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An introduction to the topological derivative

S. Amstutz

CMAP - Ecole polytechnique
Route de Saclay, 91120 Palaiseau, France

Abstract

Purpose. This paper provides a self-contained introduction to the mathematical aspects of the
topological derivative.
Design / methodology / approach. Full justifications are given on simple model problems fol-
lowing a modern approach based on the averaged adjoint state technique. Extensions are discussed
in relation with the literature on the field.
Findings. Closed expressions of topological derivatives are obtained and commented.
Originality / value. Several cases are covered in a unified and didactic presentation. Some
elements of proof are novel.

1 Introduction

Let D be a bounded, open subset of RN , the "hold-all" domain. With applications to shape opti-
mization in mind, it is mostly assumed that N = 2 or N = 3, but the case N = 1 may have its
own interest, and the cases N > 3 may be considered for mathematical generality. To fix ideas let
A = {Ω ⊂ D,Ω open}, and consider a function

Ω ∈ A 7→ J (Ω) ∈ R

indifferently called shape functional, or cost function, or criterion. The concept of topological derivative
was formally introduced in [Eschenauer et al., 1994, Schumacher, 1995] as the "bubble method" for the
optimal design of structures, and the first mathematical justifications appeared in [Sokolowski and Żochowski, 1999,
Garreau et al., 2001]. It can be defined as follows.

Definition 1.1 Let ω be a bounded, open subset of RN . We say that J admits a topological derivative
at Ω0 ∈ A and at the point z ∈ Ω0 with respect to ω if there exists a function f : R+ → R+ with
limε↘0 f(ε) = 0 such that the following limit exists:

dTJ (Ω0, ω, z) = lim
ε↘0

J (Ω0 \ (z + εω))− J (Ω0)

f(ε)
. (1)

Of course, (1) is equivalent to the "topological asymptotic expansion":

J (Ω0 \ (z + εω))− J (Ω0) = f(ε)dTJ (Ω0, ω, z) + o(f(ε)).

The set ωε := z + εω is the domain perturbation, see Figure 1. It is often called hole, or cavity, or
more specifically inclusion when it is filled with a material phase different from the background one.
The set Ωε := Ω0 \ ωε is the perturbed or perforated domain. The set ω is the perturbation at scale
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1. It is typically chosen as the unit ball, but other cases, like cracks, can be of interest. Clearly, for
the volume functional J (Ω) = |Ω|, we have dTJ (Ω, ω, z) = −1 for all z ∈ Ω with f(ε) = |ωε| = εN |ω|.
The perimeter functional J (Ω) = |∂Ω| yields dTJ (Ω, ω, z) = 1 for all z ∈ Ω with f(ε) = εN−1|∂ω|.

In most practical cases the shape functional involves the solution of a boundary value problem, the
so-called (direct) state. Then the type of boundary condition around the hole has a drastic effect on
its asymptotic behavior. One case turns out to be much easier to analyze than the others: it is when
the perturbation is on coefficients of non-principal parts of the differential operator. This situation is
studied first, while the main content of this presentation concerns perturbations of the principal part
in the form of transmission, Neumann and Dirichlet conditions. In this introductory paper we devote
to provide a rigorous mathematical analysis of the aforementioned issues on simple model problems.
In particular we restrict ourselves to Laplace-type elliptic boundary value problems and simple shape
functionals. To ease the reading, the use of boundary integral equations is bypassed, and non-standard
function spaces are described in some details as soon as they are needed. Extensions and refinements
are discussed in comments, in connection with the related literature.

From the technical standpoint, a crucial aspect of the topological sensitivity analysis is the in-
corporation of the adjoint state while we are typically not working in a differentiable framework.
This is in contrast with smooth shape variations and the more classical notion of shape deriva-
tive [Murat and Simon, 1976, Sokolowski and Zolésio, 1992, Allaire, 2007, Henrot and Pierre, 2018].
Several approaches have been developed to overcome this issue, including the domain truncation
method [Masmoudi, 2002, Garreau et al., 2001, Guillaume and Sid Idris, 2002, Novotny et al., 2019a,
Novotny and Sokolowski, 2020], the generalized Lagrangian method [Amstutz, 2003, Amstutz, 2006a,
Amstutz, 2006b, Amstutz and Dominguez, 2008], and the topological shape sensitivity method [Novotny, 2003,
Novotny and Sokolowski, 2013]. Other authors only incorporate the adjoint state in the end of the
derivations [Guzina and Bonnet, 2006, Bonnet and Delgado, 2013]. Here we will follow the averaged
adjoint method recently introduced in [Delfour and Sturm, 2017] in an abstract setting and in [Sturm, 2020,
Gangl and Sturm, 2020] in this context, which is a modification of the generalized Lagrangian method.
This formulation, initially mainly developed for nonlinear purposes, turns out to be somehow natural.
It is also elegant in the linear context as it expresses the variation of the cost function exactly as the
variation of the Lagrangian.

The paper is organized as follows. Section 2 is dedicated to the perturbation of non-principal
parts, where differential calculus and the standard adjoint state method can be used. The averaged
adjoint method is presented section 3 in an abstract linear framework. Section 4 deals with the cases
of transmission and Neumann conditions in dimension N ≥ 1. Sections 5 and 6 address the Dirichlet
case in 2D and in 3D, respectively, as here these two space dimensions need to be distinguished and
the 1D case is irrelevant.

2 Perturbation of non-principal parts

In this section we specifically assume that N ∈ {1, 2, 3}, although higher dimensions could be addressed
upon minor adaptations. A key element of the analysis will be the Sobolev embeddingH1

0 (D) ↪→ Lp(D)
with p recalled in Table 1, see e.g. [Brezis, 2011, Demengel and Demengel, 2012, Attouch et al., 2014].
For any measurable set Ω ⊂ D we consider the boundary value problem{

−∆uΩ + hΩuΩ = fΩ in D
uΩ = 0 on ∂D,

where the functions hΩ and fΩ are defined using the characteristic function χΩ of Ω by

hΩ = χΩh1 + (1− χΩ)h0, fΩ = χΩf1 + (1− χΩ)f0.
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Figure 1: Domain perturbation.

The above functions h0, h1 ∈ Lq(D), f0, f1 ∈ Lr(D) are supposed to be given, with h0, h1 ≥ 0 and q, r
as in Table 1. Finally we consider a shape functional of the form J (Ω) = J(uΩ) where J : H1

0 (D)→ R
is of class C2.

N p q r
1 ≤ +∞ > 2 > 2

2 < +∞ > 2 > 2

3 ≤ 6 > 6 > 3

Table 1: Lebesgue exponents

The following result extends ideas from [Hassine et al., 2007], see also [Novotny and Sokolowski, 2013].

Theorem 2.1 The above shape functional admits at a.e. z ∈ Ω the topological derivative

dTJ (Ω, ω, z) = [(h0 − h1)uΩvΩ − (f0 − f1)vΩ] (z)

with f(z) = εN |ω|, where the adjoint state vΩ is the solution of∫
D

(∇vΩ · ∇ϕ+ hΩvΩϕ)dx = −dJ(uΩ)ϕdx ∀ϕ ∈ H1
0 (D).

Proof. Given p > 2 as in Table 1 we define, for all (u, v, h, f) ∈ H1
0 (D) × H1

0 (D) × Lp/(p−2)(D) ×
Lp/(p−1)(D), the quantities

a(h, u, v) =

∫
D

(∇u · ∇v + huv)dx, l(f, v) =

∫
D
fvdx.

These expressions are well defined since uv ∈ Lp/2(D) by the Cauchy-Schwarz inequality. For any
(h, f) ∈ Lp/(p−2)(D)× Lp/(p−1)(D) we define A(h) ∈ L(H1

0 (D), H−1(D)) and L(f) ∈ H−1(D) by

〈A(h)u, v〉H−1(D),H1
0 (D) = a(h, u, v), 〈L(f), v〉H−1(D),H1

0 (D) = l(f, v).

Set
U =

{
(h, f) ∈ Lp/(p−2)(D)× Lp/(p−1)(D), h ≥ 0 a.e.

}
.

3



By the Lax-Milgram theorem and the Poincaré inequality we have A(h) ∈ isom(H1
0 (D), H−1(D))

for every (h, f) in a neighborhood of any (f0, h0) ∈ U . In addition, due to its affine structure, the
map (h, f) ∈ Lp/(p−2)(D) × Lp/(p−1)(D) 7→ (A(h), L(f)) is of class C∞. It follows that the map
(h, f) 7→ u(h, f) := A(h)−1L(f) is of class C∞ in a neighborhood of any element of U . In order to find
a convenient expression of the derivative we use the classical adjoint method, based on the Lagrangian

L(h, f, u, v) = J(u) + a(h, u, v)− l(f, v).

We differentiate j(h, f) := J(u(h, f)) = L(h, f, u(h, f), v) at (hΩ, fΩ) for an arbitrary v ∈ H1
0 (D):

dj(hΩ, fΩ)(û, f̂) = dhL(hΩ, fΩ, uΩ, v)ĥ+ dfL(hΩ, fΩ, uΩ, v)f̂ + duL(hΩ, fΩ, uΩ, v)du(hΩ, fΩ)(ĥ, f̂).

Choosing v as the adjoint state vΩ cancels the last term by construction. We arrive at

dj(hΩ, fΩ)(û, f̂) =

∫
D
ĥuΩvΩdx−

∫
D
f̂vΩdx.

By Taylor-Lagrange expansion this implies

j(hΩ + ĥ, fΩ + f̂)− j(hΩ, fΩ) =

∫
D
ĥuΩvΩdx−

∫
D
f̂vΩdx+O(‖ĥ‖2

Lp/(p−2)(D)
+ ‖f̂‖2

Lp/(p−1)(D)
).

Choose z ∈ Ω and ε small enough so that

ĥ := hΩ\(z+εω) − hΩ = χz+εω(h0 − h1), f̂ := fΩ\(z+εω) − fΩ = χz+εω(f0 − f1).

It is straightforward from Hölder’s inequality that

‖ĥ‖Lp/(p−2)(D) ≤ (εN |ω|)1− 2
p
− 1

q ‖h0 − h1‖Lq(D)

‖f̂‖Lp/(p−1)(D) ≤ (εN |ω|)1− 1
p
− 1

r ‖f0 − f1‖Lr(D).

With the assumptions made on q and r we can adjust p in accordance with Table 1 in order to have

‖ĥ‖2
Lp/(p−2)(D)

+ ‖f̂‖2
Lp/(p−1)(D)

= o(εN ).

So far we have shown that

J (Ω \ (z + εω))− J (Ω) =

∫
z+εω

((h0 − h1)uΩvΩ − (f0 − f1)vΩ) dx+ o(εN ).

This can be rewritten as

J (Ω \ (z + εω))− J (Ω) = |ω|εN [(h0 − h1)uΩvΩ − (f0 − f1)vΩ] (z)

+

∫
z+εω

(
((h0 − h1)uΩvΩ − (f0 − f1)vΩ) (x)− ((h0 − h1)uΩvΩ − (f0 − f1)vΩ) (z)

)
dx+ o(εN ).

By Lebesgue’s differentiation theorem this latter integral is a o(εN ) for a.e. z ∈ Ω. �
We observe here that the topological derivative does not depend on the shape of ω. We will see

that this property is usually lost when principal parts are perturbed.
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3 A generalized adjoint method

In the previous section we have been able to use Fréchet’s differential calculus and the classical La-
grangian method thanks to Sobolev embeddings and the fact that the characteristic function of the
hole was small in an appropriate Lp norm. When we perturb the principal part of the differential
operator, differential calculus applies in L∞, but the L∞ norm of the characteristic function of a set
of positive Lebesgue measure does not go to zero with the diameter of the set. As explained in the
introduction we are going to use a generalization of the Lagrangian framework based on the averaged
adjoint state idea from [Delfour and Sturm, 2017, Sturm, 2020, Gangl and Sturm, 2020].

Proposition 3.1 Let H be a Hilbert space and ε0 > 0. For every ε ∈ [0, ε0] we consider :

• a bilinear form aε(·, ·) on H,

• a linear form lε(·) on H,

• a direct state uε ∈ H solution of

aε(uε, ϕ) = lε(ϕ) ∀ϕ ∈ H,

• a cost function Jε(·) continuously Fréchet differentiable on H,

• an adjoint state vε ∈ H solution of

aε(ϕ, vε) = −
∫ 1

0
dJε(tuε + (1− t)u0)ϕdt ∀ϕ ∈ H.

Then we have for all ε ∈ [0, ε0]

Jε(uε)− J0(u0) = (Lε − L0)(u0, vε),

with the Lagrangian

Lε(u, v) = Jε(u) + aε(u, v)− lε(v) ∀(ε, u, v) ∈ [0, ε0]×H ×H.

Proof. We have the easy equalities:

Jε(uε)− J0(u0) = Lε(uε, vε)− L0(u0, vε)

= Lε(uε, vε)− Lε(u0, vε) + Lε(u0, vε)− L0(u0, vε)

= Jε(uε) + aε(uε, vε)− Jε(u0)− aε(u0, vε) + Lε(u0, vε)− L0(u0, vε)

= Jε(uε)− Jε(u0) + aε(uε − u0, vε) + Lε(u0, vε)− L0(u0, vε)

= Jε(uε)− Jε(u0)−
∫ 1

0
dJε(tuε + (1− t)u0)(uε − u0)dt+ Lε(u0, vε)− L0(u0, vε).

The first three terms cancel out due to

dJε(tuε + (1− t)u0)(uε − u0) =
d

dt
[Jε(tuε + (1− t)u0)] ,

which leads to the claim. �
We stress that the variation of the Lagrangian needs to be evaluated at the variable adjoint state

vε. We will see that in case of topology perturbations, approximating vε by v0 usually yields an error
of first order. Note that v0 is the standard unperturbed adjoint state, solution of

a0(ϕ, v0) = −dJ(u0)ϕ ∀ϕ ∈ H.
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4 Inclusion and Neumann cases

4.1 Problem formulation

Let Ω be an open and bounded subset of RN , N ∈ N∗, and ω be a bounded, smooth open subset of
RN . We consider a point z ∈ Ω and, for ε ≥ 0 small enough, the set

ωε = z + εω ⊂ Ω.

We recall the notation Ωε = Ω \ ωε, see Fig. 1. We focus our attention on the problem

find uε ∈ H1
0 (Ω) s.t.

∫
Ω
σε∇uε · ∇ϕdx =

∫
Ω
fϕdx ∀ϕ ∈ H1

0 (Ω), (2)

with f ∈ L2(Ω) and the piecewise constant conductivity

σε = χΩεα+ χωεβ, α > 0, β ≥ 0.

We will distinguish the two cases:

• β > 0, called the inclusion case,

• β = 0, called the Neumann case.

For simplicity, and to make the same setting applicable to the two above cases, we assume that f = 0
in a neighborhood z, and that ε is small enough so that f = 0 in ωε.

The inclusion case obviously admits a unique solution, and it corresponds to the strong form{
−div(σε∇uε) = f in Ω
uε = 0 on ∂Ω.

(3)

The Neumann case can be equivalently reformulated as

find uε ∈ H1
0 (Ω) s.t.

∫
Ωε

α∇uε · ∇ϕdx =

∫
Ωε

fϕdx ∀ϕ ∈ H1
0 (Ω). (4)

Since every function in H1(Ωε) can be extended to a function in H1(Ω), we recognize that uε|Ωε
is the

weak solution of 
−α∆uε = f in Ωε

∂uε
∂n

= 0 on ∂ωε
uε = 0 on ∂Ω.

(5)

In this case uε is undefined inside ωε. The "Neumann" terminology, of course, refers to the boundary
condition on the hole. The boundary condition on ∂Ω plays no significant role in the present study.

In the two cases, (2) corresponds for ε = 0 to the unperturbed problem{
−α∆u0 = f in Ω
u0 = 0 on ∂Ω.

(6)

For consistence with the notation of Proposition 3.1 we set

aε(u, v) =

∫
Ω
σε∇u · ∇vdx, lε(v) =

∫
Ω
fvdx ∀u, v ∈ H1

0 (Ω). (7)
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For the sake of clarity, we will at first concentrate on the inclusion case, and we will afterwards discuss
the adaptations to the Neumann case.

For simplicity we consider a cost function of the form

Jε(u) = Ĵ(u|Ω̂), (8)

where Ω̂ is an open subset of Ω excluding a neighborhood of z and Ĵ : H1(Ω̂) → R is Fréchet
differentiable. We further assume that dĴ is Lipschitz continuous. Comments will be made regarding
more general cost functions in Remark 4.10.

4.2 Variation of the direct state

In order to apply Proposition 3.1, it is needed that the variation of the Lagrangian be evaluated at the
averaged adjoint state vε. Since the construction of this adjoint state involves the direct state uε, our
first step is to analyze the behavior of uε. We adapt the approach of [Gangl and Sturm, 2020].

Set ũε = uε − u0. Substracting the variational formulations for uε and u0 results in∫
Ω
σε∇ũε · ∇ϕdx = (α− β)

∫
ωε

∇u0 · ∇ϕdx ∀ϕ ∈ H1
0 (Ω).

We now define the rescaled function

Uε(y) =
1

ε
ũε(z + εy), y ∈ ε−1(Ω− z),

so that
ũε(x) = εUε(

x− z
ε

), ∇ũε(x) = ∇Uε(
x− z
ε

) ∀x ∈ Ω.

A straightforward change of variables leads to∫
ε−1(Ω−z)

σε(z + εy)∇Uε(y) · ∇ϕ(z + εy)dy = (α− β)

∫
ω
∇u0(z + εy) · ∇ϕ(z + εy)dy ∀ϕ ∈ H1

0 (Ω).

Changing test functions yields∫
ε−1(Ω−z)

σε(z+εy)∇Uε(y)·∇Φ(y)dy = (α−β)

∫
ω
∇u0(z+εy)·∇Φ(y)dy ∀Φ ∈ H1

0 (ε−1(Ω−z)). (9)

Let us define the reference conductivity field

σ(y) =

{
β if y ∈ ω
α if y ∈ RN \ ω.

With the aim of passing to the limit in (9), we will work with the space

X =
{
u ∈ L2

loc(RN ) : ∇u ∈ L2(RN )
}
,

from the family of Beppo-Levi spaces [Deny and Lions, 1955], and the associated quotient space X/R
by the equivalence relation

u ∼ v ⇒ ∃c ∈ R s.t. u− v = c.

When it is equipped with the inner product

〈u, v〉X/R =

∫
RN

∇u · ∇vdx,
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the space X/R is a Hilbert space [Ortner and Süli, 2012]. By construction the function Uε belongs to
H1

0 (ε−1(Ω − z)). We implicitly consider an extension by 0 over RN . By the Lax-Milgram theorem
there exists a unique U ∈ X/R solution of∫

RN

σ(y)∇U(y) · ∇Φ(y)dy = (α− β)

∫
ω
∇u0(z) · ∇Φ(y)dy ∀Φ ∈ X/R. (10)

The key point is the following convergence result, again adapted from [Gangl and Sturm, 2020]. Alter-
native estimates can be derived with the help of the fundamental solution of the principal part of the dif-
ferential operator, see e.g. [Amstutz, 2006a], or by comparison principles [Amstutz and Bonnafé, 2017].
The advantage of the presented approach is that it does not require any knowledge of the behavior of U
at infinity. In particular it extends relatively easily to some nonlinear problems [Gangl and Sturm, 2020].

Proposition 4.1 We have the strong convergence ∇Uε → ∇U in L2(RN ) when ε ↘ 0, provided that
∇u0 be continuous at point z.

Proof. Step 1. By the extension convention, H1
0 (ε−1(Ω − z))/R is a closed linear subspace of X/R.

We denote by Pε the projection of U onto H1
0 (ε−1(Ω − z))/R. By a small abuse of notation we will

assume that Pε stands for the representative in H1
0 (ε−1(Ω− z)). By definition we have

Pε = argminΦ∈H1
0 (ε−1(Ω−z)) ‖∇Φ−∇U‖L2(RN ).

Standard properties of the projection onto a linear subspace ensure that ‖∇Pε‖L2(ε−1(Ω−z)) ≤ ‖∇U‖L2(RN )

and ∫
RN

(∇Pε −∇U) · ∇Φdx = 0 ∀Φ ∈ H1
0 (ε−1(Ω− z)).

The first assertion yields that there exists Q ∈ X/R such that ∇Pε ⇀ ∇Q weakly in L2(RN ), up to a
subsequence. The second assertion implies that∫

RN

(∇Q−∇U) · ∇Φdx = 0 ∀Φ ∈ H1
0 (B(0, R)),∀R > 0.

Let ζ : RN → [0, 1] be a smooth function such that ζ = 1 in B(0, 1) and ζ = 0 outside B(0, 2). Set
ζn(x) = ζ(x/n) and Φn(x) = (Q − U + λn)ζn ∈ H1

0 (B(0, 2n)), with λn ∈ R at the moment arbitrary.
This yields ∫

RN

|∇Q−∇U |2ζndx+

∫
RN

(Q− U + λn)(∇Q−∇U) · ∇ζndx = 0. (11)

A change of variables entails

‖(Q−U+λn)∇ζn‖2L2(RN ) = nN−2

∫
RN

|(Q−U+λn)(ny)∇ζ(y)|2dy ≤ cnN−2

∫
R(0,1,2)

|(Q−U+λn)(ny)|2dy,

with R(0, 1, 2) the ring centered at 0 with radii 1 and 2. We now fix λn such that∫
R(0,1,2)

(Q− U + λn)(ny)dy = 0.

By the Poincaré-Wirtinger inequality we infer

‖(Q− U + λn)∇ζn‖2L2(RN ) ≤ cn
N

∫
R(0,1,2)

|∇(Q− U)(ny)|2dy ≤ c
∫
R(0,n,2n)

|∇(Q− U)|2dx.
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Plugging this into (11) and using the Cauchy-Schwarz inequality, we arrive at

∫
RN

|∇Q−∇U |2ζndx ≤ c‖∇Q−∇U‖L2(RN )

(∫
R(0,n,2n)

|∇Q−∇U |2dx

)1/2

.

Letting now n go to +∞ results in ∇Q = ∇U . Therefore the whole sequence ∇Pε weakly converges
to ∇U . In particular we infer that∫

RN

∇Pε · ∇Udx→
∫
RN

|∇U |2dx.

From the identity

‖∇Pε −∇U‖2L2(RN ) = ‖∇Pε‖2L2(RN ) + ‖∇U‖2L2(RN ) − 2

∫
RN

∇Pε · ∇Udx

we derive
lim sup
ε→0

‖∇Pε −∇U‖2L2(RN ) ≤ lim sup
ε→0

‖∇Pε‖2L2(RN ) − ‖∇U‖
2
L2(RN ) ≤ 0.

We have shown that ∇Pε strongly converges to ∇U in L2(RN ).
Step 2. Using (9) we obtain∫

ε−1(Ω−z)
σ(y)∇(Pε − Uε)(y) · ∇Φ(y)dy =

∫
ε−1(Ω−z)

σ(y)∇Pε(y) · ∇Φ(y)dy

− (α− β)

∫
ω
∇u0(z + εy) · ∇Φ(y)dy ∀Φ ∈ H1

0 (ε−1(Ω− z)).

In view of (10) this rewrites as∫
ε−1(Ω−z)

σ(y)∇(Pε − Uε)(y) · ∇Φ(y)dy =

∫
ε−1(Ω−z)

σ(y)∇(Pε − U)(y) · ∇Φ(y)dy

− (α− β)

∫
ω
(∇u0(z + εy)−∇u0(z)) · ∇Φ(y)dy ∀Φ ∈ H1

0 (ε−1(Ω− z)).

Choose Φ = Pε − Uε. We obtain for some constant c

‖∇(Pε − Uε)‖2L2(ε−1(Ω−z)) ≤ c
(
‖∇(Pε − U)‖L2(ε−1(Ω−z))‖∇(Pε − Uε)‖L2(ε−1(Ω−z))

+ ‖∇u0(z + εy)−∇u0(z)‖L2(ω)‖∇(Pε − Uε)‖L2(ε−1(Ω−z))
)
,

leading to

‖∇(Pε − Uε)‖L2(ε−1(Ω−z)) ≤ c
(
‖∇(Pε − U)‖L2(ε−1(Ω−z)) + ‖∇u0(z + εy)−∇u0(z)‖L2(ω)

)
.

Using step 1 and the continuity assumption we arrive at ‖∇(Pε − Uε)‖L2(ε−1(Ω−z)) → 0.
Conclusion. The proof is completed by combining step 1 and step 2. �

Corollary 4.2 Under the assumption of Proposition 4.1 we have

‖ũε‖2H1(Ω) = O(εN ),

and for any R > 0
‖ũε‖2H1(Ω\B(z,R)) = o(εN ).
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Proof. By change of variables it is straightforward that

‖∇ũε‖2L2(Ω) = εN‖∇Uε‖2L2(ε−1(Ω−z)).

Proposition 4.1 yields that ‖∇Uε‖L2(ε−1(Ω−z)) = O(1), whereby ‖ũε‖2H1(Ω) = O(εN ) by the Poincaré
inequality. Let now R > 0. The same change of variables provides

‖∇ũε‖2L2(Ω\B(z,R)) = εN‖∇Uε‖2L2(ε−1(Ω−z))\B(0,ε−1R) = εN‖∇Uε‖2L2(RN\B(0,ε−1R).

This can be rephrased as

‖∇ũε‖2L2(Ω\B(z,R)) = εN
∫
RN

(1− χB(0,R
ε

)(y))|∇Uε(y)|2dy.

Using Proposition 4.1 we infer ‖∇ũε‖2L2(Ω\B(z,R)) = o(εN ). The claim is achieved by the Poincaré
inequality. �

4.3 Variation of the adjoint state

In view of Proposition 3.1 we define the adjoint state vε ∈ H1
0 (Ω) solution of∫

Ω
σε∇vε · ∇ϕdx = −

∫ 1

0
dJε(tuε + (1− t)u0)ϕdt ∀ϕ ∈ H1

0 (Ω).

In particular the unperturbed adjoint state v0 satisfies∫
Ω
α∇v0 · ∇ϕdx = −dJ0(u0)ϕ ∀ϕ ∈ H1

0 (Ω). (12)

As for the direct state we set ṽε = vε−v0. We obtain by difference the equality, valid for all ϕ ∈ H1
0 (Ω),

∫
Ω
σε∇ṽε · ∇ϕdx = (α− β)

∫
ωε

∇v0 · ∇ϕdx−
∫ 1

0
dJε(tuε + (1− t)u0)ϕdt+ dJ0(u0)ϕ.

By (8) this rewrites∫
Ω
σε∇ṽε · ∇ϕdx = (α− β)

∫
ωε

∇v0 · ∇ϕdx−
∫ 1

0

(
dĴ((tuε + (1− t)u0)|Ω̂)− dĴ(u0|Ω̂)

)
ϕ|Ω̂dt.

We will later justify that the latter integral can be disregarded, therefore we define wε ∈ H1
0 (Ω) solution

of ∫
Ω
σε∇wε · ∇ϕdx = (α− β)

∫
ωε

∇v0 · ∇ϕdx ∀ϕ ∈ H1
0 (Ω).

In order to approximate this wε we proceed exactly as for the direct state. We define

Wε(y) =
1

ε
wε(z + εy), y ∈ ε−1(Ω− z),

and W ∈ X/R solution of∫
RN

σ(y)∇W (y) · ∇Φ(y)dy = (α− β)

∫
ω
∇v0(z) · ∇Φ(y)dy ∀Φ ∈ X/R. (13)

We obtain:
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Proposition 4.3 It holds ∇Wε → ∇W in L2(RN ) when ε ↘ 0, provided that ∇v0 be continuous at
point z.

We now analyze the approximation of ṽε by wε.

Lemma 4.4 It holds
‖ṽε − wε‖2H1(Ω) = o(εN ).

Proof. Set eε = ṽε − wε. It solves∫
Ω
σε∇eε · ∇ϕdx = −

∫ 1

0

(
dĴ((tuε + (1− t)u0)|Ω̂)− dĴ(u0|Ω̂)

)
ϕ|Ω̂dt ∀ϕ ∈ H1

0 (Ω).

We choose ϕ = eε. Using that dĴ is Lipschitz we obtain

‖∇eε‖2L2(Ω) ≤ c
∫ 1

0
t‖uε − u0‖H1(Ω̂)‖eε‖H1(Ω̂)dt.

Corollary 4.2 and the Poincaré inequality provide the desired estimate. �

4.4 Variation of the Lagrangian

Following Proposition 3.1 and (7) we define the Lagrangian

Lε(u, v) = Jε(u) +

∫
Ω
σε∇u · ∇vdx−

∫
Ω
fvdx. ∀u, v ∈ H1

0 (Ω).

We need to estimate the variation

(Lε − L0)(u0, vε) = (β − α)

∫
ωε

∇u0 · ∇vεdx,

which can be decomposed as

(Lε−L0)(u0, vε) = (β−α)

∫
ωε

∇u0 ·∇v0dx+(β−α)

∫
ωε

∇u0 ·∇wεdx+(β−α)

∫
ωε

∇u0 ·(∇ṽε−∇wε)dx.

Lemma 4.5 If ∇u0 and ∇v0 are continuous at point z then

(Lε − L0)(u0, vε) = εN (β − α)|ω|∇u0(z) · ∇v0(z) + (β − α)

∫
ωε

∇u0 · ∇wεdx+ o(εN ).

Proof. We first estimate∫
ωε

∇u0 · ∇v0dx− εN |ω|∇u0(z) · ∇v0(z) =

∫
ωε

(∇u0 · ∇v0 −∇u0(z) · ∇v0(z)) dx

= εN
∫
ω

(∇u0(z + εy) · ∇v0(z + εy)−∇u0(z) · ∇v0(z)) dy

= o(εN ).

Secondly, the Cauchy-Schwarz inequality yields∣∣∣∣∫
ωε

∇u0 · (∇ṽε −∇wε)dx
∣∣∣∣ ≤ ‖∇u0‖L2(ωε)‖∇ṽε −∇wε‖L2(ωε) = O(εN/2)o(εN/2),

by Lemma 4.4. �
From the expression found in Lemma 4.5 we make a change of variables to obtain

(Lε − L0)(u0, vε) = εN (β − α)|ω|∇u0(z) · ∇v0(z) + εN (β − α)

∫
ω
∇u0(z + εy) · ∇Wε(y)dy + o(εN ).

11



Lemma 4.6 If ∇u0 and ∇v0 are continuous at point z then

(Lε − L0)(u0, vε) = εN (β − α)|ω|∇u0(z) · ∇v0(z) + εN (β − α)

∫
ω
∇u0(z) · ∇W (y)dy + o(εN ).

Proof. We have to show that

lim
ε→0

∫
ω

(∇u0(z + εy) · ∇Wε(y)−∇u0(z) · ∇W (y)) dy = 0.

It is an immediate consequence of Proposition 4.3, using∫
ω

(∇u0(z + εy) · ∇Wε(y)−∇u0(z) · ∇W (y)) dy

=

∫
ω
(∇u0(z + εy)−∇u0(z)) · ∇Wε(y)dy +

∫
ω
∇u0(z) · (∇Wε(y)−∇W (y))dy

and the Cauchy-Schwarz inequality. �

4.5 Polarization matrix

The definition (13) of W shows that W depends linearly on ∇v0(z). Denoting by (e1, · · · , eN ) the
canonical basis of RN and by ζi ∈ X/R the solution of∫

RN

σ(y)∇ζi(y) · ∇Φ(y)dy = (α− β)

∫
ω
ei · ∇Φ(y)dy ∀Φ ∈ X/R, (14)

we identify that W (y) = ∇v0(z) · ζ(y). It follows that∫
ω
∇u0(z) · ∇W (y)dy = ∇u0(z) ·

(∫
ω
Dζ(y)>dy

)
∇v0(z).

Choosing Φ = ζj in (14) yields

(α− β)

∫
ω
ei · ∇ζj(y)dy =

∫
RN

σ(y)∇ζi(y) · ∇ζj(y)dy = (α− β)

∫
ω
ej · ∇ζi(y)dy.

This shows that
Q :=

∫
ω
Dζ(y)dy = Q>.

We arrive at

|ω|∇u0(z) · ∇v0(z) +

∫
ω
∇u0(z) · ∇W (y)dy = ∇u0(z) · (|ω|I +Q)∇v0(z). (15)

Definition 4.7 We call polarization matrix the symmetric matrix

P =

(
β

α
− 1

)
(|ω|I +Q).

Note that (14) can be equivalently rewritten as∫
RN

σ(y)∇ζi(y) · ∇Φ(y)dy = (α− β)

∫
∂ω
ei · n(y)Φ(y)dy ∀Φ ∈ X/R, (16)

therefore the corresponding strong form reads
∆ζi = 0 in RN \ ∂ω

β

(
∂ζi
∂n

)
int

− α
(
∂ζi
∂n

)
ext

= (α− β)ei · n on ∂ω. (17)

Let us now give an additional property of the polarization matrix.
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Proposition 4.8 The eigenvalues (λi) of the polarization matrix satisfy the inequality

λi ≤
(
β

α
− 1

)
|ω|.

Moreover the polarization matrix is

• symmetric positive definite if β > α,

• symmetric negative definite if β < α.

Proof. Since P is symmetric, let us choose an othogonal basis in which it is diagonal.
Choosing Φ = ζi in (14) entails

(α− β)

∫
ω
ei · ∇ζi(y)dy ≥ 0.

We infer that
Pei · ei =

(
β

α
− 1

)(
|ω|+

∫
ω
ei · ∇ζi(y)dy

)
≤
(
β

α
− 1

)
|ω|.

Case β < α. The above inequality directly shows that Pei · ei < 0, hence P is symmetric negative
definite.
Case β > α. We write

Pei · ei =

(
β

α
− 1

)∫
ω
(∇ζi + ei) · eidy =

(
β

α
− 1

)∫
ω

(
|∇ζi + ei|2 − (∇ζi + ei) · ∇ζi

)
dy.

Using (14) we obtain

(α− β)

∫
ω
(∇ζi + ei) · ∇ζidy = (α− β)

∫
ω
|∇ζi|2dy +

∫
RN

σ|∇ζi|2dy = α

∫
RN

|∇ζi|2dy.

This yields

Pei · ei =

(
β

α
− 1

)∫
ω
|∇ζi + ei|2dy +

∫
RN

|∇ζi|2dy > 0,

hence P is symmetric positive definite. �
The notion of polarization matrix goes back at least to [Schiffer and Szegö, 1949, Pólya and Szegö, 1951].

Detailed properties and generalizations can be found in [Ammari and Kang, 2007]. In case of a vector-
valued state, a polarization tensor is involved. In the framework of linear elasticity it is called the
elastic moments tensor.

We end this section by providing closed forms of the polarization matrix for ball-shaped inclusions,
i.e., when ω is the unit ball B(0, 1). The main step is to solve (17). The typical method is to "guess"
a candidate solution, including free parameters, and to plug this ansatz in the system to fix the
parameters. For instance, in the 2D case, we find the solution

ζi(y) =
α− β
α+ β

×

{
ei · y in ω
ei · y
|y|2

in R2 \ ω.

Results are gathered in Table 2.
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1D 2D 3D

P = 2

(
1− α

β

)
P = 2π

β − α
β + α

I P = 4π
β − α
β + 2α

I

Table 2: Polarization matrix in the inclusion case for ω = B(0, 1)

4.6 Expression of the topological asymptotic expansion

Let us recapitulate our findings.

Theorem 4.9 Consider a cost function of form (8). Let v0 ∈ H1
0 (Ω) be the solution of (12). Then

Jε(uε)− J0(u0) = εNα∇u0(z) · P∇v0(z) + o(εN ),

where P is the polarization matrix.

Proof. It follows from Proposition 3.1, Lemma 4.6, (15) and Definition 4.7. The regularity conditions
for u0 and v0 are ensured by elliptic regularity. �

As a consequence of Theorem 4.9 and Definition 1.1 we can set the topological derivative of a shape
functional J such that J (Ωε) = Jε(uε) as

dTJ (Ω, ω, z) = α∇u0(z) · P∇v0(z).

Remark 4.10 Other types of cost functions may yield additional terms in the topological deriva-
tive, see e.g. [Amstutz, 2006a, Amstutz et al., 2014, Amstutz et al., 2012, Gangl and Sturm, 2020,
Novotny and Sokolowski, 2013].

4.7 The Neumann case

The Neumann case (β = 0) can be analyzed along the same lines as the inclusion case, with some
minor modifications. In particular, some volume integrals over the inclusion have to be replaced by
boundary integrals using the Green formula. The function U is now defined in the space Xω/R, with

Xω =
{
u ∈ L2

loc(RN \ ω) : ∇u ∈ L2(RN \ ω̄)
}
,

by, instead of (10),∫
RN\ω

∇U(y) · ∇Φ(y)dy =

∫
∂ω
∇u0(z) · n Φ ds ∀Φ ∈ Xω/R.

In order to use the semi-norm as a norm on the quotient space Xω/R, it is required that RN \ ω be
connected. This is in principle a rather mild assumption, except in dimension 1 where it cannot hold.
Actually, it is clear that in dimension 1 the cost function is likely to be discontinuous at ε = 0. This
singularity can also be seen by observing that the polarization of the inclusion diverges when β → 0,
see Table 2. The same phenomenon occurs in higher dimension with higher order differential operators
[Amstutz et al., 2014].

Eventually, in dimension N ≥ 2 with RN \ω connected, we arrive at the same result as in Theorem
4.9 with the polarization matrix defined through ζi ∈ Xω/R,∫

RN\ω
∇ζi(y) · ∇Φ(y)dy =

∫
∂ω
ei · n Φ(y) dy ∀Φ ∈ Xω/R, Q :=

∫
∂ω
ζ ⊗ nds.
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ball (2D, 3D) straight crack (2D) circular crack (3D)

P = −2πI P = −πν ⊗ ν P = −8

3
ν ⊗ ν

Table 3: Polarization matrix in the Neumann case

Note that (17) still holds, with β = 0. Therefore, the expressions given in Table 2 apply with β = 0.
An interesting extension is the case of a crack with Neumann boundary condition on each face. A

particular case is the planar crack ω = {x ∈ RN : x · ν = 0, |x| < 1} of unit normal ν. The corre-
sponding polarization matrix in dimensions 2 and 3 are reported in Table 3, see [Amstutz et al., 2005,
Amstutz and Dominguez, 2008, Bonnet, 2011, Bellis and Bonnet, 2013].

4.8 Extensions

The topological derivative concept in the inclusion or Neumann cases has been developed in many direc-
tions. To give a non-exhaustive overview, let us mention the linear elasticity case [Garreau et al., 2001,
Bonnet and Delgado, 2013], the Maxwell equations [Masmoudi et al., 2005], Stokes flows [Ben Abda et al., 0910],
nonlinear problems [Amstutz and Bonnafé, 2017, Gangl and Sturm, 2020], evolution problems [Bonnet, 2006,
Amstutz et al., 2008, Bellis and Bonnet, 2013], higher order differential equations [Amstutz et al., 2014,
Aubert and Drogoul, 2015], higher order topological derivatives [Bonnet, 2009, Bonnet, 2011, Hintermüller et al., 2012,
Bonnet and Cornaggia, 2017, Novotny et al., 2019b]; see also the monograph [Novotny and Sokolowski, 2013].

5 Dirichlet case in 2D

5.1 Problem formulation

Let Ω be an open and bounded subset of R2 and ω be a bounded, smooth open subset of R2. Like in
the previous section we consider a point z ∈ Ω and, for ε ≥ 0 small enough, the perforated domain

Ωε = Ω \ ωε, ωε = z + εω ⊂ Ω.

We assume for convenience, but without loss of generality, that 0 ∈ ω ⊂⊂ B(0, 1). We address the
problem {

−∆uε = f in Ωε

uε = 0 on ∂Ωε.
(18)

It is assumed that f ∈ L2(Ω) with f = 0 in a neighborhood of z. We will implicitly suppose that ε is
small enough so that f = 0 in ωε. We denote by u0 the unperturbed state, solution of{

−∆u0 = f in Ω
u0 = 0 on ∂Ω.

(19)

In order to develop the adjoint method of section 3 in a fixed space we extend uε by 0 inside ωε.
We set

aε(u, v) =

∫
Ω
∇u · ∇vdx ∀u, v ∈ H1

0 (Ω), (20)

lε(v) =

∫
Ω
∇uε · ∇vdx =

∫
Ωε

∇uε · ∇vdx =

∫
Ωε

fvdx−
∫
∂ωε

∂uε
∂n

vds ∀v ∈ H1
0 (Ω). (21)
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By convention the normal to ∂ωε is chosen outward to ωε. This construction ensures that uε ∈ H1
0 (Ω)

satisfies
aε(uε, v) = lε(v) ∀v ∈ H1

0 (Ω).

We again consider a cost function of the form

Jε(u) = Ĵ(u|Ω̂), (22)

where Ω̂ is an open subset of Ω excluding a neighborhood of z and Ĵ : H1(Ω̂) → R is Fréchet
differentiable. We further assume that dĴ is Lipschitz continuous.

5.2 A preliminary estimate

We shall work with the weighted Sobolev space [Dautray and Lions, 1988, Amrouche et al., 1994]

W (R2) =
{
u ∈ L2

loc(R2) : wu ∈ L2(R2),∇u ∈ L2(R2)
}
,

with the weight function

w(x) =
1√

1 + |x|2 log(2 + |x|)
.

It is a Hilbert space for the inner product

〈u, v〉W (R2) =

∫
R2

(w2uv +∇u · ∇v)dx.

We also define the subspace

W0(R2 \ ω) =
{
u ∈W (R2 \ ω) : u = 0 on ∂ω

}
.

We have the following standard Poincaré inequality, for which we sketch a proof for completeness.

Proposition 5.1 There exists c > 0 such that

‖u‖W (R2\ω) ≤ c‖∇u‖L2(R2\ω) ∀u ∈W0(R2 \ ω).

Proof. Step 1. Consider first a function u ∈ C∞c (R2 \B(0, a)), a > 1. For an arbitrary unit vector e
we set f(r) = u(re). Integration by parts yields∫ +∞

a

1

r log2 r
f(r)2dr =

∫ +∞

a

2

log r
f(r)f ′(r)dr,

whereby we obtain by the Cauchy-Schwarz inequality∫ +∞

a

1

r log2 r
f(r)2dr ≤ 2

(∫ +∞

a

1

r log2 r
f(r)2dr

)1/2(∫ +∞

a
rf ′(r)2dr

)1/2

.

This implies ∫ +∞

a

1

r log2 r
f(r)2dr ≤ 4

∫ +∞

a
rf ′(r)2dr,

thence
‖u‖W (R2\B(0,a)) ≤

√
5‖∇u‖L2(R2\B(0,a)).

By a density argument, this holds for all u ∈W0(R2 \B(0, a)).
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Step 2. Let now u ∈ W0(R2 \ ω), and a > 1. Let θ ∈ C∞c (R2) such that θ = 1 in B(0, 2a) and θ = 0
outside B(0, 3a). By step 1 we have

‖(1− θ)u‖W (R2\ω) ≤ c‖(1− θ)∇u− u∇θ‖L2(R2\ω) ≤ c(‖∇u‖L2(R2\ω) + ‖u‖L2(B(0,3a)\ω)).

The Poincaré inequality in {v ∈ H1(B(0, 3a) \ ω)) : v = 0 on ∂ω} permits to conclude. �

Lemma 5.2 Let ψ ∈ H1/2(∂ω), ψε(x) = ψ((x− z)/ε) and wε ∈ H1(Ωε) be the solution of
−∆wε = 0 in Ωε

wε = 0 on ∂Ω
wε = ψε on ∂ωε.

Let R > 0 such that B(z,R) ⊂ Ω. There exists a constant c > 0 independent of ε and ψ such that, for
ε small enough,

‖wε‖H1(Ωε) ≤ c‖ψ‖H1/2(∂ω),

‖wε‖H1(Ω\B(z,R) ≤
c√
− log ε

‖ψ‖H1/2(∂ω).

Proof. We assume for convenience of notation that z = 0.
Step 1. We denote by Ψ ∈ H1(B(0, 1) \ ω̄) a function such that Ψ = ψ on ∂ω and Ψ = 0 on ∂B(0, 1),
obtained from standard lifting, then extended by 0 outside B(0, 1). We set Ψε(x) = Ψ(x/ε) and
w̃ε = wε −Ψε. We have from the weak formulation∫

Ωε

∇wε · ∇w̃εdx = 0,

whereby

‖∇w̃ε‖2L2(Ωε) = −
∫

Ωε

∇Ψε · ∇w̃εdx.

This entails ‖∇w̃ε‖L2(Ωε) ≤ ‖∇Ψε‖L2(Ωε) and subsequently ‖∇wε‖L2(Ωε) ≤ 2‖∇Ψε‖L2(Ωε). We infer by
change of variables

‖∇wε‖L2(Ωε) ≤ 2‖∇Ψ‖L2(B(0,1)\ω) ≤ c‖ψ‖H1/2(∂ω).

We can also lift ψ inside ω by a function ψ̃, and setting ψ̃ε(x) = ψ̃(x/ε) we get

‖∇ψ̃ε‖L2(ωε) = ‖∇ψ̃‖L2(ω) ≤ c‖ψ‖H1/2(∂ω).

Extending wε by ψ̃ε in ωε and applying the Poincaré inequality in H1
0 (Ω) yields

‖wε‖H1(Ωε) ≤ c‖ψ‖H1/2(∂ω).

Step 2. To address the second claim we first focus on the problem
−∆wε = 0 in Ωε

wε = 0 on ∂Ω
wε = ψ̄ on ∂ωε,

with ψ̄ ∈ R constant. The variational formulation yields

‖∇wε‖2L2(Ωε) ≤ ‖∇vε‖
2
L2(Ωε)
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for any vε ∈ H1(Ωε) such that vε = 0 on ∂Ω and vε = ψ̄ on ∂ωε. We choose the following one, for
some ρ > 0 such that B(0, ρ) ⊂ Ω:

vε(x) =


ψ̄ if |x| ≤ ε

ψ̄
log |x| − log ρ

log ε− log ρ
if ε ≤ |x| ≤ ρ

0 if |x| ≥ ρ.

This yields

‖∇vε‖2L2(Ωε) =

∫ ρ

ε

(
ψ̄

log ε− log ρ

)2
1

r2
2πrdr = 2π

ψ
2

log ρ− log ε
.

It follows that

‖∇wε‖L2(Ωε) ≤
(

2π

log ρ− log ε

)1/2

|ψ̄|.

The Poincaré inequality yields for ε small enough

‖wε‖H1(Ωε) ≤
c√
− log ε

|ψ̄|.

Step 3. We turn to the general case. By lifting, Proposition 5.1 and the Lax-Milgram theorem, there
exists a unique S ∈W (R2 \ ω) such that S = ψ on ∂ω and∫

R2\ω̄
∇S · ∇Φdx = 0 ∀Φ ∈W0(R2 \ ω). (23)

Obviously it holds −∆S = 0 in R2 \ ω̄ in the sense of distributions. Let ζ be a smooth function equal
to 0 in B(0, 1) and 1 outside B(0, 2). Set Ŝ = ζS and

G = −∆Ŝ = −∆ζS − 2∇ζ · ∇S. (24)

By construction G is supported in the ring R(0, 1, 2), and it is smooth by elliptic regularity for S. Let
now ξ : R2 → R be a smooth function equal to 1 in B(0, 2) and 0 outside B(0, 3) and set ξρ = ξ(x/ρ),
ρ > 1. The Green formula yields∫

R2

Gdx =

∫
R2

Gξρdx =

∫
R2

∇Ŝ · ∇ξρdx =

∫
R2\B̄(0,2ρ)

∇Ŝ · ∇ξρdx.

Applying the Cauchy-Schwarz inequality, using ∇Ŝ ∈ L2(R2), a change of variables, and letting ρ go
to +∞ results in ∫

R2

Gdx = 0. (25)

We have for all Φ ∈W (R2), using (24)∫
R2

GΦdx =

∫
R2

∇ζ · ∇(SΦ)dx− 2

∫
R2

∇ζ · ∇SΦdx

=

∫
R2

S∇ζ · ∇Φdx−
∫
R2

∇ζ · ∇SΦdx

=

∫
R2

∇Ŝ · ∇Φdx−
∫
R2

ζ∇S · ∇Φdx−
∫
R2

∇ζ · ∇SΦdx

=

∫
R2

∇Ŝ · ∇Φdx−
∫
R2

∇S · ∇(ζΦ)dx.
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By (23) the latter integral vanishes, resulting in∫
R2

∇Ŝ · ∇Φdx =

∫
R2

GΦdx ∀Φ ∈W (R2). (26)

Let
E(y) =

−1

2π
log |y|

be the fundamental solution of the Laplacian and Ŝ0 = G ∗ E. Since G is smooth and compactly
supported and E ∈ L1

loc(R2), it follows that Ŝ0 is smooth. Using (25) we obtain the expressions

Ŝ0(x) =

∫
R2

G(y) (E(x− y)− E(x)) dy ∀x 6= 0,

∇Ŝ0(x) =

∫
R2

G(y) (∇E(x− y)−∇E(x)) dy ∀x 6= 0.

From the mean value theorem we infer that |Ŝ0(x)| ≤ c/|x| and |∇Ŝ0(x)| ≤ c/|x|2, implying that
Ŝ0 ∈W (R2). Let Φ ∈W (R2). We have∫

R2

∇Ŝ0 · ∇Φdx = lim
ρ→+∞

∫
R2

ξρ∇Ŝ0 · ∇Φdx = lim
ρ→+∞

(∫
R2

∇Ŝ0 · ∇(ξρΦ)dx−
∫
R2

∇Ŝ0 · ∇ξρΦdx
)

=

∫
R2

GΦdx− lim
ρ→+∞

∫
R2

∇Ŝ0 · ∇ξρΦdx =

∫
R2

GΦdx,

using the decay properties of Ŝ0 and Φ. Comparing with (26), choosing Φ = Ŝ − Ŝ0, we obtain that
Ŝ = Ŝ0 + λ, for some λ ∈ R. In particular we have the expression

λ = −Ŝ0(0),

showing that |λ| ≤ c‖ψ‖H1/2(∂ω). Denoting S0 = S − λ we have S0 = Ŝ − λ = Ŝ0 in R2 \B(0, 2), i.e.,

S0(x) =

∫
B(0,2)

G(y)E(x− y)dy ∀x ∈ R2 \B(0, 2).

We now set
sε(x) = S0(

x

ε
).

Using again (25) we get

sε(x) =

∫
B(0,2)

G(y)
(
E(
x

ε
− y)− E(

x

ε
)
)
dy ∀x ∈ R2 \B(0, 2ε).

The particular form of the fundamental solution leads to

sε(x) =

∫
B(0,2)

G(y) (E(x− εy)− E(x)) dy ∀x ∈ R2 \B(0, 2ε).

The mean value theorem easily shows that

‖sε‖H1(Ω\B(0,R)) ≤ cε‖G‖L2(R2) ≤ cε‖ψ‖H1/2(∂ω).
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We note that on ∂ωε we have sε(x) = S0(x/ε) = S(x/ε)−λ = ψ(x/ε)−λ. We now define rε = wε−sε,
solution of 

−∆rε = 0 in Ωε

rε = −sε on ∂Ω
rε = λ on ∂ωε.

We have by step 2 and a standard decomposition

‖rε‖H1(Ωε) ≤ c‖sε‖H1/2(∂Ω) + c
|λ|√
− log ε

≤ c√
− log ε

‖ψ‖H1/2(∂ω).

This completes the proof by wε = sε + rε. �

5.3 Variation of the direct state

Set ũε = uε − u0. It solves 
−∆ũε = 0 in Ωε

ũε = 0 on ∂Ω
ũε = −u0 on ∂ωε.

(27)

We define hε ∈ C∞(R2 \ {z}) and rε ∈ H1(Ω) by

hε(x) = − log |x− z|
log ε

u0(z),

{
−∆rε = 0 in Ω
rε = −hε on ∂Ω.

As for the fundamental solution we have ∆hε = 0 in R2 \ {z}. We now set eε = ũε − hε − rε, which
solves 

−∆eε = 0 in Ωε

eε = 0 on ∂Ω
eε = −u0 − hε − rε on ∂ωε.

(28)

Lemma 5.3 If u0 is C1 is a neighborhood of z then

‖rε‖H1(Ω) = O
(
(− log ε)−1

)
,

‖eε‖H1(Ω\B(z,R)) = O
(

(− log ε)−3/2
)
.

Proof. The first estimate is obvious since ‖hε‖H1/2(∂Ω) = O((− log ε)−1) by construction.
Set

ψε(x) = (−u0 − hε − rε)(z + εx).

We decompose as

ψε(x) = [u0(z)− u0(z + εx)︸ ︷︷ ︸
pε(x)

]− [u0(z) + hε(z + εx)︸ ︷︷ ︸
qε(x)

]− rε(z + εx)︸ ︷︷ ︸
r̂ε(x)

.

By regularity of u0 we have immediately ‖pε‖H1/2(∂ω) = O(ε). Next, from

qε(x) = u0(z)

(
1− log |εx|

log ε

)
= −u0(z)

log |x|
log ε

,

we get ‖qε‖H1/2(∂ω) = O((− log ε)−1). Lastly, a change of variables yields

‖r̂ε‖H1(ω) ≤ ‖∇rε‖L2(ωε) + ε−1‖rε‖L2(ωε) ≤ ‖∇rε‖L2(ωε) + c‖rε‖L∞(ωε).

By elliptic regularity we have ‖∇rε‖L2(ωε)+‖rε‖L∞(ωε) ≤ c‖hε‖H1/2(∂Ω), thus ‖r̂ε‖H1/2(∂ω) = O((− log ε)−1).
We conclude using Lemma 5.2. �

We infer from Lemma 5.3 and the triangle inequality:
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Lemma 5.4 If u0 is C1 is a neighborhood of z then

‖ũε‖H1(Ω\B(z,R) = O
(
(− log ε)−1

)
.

5.4 Variation of the adjoint state

In view of Proposition 3.1 and (20)-(21), we define the adjoint state vε ∈ H1
0 (Ω) solution of∫

Ω
∇vε · ∇ϕdx = −

∫ 1

0
dJε(tuε + (1− t)u0)ϕdt ∀ϕ ∈ H1

0 (Ω).

In particular the unperturbed adjoint state v0 satisfies∫
Ω
∇v0 · ∇ϕdx = −dJ0(u0)ϕ ∀ϕ ∈ H1

0 (Ω). (29)

Lemma 5.5 If u0 is C1 is a neighborhood of z then

‖vε − v0‖H1(Ω) = O
(
(− log ε)−1

)
.

Proof. Set ṽε = vε − v0. We have∫
Ω
∇ṽε · ∇ϕdx =

∫ 1

0
(dJ0(u0)− dJε(tuε + (1− t)u0))ϕdt ∀ϕ ∈ H1

0 (Ω),

leading to ∫
Ω
∇ṽε · ∇ϕdx =

∫ 1

0
(dĴ(u0|Ω̂)− dĴ((tuε + (1− t)u0)|Ω̂)ϕ|Ω̂dt ∀ϕ ∈ H1

0 (Ω).

Choosing ϕ = ṽε and using that dĴ is Lipschitz yields

‖ṽε‖H1(Ω) ≤ c‖ũε‖H1(Ω̂).

The conclusion follows from Lemma 5.4. �

5.5 Variation of the Lagrangian

In view of Proposition 3.1 we define the Lagrangian

Lε(u, v) = Jε(u) +

∫
Ω
∇u · ∇vdx−

∫
Ω
fv +

∫
∂ωε

∂uε
∂n

vds. (30)

This provides the variation

(Lε − L0)(u0, vε) =

∫
∂ωε

∂uε
∂n

vεds.

Lemma 5.6 If u0, v0 are of class C1 in a neighborhood of z then

(Lε − L0)(u0, vε) =

∫
∂ωε

∂ũε
∂n

v0ds+O
(
(− log ε)−2)

)
.
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Proof. We work with the decomposition

(Lε − L0)(u0, vε)−
∫
∂ωε

∂ũε
∂n

v0ds =

∫
∂ωε

∂u0

∂n
vεds+

∫
∂ωε

∂ũε
∂n

(vε − v0)ds

=

∫
ωε

∇u0 · ∇vεdx−
∫

Ωε

∇ũε · ∇(vε − v0)dx.

Extending ũε by −u0 in ωε allows to write

(Lε − L0)(u0, vε)−
∫
∂ωε

∂ũε
∂n

v0ds = −
∫

Ω
∇ũε · ∇(vε − v0)dx+

∫
ωε

∇u0 · ∇v0dx

=

∫ 1

0
(dĴ((tuε + (1− t)u0)|Ω̂)− dĴ(u0|Ω̂))(ũε)|Ω̂dt

+

∫
ωε

∇u0 · ∇v0dx,

where the last equality is obtained as in Lemma 5.5. We conclude using Lemma 5.4. �

Lemma 5.7 If u0, v0 are of class C1 in a neighborhood of z then

(Lε − L0)(u0, vε) =
2π

− log ε
u0(z)v0(z) +O

(
(− log ε)−3/2

)
.

Proof. We decompose the expression found in Lemma 5.6 as

(Lε − L0)(u0, vε) =

∫
∂ωε

∂hε
∂n

v0ds+

∫
∂ωε

∂rε
∂n

v0ds+

∫
∂ωε

∂eε
∂n

v0ds+O
(
(− log ε)−2

)
=

∫
∂ωε

∂hε
∂n

v0(z)ds+

∫
∂ωε

∂hε
∂n

(v0 − v0(z))ds

+

∫
ωε

∇rε · ∇v0dx−
∫

Ωε

∇eε · ∇v0dx+O
(
(− log ε)−2

)
.

Let ρ > 0 such that B(0, ρ) ⊂ ω. We define

h̃ε(x) =

 hε(x) if |x− z| ≥ ρε

−
(

log ρ

log ε
+ 1

)
u0(z) if |x− z| ≤ ρε.

This truncation ensures that h̃ε ∈ H1(Ω). We extend eε by −u0 − h̃ε − rε in ωε to write

(Lε − L0)(u0, vε) =

∫
∂ωε

∂hε
∂n

v0(z)ds+

∫
∂ωε

∂hε
∂n

(v0 − v0(z))ds

−
∫

Ω
∇eε · ∇v0dx−

∫
ωε

∇(h̃ε + u0) · ∇v0dx+O
(
(− log ε)−2

)
=

∫
∂ωε

∂hε
∂n

v0(z)ds+

∫
∂ωε

∂hε
∂n

(v0 − v0(z))ds

+dĴ(u0|Ω̂)eε|Ω̂ −
∫
ωε

∇(h̃ε + u0) · ∇v0dx+O
(
(− log ε)−2

)
.

By the definition of hε, Lemma 5.3 and the smoothness assumptions we arrive at

(Lε − L0)(u0, vε) =

∫
∂ωε

∂hε
∂n

v0(z)ds+O
(

(− log ε)−3/2
)
.
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The Green formula yields ∫
∂ωε

∂hε
∂n

ds =

∫
∂B(z,ε)

∂hε
∂n

ds =
−2π

log ε
u0(z),

which completes the proof. �

5.6 Expression of the topological asymptotic expansion

Based on the previous results we arrive at the following counterpart to Theorem 4.9.

Theorem 5.8 Consider a cost function of form (22). Let v0 ∈ H1
0 (Ω) be the solution of (29). Then

Jε(uε)− J0(u0) =
2π

− log ε
u0(z)v0(z) + o

(
1

− log ε

)
.

We observe that this expression does not depend on the shape of the hole. This is typical of the
2D case. We infer the topological derivative

dTJ (Ω, ω, z) = u0(z)v0(z).

Lastly, we highlight in Fig. 2 the slow convergence of the cost function compared with the inclusion
case by plotting the functions f1(ε) = 1

− log ε and f2(ε) = ε2 appearing in Theorems 5.8 and 4.9 in 2D,
respectively.

Figure 2: Comparison of the functions f1(ε) = 1
− log ε (in blue) and f2(ε) = ε2 (in red).

6 Dirichlet case in 3D

We consider the same problem as in section 5.1, but now in dimension N = 3. We follow the same
general scheme, but significant technical differences will show up.

6.1 Preliminary estimate

The weighted Sobolev spacesW (R3) andW0(R3) are defined in the same way as their 2D counterparts,
with the weight function

w(x) =
1√

1 + |x|2
.

It leads to the same Poincaré inequality [Dautray and Lions, 1988, Amrouche et al., 1994]:

‖u‖W (R3\ω) ≤ c‖∇u‖L2(R3\ω) ∀u ∈W0(R3 \ ω). (31)
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Lemma 6.1 Let ψ ∈ H1/2(∂ω), ψε(x) = ψ((x− z)/ε) and wε ∈ H1(Ωε) be the solution of
−∆wε = 0 in Ωε

wε = 0 on ∂Ω
wε = ψε on ∂ωε.

Let R > 0 such that B(z,R) ⊂ Ω. There exists a constant c > 0 independent of ε and ψ such that, for
ε small enough,

‖wε‖H1(Ωε) ≤ c
√
ε‖ψ‖H1/2(∂ω), (32)

‖wε‖H1(Ω\B(z,R) ≤ cε‖ψ‖H1/2(∂ω). (33)

Proof. We assume here again for simplicity that z = 0. The proof of (32) follows exactly the same
lines as in Lemma 5.2, hence we focus on (33). By lifting, (31) and the Lax-Milgram theorem, there
exists a unique S ∈W (R3 \ ω) such that S = ψ on ∂ω and∫

R3\ω̄
∇S · ∇Φdx = 0 ∀Φ ∈W0(R3 \ ω). (34)

Similarly to Lemma 5.2 we introduce a smooth function ζ equal to 0 in B(0, 1) and 1 outside B(0, 2),
we set Ŝ = ζS and Ŝ0 = G ∗ E, with G = −∆Ŝ,

E(y) =
1

4π|y|

the fundamental solution of the Laplacian. Here we do not have the counterpart to (25), nevertheless
the definition directly shows that Ŝ0 ∈W (R3). It follows by the same argument as in Lemma 5.2 that
Ŝ = Ŝ0 + λ, for some λ ∈ R, but here the inclusion Ŝ − Ŝ0 ∈ W (R3) implies λ = 0 since constants do
not belong to W (R3). We arrive at

S(x) =

∫
B(0,2)

G(y)E(x− y)dy ∀x ∈ R3 \B(0, 2). (35)

Setting
sε(x) = S(

x

ε
),

we get

sε(x) = ε

∫
B(0,2)

G(y)E(x− εy)dy ∀x ∈ R3 \B(0, 2ε).

This representation entails

‖sε‖H1(Ω\B(0,R)) ≤ cε‖G‖L2(R3) ≤ cε‖ψ‖H1/2(∂ω). (36)

We now define rε = wε − sε, which is solution of
−∆rε = 0 in Ωε

rε = −sε on ∂Ω
rε = 0 on ∂ωε.

The decomposition wε = sε + rε combined with (36) yields (33). �
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6.2 Variation of the direct state

Similarly to section 5.3 we set ũε = uε − u0, which solves
−∆ũε = 0 in Ωε

ũε = 0 on ∂Ω
ũε = −u0 on ∂ωε.

(37)

Now we consider the reference problem: find U ∈W (R3 \ ω) such that{
−∆U = 0 in R3 \ ω
U = 1 on ∂ω, (38)

whose variational formulation is as in (34). We define hε ∈W (R3 \ ωε) and rε ∈ H1(Ω) by

hε(x) = −u0(z)U(
x− z
ε

),

{
−∆rε = 0 in Ω
rε = −hε on ∂Ω.

We now set eε = ũε − hε − rε. It solves
−∆eε = 0 in Ωε

eε = 0 on ∂Ω
eε = −u0 − hε − rε on ∂ωε.

(39)

Lemma 6.2 If u0 is C1 is a neighborhood of z then

‖hε‖H1(Ωε\B(z,R)) = O(ε),

‖rε‖H1(Ω) = O(ε),

‖eε‖H1(Ω\B(z,R)) = O(ε3/2).

Proof. The same representation as in (35) shows that |U(x)| ≤ c/|x| and |∇U(x)| ≤ c/|x|2 , hence
‖hε‖H1(Ω\B(z,R)) = O(ε), as in (36) whereby also ‖rε‖H1(Ω) = O(ε). Set r̂ε(x) = rε(z + εx). A change
of variables yields

‖r̂ε‖H1(ω) ≤ ε−1/2‖∇rε‖L2(ωε) + ε−3/2‖rε‖L2(ωε) ≤ ε−1/2‖∇rε‖L2(ωε) + cε−1/2‖rε‖L6(Ω) = O(ε1/2),

where we have used the Sobolev embedding H1 ↪→ L6. We obtain ‖(u0 + hε + rε)(z + εx)‖H1/2(∂ω) =

‖(u0(z + εx)− u0(z) + r̂ε(x)‖H1/2(∂ω) = O(ε1/2). We conclude by Lemma 6.1. �
We deduce:

Lemma 6.3 If u0 is C1 is a neighborhood of z then

‖ũε‖H1(Ω\B(z,R) = O(ε).

6.3 Variation of the adjoint state

We again define the adjoint state vε ∈ H1
0 (Ω) solution of∫

Ω
∇vε · ∇ϕdx = −

∫ 1

0
dJε(tuε + (1− t)u0)ϕdt ∀ϕ ∈ H1

0 (Ω).

Similarly to Lemma 5.5 we have:

Lemma 6.4 If u0 is C1 is a neighborhood of z then

‖vε − v0‖H1(Ω) = O(ε).
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6.4 Variation of the Lagrangian

We consider the same Lagrangian as in (30).

Lemma 6.5 If u0, v0 are of class C1 in a neighborhood of z then

(Lε − L0)(u0, vε) =

∫
∂ωε

∂ũε
∂n

v0ds+O(ε2).

Proof. Like in Lemma 5.6 we have

(Lε−L0)(u0, vε)−
∫
∂ωε

∂ũε
∂n

v0ds =

∫ 1

0
(dĴ((tuε + (1− t)u0)|Ω̂)− dĴ(u0|Ω̂))(ũε)|Ω̂dt+

∫
ωε

∇u0 · ∇v0dx.

We conclude using Lemma 6.3. �
The standard capacity of ω can be defined by (see e.g. [Henrot and Pierre, 2018])

K = −
∫
∂ω

∂U

∂n
ds =

∫
R3\ω

|∇U |2dx. (40)

Lemma 6.6 If u0, v0 are of class C1 in a neighborhood of z then

(Lε − L0)(u0, vε) = Kεu0(z)v0(z) +O(ε3/2).

Proof. We decompose the expression found in Lemma 6.5 as

(Lε−L0)(u0, vε) =

∫
∂ωε

∂hε
∂n

v0(z)ds+

∫
∂ωε

∂hε
∂n

(v0−v0(z))ds+

∫
ωε

∇rε·∇v0dx−
∫

Ωε

∇eε·∇v0dx+O(ε2).

Inside ωε we extend hε by −u0(z) and eε by −u0 + u0(z)− rε. This permits to write

(Lε − L0)(u0, vε) =

∫
∂ωε

∂hε
∂n

v0(z)ds+

∫
∂ωε

∂hε
∂n

(v0 − v0(z))ds

−
∫

Ω
∇eε · ∇v0dx−

∫
ωε

∇u0 · ∇v0dx+O(ε2)

=

∫
∂ωε

∂hε
∂n

v0(z)ds+

∫
∂ωε

∂hε
∂n

(v0 − v0(z))ds

+dĴ(u0|Ω̂)eε|Ω̂ −
∫
ωε

∇u0 · ∇v0dx+O(ε2).

The claim follows from the definition of hε and Lemma 6.2. �

6.5 Expression of the topological asymptotic expansion

From the preceding findings we infer the 3D counterpart to Theorem 5.8.

Theorem 6.7 Consider a cost function of form (22). Let v0 ∈ H1
0 (Ω) be the solution of (29), K be

defined by (40). Then
Jε(uε)− J0(u0) = Kεu0(z)v0(z) + o(ε).

We note that here, unlike in the 2D case, the expression of the topological asymptotic expansion
depends on the shape of the hole, through the capacity K. In the case of the ball ω = B(0, 1) the
solution to (38) is found as

U(x) =
1

|x|
,

leading to the capacity K = 4π.

Remark 6.8 Like in the inclusion case, more general cost functions may yield additional terms, see
e.g. [Guillaume and Sid Idris, 2002, Amstutz, 2006b].
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6.6 Extensions

Topological derivatives in the Dirichlet case have been comparatively less studied than in the inclu-
sion / Neumann cases. Related contributions can be found in particular on the linear elasticity case
[Garreau et al., 2001], the Helmholtz equation [Samet et al., 2003], the Stokes problem [Guillaume and Sid Idris, 2004],
and semilinear problems [Amstutz, 2006b, Iguernane et al., 2009].

Conclusion

Some introductory mathematical elements on the topological derivative concept have been thoroughly
presented. They may help the reader to enter into the more advanced literature and tackle further
problems on this field under active development.
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