 2 that κ is assumed not to be constant, and so a CXp can always be
computed.)

▶ Proposition 9. For a classifier implemented with some KC language L, finding one CXp
is polynomial-time provided the operations of Proposition 5 can be performed in polynomial
time.

▶ Corollary 10. Finding one CXp of a decision taken by a classifier is polynomial-time if the
classifier is given in one of the following languages: d-DNNF [16], cd-PDAG [56], SDD [14],
OBDD [16], PI [16], IP [16], renH-C [20], AFF [20], dFSD [43], and EADT [31].

▶ Example 11. The operation of the algorithm for computing one CXp is illustrated for the
modified d-DNNF shown in Figure 2 for the instance (v, c) = ((0, 0, 0, 0), 0). The execution
of the algorithm is summarized in Table 2.

By inspection, we can observe that the value computed by the d-DNNF can be changed
to 1 as long as s3 = 0 ∧ s4 = 0, i.e. as long as {3, 4} are part of the weak CXp. If removed
from the weak CXp, one no longer can find an assignment to x that sets κ(xs,v) = 1. Thus,
the computed CXp is S = {3, 4}.
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i s κ(xs,v) Justification Decision
1 (1, 0, 0, 0) 1 Pick x = (0, 1, 1, 1), and so κ(xs,v) = 1 Drop 1
2 (1, 1, 0, 0) 1 Pick x = (0, 0, 1, 1), and so κ(xs,v) = 1 Drop 2
3 (1, 1, 1, 0) 0 s3 = 1: right branch takes value 0, and so κ(xs,v) = 0 Keep 3
4 (1, 1, 0, 1) 0 s4 = 1: left branch takes value 0, and so κ(xs,v) = 0 Keep 4

Table 2 Example of finding one CXp

3.3 Enumerating AXps/CXps
This section proposes a MARCO-like algorithm [34] for on-demand enumeration of AXps and
CXps. For that, we need to devise modified versions of Algorithm 1 and Algorithm 2, which
allow for some initial set of features (i.e. a seed) to be specified. The seed is used for computing
the next AXp or CXp, and it is picked such that repetition of explanations is disallowed.
As argued below, the algorithm’s organization ensures that computed explanations are
not repeated. Moreover, since the algorithms for computing one AXp or one CXp run
in polynomial time, then the enumeration algorithm is guaranteed to require exactly one
call to an NP oracle for each computed explanation, in addition to procedures that run in
polynomial time.

The main building blocks of the enumeration algorithm are: (1) finding one AXp given
a seed (see Algorithm 3); (2) finding one CXp given a seed (see Algorithm 4); and (3) a
top-level algorithm that ensures that previously computed explanations are not repeated
(see Algorithm 5). The top level-algorithm invokes a SAT oracle6 to identify the seed which
will determine whether a fresh AXp or CXp will be computed in the next iteration.

Algorithm 3 shows the computation of one AXp given an initial (seed) set of features,
such that any AXp that is a subset of the given initial set of features is guaranteed not to
have already been computed. Moreover, Algorithm 4 shows the computation of one CXp. As
argued earlier in Sections 3.1 and 3.2, the two algorithms use one transformation, specifically
conditioning (CD, see line 3) and two queries, namely consistency and validity (CO/VA,
see line 4). In the case of computing one AXp, if the prediction is ⊤, we need to check
validity, i.e. for all (conditioned) assignments, the prediction is also ⊤. In contrast, if the
prediction is ⊥, then we need to check that consistency does not hold, i.e. for all (conditioned)
assignments, the prediction is also ⊥. In contrast, in the case of computing one CXp, we need
to change the tests that are executed, since we seek to change the value of the prediction. It
should be noted that, by changing the conditioning operation, different KC languages can be
explained; this is illustrated in Subsection 3.4. Finally, Algorithm 5 shows the proposed
approach for enumerating AXps and CXps, which adapts the basic MARCO algorithm for
enumerating minimal unsatisfiable cores [33]. From the definitions, we can see that for any
S ⊆ F , either S is a weak AXp or F \ S is a weak CXp. Every set S calculated at line 6 of
Algorithm 5 has the property that it is not a superset of any previously found AXp (thanks
to the clauses added to H at line 11) and that F \S is not a superset of any previously found
CXp (thanks to the clauses added at line 15).

▶ Example 12. Table 3 summarizes the main steps of enumerating the AXps and CXps of

6 A SAT oracle can be viewed as a modified NP oracle, that besides accepting/rejecting an instance (in
this concrete case the formula), it also returns a satisfying assignment when the instance is satisfiable.
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Algorithm 3 Finding one AXp given starting seed S
Input: Classifier κ, Seed Set S, Instance v, Class c, Conditioner ςA

Output: AXp S
1: procedure findAXp(κ,S, v, c, ςA)
2: for all i ∈ S do
3: κ|s,v ← ςA(κ,S \ {i}, v)
4: if [c = ⊤ ∧ isValid(κ|s,v)] or [c = ⊥ ∧ not isConsistent(κ|s,v)] then
5: S ← S \ {i}
6: return S

Algorithm 4 Finding one CXp given starting seed S
Input: Classifier κ, Seed Set S, Instance v, Class c, Conditioner ςC

Output: CXp S
1: procedure findCXp(κ,S, v, c, ςC)
2: for all i ∈ S do
3: κ|s,v ← ςC(κ,S \ {i}, v)
4: if [c = ⊤ ∧ not isValid(κ|s,v)] or [c = ⊥ ∧ isConsistent(κ|s,v)] then
5: S ← S \ {i}
6: return S

the running example (see Figure 1). It is easy to confirm that after four explanations are
computed, H becomes inconsistent, and so the algorithm terminates. Also, one can confirm
the hitting set duality between AXps and CXps [26].

3.4 Explanations for SDDs

As a subset of the d-DNNF language, SDDs represent a well-known KC language [14, 18, 9].
SDDs are based on a strongly deterministic decomposition [14], which is used to decompose a
Boolean function into the form: (p1∧ s1)∨ · · ·∨ (pn∧ sn), where each pi is called a prime and
each si is called a sub (both primes and subs are sub-functions). Furthermore, the process of
decomposition is governed by a variable tree (vtree) which stipulates the variable order [14].
Figure 3 shows the SDD representation of decision function κ in Figure 1a and its vtree in
Figure 3b.

In order to exploit Algorithm 3, 4 and 5 to explain SDD classifiers, we need to implement:
(i) isConsistent, (ii) isValid, and (iii) the conditioning of decision function κ w.r.t. s and v (i.e.
κ|s,v). To compute κ|s,v, we check each si if (si = 1) and we compute κ|xi=vi

(κ|xi
if vi = 1,

otherwise κ|¬xi). As SDDs satisfy CO, VA and CD [18], the tractability of isConsistent,
isValid, and κ|s,v is guaranteed.

Next, let us consider again the running example of Figure 1 and the instance v = (0, 0, 0, 0)
(such that κ(v) = 0). Figure 4 illustrates the process of computing one AXp for κ(v), which
corresponds to the overall flow shown in Table 1. (Note that the computation of a CXp
is similar.) As SDDs in Figures 4a, 4b and 4c are inconsistent, features 1, 2 and 3 are
not necessary for preserving the prediction κ(v) = 0, that is they can be removed from S.
Instead, for SDD in Figure 4d, there exists a point x that can be classified as ⊤, so feature 4
cannot be removed from S. Thus, we derive an AXp S = {4}.
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Algorithm 5 Enumeration algorithm
Input: Feature Set F , Classifier κ, Instance v, Class c, Conditioners ςA, ςC

1: procedure Enumerate(F , κ, v, c, ςA, ςC)
2: H ← ∅ // H defined on set P = {p1, . . . , pm}
3: repeat
4: (outc, p)← SAT(H)
5: if outc = true then
6: S ← {i ∈ F | pi = 1}
7: κ|s,v ← ςA(κ,S, v)
8: if [c = ⊤ ∧ isValid(κ|s,v)] or [c = ⊥ ∧ not isConsistent(κ|s,v)] then
9: X ← findAXp(κ,S, v, c, ςA)

10: reportAXp(X)
11: H ← H∪ {(∨i∈X¬pi)}
12: else
13: X ← findCXp(κ,F \ S, v, c, ςC)
14: reportCXp(X)
15: H ← H∪ {(∨i∈Xpi)}
16: until outc = false

H SAT(H) p AXp(1),
CXp(0)? S AXp CXp Block

∅ 1 (1, 1, 1, 1) 1 {1, 2, 3, 4} {4} — b1 = (¬p4)
{b1} 1 (1, 1, 1, 0) 1 {1, 2, 3} {2, 3} — b2 = (¬p2 ∨ ¬p3)
{b1, b2} 1 (1, 0, 1, 0) 0 {1, 3} — {2, 4} b3 = (p2 ∨ p4)
{b1, b2, b3} 1 (1, 1, 0, 0) 0 {1, 2} — {3, 4} b4 = (p3 ∨ p4)
{b1, b2, b3, b4} 0 — — — — — —

Table 3 Example of AXp/CXp enumeration, using Algorithm 5

4 Generalizations

4.1 Explanations for Generalized Decision Functions
We consider the setting of multi-class classification, with K = {c1, . . . , cK}, where each
class cj is associated with a total function κj : F→ {0, 1}, such that the class cj is picked
iff κj(v) = 1. For example, decision sets [32] represent one such example of multi-class
classification, where each function κj is represented by a DNF, and a default rule is used to
pick some class for the points v in feature space for which all κj(v) = 0. Moreover, decision
sets may exhibit overlap [29], i.e. the existence of points v in feature space such that there
exist j1 ̸= j2 and κj1(v) = κj2(v) = 1. In practice, the existence of overlap can be addressed
by randomly picking one of the classes for which κj(v) = 1. Alternatively, the learning of
DSes can ensure that overlap is non-existing [29].

This section considers generalized versions of DSes, by removing the restriction that each
class is computed with a DNF. Hence, a generalized decision function (GDF) is such that
each function κj is allowed to be an arbitrary boolean function. Furthermore, the following
two properties of GDFs are considered:
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5

3

x3 x4 ¬x3 ⊥

¬x2 x2 x4

(a) SDD representation

3

1 5

x1 x2 x3 x4

0 2 4 6

(b) vtree

Figure 3 SDD for κ(x1, x2, x3, x4) = ((x1 ∧ x4) ∨ (¬x1 ∧ x4)) ∧ (x3 ∨ (¬x3 ∧ x2)), given a vtree.
Each circle node with outgoing edges is a decision node while each paired-boxes node is an element.
The left (resp. right) box represents the prime (resp. sub). A box either contains a terminal SDD (i.e.
⊤, ⊥ or a literal) or a link to a decision node. The shown vtree in (3b) is a binary tree, whose leaves
are in a one-to-one correspondence with the domain variables of κ(x1, x2, x3, x4). Moreover, each
SDD node respects a unique (leaf or non-leaf) node of the vtree, e.g. the SDD root of (3a) respects
the vtree root of (3b).

5
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⊥ ⊥ ⊤ ⊥

⊤ ⊥ ⊥

(a) s = (0, 1, 1, 1)

5

3

⊥ ⊥ ⊤ ⊥

¬x2 x2 ⊥

(b) s = (0, 0, 1, 1)
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x3 ⊥ ¬x3 ⊥

¬x2 x2 ⊥

(c) s = (0, 0, 0, 1)

5

3

x3 x4 ¬x3 ⊥

¬x2 x2 x4

(d) s = (0, 0, 0, 0)

Figure 4 Example of computing one AXp for κ(v = (0, 0, 0, 0)) = 0. Each sub-figure represents
an SDD κ|s,v. (Note that, the SDDs are presented in intermediate form for better illustrating the
procedure of calculating the explanation.)
.

▶ Definition 13 (Binding GDF). A GDF is binding if,

∀(x ∈ F).
∨

1≤j≤K

κj(x) (4)

(Thus, a binding GDF requires no default rule, since for any point x in feature space, there
is at least one κj such that κj(x) holds.)

▶ Definition 14 (Non-overlapping GDF). A GDF is non-overlapping if,

∀(x ∈ F).
∧

1≤j1,j2≤K
j1 ̸=j2

(¬κj1(x) ∨ ¬κj2(x)) (5)

(Thus, a binding, non-overlapping GDF computes a total multi-class classification function.)
Furthermore, we can establish conditions for a GDF to be binding and non-overlapping:
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▶ Proposition 15. A GDF is binding and non-overlapping iff the following formula is
inconsistent:

∃(x ∈ F).κ1(x) + . . . + κK(x) ̸= 1 (6)

Proof. Given Definition 13 and Definition 14,
1. Clearly, there exists a point v ∈ F such that κ1(v) + . . . + κK(v) = 0 iff the GDF is

non-binding;
2. Clearly, there exists v ∈ F such that κ1(v) + . . . + κK(v) ≥ 2 iff the GDF is overlapping.
Thus, the result follows. ◀

▶ Remark 16. For a GDF where each function is represented by a boolean circuit, deciding
whether a GDF is binding and non-overlapping is in coNP. In practice, checking whether a
GDF is binding and non-overlapping can be decided with a call to an NP oracle.

▶ Proposition 17. For a binding and non-overlapping GDF, such that each classification
function is represented by a sentence of a KC language satisfying the query CO and the
transformation CD, then one AXp or one CXp can be computed in polynomial time. Fur-
thermore, enumeration of AXps/CXps can be achieved with one call to an NP oracle per
computed explanation.

Proof sketch. For computing one AXp of class cp, one can iteratively check consistency of
the remaining of literals on the other functions q ̸= p. Conditioning is used to reflect, in the
classifiers, the choices made, i.e. which literals are included or not in the AXp. For a CXp a
similar approach can be used. For enumeration, we can once again exploit a MARCO-like
algorithm. ◀

▶ Corollary 18. For a binding non-overlapping GDF, where each κj is represented by a DNNF,
one AXp and one CXp can be computed in polynomial time. Furthermore, enumeration of
AXps/CXps can be achieved with one call to an NP oracle per computed explanation.

Thus, for GDFs that are both binding and non-overlapping, even if each function is
represented by the fairly succinct DNNF, one can still compute AXps and CXps efficiently.
Furthermore, a MARCO-like [34] can be used for enumerating AXps and CXps.

The results above can be generalized to the case of multi-valued classification, where
binarization (one-hot-encoding) can serve for representing multi-valued (non-continuous)
features. Alternative approaches have been investigated in recent work [4].

4.2 Total Congruent Classifiers
We can build on the conditions for GDFs to devise relaxed conditions for poly-time explain-
ability.

▶ Definition 19 (Total Classifier). A classification function is total if for any point v ∈ F,
there is a prediction κ(v) = c, with c ∈ K.

▶ Definition 20 (Congruent Classifier). A classifier is congruent if the computational com-
plexity of deciding the consistency of κ(x) = c is the same for any c ∈ K.

Similarly, we can define a total congruent KR language. For a total congruent KR
language, the query CO is satisfied iff deciding κ(v) = c is in polynomial time for any c ∈ K.
Given the above, the same argument used for GDFs, can be used to prove that,

▶ Proposition 21. For a total congruent KR language, which satisfies the operations of CO
and CD, one AXp and one CXp can be computed in polynomial time.



14 Efficient Explanations for KC Languages

Dataset (#F #S) Model XPs AXp CXp d-DNNF SDD

%A #ND #NS avg M avg %L M avg %L M avg M avg
corral ( 6 160) 100 35 12 4 4 2 34 4 2 22 0.004 0.001 0.001 0.000
db-bodies (4702 64) 100 22 21 4 3 2 1 4 3 1 0.004 0.002 0.001 0.000
db-bodies-stemmed (3721 64) 84.6 14 15 4 2 1 1 4 2 1 0.003 0.002 0.001 0.000
db-subjects ( 242 64) 84.6 45 28 6 4 2 2 6 4 1 0.005 0.002 0.004 0.001
db-subjects-stemmed ( 229 64) 92.3 54 31 7 4 2 2 7 5 1 0.006 0.003 0.004 0.001
mofn_3_7_10 ( 10 1324) 97.7 107 34 11 28 4 32 28 6 24 0.072 0.011 0.008 0.001
mux6 ( 6 128) 100 62 22 5 4 2 51 4 3 24 0.009 0.003 0.002 0.001
parity5+5 ( 10 1124) 85.7 484 96 9 12 2 66 19 7 14 0.193 0.038 0.009 0.002
spect ( 22 267) 85.1 108 55 14 36 8 22 13 6 10 0.105 0.030 0.016 0.005
threeOf9 ( 9 512) 96.1 76 37 7 15 3 38 14 4 19 0.023 0.006 0.005 0.001
xd6 ( 9 973) 97.9 80 36 8 25 4 36 22 4 20 0.035 0.009 0.007 0.001

Table 4 Listing all AXps CXps for d-DNNFs and SDDs. Columns #F and #S report, resp., the
number of features and the number of tested samples (instances), in the dataset. Sub-Column %A reports
the (test) accuracy of the model and #ND (resp. #NS) shows the total number of nodes in the compiled
d-DNNF (resp. SDD). Column XPs reports the average number of total explanations (AXp’s and CXp’s).
Sub-columns M and avg of column AXp (resp., CXp) show, resp., the maximum and average number
of explanations. The average length of an explanation (AXp/CXp) is given as %L. Sub-columns M and
avg of column d-DNNF (resp. SDD) report, resp., maximal and average runtime (in seconds) to list all
the explanations for all tested instances.

5 Experimental Results

In this section, we present the experiments carried out to assess the practical effectiveness
of the proposed approach. The assessment is performed on the computation of AXps and
CXps for d-DNNFs and SDDs. The experiments consider a selection of 11 binary datasets
that are publicly available and originate from the Penn Machine Learning Benchmarks [44]
and the openML repository [55]. To learn d-DNNFs (resp. SDDs), we first train Read-Once
Decision Tree (RODT) models on the given binary datasets and then compile the obtained
RODTs into d-DNNFs (resp. SDDs). (A RODT is a free BDD (FBDD) whose underlying
graph is a tree [6, 58], where FBDD is defined as a BDD that satisfies the read-once property:
each variable is encountered at most once on each path from the root to a leaf node.) The
compilation of RODTs to d-DNNFs can be easily done by direct mapping, since RODT is a
special case of FBDDs, and FBDDs is a subset of d-DNNFs [16] To compile SDDs, we use
the PySDD package7, which is implemented in Python and Cython. (Note that, we tuned
PySDD to use dynamic minimization [12] during the construction in order to reduce the size
of the SDDs.) The PySAT package [25] is used to instrument incremental SAT oracle calls
in AXp/CXp enumeration. Lastly, The experiments are performed on a MacBook Pro with
a 6-Core Intel Core i7 2.6 GHz processor with 16 GByte RAM, running macOS Big Sur.

PySDD wraps the famous SDD package8 which offers canonical SDDs9. Employing
canonical SDDs allows consistency and validity checking to be done in constant time (If the
canonical SDD is inconsistent (resp. valid) then it is a single node labeled with ⊥ (resp.
⊤) [14]), so in practice may improve the efficiency of explaining SDD classifiers.

Table 4 summarizes the obtained results of explaining d-DNNFs and SDDs. (Note that,
for each dataset, the compiled d-DNNF and SDD represent the same decision function of the
learned RODT. Hence, the computed explanations are the same as well.) Performance-wise,
the maximum running time to enumerate all AXps/CXps is less than 0.2 sec for all tested

7 https://github.com/wannesm/PySDD
8 http://reasoning.cs.ucla.edu/sdd/
9 Since PySDD offers canonical SDDs, the CD transformation is not implemented in worst-case polynomial

time [18]. However, in practice, this was never an issue in our experiments.
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Figure 5 Comparison of total runtime (in seconds) spent to explain all instances of each dataset
for d-DNNFs vs. SDDs.

d-DNNFs, and is less than 0.02 sec for all tested SDDs. On average, it takes at most 0.038
sec for enumerating all the explanations (AXps/CXps) of d-DNNFs; for SDDs, it takes a few
milliseconds to enumerate all the explanations (AXps/CXps). Thus the overall cost of the
SAT oracle calls performed by the enumeration algorithm is negligible. Hence, it is plain
that instrumenting SAT oracle calls does not constitute a bottleneck to listing effectively
all the AXps/CXps of the d-DNNFs and SDDs. Apart from the runtime, one observation
is that the total number of AXps and CXps per instance is relatively small. Moreover, if
compared with the total number of features, the average length of an explanation (AXp or
CXp) is also relatively small.

We compared the raw performance of explaining d-DNNFs and SDDs. Figure 5 depicts a
cactus plot showing the total runtime spent on AXp-and-CXp enumeration for all instances
of each dataset. As can be seen, both d-DNNF and SDD explanation procedures are able
to finish successful enumeration of AXps/CXps for all instances of the datasets in a few
seconds. Unsurprisingly, the runtimes in case of SDDs tend to be overall better than those
for d-DNNFs. Indeed, explaining SDDs is on average 6 times faster than explaining d-DNNFs.
One factor contributing to this performance difference is that in practice in case of SDDs
consistency and validity checking can be done in constant time.

To conclude, the results shown above, for the concrete case of classifiers represented in
the d-DNNF and SDD languages, support the paper’s theoretical claims from a practical side
that, if the underlying KC language implements polynomial-time CO and VA queries as
well as the CD transformation, then (i) the polynomial-time computation of one AXp/CXp
in practice takes a negligible amount of time, which together with (ii) making a single SAT
oracle call per explanation makes (iii) the enumeration of (some/all) XPs (AXps and CXps)
highly efficient in practice.

6 Conclusions

This paper proves that for any classifier that can be represented with a d-DNNF, both
one AXp and on CXp can be computed in polynomial time on the size of the d-DNNF.
Furthermore, the paper shows that enumeration of AXps and CXps can be implemented
with one NP oracle call per explanation. The experimental evidence confirms that for
small numbers of explanations, the cost of enumeration is negligible. In addition, the
paper proposes conditions for generalized decision functions to be explained in polynomial
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time. Concretely, the paper develops conditions which allow generalized decision functions
represented with DNNFs to be explainable in polynomial time. Finally, the paper proposes
general conditions for a classifier to be explained in polynomial time. The experimental
results validate the scability of the polynomial time algorithms and, more importantly, the
scalability of oracle-based enumeration.
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