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An introduction to the topological derivative

Purpose. This paper provides a self-contained introduction to the mathematical aspects of the topological derivative. Design / methodology / approach. Full justifications are given on simple model problems following a modern approach based on the averaged adjoint state technique. Extensions are discussed in relation with the literature on the field. Findings. Closed expressions of topological derivatives are obtained and commented. Originality / value. Several cases are covered in a unified and didactic presentation. Some elements of proof are novel.

Introduction

Let D be a bounded, open subset of R N , the "hold-all" domain. With applications to shape optimization in mind, it is mostly assumed that N = 2 or N = 3, but the case N = 1 may have its own interest, and the cases N > 3 may be considered for mathematical generality. To fix ideas let A = {Ω ⊂ D, Ω open}, and consider a function

Ω ∈ A → J (Ω) ∈ R
indifferently called shape functional, or cost function, or criterion. The concept of topological derivative was formally introduced in [START_REF] Eschenauer | Bubble method for topology and shape optimization of structures[END_REF], Schumacher, 1995] as the "bubble method" for the optimal design of structures, and the first mathematical justifications appeared in [Sokolowski andŻochowski, 1999, Garreau et al., 2001]. It can be defined as follows.

Definition 1.1 Let ω be a bounded, open subset of R N . We say that J admits a topological derivative at Ω 0 ∈ A and at the point z ∈ Ω 0 with respect to ω if there exists a function f : R + → R + with lim ε 0 f (ε) = 0 such that the following limit exists:

d T J (Ω 0 , ω, z) = lim ε 0 J (Ω 0 \ (z + εω)) -J (Ω 0 ) f (ε) . (1) 
Of course, (1) is equivalent to the "topological asymptotic expansion":

J (Ω 0 \ (z + εω)) -J (Ω 0 ) = f (ε)d T J (Ω 0 , ω, z) + o(f (ε)).
The set ω ε := z + εω is the domain perturbation, see Figure 1. It is often called hole, or cavity, or more specifically inclusion when it is filled with a material phase different from the background one.

The set Ω ε := Ω 0 \ ω ε is the perturbed or perforated domain. The set ω is the perturbation at scale 1. It is typically chosen as the unit ball, but other cases, like cracks, can be of interest. Clearly, for the volume functional J (Ω) = |Ω|, we have d T J (Ω, ω, z) = -1 for all z ∈ Ω with f (ε) = |ω ε | = ε N |ω|.

The perimeter functional J (Ω) = |∂Ω| yields d T J (Ω, ω, z) = 1 for all z ∈ Ω with f (ε) = ε N -1 |∂ω|.

In most practical cases the shape functional involves the solution of a boundary value problem, the so-called (direct) state. Then the type of boundary condition around the hole has a drastic effect on its asymptotic behavior. One case turns out to be much easier to analyze than the others: it is when the perturbation is on coefficients of non-principal parts of the differential operator. This situation is studied first, while the main content of this presentation concerns perturbations of the principal part in the form of transmission, Neumann and Dirichlet conditions. In this introductory paper we devote to provide a rigorous mathematical analysis of the aforementioned issues on simple model problems.

In particular we restrict ourselves to Laplace-type elliptic boundary value problems and simple shape functionals. To ease the reading, the use of boundary integral equations is bypassed, and non-standard function spaces are described in some details as soon as they are needed. Extensions and refinements are discussed in comments, in connection with the related literature.

From the technical standpoint, a crucial aspect of the topological sensitivity analysis is the incorporation of the adjoint state while we are typically not working in a differentiable framework. This is in contrast with smooth shape variations and the more classical notion of shape derivative [START_REF] Murat | Sur le contrôle par un domaine géométrique[END_REF], Sokolowski and Zolésio, 1992, Allaire, 2007, Henrot and Pierre, 2018]. Several approaches have been developed to overcome this issue, including the domain truncation method [Masmoudi, 2002, Garreau et al., 2001, Guillaume and Sid Idris, 2002, Novotny et al., 2019a, Novotny and Sokolowski, 2020], the generalized Lagrangian method [Amstutz, 2003, Amstutz, 2006a[START_REF] Amstutz | Topological sensitivity analysis for some nonlinear PDE system[END_REF], Amstutz and Dominguez, 2008], and the topological shape sensitivity method [Novotny, 2003, Novotny and[START_REF] Novotny | [END_REF]. Other authors only incorporate the adjoint state in the end of the derivations [Guzina andBonnet, 2006, Bonnet andDelgado, 2013]. Here we will follow the averaged adjoint method recently introduced in [START_REF] Delfour | Parametric semidifferentiability of minimax of Lagrangians: averaged adjoint approach[END_REF] in an abstract setting and in [Sturm, 2020, Gangl andSturm, 2020] in this context, which is a modification of the generalized Lagrangian method. This formulation, initially mainly developed for nonlinear purposes, turns out to be somehow natural. It is also elegant in the linear context as it expresses the variation of the cost function exactly as the variation of the Lagrangian.

The paper is organized as follows. Section 2 is dedicated to the perturbation of non-principal parts, where differential calculus and the standard adjoint state method can be used. The averaged adjoint method is presented section 3 in an abstract linear framework. Section 4 deals with the cases of transmission and Neumann conditions in dimension N ≥ 1. Sections 5 and 6 address the Dirichlet case in 2D and in 3D, respectively, as here these two space dimensions need to be distinguished and the 1D case is irrelevant.

Perturbation of non-principal parts

In this section we specifically assume that N ∈ {1, 2, 3}, although higher dimensions could be addressed upon minor adaptations. A key element of the analysis will be the Sobolev embedding H 1 0 (D) → L p (D) with p recalled in Table 1, see e.g. [Brezis, 2011, Demengel and Demengel, 2012, Attouch et al., 2014]. For any measurable set Ω ⊂ D we consider the boundary value problem

-∆u Ω + h Ω u Ω = f Ω in D u Ω = 0 on ∂D,
where the functions h Ω and f Ω are defined using the characteristic function χ Ω of Ω by

h Ω = χ Ω h 1 + (1 -χ Ω )h 0 , f Ω = χ Ω f 1 + (1 -χ Ω )f 0 . z ω ε Ω ε Figure 1: Domain perturbation.
The above functions h 0 , h 1 ∈ L q (D), f 0 , f 1 ∈ L r (D) are supposed to be given, with h 0 , h 1 ≥ 0 and q, r as in Table 1. Finally we consider a shape functional of the form J (Ω) = J(u Ω ) where J :

H 1 0 (D) → R is of class C 2 . N p q r 1 ≤ +∞ > 2 > 2 2 < +∞ > 2 > 2 3 ≤ 6 > 6 > 3 Table 1: Lebesgue exponents
The following result extends ideas from [START_REF] Hassine | From differential calculus to 0-1 topological optimization[END_REF], see also [START_REF] Novotny | Topological derivatives in shape optimization[END_REF].

Theorem 2.1 The above shape functional admits at a.e. z ∈ Ω the topological derivative

d T J (Ω, ω, z) = [(h 0 -h 1 )u Ω v Ω -(f 0 -f 1 )v Ω ] (z) with f (z) = ε N |ω|, where the adjoint state v Ω is the solution of D (∇v Ω • ∇ϕ + h Ω v Ω ϕ)dx = -dJ(u Ω )ϕdx ∀ϕ ∈ H 1 0 (D).
Proof. Given p > 2 as in Table 1 we define, for all

(u, v, h, f ) ∈ H 1 0 (D) × H 1 0 (D) × L p/(p-2) (D) × L p/(p-1) (D), the quantities a(h, u, v) = D (∇u • ∇v + huv)dx, l(f, v) = D f vdx.
These expressions are well defined since uv ∈ L p/2 (D) by the Cauchy-Schwarz inequality. For any

(h, f ) ∈ L p/(p-2) (D) × L p/(p-1) (D) we define A(h) ∈ L(H 1 0 (D), H -1 (D)) and L(f ) ∈ H -1 (D) by A(h)u, v H -1 (D),H 1 0 (D) = a(h, u, v), L(f ), v H -1 (D),H 1 0 (D) = l(f, v). Set U = (h, f ) ∈ L p/(p-2) (D) × L p/(p-1) (D), h ≥ 0 a.e. .
By the Lax-Milgram theorem and the Poincaré inequality we have A(h) ∈ isom(H 1 0 (D), H -1 (D)) for every (h, f ) in a neighborhood of any (f 0 , h 0 ) ∈ U. In addition, due to its affine structure, the map

(h, f ) ∈ L p/(p-2) (D) × L p/(p-1) (D) → (A(h), L(f )) is of class C ∞ . It follows that the map (h, f ) → u(h, f ) := A(h) -1 L(f ) is of class C ∞ in
a neighborhood of any element of U. In order to find a convenient expression of the derivative we use the classical adjoint method, based on the Lagrangian

L(h, f, u, v) = J(u) + a(h, u, v) -l(f, v). We differentiate j(h, f ) := J(u(h, f )) = L(h, f, u(h, f ), v) at (h Ω , f Ω ) for an arbitrary v ∈ H 1 0 (D): dj(h Ω , f Ω )(û, f ) = d h L(h Ω , f Ω , u Ω , v) ĥ + d f L(h Ω , f Ω , u Ω , v) f + d u L(h Ω , f Ω , u Ω , v)du(h Ω , f Ω )( ĥ, f ).
Choosing v as the adjoint state v Ω cancels the last term by construction. We arrive at

dj(h Ω , f Ω )(û, f ) = D ĥu Ω v Ω dx - D f v Ω dx.
By Taylor-Lagrange expansion this implies

j(h Ω + ĥ, f Ω + f ) -j(h Ω , f Ω ) = D ĥu Ω v Ω dx - D f v Ω dx + O( ĥ 2 L p/(p-2) (D) + f 2 L p/(p-1) (D) ).
Choose z ∈ Ω and ε small enough so that

ĥ := h Ω\(z+εω) -h Ω = χ z+εω (h 0 -h 1 ), f := f Ω\(z+εω) -f Ω = χ z+εω (f 0 -f 1 ).
It is straightforward from Hölder's inequality that

ĥ L p/(p-2) (D) ≤ (ε N |ω|) 1-2 p -1 q h 0 -h 1 L q (D) f L p/(p-1) (D) ≤ (ε N |ω|) 1-1 p -1 r f 0 -f 1 L r (D) .
With the assumptions made on q and r we can adjust p in accordance with Table 1 in order to have

ĥ 2 L p/(p-2) (D) + f 2 L p/(p-1) (D) = o(ε N ).
So far we have shown that

J (Ω \ (z + εω)) -J (Ω) = z+εω ((h 0 -h 1 )u Ω v Ω -(f 0 -f 1 )v Ω ) dx + o(ε N ).
This can be rewritten as

J (Ω \ (z + εω)) -J (Ω) = |ω|ε N [(h 0 -h 1 )u Ω v Ω -(f 0 -f 1 )v Ω ] (z) + z+εω ((h 0 -h 1 )u Ω v Ω -(f 0 -f 1 )v Ω ) (x) -((h 0 -h 1 )u Ω v Ω -(f 0 -f 1 )v Ω ) (z) dx + o(ε N ).
By Lebesgue's differentiation theorem this latter integral is a o(ε N ) for a.e. z ∈ Ω.

We observe here that the topological derivative does not depend on the shape of ω. We will see that this property is usually lost when principal parts are perturbed.

A generalized adjoint method

In the previous section we have been able to use Fréchet's differential calculus and the classical Lagrangian method thanks to Sobolev embeddings and the fact that the characteristic function of the hole was small in an appropriate L p norm. When we perturb the principal part of the differential operator, differential calculus applies in L ∞ , but the L ∞ norm of the characteristic function of a set of positive Lebesgue measure does not go to zero with the diameter of the set. As explained in the introduction we are going to use a generalization of the Lagrangian framework based on the averaged adjoint state idea from [START_REF] Delfour | Parametric semidifferentiability of minimax of Lagrangians: averaged adjoint approach[END_REF], Sturm, 2020, Gangl and Sturm, 2020].

Proposition 3.1 Let H be a Hilbert space and ε 0 > 0. For every ε ∈ [0, ε 0 ] we consider :

• a bilinear form a ε (•, •) on H, • a linear form l ε (•) on H, • a direct state u ε ∈ H solution of a ε (u ε , ϕ) = l ε (ϕ) ∀ϕ ∈ H, • a cost function J ε (•) continuously Fréchet differentiable on H, • an adjoint state v ε ∈ H solution of a ε (ϕ, v ε ) = - 1 0 dJ ε (tu ε + (1 -t)u 0 )ϕdt ∀ϕ ∈ H.
Then we have for all ε ∈ [0, ε 0 ]

J ε (u ε ) -J 0 (u 0 ) = (L ε -L 0 )(u 0 , v ε ),
with the Lagrangian

L ε (u, v) = J ε (u) + a ε (u, v) -l ε (v) ∀(ε, u, v) ∈ [0, ε 0 ] × H × H.
Proof. We have the easy equalities:

J ε (u ε ) -J 0 (u 0 ) = L ε (u ε , v ε ) -L 0 (u 0 , v ε ) = L ε (u ε , v ε ) -L ε (u 0 , v ε ) + L ε (u 0 , v ε ) -L 0 (u 0 , v ε ) = J ε (u ε ) + a ε (u ε , v ε ) -J ε (u 0 ) -a ε (u 0 , v ε ) + L ε (u 0 , v ε ) -L 0 (u 0 , v ε ) = J ε (u ε ) -J ε (u 0 ) + a ε (u ε -u 0 , v ε ) + L ε (u 0 , v ε ) -L 0 (u 0 , v ε ) = J ε (u ε ) -J ε (u 0 ) - 1 0 dJ ε (tu ε + (1 -t)u 0 )(u ε -u 0 )dt + L ε (u 0 , v ε ) -L 0 (u 0 , v ε ).
The first three terms cancel out due to

dJ ε (tu ε + (1 -t)u 0 )(u ε -u 0 ) = d dt [J ε (tu ε + (1 -t)u 0 )] ,
which leads to the claim. We stress that the variation of the Lagrangian needs to be evaluated at the variable adjoint state v ε . We will see that in case of topology perturbations, approximating v ε by v 0 usually yields an error of first order. Note that v 0 is the standard unperturbed adjoint state, solution of

a 0 (ϕ, v 0 ) = -dJ(u 0 )ϕ ∀ϕ ∈ H.

Inclusion and Neumann cases

Problem formulation

Let Ω be an open and bounded subset of R N , N ∈ N * , and ω be a bounded, smooth open subset of R N . We consider a point z ∈ Ω and, for ε ≥ 0 small enough, the set

ω ε = z + εω ⊂ Ω.
We recall the notation Ω ε = Ω \ ω ε , see Fig. 1. We focus our attention on the problem

find u ε ∈ H 1 0 (Ω) s.t. Ω σ ε ∇u ε • ∇ϕdx = Ω f ϕdx ∀ϕ ∈ H 1 0 (Ω), (2) 
with f ∈ L 2 (Ω) and the piecewise constant conductivity

σ ε = χ Ωε α + χ ωε β, α > 0, β ≥ 0.
We will distinguish the two cases:

• β > 0, called the inclusion case,

• β = 0, called the Neumann case.

For simplicity, and to make the same setting applicable to the two above cases, we assume that f = 0 in a neighborhood z, and that ε is small enough so that f = 0 in ω ε .

The inclusion case obviously admits a unique solution, and it corresponds to the strong form

-div(σ ε ∇u ε ) = f in Ω u ε = 0 on ∂Ω. (3) 
The Neumann case can be equivalently reformulated as

find u ε ∈ H 1 0 (Ω) s.t. Ωε α∇u ε • ∇ϕdx = Ωε f ϕdx ∀ϕ ∈ H 1 0 (Ω). (4) 
Since every function in H 1 (Ω ε ) can be extended to a function in H 1 (Ω), we recognize that

u ε|Ω ε is the weak solution of      -α∆u ε = f in Ω ε ∂u ε ∂n = 0 on ∂ω ε u ε = 0 on ∂Ω. (5) 
In this case u ε is undefined inside ω ε . The "Neumann" terminology, of course, refers to the boundary condition on the hole. The boundary condition on ∂Ω plays no significant role in the present study.

In the two cases, (2) corresponds for ε = 0 to the unperturbed problem

-α∆u 0 = f in Ω u 0 = 0 on ∂Ω. (6) 
For consistence with the notation of Proposition 3.1 we set

a ε (u, v) = Ω σ ε ∇u • ∇vdx, l ε (v) = Ω f vdx ∀u, v ∈ H 1 0 (Ω). (7) 
For the sake of clarity, we will at first concentrate on the inclusion case, and we will afterwards discuss the adaptations to the Neumann case.

For simplicity we consider a cost function of the form

J ε (u) = Ĵ(u | Ω), (8) 
where Ω is an open subset of Ω excluding a neighborhood of z and Ĵ : H 1 ( Ω) → R is Fréchet differentiable. We further assume that d Ĵ is Lipschitz continuous. Comments will be made regarding more general cost functions in Remark 4.10.

Variation of the direct state

In order to apply Proposition 3.1, it is needed that the variation of the Lagrangian be evaluated at the averaged adjoint state v ε . Since the construction of this adjoint state involves the direct state u ε , our first step is to analyze the behavior of u ε . We adapt the approach of [START_REF] Gangl | A simplified derivation technique of topological derivatives for quasi-linear transmission problems[END_REF].

Set ũε = u ε -u 0 . Substracting the variational formulations for u ε and u 0 results in

Ω σ ε ∇ũ ε • ∇ϕdx = (α -β) ωε ∇u 0 • ∇ϕdx ∀ϕ ∈ H 1 0 (Ω).
We now define the rescaled function

U ε (y) = 1 ε ũε (z + εy), y ∈ ε -1 (Ω -z), so that ũε (x) = εU ε ( x -z ε ), ∇ũ ε (x) = ∇U ε ( x -z ε ) ∀x ∈ Ω.
A straightforward change of variables leads to

ε -1 (Ω-z) σ ε (z + εy)∇U ε (y) • ∇ϕ(z + εy)dy = (α -β) ω ∇u 0 (z + εy) • ∇ϕ(z + εy)dy ∀ϕ ∈ H 1 0 (Ω).
Changing test functions yields

ε -1 (Ω-z) σ ε (z+εy)∇U ε (y)•∇Φ(y)dy = (α-β) ω ∇u 0 (z+εy)•∇Φ(y)dy ∀Φ ∈ H 1 0 (ε -1 (Ω-z)). (9)
Let us define the reference conductivity field

σ(y) = β if y ∈ ω α if y ∈ R N \ ω.
With the aim of passing to the limit in ( 9), we will work with the space

X = u ∈ L 2 loc (R N ) : ∇u ∈ L 2 (R N ) ,
from the family of Beppo-Levi spaces [START_REF] Deny | Les espaces du type de Beppo Levi[END_REF], and the associated quotient space X/R by the equivalence relation

u ∼ v ⇒ ∃c ∈ R s.t. u -v = c.
When it is equipped with the inner product

u, v X/R = R N ∇u • ∇vdx,
the space X/R is a Hilbert space [START_REF] Ortner | A note on linear elliptic systems on R d[END_REF]. By construction the function U ε belongs to

H 1 0 (ε -1 (Ω -z)).
We implicitly consider an extension by 0 over R N . By the Lax-Milgram theorem there exists a unique U ∈ X/R solution of

R N σ(y)∇U (y) • ∇Φ(y)dy = (α -β) ω ∇u 0 (z) • ∇Φ(y)dy ∀Φ ∈ X/R. ( 10 
)
The key point is the following convergence result, again adapted from [START_REF] Gangl | A simplified derivation technique of topological derivatives for quasi-linear transmission problems[END_REF]. Alternative estimates can be derived with the help of the fundamental solution of the principal part of the differential operator, see e.g. [Amstutz, 2006a], or by comparison principles [START_REF] Amstutz | Topological derivatives for a class of quasilinear elliptic equations[END_REF].

The advantage of the presented approach is that it does not require any knowledge of the behavior of U at infinity. In particular it extends relatively easily to some nonlinear problems [START_REF] Gangl | A simplified derivation technique of topological derivatives for quasi-linear transmission problems[END_REF].

Proposition 4.1 We have the strong convergence ∇U ε → ∇U in L 2 (R N ) when ε 0, provided that ∇u 0 be continuous at point z. Proof. Step 1. By the extension convention, H 1 0 (ε -1 (Ω -z))/R is a closed linear subspace of X/R. We denote by P ε the projection of U onto H 1 0 (ε -1 (Ω -z))/R
. By a small abuse of notation we will assume that P ε stands for the representative in

H 1 0 (ε -1 (Ω -z))
. By definition we have

P ε = argmin Φ∈H 1 0 (ε -1 (Ω-z)) ∇Φ -∇U L 2 (R N ) .
Standard properties of the projection onto a linear subspace ensure that

∇P ε L 2 (ε -1 (Ω-z)) ≤ ∇U L 2 (R N ) and R N (∇P ε -∇U ) • ∇Φdx = 0 ∀Φ ∈ H 1 0 (ε -1 (Ω -z)).
The first assertion yields that there exists Q ∈ X/R such that ∇P ε ∇Q weakly in L 2 (R N ), up to a subsequence. The second assertion implies that

R N (∇Q -∇U ) • ∇Φdx = 0 ∀Φ ∈ H 1 0 (B(0, R)), ∀R > 0. Let ζ : R N → [0, 1] be a smooth function such that ζ = 1 in B(0, 1) and ζ = 0 outside B(0, 2). Set ζ n (x) = ζ(x/n) and Φ n (x) = (Q -U + λ n )ζ n ∈ H 1 0 (B(0, 2n)), with λ n ∈ R at the moment arbitrary. This yields R N |∇Q -∇U | 2 ζ n dx + R N (Q -U + λ n )(∇Q -∇U ) • ∇ζ n dx = 0. (11) 
A change of variables entails

(Q-U +λ n )∇ζ n 2 L 2 (R N ) = n N -2 R N |(Q-U +λ n )(ny)∇ζ(y)| 2 dy ≤ cn N -2 R(0,1,2) |(Q-U +λ n )(ny)| 2 dy,
with R(0, 1, 2) the ring centered at 0 with radii 1 and 2. We now fix λ n such that

R(0,1,2) (Q -U + λ n )(ny)dy = 0.
By the Poincaré-Wirtinger inequality we infer

(Q -U + λ n )∇ζ n 2 L 2 (R N ) ≤ cn N R(0,1,2) |∇(Q -U )(ny)| 2 dy ≤ c R(0,n,2n) |∇(Q -U )| 2 dx.
Plugging this into (11) and using the Cauchy-Schwarz inequality, we arrive at

R N |∇Q -∇U | 2 ζ n dx ≤ c ∇Q -∇U L 2 (R N ) R(0,n,2n) |∇Q -∇U | 2 dx 1/2
.

Letting now n go to +∞ results in ∇Q = ∇U . Therefore the whole sequence ∇P ε weakly converges to ∇U . In particular we infer that

R N ∇P ε • ∇U dx → R N |∇U | 2 dx.
From the identity

∇P ε -∇U 2 L 2 (R N ) = ∇P ε 2 L 2 (R N ) + ∇U 2 L 2 (R N ) -2 R N ∇P ε • ∇U dx we derive lim sup ε→0 ∇P ε -∇U 2 L 2 (R N ) ≤ lim sup ε→0 ∇P ε 2 L 2 (R N ) -∇U 2 L 2 (R N ) ≤ 0.
We have shown that ∇P ε strongly converges to ∇U in L 2 (R N ).

Step 2. Using ( 9) we obtain

ε -1 (Ω-z) σ(y)∇(P ε -U ε )(y) • ∇Φ(y)dy = ε -1 (Ω-z) σ(y)∇P ε (y) • ∇Φ(y)dy -(α -β) ω ∇u 0 (z + εy) • ∇Φ(y)dy ∀Φ ∈ H 1 0 (ε -1 (Ω -z)).
In view of (10) this rewrites as

ε -1 (Ω-z) σ(y)∇(P ε -U ε )(y) • ∇Φ(y)dy = ε -1 (Ω-z) σ(y)∇(P ε -U )(y) • ∇Φ(y)dy -(α -β) ω (∇u 0 (z + εy) -∇u 0 (z)) • ∇Φ(y)dy ∀Φ ∈ H 1 0 (ε -1 (Ω -z)).
Choose Φ = P ε -U ε . We obtain for some constant c

∇(P ε -U ε ) 2 L 2 (ε -1 (Ω-z)) ≤ c ∇(P ε -U ) L 2 (ε -1 (Ω-z)) ∇(P ε -U ε ) L 2 (ε -1 (Ω-z)) + ∇u 0 (z + εy) -∇u 0 (z) L 2 (ω) ∇(P ε -U ε ) L 2 (ε -1 (Ω-z)) ,
leading to

∇(P ε -U ε ) L 2 (ε -1 (Ω-z)) ≤ c ∇(P ε -U ) L 2 (ε -1 (Ω-z)) + ∇u 0 (z + εy) -∇u 0 (z) L 2 (ω) .
Using step 1 and the continuity assumption we arrive at

∇(P ε -U ε ) L 2 (ε -1 (Ω-z)) → 0.
Conclusion. The proof is completed by combining step 1 and step 2.

Corollary 4.2 Under the assumption of Proposition 4.1 we have

ũε 2 H 1 (Ω) = O(ε N ),
and for any R > 0 ũε

2 H 1 (Ω\B(z,R)) = o(ε N ).
Proof. By change of variables it is straightforward that

∇ũ ε 2 L 2 (Ω) = ε N ∇U ε 2 L 2 (ε -1 (Ω-z)) . Proposition 4.1 yields that ∇U ε L 2 (ε -1 (Ω-z)) = O(1), whereby ũε 2 H 1 (Ω) = O(ε N ) by the Poincaré inequality. Let now R > 0. The same change of variables provides ∇ũ ε 2 L 2 (Ω\B(z,R)) = ε N ∇U ε 2 L 2 (ε -1 (Ω-z))\B(0,ε -1 R) = ε N ∇U ε 2 L 2 (R N \B(0,ε -1 R) .
This can be rephrased as

∇ũ ε 2 L 2 (Ω\B(z,R)) = ε N R N (1 -χ B(0, R ε ) (y))|∇U ε (y)| 2 dy. Using Proposition 4.1 we infer ∇ũ ε 2 L 2 (Ω\B(z,R)) = o(ε N ).
The claim is achieved by the Poincaré inequality.

Variation of the adjoint state

In view of Proposition 3.1 we define the adjoint state

v ε ∈ H 1 0 (Ω) solution of Ω σ ε ∇v ε • ∇ϕdx = - 1 0 dJ ε (tu ε + (1 -t)u 0 )ϕdt ∀ϕ ∈ H 1 0 (Ω).
In particular the unperturbed adjoint state v 0 satisfies

Ω α∇v 0 • ∇ϕdx = -dJ 0 (u 0 )ϕ ∀ϕ ∈ H 1 0 (Ω). (12) 
As for the direct state we set ṽε = v ε -v 0 . We obtain by difference the equality, valid for all ϕ ∈ H 1 0 (Ω),

Ω σ ε ∇ṽ ε • ∇ϕdx = (α -β) ωε ∇v 0 • ∇ϕdx - 1 0 dJ ε (tu ε + (1 -t)u 0 )ϕdt + dJ 0 (u 0 )ϕ.
By (8) this rewrites

Ω σ ε ∇ṽ ε • ∇ϕdx = (α -β) ωε ∇v 0 • ∇ϕdx - 1 0 d Ĵ((tu ε + (1 -t)u 0 ) | Ω) -d Ĵ(u 0 | Ω) ϕ | Ωdt.
We will later justify that the latter integral can be disregarded, therefore we define

w ε ∈ H 1 0 (Ω) solution of Ω σ ε ∇w ε • ∇ϕdx = (α -β) ωε ∇v 0 • ∇ϕdx ∀ϕ ∈ H 1 0 (Ω).
In order to approximate this w ε we proceed exactly as for the direct state. We define

W ε (y) = 1 ε w ε (z + εy), y ∈ ε -1 (Ω -z),
and W ∈ X/R solution of

R N σ(y)∇W (y) • ∇Φ(y)dy = (α -β) ω ∇v 0 (z) • ∇Φ(y)dy ∀Φ ∈ X/R. ( 13 
)
We obtain:

Proposition 4.3 It holds ∇W ε → ∇W in L 2 (R N
) when ε 0, provided that ∇v 0 be continuous at point z.

We now analyze the approximation of ṽε by w ε .

Lemma 4.4 It holds ṽε -w ε 2 H 1 (Ω) = o(ε N ). Proof. Set e ε = ṽε -w ε . It solves Ω σ ε ∇e ε • ∇ϕdx = - 1 0 d Ĵ((tu ε + (1 -t)u 0 ) | Ω) -d Ĵ(u 0 | Ω) ϕ | Ωdt ∀ϕ ∈ H 1 0 (Ω).
We choose ϕ = e ε . Using that d Ĵ is Lipschitz we obtain

∇e ε 2 L 2 (Ω) ≤ c 1 0 t u ε -u 0 H 1 ( Ω) e ε H 1 ( Ω) dt.
Corollary 4.2 and the Poincaré inequality provide the desired estimate.

Variation of the Lagrangian

Following Proposition 3.1 and (7) we define the Lagrangian

L ε (u, v) = J ε (u) + Ω σ ε ∇u • ∇vdx - Ω f vdx. ∀u, v ∈ H 1 0 (Ω).
We need to estimate the variation

(L ε -L 0 )(u 0 , v ε ) = (β -α) ωε ∇u 0 • ∇v ε dx,
which can be decomposed as

(L ε -L 0 )(u 0 , v ε ) = (β -α) ωε ∇u 0 •∇v 0 dx+(β -α) ωε ∇u 0 •∇w ε dx+(β -α) ωε ∇u 0 •(∇ṽ ε -∇w ε )dx.
Lemma 4.5 If ∇u 0 and ∇v 0 are continuous at point z then

(L ε -L 0 )(u 0 , v ε ) = ε N (β -α)|ω|∇u 0 (z) • ∇v 0 (z) + (β -α) ωε ∇u 0 • ∇w ε dx + o(ε N ).
Proof. We first estimate

ωε ∇u 0 • ∇v 0 dx -ε N |ω|∇u 0 (z) • ∇v 0 (z) = ωε (∇u 0 • ∇v 0 -∇u 0 (z) • ∇v 0 (z)) dx = ε N ω (∇u 0 (z + εy) • ∇v 0 (z + εy) -∇u 0 (z) • ∇v 0 (z)) dy = o(ε N ).
Secondly, the Cauchy-Schwarz inequality yields

ωε ∇u 0 • (∇ṽ ε -∇w ε )dx ≤ ∇u 0 L 2 (ωε) ∇ṽ ε -∇w ε L 2 (ωε) = O(ε N/2 )o(ε N/2 ),
by Lemma 4.4.

From the expression found in Lemma 4.5 we make a change of variables to obtain

(L ε -L 0 )(u 0 , v ε ) = ε N (β -α)|ω|∇u 0 (z) • ∇v 0 (z) + ε N (β -α) ω ∇u 0 (z + εy) • ∇W ε (y)dy + o(ε N ).
Lemma 4.6 If ∇u 0 and ∇v 0 are continuous at point z then

(L ε -L 0 )(u 0 , v ε ) = ε N (β -α)|ω|∇u 0 (z) • ∇v 0 (z) + ε N (β -α) ω ∇u 0 (z) • ∇W (y)dy + o(ε N ).
Proof. We have to show that lim ε→0 ω

(∇u 0 (z + εy) • ∇W ε (y) -∇u 0 (z) • ∇W (y)) dy = 0.
It is an immediate consequence of Proposition 4.3, using

ω (∇u 0 (z + εy) • ∇W ε (y) -∇u 0 (z) • ∇W (y)) dy = ω (∇u 0 (z + εy) -∇u 0 (z)) • ∇W ε (y)dy + ω ∇u 0 (z) • (∇W ε (y) -∇W (y))dy
and the Cauchy-Schwarz inequality.

Polarization matrix

The definition (13) of W shows that W depends linearly on ∇v 0 (z). Denoting by (e 1 , • • • , e N ) the canonical basis of R N and by We arrive at

ζ i ∈ X/R the solution of R N σ(y)∇ζ i (y) • ∇Φ(y)dy = (α -β) ω e i • ∇Φ(y)dy ∀Φ ∈ X/R, (14) 
|ω|∇u 0 (z) • ∇v 0 (z) + ω ∇u 0 (z) • ∇W (y)dy = ∇u 0 (z) • (|ω|I + Q)∇v 0 (z). (15) 
Definition 4.7 We call polarization matrix the symmetric matrix

P = β α -1 (|ω|I + Q).
Note that ( 14) can be equivalently rewritten as

R N σ(y)∇ζ i (y) • ∇Φ(y)dy = (α -β) ∂ω e i • n(y)Φ(y)dy ∀Φ ∈ X/R, (16) 
therefore the corresponding strong form reads

   ∆ζ i = 0 in R N \ ∂ω β ∂ζ i ∂n int -α ∂ζ i ∂n ext = (α -β)e i • n on ∂ω. (17) 
Let us now give an additional property of the polarization matrix.

Proposition 4.8 The eigenvalues (λ i ) of the polarization matrix satisfy the inequality

λ i ≤ β α -1 |ω|.
Moreover the polarization matrix is

• symmetric positive definite if β > α,
• symmetric negative definite if β < α.

Proof. Since P is symmetric, let us choose an othogonal basis in which it is diagonal.

Choosing Φ = ζ i in ( 14) entails

(α -β) ω e i • ∇ζ i (y)dy ≥ 0.
We infer that

Pe i • e i = β α -1 |ω| + ω e i • ∇ζ i (y)dy ≤ β α -1 |ω|.
Case β < α. The above inequality directly shows that Pe i • e i < 0, hence P is symmetric negative definite.

Case β > α. We write

Pe i • e i = β α -1 ω (∇ζ i + e i ) • e i dy = β α -1 ω |∇ζ i + e i | 2 -(∇ζ i + e i ) • ∇ζ i dy.
Using ( 14) we obtain

(α -β) ω (∇ζ i + e i ) • ∇ζ i dy = (α -β) ω |∇ζ i | 2 dy + R N σ|∇ζ i | 2 dy = α R N |∇ζ i | 2 dy.

This yields

Pe i • e i = β α -1 ω |∇ζ i + e i | 2 dy + R N |∇ζ i | 2 dy > 0,
hence P is symmetric positive definite. The notion of polarization matrix goes back at least to [Schiffer andSzegö, 1949, Pólya and[START_REF] Pólya | [END_REF]. Detailed properties and generalizations can be found in [START_REF] Ammari | Polarization and moment tensors[END_REF]. In case of a vectorvalued state, a polarization tensor is involved. In the framework of linear elasticity it is called the elastic moments tensor.

We end this section by providing closed forms of the polarization matrix for ball-shaped inclusions, i.e., when ω is the unit ball B(0, 1). The main step is to solve (17). The typical method is to "guess" a candidate solution, including free parameters, and to plug this ansatz in the system to fix the parameters. For instance, in the 2D case, we find the solution

ζ i (y) = α -β α + β × e i • y in ω e i • y |y| 2 in R 2 \ ω.
Results are gathered in Table 2.

1D 2D 3D P = 2 1 - α β P = 2π β -α β + α I P = 4π β -α β + 2α I
Table 2: Polarization matrix in the inclusion case for ω = B(0, 1)

Expression of the topological asymptotic expansion

Let us recapitulate our findings.

Theorem 4.9 Consider a cost function of form (8). Let v 0 ∈ H 1 0 (Ω) be the solution of (12). Then

J ε (u ε ) -J 0 (u 0 ) = ε N α∇u 0 (z) • P∇v 0 (z) + o(ε N ),
where P is the polarization matrix.

Proof. It follows from Proposition 3.1, Lemma 4.6, (15) and Definition 4.7. The regularity conditions for u 0 and v 0 are ensured by elliptic regularity. As a consequence of Theorem 4.9 and Definition 1.1 we can set the topological derivative of a shape functional J such that J (Ω ε ) = J ε (u ε ) as

d T J (Ω, ω, z) = α∇u 0 (z) • P∇v 0 (z).
Remark 4.10 Other types of cost functions may yield additional terms in the topological derivative, see e.g. [Amstutz, 2006a, Amstutz et al., 2014, Amstutz et al., 2012, Gangl and Sturm, 2020, Novotny and Sokolowski, 2013].

The Neumann case

The Neumann case (β = 0) can be analyzed along the same lines as the inclusion case, with some minor modifications. In particular, some volume integrals over the inclusion have to be replaced by boundary integrals using the Green formula. The function U is now defined in the space X ω /R, with

X ω = u ∈ L 2 loc (R N \ ω) : ∇u ∈ L 2 (R N \ ω) ,
by, instead of (10),

R N \ω ∇U (y) • ∇Φ(y)dy = ∂ω ∇u 0 (z) • n Φ ds ∀Φ ∈ X ω /R.
In order to use the semi-norm as a norm on the quotient space X ω /R, it is required that R N \ ω be connected. This is in principle a rather mild assumption, except in dimension 1 where it cannot hold. Actually, it is clear that in dimension 1 the cost function is likely to be discontinuous at ε = 0. This singularity can also be seen by observing that the polarization of the inclusion diverges when β → 0, see Table 2. The same phenomenon occurs in higher dimension with higher order differential operators [START_REF] Amstutz | Topological sensitivity analysis for elliptic differential operators of order 2m[END_REF]. Eventually, in dimension N ≥ 2 with R N \ ω connected, we arrive at the same result as in Theorem 4.9 with the polarization matrix defined through

ζ i ∈ X ω /R, R N \ω ∇ζ i (y) • ∇Φ(y)dy = ∂ω e i • n Φ(y) dy ∀Φ ∈ X ω /R, Q := ∂ω ζ ⊗ nds.
ball (2D, 3D) straight crack (2D) circular crack (3D)

P = -2πI P = -πν ⊗ ν P = - 8 3 ν ⊗ ν
Table 3: Polarization matrix in the Neumann case Note that (17) still holds, with β = 0. Therefore, the expressions given in Table 2 apply with β = 0. An interesting extension is the case of a crack with Neumann boundary condition on each face. A particular case is the planar crack ω = {x ∈ R N : x • ν = 0, |x| < 1} of unit normal ν. The corresponding polarization matrix in dimensions 2 and 3 are reported in Table 3, see [START_REF] Amstutz | Crack detection by the topological gradient method[END_REF], Amstutz and Dominguez, 2008, Bonnet, 2011, Bellis and Bonnet, 2013].

Extensions

The topological derivative concept in the inclusion or Neumann cases has been developed in many directions. To give a non-exhaustive overview, let us mention the linear elasticity case [Garreau et al., 2001, Bonnet andDelgado, 2013], the Maxwell equations [START_REF] Masmoudi | The topological asymptotic expansion for the Maxwell equations and some applications[END_REF], Stokes flows [Ben Abda et al.,0910], nonlinear problems [Amstutz andBonnafé, 2017, Gangl andSturm, 2020], evolution problems [Bonnet, 2006, Amstutz et al., 2008, Bellis and Bonnet, 2013], higher order differential equations [Amstutz et al., 2014, Aubert andDrogoul, 2015], higher order topological derivatives [Bonnet, 2009, Bonnet, 2011, Hintermüller et al., 2012, Bonnet and Cornaggia, 2017[START_REF] Novotny | Topological derivatives of shape functionals. Part III: Second-order method and applications[END_REF]; see also the monograph [START_REF] Novotny | Topological derivatives in shape optimization[END_REF].

Dirichlet case in 2D

Problem formulation

Let Ω be an open and bounded subset of R 2 and ω be a bounded, smooth open subset of R 2 . Like in the previous section we consider a point z ∈ Ω and, for ε ≥ 0 small enough, the perforated domain

Ω ε = Ω \ ω ε , ω ε = z + εω ⊂ Ω.
We assume for convenience, but without loss of generality, that 0 ∈ ω ⊂⊂ B(0, 1). We address the problem

-∆u ε = f in Ω ε u ε = 0 on ∂Ω ε . ( 18 
)
It is assumed that f ∈ L 2 (Ω) with f = 0 in a neighborhood of z. We will implicitly suppose that ε is small enough so that f = 0 in ω ε . We denote by u 0 the unperturbed state, solution of

-∆u 0 = f in Ω u 0 = 0 on ∂Ω. ( 19 
)
In order to develop the adjoint method of section 3 in a fixed space we extend u ε by 0 inside ω ε . We set

a ε (u, v) = Ω ∇u • ∇vdx ∀u, v ∈ H 1 0 (Ω), (20) 
l ε (v) = Ω ∇u ε • ∇vdx = Ωε ∇u ε • ∇vdx = Ωε f vdx - ∂ωε ∂u ε ∂n vds ∀v ∈ H 1 0 (Ω). ( 21 
)
By convention the normal to ∂ω ε is chosen outward to ω ε . This construction ensures that

u ε ∈ H 1 0 (Ω) satisfies a ε (u ε , v) = l ε (v) ∀v ∈ H 1 0 (Ω).
We again consider a cost function of the form

J ε (u) = Ĵ(u | Ω), ( 22 
)
where Ω is an open subset of Ω excluding a neighborhood of z and Ĵ : H 1 ( Ω) → R is Fréchet differentiable. We further assume that d Ĵ is Lipschitz continuous.

A preliminary estimate

We shall work with the weighted Sobolev space [START_REF] Dautray | [END_REF]Lions, 1988, Amrouche et al., 1994]

W (R 2 ) = u ∈ L 2 loc (R 2 ) : wu ∈ L 2 (R 2 ), ∇u ∈ L 2 (R 2 ) ,
with the weight function

w(x) = 1 1 + |x| 2 log(2 + |x|) .
It is a Hilbert space for the inner product

u, v W (R 2 ) = R 2 (w 2 uv + ∇u • ∇v)dx.
We also define the subspace

W 0 (R 2 \ ω) = u ∈ W (R 2 \ ω) : u = 0 on ∂ω .
We have the following standard Poincaré inequality, for which we sketch a proof for completeness.

Proposition 5.1 There exists c > 0 such that

u W (R 2 \ω) ≤ c ∇u L 2 (R 2 \ω) ∀u ∈ W 0 (R 2 \ ω). Proof. Step 1. Consider first a function u ∈ C ∞ c (R 2 \ B(0, a)), a > 1.
For an arbitrary unit vector e we set f (r) = u(re). Integration by parts yields

+∞ a 1 r log 2 r f (r) 2 dr = +∞ a 2 log r f (r)f (r)dr,
whereby we obtain by the Cauchy-Schwarz inequality

+∞ a 1 r log 2 r f (r) 2 dr ≤ 2 +∞ a 1 r log 2 r f (r) 2 dr 1/2 +∞ a rf (r) 2 dr 1/2 . This implies +∞ a 1 r log 2 r f (r) 2 dr ≤ 4 +∞ a rf (r) 2 dr, thence u W (R 2 \B(0,a)) ≤ √ 5 ∇u L 2 (R 2 \B(0,a)) .
By a density argument, this holds for all u ∈ W 0 (R 2 \ B(0, a)).

Step 2. Let now u ∈ W 0 (R 2 \ ω), and a > 1. Let θ ∈ C ∞ c (R 2 ) such that θ = 1 in B(0, 2a) and θ = 0 outside B(0, 3a). By step 1 we have

(1 -θ)u W (R 2 \ω) ≤ c (1 -θ)∇u -u∇θ L 2 (R 2 \ω) ≤ c( ∇u L 2 (R 2 \ω) + u L 2 (B(0,3a)\ω) ).
The Poincaré inequality in {v ∈ H 1 (B(0, 3a) \ ω)) : v = 0 on ∂ω} permits to conclude.

Lemma 5.2 Let ψ ∈ H 1/2 (∂ω), ψ ε (x) = ψ((x -z)/ε) and w ε ∈ H 1 (Ω ε ) be the solution of    -∆w ε = 0 in Ω ε w ε = 0 on ∂Ω w ε = ψ ε on ∂ω ε . Let R > 0 such that B(z, R) ⊂ Ω.
There exists a constant c > 0 independent of ε and ψ such that, for ε small enough,

w ε H 1 (Ωε) ≤ c ψ H 1/2 (∂ω) , w ε H 1 (Ω\B(z,R) ≤ c √ -log ε ψ H 1/2 (∂ω) .
Proof. We assume for convenience of notation that z = 0.

Step 1. We denote by Ψ ∈ H 1 (B(0, 1) \ ω) a function such that Ψ = ψ on ∂ω and Ψ = 0 on ∂B(0, 1), obtained from standard lifting, then extended by 0 outside B(0, 1). We set Ψ ε (x) = Ψ(x/ε) and wε = w ε -Ψ ε . We have from the weak formulation

Ωε ∇w ε • ∇ wε dx = 0, whereby ∇ wε 2 L 2 (Ωε) = - Ωε ∇Ψ ε • ∇ wε dx.
This entails ∇ wε L 2 (Ωε) ≤ ∇Ψ ε L 2 (Ωε) and subsequently ∇w ε L 2 (Ωε) ≤ 2 ∇Ψ ε L 2 (Ωε) . We infer by change of variables

∇w ε L 2 (Ωε) ≤ 2 ∇Ψ L 2 (B(0,1)\ω) ≤ c ψ H 1/2 (∂ω) .
We can also lift ψ inside ω by a function ψ, and setting ψε (x) = ψ(x/ε) we get

∇ ψε L 2 (ωε) = ∇ ψ L 2 (ω) ≤ c ψ H 1/2 (∂ω) .
Extending w ε by ψε in ω ε and applying the Poincaré inequality in H 1 0 (Ω) yields

w ε H 1 (Ωε) ≤ c ψ H 1/2 (∂ω) .
Step 2. To address the second claim we first focus on the problem

   -∆w ε = 0 in Ω ε w ε = 0 on ∂Ω w ε = ψ on ∂ω ε , with ψ ∈ R constant. The variational formulation yields ∇w ε 2 L 2 (Ωε) ≤ ∇v ε 2 L 2 (Ωε)
for any v ε ∈ H 1 (Ω ε ) such that v ε = 0 on ∂Ω and v ε = ψ on ∂ω ε . We choose the following one, for some ρ > 0 such that B(0, ρ) ⊂ Ω:

v ε (x) =        ψ if |x| ≤ ε ψ log |x| -log ρ log ε -log ρ if ε ≤ |x| ≤ ρ 0 if |x| ≥ ρ.
This yields

∇v ε 2 L 2 (Ωε) = ρ ε ψ log ε -log ρ 2 1 r 2 2πrdr = 2π ψ 2 log ρ -log ε .
It follows that

∇w ε L 2 (Ωε) ≤ 2π log ρ -log ε 1/2 | ψ|.
The Poincaré inequality yields for ε small enough

w ε H 1 (Ωε) ≤ c √ -log ε | ψ|.
Step 3. We turn to the general case. By lifting, Proposition 5.1 and the Lax-Milgram theorem, there exists a unique S ∈ W (R 2 \ ω) such that S = ψ on ∂ω and

R 2 \ω ∇S • ∇Φdx = 0 ∀Φ ∈ W 0 (R 2 \ ω). (23) 
Obviously it holds -∆S = 0 in R 2 \ ω in the sense of distributions. Let ζ be a smooth function equal to 0 in B(0, 1) and 1 outside B(0, 2). Set Ŝ = ζS and

G = -∆ Ŝ = -∆ζS -2∇ζ • ∇S. (24) 
By construction G is supported in the ring R(0, 1, 2), and it is smooth by elliptic regularity for S. Let now ξ : R 2 → R be a smooth function equal to 1 in B(0, 2) and 0 outside B(0, 3) and set ξ ρ = ξ(x/ρ), ρ > 1. The Green formula yields

R 2 Gdx = R 2 Gξ ρ dx = R 2 ∇ Ŝ • ∇ξ ρ dx = R 2 \ B(0,2ρ) ∇ Ŝ • ∇ξ ρ dx.
Applying the Cauchy-Schwarz inequality, using ∇ Ŝ ∈ L 2 (R 2 ), a change of variables, and letting ρ go to +∞ results in

R 2 Gdx = 0. (25) 
We have for all Φ ∈ W (R 2 ), using ( 24)

R 2 GΦdx = R 2 ∇ζ • ∇(SΦ)dx -2 R 2 ∇ζ • ∇SΦdx = R 2 S∇ζ • ∇Φdx - R 2 ∇ζ • ∇SΦdx = R 2 ∇ Ŝ • ∇Φdx - R 2 ζ∇S • ∇Φdx - R 2 ∇ζ • ∇SΦdx = R 2 ∇ Ŝ • ∇Φdx - R 2 ∇S • ∇(ζΦ)dx.
By (23) the latter integral vanishes, resulting in

R 2 ∇ Ŝ • ∇Φdx = R 2 GΦdx ∀Φ ∈ W (R 2 ). (26) Let E(y) = -1 2π log |y|
be the fundamental solution of the Laplacian and Ŝ0 = G * E. Since G is smooth and compactly supported and E ∈ L 1 loc (R 2 ), it follows that Ŝ0 is smooth. Using (25) we obtain the expressions

Ŝ0 (x) = R 2 G(y) (E(x -y) -E(x)) dy ∀x = 0, ∇ Ŝ0 (x) = R 2 G(y) (∇E(x -y) -∇E(x)) dy ∀x = 0.
From the mean value theorem we infer that

| Ŝ0 (x)| ≤ c/|x| and |∇ Ŝ0 (x)| ≤ c/|x| 2 , implying that Ŝ0 ∈ W (R 2 ). Let Φ ∈ W (R 2 ). We have R 2 ∇ Ŝ0 • ∇Φdx = lim ρ→+∞ R 2 ξ ρ ∇ Ŝ0 • ∇Φdx = lim ρ→+∞ R 2 ∇ Ŝ0 • ∇(ξ ρ Φ)dx - R 2 ∇ Ŝ0 • ∇ξ ρ Φdx = R 2 GΦdx -lim ρ→+∞ R 2 ∇ Ŝ0 • ∇ξ ρ Φdx = R 2
GΦdx, using the decay properties of Ŝ0 and Φ. Comparing with (26), choosing Φ = Ŝ -Ŝ0 , we obtain that Ŝ = Ŝ0 + λ, for some λ ∈ R. In particular we have the expression

λ = -Ŝ0 (0),
showing that |λ| ≤ c ψ H 1/2 (∂ω) . Denoting S 0 = S -λ we have S 0 = Ŝ -λ = Ŝ0 in R 2 \ B(0, 2), i.e.,

S 0 (x) = B(0,2) G(y)E(x -y)dy ∀x ∈ R 2 \ B(0, 2). We now set s ε (x) = S 0 ( x ε ).
Using again (25) we get

s ε (x) = B(0,2) G(y) E( x ε -y) -E( x ε ) dy ∀x ∈ R 2 \ B(0, 2ε).
The particular form of the fundamental solution leads to

s ε (x) = B(0,2) G(y) (E(x -εy) -E(x)) dy ∀x ∈ R 2 \ B(0, 2ε).
The mean value theorem easily shows that

s ε H 1 (Ω\B(0,R)) ≤ cε G L 2 (R 2 ) ≤ cε ψ H 1/2 (∂ω) .
We note that on ∂ω ε we have s

ε (x) = S 0 (x/ε) = S(x/ε) -λ = ψ(x/ε) -λ. We now define r ε = w ε -s ε , solution of    -∆r ε = 0 in Ω ε r ε = -s ε on ∂Ω r ε = λ on ∂ω ε .
We have by step 2 and a standard decomposition

r ε H 1 (Ωε) ≤ c s ε H 1/2 (∂Ω) + c |λ| √ -log ε ≤ c √ -log ε ψ H 1/2 (∂ω) .
This completes the proof by w ε = s ε + r ε .

Variation of the direct state

Set ũε = u ε -u 0 . It solves    -∆ũ ε = 0 in Ω ε ũε = 0 on ∂Ω ũε = -u 0 on ∂ω ε . (27) 
We define

h ε ∈ C ∞ (R 2 \ {z}) and r ε ∈ H 1 (Ω) by h ε (x) = - log |x -z| log ε u 0 (z), -∆r ε = 0 in Ω r ε = -h ε on ∂Ω.
As for the fundamental solution we have

∆h ε = 0 in R 2 \ {z}. We now set e ε = ũε -h ε -r ε , which solves    -∆e ε = 0 in Ω ε e ε = 0 on ∂Ω e ε = -u 0 -h ε -r ε on ∂ω ε . ( 28 
) Lemma 5.3 If u 0 is C 1 is a neighborhood of z then r ε H 1 (Ω) = O (-log ε) -1 , e ε H 1 (Ω\B(z,R)) = O (-log ε) -3/2 .
Proof. The first estimate is obvious since

h ε H 1/2 (∂Ω) = O((-log ε) -1 ) by construction. Set ψ ε (x) = (-u 0 -h ε -r ε )(z + εx).
We decompose as

ψ ε (x) = [u 0 (z) -u 0 (z + εx) pε(x) ] -[u 0 (z) + h ε (z + εx) qε(x) ] -r ε (z + εx) rε(x)
.

By regularity of u 0 we have immediately

p ε H 1/2 (∂ω) = O(ε). Next, from q ε (x) = u 0 (z) 1 - log |εx| log ε = -u 0 (z) log |x| log ε , we get q ε H 1/2 (∂ω) = O((-log ε) -1
). Lastly, a change of variables yields

rε H 1 (ω) ≤ ∇r ε L 2 (ωε) + ε -1 r ε L 2 (ωε) ≤ ∇r ε L 2 (ωε) + c r ε L ∞ (ωε)
.

By elliptic regularity we have ∇r ε L 2 (ωε) + r ε L ∞ (ωε) ≤ c h ε H 1/2 (∂Ω) , thus rε H 1/2 (∂ω) = O((-log ε) -1 ). We conclude using Lemma 5.2. We infer from Lemma 5.3 and the triangle inequality:

Lemma 5.4 If u 0 is C 1 is a neighborhood of z then ũε H 1 (Ω\B(z,R) = O (-log ε) -1 .

Variation of the adjoint state

In view of Proposition 3.1 and ( 20)-( 21), we define the adjoint state

v ε ∈ H 1 0 (Ω) solution of Ω ∇v ε • ∇ϕdx = - 1 0 dJ ε (tu ε + (1 -t)u 0 )ϕdt ∀ϕ ∈ H 1 0 (Ω).
In particular the unperturbed adjoint state v 0 satisfies

Ω ∇v 0 • ∇ϕdx = -dJ 0 (u 0 )ϕ ∀ϕ ∈ H 1 0 (Ω). ( 29 
) Lemma 5.5 If u 0 is C 1 is a neighborhood of z then v ε -v 0 H 1 (Ω) = O (-log ε) -1 . Proof. Set ṽε = v ε -v 0 . We have Ω ∇ṽ ε • ∇ϕdx = 1 0 (dJ 0 (u 0 ) -dJ ε (tu ε + (1 -t)u 0 ))ϕdt ∀ϕ ∈ H 1 0 (Ω), leading to Ω ∇ṽ ε • ∇ϕdx = 1 0 (d Ĵ(u 0 | Ω) -d Ĵ((tu ε + (1 -t)u 0 ) | Ω)ϕ | Ωdt ∀ϕ ∈ H 1 0 (Ω).
Choosing ϕ = ṽε and using that d Ĵ is Lipschitz yields

ṽε H 1 (Ω) ≤ c ũε H 1 ( Ω) .
The conclusion follows from Lemma 5.4.

Variation of the Lagrangian

In view of Proposition 3.1 we define the Lagrangian

L ε (u, v) = J ε (u) + Ω ∇u • ∇vdx - Ω f v + ∂ωε ∂u ε ∂n vds. ( 30 
)
This provides the variation

(L ε -L 0 )(u 0 , v ε ) = ∂ωε ∂u ε ∂n v ε ds. Lemma 5.6 If u 0 , v 0 are of class C 1 in a neighborhood of z then (L ε -L 0 )(u 0 , v ε ) = ∂ωε ∂ ũε ∂n v 0 ds + O (-log ε) -2 ) .
Proof. We work with the decomposition

(L ε -L 0 )(u 0 , v ε ) - ∂ωε ∂ ũε ∂n v 0 ds = ∂ωε ∂u 0 ∂n v ε ds + ∂ωε ∂ ũε ∂n (v ε -v 0 )ds = ωε ∇u 0 • ∇v ε dx - Ωε ∇ũ ε • ∇(v ε -v 0 )dx.
Extending ũε by -u 0 in ω ε allows to write

(L ε -L 0 )(u 0 , v ε ) - ∂ωε ∂ ũε ∂n v 0 ds = - Ω ∇ũ ε • ∇(v ε -v 0 )dx + ωε ∇u 0 • ∇v 0 dx = 1 0 (d Ĵ((tu ε + (1 -t)u 0 ) | Ω) -d Ĵ(u 0 | Ω))(ũ ε ) | Ωdt + ωε ∇u 0 • ∇v 0 dx,
where the last equality is obtained as in Lemma 5.5. We conclude using Lemma 5.4.

Lemma 5.7 If u 0 , v 0 are of class C 1 in a neighborhood of z then

(L ε -L 0 )(u 0 , v ε ) = 2π -log ε u 0 (z)v 0 (z) + O (-log ε) -3/2 .
Proof. We decompose the expression found in Lemma 5.6 as

(L ε -L 0 )(u 0 , v ε ) = ∂ωε ∂h ε ∂n v 0 ds + ∂ωε ∂r ε ∂n v 0 ds + ∂ωε ∂e ε ∂n v 0 ds + O (-log ε) -2 = ∂ωε ∂h ε ∂n v 0 (z)ds + ∂ωε ∂h ε ∂n (v 0 -v 0 (z))ds + ωε ∇r ε • ∇v 0 dx - Ωε ∇e ε • ∇v 0 dx + O (-log ε) -2 .
Let ρ > 0 such that B(0, ρ) ⊂ ω. We define

hε (x) =    h ε (x) if |x -z| ≥ ρε - log ρ log ε + 1 u 0 (z) if |x -z| ≤ ρε.
This truncation ensures that hε ∈ H 1 (Ω). We extend e ε by -u 0 -hε -r ε in ω ε to write

(L ε -L 0 )(u 0 , v ε ) = ∂ωε ∂h ε ∂n v 0 (z)ds + ∂ωε ∂h ε ∂n (v 0 -v 0 (z))ds - Ω ∇e ε • ∇v 0 dx - ωε ∇( hε + u 0 ) • ∇v 0 dx + O (-log ε) -2 = ∂ωε ∂h ε ∂n v 0 (z)ds + ∂ωε ∂h ε ∂n (v 0 -v 0 (z))ds +d Ĵ(u 0 | Ω)e ε | Ω - ωε ∇( hε + u 0 ) • ∇v 0 dx + O (-log ε) -2 .
By the definition of h ε , Lemma 5.3 and the smoothness assumptions we arrive at

(L ε -L 0 )(u 0 , v ε ) = ∂ωε ∂h ε ∂n v 0 (z)ds + O (-log ε) -3/2 .
The Green formula yields

∂ωε ∂h ε ∂n ds = ∂B(z,ε) ∂h ε ∂n ds = -2π log ε u 0 (z),
which completes the proof.

Expression of the topological asymptotic expansion

Based on the previous results we arrive at the following counterpart to Theorem 4.9.

Theorem 5.8 Consider a cost function of form (22). Let v 0 ∈ H 1 0 (Ω) be the solution of (29). Then

J ε (u ε ) -J 0 (u 0 ) = 2π -log ε u 0 (z)v 0 (z) + o 1 -log ε .
We observe that this expression does not depend on the shape of the hole. This is typical of the 2D case. We infer the topological derivative

d T J (Ω, ω, z) = u 0 (z)v 0 (z).
Lastly, we highlight in Fig. 2 the slow convergence of the cost function compared with the inclusion case by plotting the functions f 1 (ε) = 1 -log ε and f 2 (ε) = ε 2 appearing in Theorems 5.8 and 4.9 in 2D, respectively. 

Dirichlet case in 3D

We consider the same problem as in section 5.1, but now in dimension N = 3. We follow the same general scheme, but significant technical differences will show up.

Preliminary estimate

The weighted Sobolev spaces W (R 3 ) and W 0 (R 3 ) are defined in the same way as their 2D counterparts, with the weight function

w(x) = 1 1 + |x| 2 .
It leads to the same Poincaré inequality [START_REF] Dautray | [END_REF]Lions, 1988, Amrouche et al., 1994]:

u W (R 3 \ω) ≤ c ∇u L 2 (R 3 \ω) ∀u ∈ W 0 (R 3 \ ω). ( 31 
) Lemma 6.1 Let ψ ∈ H 1/2 (∂ω), ψ ε (x) = ψ((x -z)/ε) and w ε ∈ H 1 (Ω ε ) be the solution of    -∆w ε = 0 in Ω ε w ε = 0 on ∂Ω w ε = ψ ε on ∂ω ε .
Let R > 0 such that B(z, R) ⊂ Ω. There exists a constant c > 0 independent of ε and ψ such that, for ε small enough,

w ε H 1 (Ωε) ≤ c √ ε ψ H 1/2 (∂ω) , (32) 
w ε H 1 (Ω\B(z,R) ≤ cε ψ H 1/2 (∂ω) . (33) 
Proof. We assume here again for simplicity that z = 0. The proof of (32) follows exactly the same lines as in Lemma 5.2, hence we focus on (33). By lifting, (31) and the Lax-Milgram theorem, there exists a unique S ∈ W (R 3 \ ω) such that S = ψ on ∂ω and

R 3 \ω ∇S • ∇Φdx = 0 ∀Φ ∈ W 0 (R 3 \ ω). (34) 
Similarly to Lemma 5.2 we introduce a smooth function ζ equal to 0 in B(0, 1) and 1 outside B(0, 2), we set Ŝ = ζS and Ŝ0 = G * E, with G = -∆ Ŝ,

E(y) = 1 4π|y|
the fundamental solution of the Laplacian. Here we do not have the counterpart to (25), nevertheless the definition directly shows that Ŝ0 ∈ W (R 3 ). It follows by the same argument as in Lemma 5.2 that Ŝ = Ŝ0 + λ, for some λ ∈ R, but here the inclusion Ŝ -Ŝ0 ∈ W (R 3 ) implies λ = 0 since constants do not belong to W (R 3 ). We arrive at

S(x) = B(0,2) G(y)E(x -y)dy ∀x ∈ R 3 \ B(0, 2). ( 35 
) Setting s ε (x) = S( x ε ),
we get

s ε (x) = ε B(0,2)
G(y)E(x -εy)dy ∀x ∈ R 3 \ B(0, 2ε).

This representation entails

s ε H 1 (Ω\B(0,R)) ≤ cε G L 2 (R 3 ) ≤ cε ψ H 1/2 (∂ω) . (36) 
We now define r ε = w ε -s ε , which is solution of

   -∆r ε = 0 in Ω ε r ε = -s ε on ∂Ω r ε = 0 on ∂ω ε .
The decomposition w ε = s ε + r ε combined with (36) yields (33).

Variation of the direct state

Similarly to section 5.3 we set ũε = u ε -u 0 , which solves    -∆ũ ε = 0 in Ω ε ũε = 0 on ∂Ω ũε = -u 0 on ∂ω ε .

(37)

Now we consider the reference problem: find U ∈ W (R 3 \ ω) such that

-∆U = 0 in R 3 \ ω U = 1 on ∂ω, (38) 
whose variational formulation is as in (34). We define h ε ∈ W (R 3 \ ω ε ) and r ε ∈ H 1 (Ω) by

h ε (x) = -u 0 (z)U ( x -z ε ),
-∆r ε = 0 in Ω r ε = -h ε on ∂Ω.

We now set e ε = ũε -h ε -r ε . It solves  



-∆e ε = 0 in Ω ε e ε = 0 on ∂Ω e ε = -u 0 -h ε -r ε on ∂ω ε .

(39) Lemma 6.2 If u 0 is C 1 is a neighborhood of z then A change of variables yields rε H 1 (ω) ≤ ε -1/2 ∇r ε L 2 (ωε) + ε -3/2 r ε L 2 (ωε) ≤ ε -1/2 ∇r ε L 2 (ωε) + cε -1/2 r ε L 6 (Ω) = O(ε 1/2 ), where we have used the Sobolev embedding H 1 → L 6 . We obtain (u 0 + h ε + r ε )(z + εx) H 1/2 (∂ω) = (u 0 (z + εx) -u 0 (z) + rε (x) H 1/2 (∂ω) = O(ε 1/2 ). We conclude by Lemma 6.1. We deduce: Lemma 6.3 If u 0 is C 1 is a neighborhood of z then ũε H 1 (Ω\B(z,R) = O(ε).

h ε H 1 (Ωε\B(z,R)) = O(ε),

Variation of the adjoint state

We again define the adjoint state v ε ∈ H 1 0 (Ω) solution of

Ω ∇v ε • ∇ϕdx = - 1 0 dJ ε (tu ε + (1 -t)u 0 )ϕdt ∀ϕ ∈ H 1 0 (Ω).
Similarly to Lemma 5.5 we have:

Lemma 6.4 If u 0 is C 1 is a neighborhood of z then v ε -v 0 H 1 (Ω) = O(ε).

Variation of the Lagrangian

We consider the same Lagrangian as in (30). We conclude using Lemma 6.3.

The standard capacity of ω can be defined by (see e.g. [START_REF] Henrot | Shape variation and optimization[END_REF])

K = - ∂ω ∂U ∂n ds = R 3 \ω |∇U | 2 dx. ( 40 
)
Lemma 6.6 If u 0 , v 0 are of class C 1 in a neighborhood of z then

(L ε -L 0 )(u 0 , v ε ) = Kεu 0 (z)v 0 (z) + O(ε 3/2 ).
Proof. We decompose the expression found in Lemma 6.5 as Inside ω ε we extend h ε by -u 0 (z) and e ε by -u 0 + u 0 (z) -r ε . This permits to write The claim follows from the definition of h ε and Lemma 6.2.

(L ε -L 0 )(u 0 , v ε ) = ∂ωε ∂h ε ∂n v 0 (z)ds+
(L ε -L 0 )(u 0 , v ε ) =

Expression of the topological asymptotic expansion

From the preceding findings we infer the 3D counterpart to Theorem 5.8.

Theorem 6.7 Consider a cost function of form (22). Let v 0 ∈ H 1 0 (Ω) be the solution of (29), K be defined by (40). Then J ε (u ε ) -J 0 (u 0 ) = Kεu 0 (z)v 0 (z) + o(ε).

We note that here, unlike in the 2D case, the expression of the topological asymptotic expansion depends on the shape of the hole, through the capacity K. In the case of the ball ω = B(0, 1) the solution to (38) is found as

U (x) = 1 |x| ,
leading to the capacity K = 4π.

Remark 6.8 Like in the inclusion case, more general cost functions may yield additional terms, see e.g. [Guillaume andSid Idris, 2002, Amstutz, 2006b].

  we identify that W (y) = ∇v 0 (z) • ζ(y). It follows that ω ∇u 0 (z) • ∇W (y)dy = ∇u 0 (z) • ω Dζ(y) dy ∇v 0 (z). Choosing Φ = ζ j in (14) yields (α -β) ω e i • ∇ζ j (y)dy = R N σ(y)∇ζ i (y) • ∇ζ j (y)dy = (α -β) ω e j • ∇ζ i (y)dy. This shows that Q := ω Dζ(y)dy = Q .
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 2 Figure 2: Comparison of the functions f 1 (ε) = 1 -log ε (in blue) and f 2 (ε) = ε 2 (in red).

  r ε H 1 (Ω) = O(ε), e ε H 1 (Ω\B(z,R)) = O(ε 3/2 ).Proof. The same representation as in (35) shows that |U (x)| ≤ c/|x| and |∇U (x)| ≤ c/|x| 2 , hence h ε H 1 (Ω\B(z,R)) = O(ε), as in (36) whereby also r ε H 1 (Ω) = O(ε). Set rε (x) = r ε (z + εx).

Lemma 6. 5

 5 If u 0 , v 0 are of class C 1 in a neighborhood of z then (L ε -L 0 )(u 0 , v ε ) = ∂ωε ∂ ũε ∂n v 0 ds + O(ε 2 ).Proof. Like in Lemma 5.6 we have(L ε -L 0 )(u 0 , v ε ) -((tu ε + (1 -t)u 0 ) | Ω) -d Ĵ(u 0 | Ω))(ũ ε ) | Ωdt + ωε ∇u 0 • ∇v 0 dx.

  -v 0 (z))ds+ ωε ∇r ε •∇v 0 dx-Ωε ∇e ε •∇v 0 dx+O(ε 2 ).

  -v 0 (z))ds +d Ĵ(u 0 | Ω)e ε | Ωωε ∇u 0 • ∇v 0 dx + O(ε 2 ).

Acknowledgements

The author benefited from the supports of the chair "Modeling advanced polymers for innovative material solutions" led by the Ecole polytechnique and the Fondation de l'Ecole polytechnique and sponsored by Arkema, and of the project ANR-18-CE40-0013 SHAPO financed by the Agence Nationale de la Recherche.

Conclusion

Some introductory mathematical elements on the topological derivative concept have been thoroughly presented. They may help the reader to enter into the more advanced literature and tackle further problems on this field under active development.