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Abstract

This paper proposes a new finite precision iterative decoder for low-density parity-check (LDPC)

codes. The proposed decoder, named Sign-Preserving Min-Sum (SP-MS), significantly improves the

decoding performance compared to the classical Offset Min-Sum (OMS) decoder when messages are

quantized on q = 2, 3, or 4 bits. The particularity of the SP-MS decoder is that messages cannot take

the 0 value, and can fully benefit from the q bits of precision. The optimization of the SP-MS decoder

is investigated in the asymptotic limit of the code length using density evolution (DE). Our study shows

that 3-bit SP-MS decoders can achieve the same error-correcting performance as 5-bit OMS decoders,

and 2-bit SP-MS decoders outperform 3-bit OMS decoders. The finite-length simulations confirm the

conclusions of the DE analysis for several LDPC codes. Our SP-MS decoder shows a signal-to-noise

ratio (SNR) gain up to 0.43 dB, with a memory/wire reduction of up to 40%, compared to the OMS

decoder. Moreover, the SP-MS decoder converges faster and uses fewer iterations than the OMS decoder,

with an improvement of up to 83.3% of the average decoding throughput. On an FPGA, the SP-MS

decoder reduces resource utilization by up to 56% compared to the OMS decoder.

Index Terms

Error correction, Low-Density Parity-Check (LDPC) codes, Density Evolution, Sign-Preserving

Min-Sum (SP-MS) decoders.

I. INTRODUCTION

Low-Density Parity-Check (LDPC) codes [1]–[3], first introduced by Gallager in 1963, are

widely used in communication standards and storage applications [4]–[8] because they provide
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an exceptional error correction capability. LDPC codes can be efficiently decoded by Message-

Passing (MP) algorithms that use a Tanner graph [9] representation. One of the best MP algorithm

is the Sum-Product algorithm also called Belief-Propagation (BP) algorithm [10]. The BP decoder

has excellent decoding performance in the waterfall region but at the cost of high computational

complexity. It is worth noting that large length irregular LDPC codes decoded by the BP decoder

can approach the Shannon limit [11], [12].

The effect of quantization on the messages of MP decoders has been extensively examined over

the past 20 years. In [13], the authors show that for a quantized BP decoder, at least 6 bits

of precision should be used for the Binary Input Additive White Gaussian Noise (BI-AWGN)

channel to obtain performance similar to infinite precision decoders. The Min-Sum (MS) and

Offset-corrected Min-Sum (OMS) decoders [14], [15], derived from the BP decoder, reduce

computational complexity at the cost of a small performance degradation in the waterfall region,

especially when they are implemented in finite precision. For quantized MS and OMS decoders,

the effect of clipping and quantization for the BI-AWGN channel are examined in [15], [16].

Thanks to their reduced complexity, the hardware implementation of the OMS decoder [17]

and other variants of the MS decoder [18]–[20] show a good trade-off between complexity and

decoding performance.

Recently, finite-alphabet LDPC decoders [21] with reduced precision (e.g., from 4 bits to 3 bits),

and good error correction performance have been proposed [22], [23]. Reducing the precision

of messages is a natural strategy to reduce hardware complexity and increase the throughput of

LDPC decoders. It is worth mentioning that there is a non-negligible performance loss when

the number of precision bits becomes too small, which is the case of 2-bit MS-based decoders

[24]–[26].

However, many LDPC decoders that use 1 bit of precision for messages are discussed in the

literature. These 1-bit LDPC decoders are not quantized versions of either the BP decoder or the

MS decoder; we can cite for example stochastic-based decoders [27], [28], bit-flipping-based

decoders [29], [30], and binary message-passing decoders [31], [32]. The advantage of 1-bit

LDPC decoders is their very low hardware complexity compared to higher precision decoders,

but they usually require a much larger number of decoding iterations, and their performance

degradation is significant.

In this paper, we propose a new finite precision iterative decoder for low complexity hardware

implementation, named Sign-Preserving Min-Sum (SP-MS) decoder, which always preserves the
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sign of messages. The SP-MS decoder forbids the 0 value in its message alphabet during the

iterative decoding, meaning that a message cannot be erased. Also, unlike traditional quantized

decoders, the proposed decoder uses all the possible values of the alphabet generated for a given

precision and uses the sign of the incoming messages to increase the reliability of the outgoing

messages at variable nodes. We investigate SP-MS decoders defined over small message alphabets

constructed from q = 2, 3, or 4 bits of precision. We also quantize the Log-Likelihood Ratios

(LLRs) on small alphabets constructed from qch = 3 or 4 bits of precision.

In [33], the Sign-Preserving Noise-Aided Min-Sum (SP-NA-MS) decoders were examined for

the case of regular LDPC codes considering the same precision (3 and 4 bits) for both the

messages and the LLRs. In this paper, we modify and extend the work of [33] from regular to

irregular LDPC codes. Moreover, we study the performance of SP-MS decoders in which the

messages are quantized with one bit less than the LLRs. We also propose an offset model that

depends on the magnitude of unsaturated variable-to-check messages, and optimize the offset

values with Density Evolution (DE). Finally, we propose a method to improve the performance

of SP-MS decoders in the error floor region, when the precision of the messages is lower than

the precision of the LLRs.

Our study of the SP-MS decoders with Density Evolution shows that (qch = 4, q = 3)-bit SP-MS

decoders have the same convergence threshold as classical (qch = 5, q = 5)-bit OMS decoders.

Also, we show that (qch = 3, q = 2)-bit SP-MS decoders have better error correction performance

than classical (qch = 3, q = 3)-bit OMS decoders. These conclusions are corroborated by finite

length Monte Carlo (MC) simulations, and we obtain signal-to-noise ratio (SNR) gains up to

0.43 dB compared to the MS/OMS decoders.

Comparing the hardware complexity of the SP-MS and the OMS decoders, we observe that the

SP-MS decoder allows us to greatly reduce the complexity of the message update rules when the

precision of the messages is reduced. When using the SP-MS, a memory/wire reduction of up to

40% is achieved. Also, the SP-MS uses fewer iterations (converges faster) with an improvement

of up to 83.3% of the average decoding throughput. Comparing the synthesis results on a Xilinx

FPGA of the SP-MS and the OMS decoders, we observe that the SP-MS decoder has a significant

improvement in clock frequency by up to 30%, and reduces resource utilization by up to 56%.

These results open new possibilities for massive parallel implementation of LDPC decoders.

The outline of the paper is as follows. Section II introduces the basic notions of quantized

decoders and LDPC codes. Section III explains how to preserve the sign of the messages in
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SP-MS decoders, and how to optimize the SP-MS decoders with DE. Section IV presents the

results of the asymptotic analysis of regular and irregular LDPC codes. In section V, finite length

performance of the SP-MS decoders and the MS/OMS decoders are presented. In section VI,

we propose a method to mitigate the early appearance of the error floor of SP-MS decoders. In

Section VII, we discussed the hardware complexity of the SP-MS decoders and we present the

synthesis results on a Xilinx FPGA of the SP-MS decoders and the OMS decoders. In Section

VIII, we compare the SP-MS decoder with other decoders proposed in the literature. Finally,

Section IX concludes this paper.

II. BASIC NOTIONS OF CLASSICAL QUANTIZED DECODERS AND LDPC CODES

An LDPC code is a linear block code defined by a sparse parity-check matrix H = [hmn]

composed of M rows by N columns, with M < N . The usual graphical representation of an

LDPC code is a Tanner graph, which is a bipartite graph G composed of two types of nodes:

the variable nodes (VNs) vn, n = 1, ..., N and the check nodes (CNs) cm,m = 1, ...,M . A VN

in the Tanner graph corresponds to a column of H , and a CN corresponds to a row of H . An

edge connecting CN cm to VN vn exists if and only if hmn 6= 0.

Let V(v) denote the set of neighbors of a VN v, and V(c) denote the set of neighbors of a CN

c. The degree of a node is the number of its neighbors in G. A code is said to have a regular

column-weight dv if all VNs v have the same degree dv. Similarly, if all CNs c have the same

degree dc, a code is said to have a regular row-weight dc. In case of irregular LDPC codes,

the nodes can have different connection degrees, defining an irregularity distribution, which is

usually characterized by the two polynomials λ(x) =
∑dv,max

i=1 λix
i−1, and ρ(x) =

∑dc,max

j=1 ρjx
j−1.

The parameters λi (respectively ρj) indicate the fraction of edges connected to degree i VNs

(respectively degree j CNs) [34]. For regular codes, the polynomials are reduced to monomials,

λ(x) = xdv−1 and ρ(x) = xdc−1.

Let x = (x1, ..., xN) ∈ {0, 1}N be a codeword that satisfies HxT = 0. In this paper, x is

mapped by the Binary Phase-Shift Keying (BPSK) modulation and transmitted over the BI-

AWGN channel with noise variance σ2. The channel output y = (y1, ..., yN) is modeled by

yn = (1 − 2xn) + zn for n = 1, . . . , N , where zn is a sequence of independent and identically

distributed (i.i.d.) Gaussian random variables with zero mean and variance σ2. The decoder

produces the vector x̂ = (x̂1, ..., x̂N) ∈ {0, 1}N that is an estimation of x. To check whether x̂

is a valid codeword, we verify that the syndrome vector is all-zero, i.e. Hx̂T = 0.

May 21, 2021 DRAFT



5

The LLRs that can be computed at the channel output are equal to:

LLR(yn) = log
(

Pr(yn | xn = 0)

Pr(yn | xn = 1)

)
=

2yn
σ2

∀n = 1, . . . , N. (1)

For quantized decoders, the LLRs have to be quantized and saturated. Let AL denote the decoder

input alphabet, defined as AL = {−Nch, ...,−1, 0,+1, ...,+Nch}, composed of 2Nch + 1 states,

with Nch = 2(qch−1)−1 and where qch is the number of precision bits used to quantize the LLRs.

Let the quantizer be defined by Q : R→ AL

Q (a) = S (bα a+ 0.5c , Nch) , (2)

where b.c depicts the floor function and S(b,Nch) is the saturation function clipping the value

of b in the interval [−Nch, Nch], i.e. S(b,Nch) = min(max(b,−Nch),+Nch). The parameter α

is called channel gain factor and is used to increase or decrease the amplitude of LLRs at the

decoder input. The value of α can be seen as an extra parameter in the quantized decoder that can

be analyzed and optimized for better performance. With these notations, we define the quantized

version of the LLRs that initialize the MP decoder by the vector I = (I1, ..., IN) ∈ ANL , with

In = Q (LLR(yn)) ∀n = 1, . . . , N. (3)

A MP decoder exchanges messages between VNs and CNs along the edges of the Tanner Graph.

During each iteration, the VN update (VNU) and CN update (CNU) compute outgoing messages

from all incoming messages.

For classical quantized decoders, the finite message alphabet AM is defined as AM =

{−Nq, ...,−1, 0,+1, ...,+Nq}, and consists of 2Nq + 1 states, with Nq = 2(q−1)− 1 and where q

is the number of quantization bits for the messages. Typically, the message alphabet is equal to

the decoder input alphabet, i.e. qch = q and AM = AL. Let ` ∈ N denote the iteration number.

Let also m(`)
v→c ∈ AM denote the variable-to-check message sent from VN v to CN c in the `th

iteration, and m(`)
c→v ∈ AM denote the check-to-variable message sent from CN c to VN v in the

`th iteration.

Let us briefly recall the VNU and CNU equations for the quantized MS-based decoders, before

introducing the SP-MS decoders. For this purpose, let Ψv : AL × A(dv−1)
M → AM denote the

discrete function used for the update at a VN v of degree dv, and let Ψc : A(dc−1)
M → AM denote

the discrete function used for the update at a CN c of degree dc.

May 21, 2021 DRAFT



6

The update rule at a CNU is given by

m
(`)
cm→vn = Ψc

({
m

(`)
v→cm

}
v∈V(cm)\{vn}

)
=

 ∏
v∈V(cm)\{vn}

sign
(
m(`)
v→cm

)( min
v∈V(cm)\{vn}

(∣∣m(`)
v→cm

∣∣)) . (4)

Let m(`+1),U
vn→cm denote the unsaturated variable-to-check message in the (`+ 1)th iteration, defined

as

m(`+1),U
vn→cm = In +

∑
c∈V(vn)\{cm}

m(`)
c→vn .

The alphabet of the unsaturated variable-to-check message m(`+1),U
vn→cm , denoted AU , is defined as

AU = {−Nq (dv − 1) − Nch, ...,−1, 0,+1, ...,+Nq (dv − 1) + Nch}. Then, the update rule at a

VNU is expressed as

m(`+1)
vn→cm = Ψv

(
In,
{
m(`)
c→vn

}
c∈V(vn)\{cm}

)
= Λ

(
m(`+1),U
vn→cm , ϕv

)
, (5)

where the function Λ(.) is defined by Λ(a, ϕv) = sign(a)S (max(|a| − ϕv, 0), Nq).

The CNU (4) and VNU (5) define the classical OMS decoder with offset value ϕv ∈

{+1, ...,+(Nq − 2)}, applied at the VN1, where the special case of ϕv = 0 corresponds to

the classical MS decoder. The discrete functions Ψv and Ψc satisfy the symmetry conditions

presented in [34].

Let γ(`) = (γ
(`)
1 , ..., γ

(`)
N ) denote the a posteriori probabilities (APP) in the `th iteration with

alphabet Aapp = {−Nq dv − Nch, ...,−1, 0,+1, ...,+Nq dv + Nch}. The APP γ
(`)
n ∈ Aapp is

associated to a VN vn, n = 1, 2, . . . , N . Let Ψa : AL × A(dv)
M → Aapp denote the discrete

function used for the APP computation at a VN v of degree dv. The function Ψa satisfies the

same conditions of symmetry as the function Ψv. With these notations, the APP computation at

a VN vn is given by

γ(`)n = Ψa

(
In,
{
m(`)
c→vn

}
c∈V(vn)

)
= In +

∑
c∈V(vn)

m(`)
c→vn . (6)

From the APP, x̂n can be computed as x̂n = (1 − sign(γ
(`)
n ))/2 if γ(`)n 6= 0, otherwise, x̂n =

(1− sign(In))/2, for n = 1, ..., N .

At the initialization stage of MS-based decoders (` = 0), variable-to-check messages are

initialized using m
(0)
vn→cm = S(In, Nq) where cm ∈ V(vn), for n = 1, ..., N ; the saturation

function S is required only when q < qch, i.e., Nq < Nch.

1Note that in the literature, ϕv is often applied at the CN. Applying the offset at the VN or at the CN is equivalent only

when the saturation function is not used since mini=1,...,n(|xi| − ϕv) = mini=1,...,n(|xi|)− ϕv .
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Analyzing (4) and (5), we can see that the message alphabet AM of classical quantized decoders

uses only 2q − 1 levels out of a total of 2q levels achievable with q precision bits. For example,

using q = 3 bits of precision, only 7 levels among 8 levels are used in AM .

III. SIGN-PRESERVING MIN-SUM DECODERS

In the classical MS-based decoders, the value of the messages can be zero. In that case, the

erased message, i.e. m(`+1)
vn→cm = 0, does not carry any information and does not participate in the

convergence of the decoder. In this paper, we propose a new type of decoder, with a modified

VNU using a sign preserving factor, so that the VNU never generates erased messages.

A. Quantization used for SP-MS Decoders

Using the sign-and-magnitude representation, one can obtain discrete alphabets that are

symmetric and composed of 2qch states. The decoder input alphabet for SP-MS decoders

is defined as BL = {−Nch, ...,−1,−0,+0,+1, ...,+Nch}, with Nch = 2(qch−1) − 1.

Similarly, the message alphabet for SP-MS decoders denoted by BM is defined as BM =

{−Nq, ...,−1,−0,+0,+1, ...,+Nq}, with Nq = 2(q−1) − 1. The sign of a message m ∈ BM
indicates the estimated bit value while the magnitude |m| represents its reliability. In this paper,

it is assumed that 2 ≤ q ≤ qch. The alphabets BL and BM can be easily implemented in hardware

because each value of BL and BM has a natural (sign, magnitude) binary representation. An

example of the binary representation of AM and BM for q = 3 is shown in Table I, showing

that −0 is represented by 1002s, +0 is represented by 0002s, etc., where the index "2s" indicates

the (sign, magnitude) format.

In order to obtain the quantized version of the LLRs belonging to BL, the quantization process

defined in (2) is replaced by

Q∗ (a) = (sign(a),S (bα |a|c , Nch)) , (7)

The quantized LLRs In = Q∗ (LLR(yn)) ∈ BL for n = 1, . . . , N are used to initialize the

decoder. In the initialization stage, i.e. at ` = 0, the variable-to-check messages m(`)
vn→cm are

computed as m(0)
vn→cm = S(In, Nq) where cm ∈ V(vn), for n = 1, ..., N . Note that the operation

of saturation S is required only when q < qch, i.e., Nq < Nch.
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Table I: Binary representation of the quantized values.

Classical Decoder Sign-Preserving Decoder

m ∈ AM q = 3 bits m ∈ BM q = 3 bits (sign(m), |m|)
−3 101 −3 111 (−1,3)

−2 110 −2 110 (−1,2)

−1 111 −1 101 (−1,1)

unused 100 −0 100 (−1,0)

0 000 +0 000 (+1,0)

+1 001 +1 001 (+1,1)

+2 010 +2 010 (+1,2)

+3 011 +3 011 (+1,3)

B. Sign-Preserving Min-Sum Decoders

Let us now define the VNU and CNU update rules for SP-MS decoders. The discrete functions

Ψv, Ψc, and Ψa of SP-MS decoders are defined in their modified alphabets, i.e. Ψv : BL ×

B(dv−1)
M → BM , Ψc : B(dc−1)

M → BM , and Ψa : BL × B(dv)
M → Bapp.

The update rule at the CNU of SP-MS decoders is given by

m
(`)
cm→vn = Ψc

({
m

(`)
v→cm

}
v∈V(cm)\{vn}

)
=

 ∏
v∈V(cm)\{vn}

sign
(
m(`)
v→cm

)
, min
v∈V(cm)\{vn}

(∣∣m(`)
v→cm

∣∣) . (8)

The CNU computes outgoing messages that always belong to BM based on all the incoming

messages that also belong to BM . It is to be noted that (8) is identical to (4).

In the case of the VNU, the update rule of classical MS decoders (5) does not guarantee that the

outgoing message belongs to BM . We therefore modify the VNU rule to ensure that the outgoing

message will always belong to BM . Let us denote by µ(`)
vn→cm the sign-preserving factor for the

variable-to-check message from VN vn to CN cm, defined as

µ(`)
vn→cm = ξ sign(In) +

∑
c∈V(vn)\{cm}

sign
(
m(`)
c→vn

)
, (9)

where the value of ξ depends on the value of the column-weight dv of a VN vn:

ξ =


0, if dv = 2,

1, if dv > 2 and dv is odd,

2, if dv > 2 and dv is even.

(10)

µ
(`)
vn→cm takes its values in {−1,+1} for dv = 2, in {−dv,−dv + 2, ...,−1,+1, ...,+dv} for dv

odd and dv > 2, and in {−dv − 1,−dv + 1, . . . ,−1,+1, ...,+dv + 1} for dv even and dv > 2.

Thus, µ(`)
vn→cm is always an odd number.
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Let us now redefine the unsaturated variable-to-check message m(`+1),U
vn→cm as

m(`+1),U
vn→cm =

µ
(`)
vn→cm

2
+ In +

∑
c∈V(vn)\{cm}

m(`)
c→vn . (11)

The alphabet of m
(`+1),U
vn→cm is given by BU = {−Nq (dv − 1) − Nch − (dv − 1 +

ξ)/2, ...,−1.5,−0.5,+0.5,+1.5, ...,+Nq (dv−1)+Nch+(dv−1+ξ)/2}. We note that (µ
(`)
vn→cm)/2

can be written as (µ
(`)
vn→cm)/2 = b(µ(`)

vn→cm)/2c+ 0.5. The fractional part of (µ
(`)
vn→cm)/2, which

is 0.5, prevents m(`+1),U
vn→cm from being zero and guarantees that a sign is always assigned to the

variable-to-check message. The integer part of (µ
(`)
vn→cm)/2 increases the reliability of the message

m
(`+1),U
vn→cm and thus helps the decoder to converge faster.

Then, the update rule at a VNU of the SP-MS decoder with offset value ϕv is given by

m
(`+1)
vn→cm = Ψv

(
In,
{
m

(`)
c→vn

}
c∈V(vn)\{cm}

)
=
(

sign
(
m

(`+1),U
vn→cm

)
,S
(

max
(⌊∣∣∣m(`+1),U

vn→cm

∣∣∣⌋− ϕv, 0) , Nq

))
. (12)

The APP update at a VN vn of the SP-MS decoder is defined as follows

γ
(`)
n = Ψa

(
In,
{
m

(`)
c→vn

}
c∈V(vn)

)
= In +

1

2
ξ sign(In) +

∑
c∈V(vn)

(
m(`)
c→vn +

1

2
sign

(
m(`)
c→vn

))
. (13)

The alphabet of APPs for SP-MS decoders is given by Bapp = {−Nq dv − Nch − (dv +

ξ)/2), ...,−1, 0,+1, ...,+Nq dv + Nch + (dv + ξ)/2)}. From the APP, x̂n can be computed as

x̂n = (1− sign(In))/2 if γ(`)n = 0, otherwise, x̂n = (1− sign(γ
(`)
n ))/2 for n = 1, ..., N .

C. Optimization of Sign-Preserving Min-Sum Decoders

In order to optimize Sign-Preserving Min-Sum decoders, we analyze the offset value ϕv. In

(12), we can see that the offset value ϕv is applied to m(`+1),U
vn→cm , and the value of the offset is the

same for any value of the message. We can further improve the performance by replacing the

constant value ϕv by an offset whose value depends on
∣∣∣m(`+1),U

vn→cm

∣∣∣. To simplify the notations in

this section, we use mu to denote any m(`+1),U
vn→cm ∈ BU and m to denote any m(`+1)

vn→cm ∈ BM .

To perform the optimization, we consider three offset values that are denoted by ϕ = (ϕs, ϕa, ϕ0),

where ϕs is applied to |mu| = Nq + 0.5, ϕa is applied to |mu| ∈ {2.5, ..., Nq − 0.5}, and ϕ0 is

applied to |mu| = 1.5. It is not necessary to consider an offset value for the values |mu| > Nq+0.5

because those values will be saturated to |Nq|. Let Υ : ϕ = (ϕs, ϕa, ϕ0) be an offset model used

at VNs. The offset corrected message is obtained as:

m = (sign(mu),S (max (b|mu|c − b, 0) , Nq)) , (14)
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mu
+3.5
+2.5
+1.5
+0.5

m
+3
+2
+1
+0

ϕs = 1
ϕa = 1
ϕ0 = 0

Figure 1: The offset model Υ for (ϕs = 1, ϕa = 1, ϕ0 = 0).

where the offset b ∈ {ϕs, ϕa, ϕ0} depends on the magnitude of mu.

As an example, Υ : ϕ = (ϕs = 1, ϕa = 1, ϕ0 = 0) is depicted in Figure 1 for (q = 3, Nq = 3).

Let us discuss the case of ϕs = ϕa = ϕ0. The SP-MS decoder with offset ϕv = 1 can be

obtained as a special case of Υ setting ϕ = (1, 1, 1); similarly, the SP-MS without offset, i.e.

ϕv = 0, can be obtained with the setting ϕ = (0, 0, 0).

The offset values ϕs and ϕ0 are applied to the extreme values of the message alphabet BM .

Therefore, ϕs and ϕ0 have to be analyzed differently from ϕa.

In the case of very low message precision q = 2, Υ is defined only by one offset value ϕ = (ϕs).

For this special case, the message alphabet, which is only composed of four different values, is

given by BM = {−1,−0,+0,+1}, with Nq = 1.

D. Density Evolution for Sign-Preserving Min-Sum Decoders

The goal of DE [34]–[36] is to recursively compute the probability mass function (PMF) of

the messages in the Tanner graph along the iterations. DE enables us to predict whether an

ensemble of LDPC codes, parametrized by its degree distribution, decoded with a given MP

decoder, converges to zero error probability in the limit of infinite block length.

For the BI-AWGN channel, the DE threshold δ is the maximum value of the standard deviation

σ or the minimum SNR for which the decoder converges to a zero error probability. As in [33],

[37], δ can be expressed as δdb = 10 log10

(
1

2Rσ∗2

)
, where σ∗ = δ and R is the rate of the code.

In this paper, the details of the DE equations are not presented, and we refer to [38] for a

complete presentation. The DE threshold δ depends on the degree distribution (λ(x), ρ(x)) of

the code, but also on the quantized decoder parameters: the number of precision bits (qch, q),

the channel gain factor α, and the offset values (ϕs, ϕa, ϕ0). We use DE to jointly optimize the

offset values (ϕs, ϕa, ϕ0) and the channel gain factor α for a fixed precision (qch, q) and a fixed

degree distribution (λ(x), ρ(x)) as follows

(ϕ∗s, ϕ
∗
a, ϕ

∗
0, α

∗) = arg min
(ϕs,ϕa,ϕ0,α)

{δdb (λ(x), ρ(x), qch, q, α, ϕs, ϕa, ϕ0)} . (15)
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The optimization of the offset values of the model Υ and the channel gain factor α is made

using a greedy algorithm that computes a local maximum of the DE threshold. For MS and

OMS decoders, the optimization (15) is reduced to the optimum channel gain factor α∗ that is

computed by performing a grid-search.

IV. ASYMPTOTIC ANALYSIS OF SIGN-PRESERVING MIN-SUM DECODERS

In this section, we present the asymptotic analysis of SP-MS decoders for regular and irregular

LDPC codes with the values of the sign preserving factor ξ defined in (10).

A. Regular LDPC codes

For all results presented in this section, we consider four ensembles of (dv, dc)-regular LDPC

codes with the following parameters: (i) (dv = 3, dc = 6) and code rate R = 0.5, (ii)

(dv = 4, dc = 64) and R = 0.94, (iii) (dv = 5, dc = 20) and R = 0.75, and (iv)

(dv = 6, dc = 32) and R = 0.8413. We also consider quantized decoders with precision

(qch, q) ∈ {(5, 5), (4, 4), (4, 3), (3, 3), (3, 2)}.

DE thresholds of the classical MS and OMS decoders are given in Table II, which shows that

the OMS is almost always superior to the MS for the cases involved, except when qch = q = 3

for regular (dv = 3, dc = 6) LDPC codes and regular (dv = 4, dc = 64) LDPC codes.

Table II: DE thresholds of classical MS (ϕv = 0) and OMS (ϕv = 1) decoders.

(dv = 3, dc = 6) (dv = 4, dc = 64) (dv = 5, dc = 20) (dv = 6, dc = 32)

(qch, q) ϕv α∗ δdb α∗ δdb α∗ δdb α∗ δdb

(3, 3)
0 0.9375 1.789 0.50 4.760 0.56 3.645 0.455 4.081
1 1.0625 2.204 0.69 4.904 0.92 3.231 0.84 3.593

(4, 4)
0 2.0 1.644 1.06 4.572 1.40 3.392 1.035 3.815
1 1.875 1.348 1.15 4.421 1.39 2.762 1.28 3.169

(5, 5)
0 4.0 1.613 2.20 4.534 2.47 3.337 1.985 3.751
1 2.625 1.215 1.73 4.338 1.61 2.724 1.45 3.140

In Table III, we indicate the optimal channel gain factor α∗, the optimal offset values ϕ∗ =

(ϕ∗s, ϕ
∗
a, ϕ

∗
0), and the DE thresholds δdb obtained with (15) for optimized SP-MS decoders. We

also show the DE gain/loss compared to the best DE thresholds of MS/OMS decoders indicated

in bold in Table II, for the same precision of the LLRs (qch). We report in Table IV the DE losses

of the (4, 3)-bit SP-MS decoder with respect to the (5, 5)-bit OMS decoder. Several conclusions

can be derived from this analysis.
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Table III: SP-MS decoders for the (dv, dc)-regular LDPC codes.

(dv, dc) (qch, q) α∗ (ϕ∗s , ϕ
∗
a, ϕ

∗
0) δdb

DE (dB)
(dv, dc) (qch, q) α∗ (ϕ∗s , ϕ

∗
a, ϕ

∗
0) δdb

DE (dB)
gain/loss gain/loss

(3, 6)

(3, 3) 0.95 (1, 1, 0) 1.510 0.279

(5, 20)

(3, 3) 0.89 (1, 1, 1) 3.014 0.217

(3, 2) 0.48 (0,−,−) 1.932 −0.143⊥ (3, 2) 0.88 (1,−,−) 3.022 0.209⊥

(4, 4) 1.79
(1, 1, 0)

1.269 0.079 (4, 4) 1.39
(1, 1, 1)

2.741 0.021

(4, 3) 1.16 1.391 −0.043⊥ (4, 3) 1.42 2.738 0.024⊥

(4, 64)

(3, 3) 0.57 (1, 1, 1) 4.612 0.148

(6, 32)

(3, 3) 0.74 (1, 1, 1) 3.396 0.197

(3, 2) 0.57 (0,−,−) 4.624 0.136⊥ (3, 2) 0.74 (1,−,−) 3.398 0.195⊥

(4, 4) 1.04
(1, 1, 1)

4.379 0.042 (4, 4) 1.18
(1, 1, 1)

3.179 −0.010

(4, 3) 1.05 4.379 0.042⊥ (4, 3) 1.22 3.174 −0.005⊥

⊥ DE gains are obtained by comparing the (qch, q = qch − 1)-bit SP-MS and the (qch, q = qch)-bit MS/OMS.

Table IV: DE losses obtained by comparing the (4, 3)-bit SP-MS and the (5, 5)-bit OMS.

(dv, dc) (qch, q) α∗ (ϕ∗s , ϕ
∗
a, ϕ

∗
0) δdb DE loss (dB)

(3, 6) (4, 3) 1.16† (1, 1, 0) 1.391 −0.176

(4, 64) (4, 3) 1.05† (1, 1, 1) 4.379 −0.041

(5, 20) (4, 3) 1.42 (1, 1, 1) 2.738 −0.014

(6, 32) (4, 3) 1.22 (1, 1, 1) 3.174 −0.034

† The channel gain factor α is further optimized in section VI.

1) First, the DE thresholds of SP-MS decoders are almost always better than the DE thresholds

of classical decoders when the same precision for the messages and the LLRs is used

(qch = q). An exception appears for the regular (dv = 6, dc = 32) LDPC code, we observe

a degradation of around 0.01 dB.

2) Second, the DE thresholds of (qch, q = qch − 1)-bit SP-MS decoders are almost equal or

equal to the DE thresholds of (qch, q = qch)-bit SP-MS decoders for dv ∈ {4, 5, 6}. In the

case of dv = 3, the DE threshold of the (3, 2)-bit SP-MS decoder is significantly worse

than the DE threshold of the (3, 3)-bit SP-MS decoder.

We can observe that the performance of the (4, 3)-bit SP-MS decoder can come close to

the performance of the (5, 5)-bit OMS decoder, within 0.05 dB for dv ∈ {4, 5, 6}. We also

observe that the (3, 2)-bit SP-MS decoders show a better performance than the (3, 3)-bit

MS and (3, 3)-bit OMS decoders; the only exception appears for dv = 3.

From these observations, we can conclude that the SP-MS decoders can be implemented

using lower precision for the messages than for the LLRs, with q = qch−1, with a negligible

impact in the decoding performance.

3) Third, the DE gains of SP-MS decoders are significant for low precision (qch = 3, q = 3)

and very low precision (qch = 3, q = 2), while the DE gains are smaller for the largest
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precision (qch = 4, q = 4) and (qch = 4, q = 3). The largest gain obtained is around 0.279

dB for the regular (dv = 3, dc = 6) LDPC code and precision (qch = 3, q = 3).

We thus conclude that the SP-MS decoders are more effective when the decoders are

implemented in low precision.

4) A final remark comes from the interpretation of the optimum ϕ∗ obtained through the DE

analysis. For the case of precision q ≥ 3, we have ϕ∗ = (ϕ∗s, ϕ
∗
a, ϕ

∗
0) = (1, 1, 0) for regular

dv = 3 LDPC code. The value ϕ∗0 = 0 means that the offset is not applied to the message

mu = ±1.5, hence mu = ±1.5 is mapped to m = ±1.

For SP-MS decoders, when using the precision q ≥ 3 and regular dv > 3 LDPC codes, we

always have ϕ∗ = (ϕ∗s, ϕ
∗
a, ϕ

∗
0) = (1, 1, 1) which corresponds to the SP-MS decoder with

offset ϕv = 1. In the case of very low precision q = 2 we obtain ϕ∗ = (ϕ∗s) = 1 for regular

dv = 5 and dv = 6 LDPC codes, and ϕ∗ = (ϕ∗s) = 0 for dv = 3 and dv = 4.

These results indicate that the optimal offset correction depends on both the amplitudes of

the messages and the VN degree.

B. Irregular LDPC codes

In the case of regular LDPC codes, we have observed that the optimum offset values (ϕ∗s, ϕ
∗
a, ϕ

∗
0)

depend on the VN degree. Therefore, in order to optimize the SP-MS decoders for the irregular

LDPC codes, we extend our optimization approach by considering an offset model Υ with

different offset values for the different VN degrees. The precision considered in this section is

qch = q ∈ {3, 4}.

Let Υ(2) : ϕ(2) =
(
ϕ
(2)
s , ϕ

(2)
a , ϕ

(2)
0

)
denote the offset model for the VNs of degree dv = 2,

and let Υ(3) : ϕ(3) =
(
ϕ
(3)
s , ϕ

(3)
a , ϕ

(3)
0

)
denote the offset model for the VNs of degree dv = 3.

Finally, we decide to use the same model for all other VNs with degrees dv ≥ 4, denoted

Υ(≥4) : ϕ(≥4) =
(
ϕ
(≥4)
s , ϕ

(≥4)
a , ϕ

(≥4)
0

)
.

The optimization of the offset values for an irregular LDPC code with distribution (λ(x), ρ(x))

is performed by the maximization of the DE thresholds:(
ϕ(2)∗,ϕ(3)∗,ϕ(≥4)∗, α∗

)
= arg min

(ϕ(2),ϕ(3),ϕ(≥4),α)
{δdb} . (16)

For our analysis, we consider the ensemble of irregular LDPC codes that follows the distribution

of the R = 1/2 LDPC code described in the WIMAX standard [6]. The degree distribution of
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Table V: DE thresholds of MS and OMS decoders for the WIMAX degree distribution

R (qch, q) ϕv α∗ δdb

1/2

(3, 3)
0 0.44 1.8310
1 0.40 5.2283

(4, 4)
0 1.07 1.3941
1 0.80 2.8140

(5, 5)
0 2.30 1.3013
1 1.55 1.1828

the WIMAX code is λ(x) = 22
76
x + 24

76
x2 + 30

76
x5 and ρ(x) = 48

76
x5 + 28

76
x6. For this distribution,

we indicate in Table V the DE thresholds of the MS and OMS decoders.

The DE thresholds of SP-MS decoders are summarized in Table VI, where we indicate the

optimum channel gain factor α∗ and the optimum offset values
(
ϕ(2)∗,ϕ(3)∗,ϕ(≥4)∗). These

results confirm the conclusions of the regular LDPC codes analysis: (i) the DE thresholds of

SP-MS decoders are better than the DE thresholds of MS and OMS decoders, (ii) the optimum

value of ϕ∗0 is 0 for dv = 3 VNs and for precision q ∈ {3, 4}, and (iii) the optimum value of

ϕ(≥4)∗ is ϕ(≥4)∗ = (1, 1, 1) for precision q ∈ {3, 4}.

Table VI: DE thresholds of SP-MS decoders for the WIMAX degree distribution.

R (qch, q) α∗ dv (ϕ∗s , ϕ
∗
a, ϕ

∗
0) δ̃db

DE gain SNR gain (dB)

(dB) @ FER = 10−2

1/2

(3, 3)

2 (0,0,0)

0.65 3 (0,0,0) 1.4003 0.4307 0.40
≥ 4 (1,1,1)

(4, 4)

2 (0,0,0)

1.24 3 (0,1,0) 0.9582 0.4359 0.40
≥ 4 (1,1,1)

Another conclusion can be derived from this table. The DE analysis shows that the offset should

not be applied on degree dv = 2 VNs, since we always obtain (ϕ
(2)
s , ϕ

(2)
a , ϕ

(2)
0 ) = (0, 0, 0). This

observation, combined with the fact that the optimum values of ϕ(≥4)∗ are always 1, leads to

the conclusion that the offset in SP-MS decoders must be chosen carefully for irregular LDPC

codes.

Finally, the gains of SP-MS decoders for irregular codes are larger than for the regular codes

with a gain of 0.4307 dB for lower precision q = 3 and a gain of 0.4359 dB for the largest

precision q = 4.
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V. FINITE LENGTH PERFORMANCE OF SIGN-PRESERVING MIN-SUM DECODERS

In this section, we present the frame error rate (FER) performance of classical MS, classical

OMS, and SP-MS decoders over the BI-AWGN channel.

A. Performance of Regular LDPC codes

To corroborate the asymptotic results obtained by DE, we present the Monte Carlo simulations

for (i) the (dv = 4, dc = 64)-regular QC-LDPC code with N = 8960, rate R = 0.94 and

circulant size L = 140 for Flash Memory [8], and (ii) the (dv = 6, dc = 32)-regular LDPC codes

with R = 0.8413 for the IEEE 802.3 ETHERNET code [5]. In addition, the PEG algorithm

from [39] is used to design the following regular QC-LDPC codes: (iii) a (dv = 3, dc = 6)-

regular QC-LDPC code with length N = 1296, rate R = 1/2 and circulant size L = 54, and

(iv) a (dv = 5, dc = 20)-regular QC-LDPC code with length N = 10240, rate R = 3/4, and

circulant size L = 512. For all codes, the Belief Propagation decoder performance is shown as

a benchmark2. A maximum of 100 iterations have been set for dv = 3 LDPC codes, while for

the case of dv ∈ {4, 5, 6} LDPC codes, a maximum number of 30 iterations has been used. For

each simulated SNR, the FER is estimated with at least 100 frame errors.

Figure 2 shows the FER performance comparison between the classical MS, classical OMS,

and SP-MS decoders, for three precisions of messages q ∈ {2, 3, 4}, and for the regular (dv =

3, dc = 6) QC-LDPC code. Figure 3 draws the same curves for the regular (dv = 4, dc = 64)

QC-LDPC code. The results show that for low precision messages q = 3 and for regular dv = 3

LDPC codes, the MS decoder is better than the OMS decoder. This result is not surprising since

the DE thresholds in Table II are better for MS than for OMS with q = 3 bits of precision. The

same observation holds for the regular (dv = 4, dc = 64) QC-LDPC code and precision q = 3.

The gains/losses of the SP-MS decoders compared with the MS/OMS measured at FER = 10−2

are reported in Table VII, which shows that the Monte Carlo simulations are congruent with the

values predicted by the DE thresholds.

The FER performance curves plotted in Figure 2 and Figure 3 show that the (4, 3)-bit SP-MS

decoders and the (3, 2)-bit SP-MS decoders exhibit poor performance due to an early error floor.

A method to mitigate the early appearance of the error floor is proposed in section VI.

2The simulation results for the BP decoder were obtained with the open-source simulator AFF3CT: A Fast Forward Error

Correction Toolbox, 2020. [Online]. Available: https://aff3ct.github.io/index.html
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Figure 2: FER performance for (3, 6)-regular QC-LDPC code.
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(4, 64)-regular LDPC, N = 8960

BP, float-point
(5, 5)-bit OMS,α = 1.73
(3, 3)-bit MS,α =0.5
(4, 4)-bit MS,α =1.06
(3, 3)-bit OMS,α =0.69
(4, 4)-bit OMS,α =1.15
(3, 3)-bit SP-MS,α = 0.57
(3, 2)-bit SP-MS,α = 0.57
(4, 4)-bit SP-MS,α = 1.04
(4, 3)-bit SP-MS,α = 1.05

Figure 3: FER performance for (4, 64)-regular QC-LDPC code.

Table VII: DE gains and SNR gains of SP-MS decoders for the (dv, dc)-regular LDPC codes.

(dv, dc) (qch, q) α∗
DE SNR

(dv, dc) (qch, q) α∗
DE SNR

gain/loss gain/loss (dB) gain/loss gain/loss (dB)
(dB) @ FER = 10−2 (dB) @ FER = 10−2

(3, 6)

(3, 3) 0.95 0.279 0.26

(5, 20)

(3, 3) 0.89 0.217 0.22

(3, 2) 0.48† −0.143⊥ −0.13⊥ (3, 2) 0.88 0.209⊥ 0.20⊥

(4, 4) 1.79 0.079 0.06 (4, 4) 1.39 0.021 0.02

(4, 3) 1.16†
−0.043⊥ 0.01⊥

(4, 3) 1.42
0.024⊥ 0.02⊥

−0.176* −0.14* −0.014* −0.015*

(4, 64)

(3, 3) 0.57 0.148 0.16

(6, 32)

(3, 3) 0.74 0.197 0.20

(3, 2) 0.57† 0.136⊥ 0.13⊥ (3, 2) 0.74 0.195⊥ 0.20⊥

(4, 4) 1.04 0.042 0.05 (4, 4) 1.18 −0.010 0.0

(4, 3) 1.05†
0.042⊥ 0.03⊥

(4, 3) 1.22
−0.005⊥ 0.0⊥

−0.041* −0.07* −0.034* −0.028*

† The channel gain factor α is further optimized with Monte Carlo simulations (see section VI).
⊥ SNR gains are obtained by comparing the (qch, q = qch − 1)-bit SP-MS and the (qch, q = qch)-bit MS/OMS.
* Results obtained when comparing the (4, 3)-bit SP-MS decoder with the (5, 5)-bit OMS decoder.
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(5, 20)-regular LDPC, N = 10240

BP, float-point
(5, 5)-bit OMS,α = 1.61
(3, 3)-bit MS,α =0.56
(4, 4)-bit MS,α =1.4
(3, 3)-bit OMS,α =0.92
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(3, 3)-bit SP-MS,α = 0.89
(3, 2)-bit SP-MS,α = 0.88
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(4, 3)-bit SP-MS,α = 1.42

Figure 4: FER performance for (5, 20)-regular QC-LDPC code.

Eb/N0(dB)
3 3.5 4 4.5 5

F
ra

m
e
e
rr
o
r
ra

te
(F

E
R
)

10
-9

10
-8

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

(6, 32)-regular LDPC, N = 2048
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(4, 4)-bit MS,α =1.035
(3, 2)-bit OMS,α =0.84
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Figure 5: FER performance for the ETHERNET code.

Simulation results for the case of the dv = 5 QC-LDPC code are shown in Figure 4, and in

Figure 5 for the IEEE 802.3 ETHERNET code. As for the dv = 3 and dv = 4 LDPC codes the

gains predicted by the DE correspond to the SNR gains at FER = 10−2. The gains/losses are

reported in Table VII.

From Figure 5, we can see that the (4, 3)-bit OMS decoder has the same performance as the

(4, 4)-bit OMS decoder. We also observe that the (3, 2)-bit OMS decoder exhibits a very high

error floor. In addition, the (3, 2)-bit SP-MS decoder mitigates the early appearance of the error

floor and it greatly outperforms the (3, 2)-bit OMS decoder and the (3, 3)-bit OMS decoder, thus

the SP-MS decoder is an excellent candidate for a hardware implementation.
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B. Convergence Performance Analysis

FER convergence results are presented in Figure 6 for the IEEE 802.3 ETHERNET code. This

figure shows that the FER curves for the SP-MS decoders decrease faster than for the MS and the

OMS decoders. This figure also shows that the BP decoder converges faster than all quantized

decoders during the first 6 iterations; after 7 iterations, the FER curve of the BP decoder decreases

slowly. It is to be noted that from iteration 7 to iteration 20, the (qch = 4, q)-bit SP-MS decoders

show better performance than the BP decoder.

We note that the FER convergence performance of the (qch, q = qch − 1)-bit SP-MS and the

(qch, q = qch)-bit SP-MS are almost equal or equal. In addition, after 10 iterations of decoding,

only marginal FER improvement is obtained for the (qch = 4, q)-bit SP-MS. The maximum

number of decoding iterations can thus be set to 10 without significant performance degradation.

Similarly, the maximum number of iterations for the (qch = 3, q)-bit SP-MS can be set to 15.

Finally, compared to the MS/OMS decoders, the SP-MS decoder uses fewer iterations to reach

the same FER. For example, at Eb/N0 = 4.75 dB, the (4, 3)-bit SP-MS and the (4, 4)-bit SP-MS

reach FER = 10−6 with 6 iterations, while the (4, 4)-bit OMS uses 9 iterations.
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(6, 32)-regular LDPC, N = 2048, SNR = 4.75 dB

BP, float-point
(5, 5)-bit OMS
(3, 3)-bit MS
(4, 4)-bit MS
(3, 3)-bit OMS
(4, 4)-bit OMS
(3, 3)-bit SP-MS
(3, 2)-bit SP-MS
(4, 4)-bit SP-MS
(4, 3)-bit SP-MS

Figure 6: FER convergence comparison on the ETHERNET code at Eb/N0 = 4.75 dB.

The average number of decoding iterations for the ETHERNET code is shown in Figure 7. For

low precision qch = 3, we note that the SP-MS decoder not only has a better performance than

the MS/OMS decoder, it also has the lowest average number of decoding iterations, which leads

to lower latency and a higher average throughput. At Eb/N0 = 4.5 dB, the average number of

decoding iterations is 5.5 for the OMS whereas it is only 3 for the SP-MS. This reduction of
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Figure 7: Average number of iterations of the ETHERNET code with different decoders.

the average number of decoding iterations translates into a 83.3%3 improvement of the average

decoding throughput.

When comparing the FER performance, the FER convergence, and the average number of

iterations, the (qch, q = qch−1)-bit SP-MS decoder offers the best trade-off between performance

and complexity. For applications that require low hardware complexity, the (3, 2)-bit SP-MS

decoder is the best option. For applications where hardware complexity is not an issue and

decoding performance is privileged, the (4, 3)-bit SP-MS decoder is the best choice.

We also performed MC simulations for the following LDPC codes: (dv = 4, dc = 8, N = 1296),

(dv = 5, dc = 10, N = 1280), (dv = 3, dc = 12, N = 1296), (dv = 4, dc = 16, N = 1296), and

(dv = 5, dc = 20, N = 1280), and we obtained similar conclusions.

C. Performance of Irregular LDPC codes

Figure 8 shows the simulation results for the WIMAX rate 1/2 LDPC code, for a maximum of

100 iterations. We observe that the SNR gains in the waterfall region are congruent with the

gains predicted by the DE analysis, with a 0.40 dB gain for q = 3 and a 0.40 dB gain for q = 4,

at FER = 10−2.

Additionally, the (3, 3)-bit SP-MS decoder has the same FER performance as the (4, 4)-bit MS

decoder. In the waterfall region, the (4, 4)-bit SP-MS has the same FER performance as the

(5, 5)-bit OMS.

3For a fully parallel architecture, the average decoding throughput is given by Tavg = NF/Lavg (in Mbit/s), where F (in

MHz) is the clock frequency and Lavg is the average number of decoding iterations. Note that F is constant for all decoders.
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Figure 8: FER performance for the WIMAX LDPC code with R = 1/2.

VI. MITIGATION OF THE EARLY APPEARANCE OF THE ERROR FLOOR

In this section we propose a method to mitigate the early appearance of the error floor of the

SP-MS decoder when the precision of the messages is lower than the precision of the LLRs, i.e.

when q = qch − 1.

A. Early Appearance of the Error Floor

Our MC simulations of regular LDPC codes shows that the (qch, q = qch−1)-bit SP-MS decoders

have almost the same performance as the (qch, q = qch)-bit SP-MS decoder for dv ≥ 5 LDPC

codes. In the case of dv = 3 and dv = 4 LDPC codes, the (qch, q = qch − 1)-bit SP-MS decoder

exhibits a very high error floor as shown in Figure 2 and Figure 3.

The early appearance of this error floor is not due to trapping sets, but to the effect of low

message precision on the VNU computation: the maximum absolute value of check-to-variable

messages is too small compared to the maximum absolute value of the LLRs. This effect is due

to configurations where the sum of check-to-variable messages does not exceed an erroneous

high LLR value and therefore cannot correct the bit error.

Let us take the example of the (3, 2)-bit SP-MS decoder, with Nch = 3, Nq = 1, and the case

of a VN vn connected to three check-nodes c1, c2, and c3. For this example, we assume that

xn = 0 is the value of the bit associated with variable-node vn, hence, the estimated bit x̂n is

correct (x̂n = 0) if γ(`)n > 0 or if In > 0 for γ(`)n = 0. In Table VIII, we show the APP γ
(`)
n

computed with the discrete function Ψa defined in (13) for a fixed value m
(`)
c3→vn = +1 and
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Table VIII: All values that can take γ(`)n = Ψa

(
In,m

(`)
c1→vn ,m

(`)
c2→vn ,m

(`)
c3→vn

)
, with m(`)

c3→vn = +1.

In −3 −2 −1 −0 +0

m
(`)
c2→vn\m

(`)
c1→vn −1 −0 +0 +1 −1 −0 +0 +1 −1 −0 +0 +1 −1 −0 +0 +1 −1 −0 +0 +1

−1 −5 −4 −3 −2 −4 −3 −2 −1 −3 −2 −1 0 −2 −1 0 111 −1 000 111 222

−0 −4 −3 −2 −1 −3 −2 −1 0 −2 −1 0 111 −1 0 111 222 000 111 222 333

+0 −3 −2 −1 0 −2 −1 0 111 −1 0 111 222 0 111 222 333 111 222 333 444

+1 −2 −1 0 111 −1 0 111 222 0 111 222 333 111 222 333 444 222 333 444 555

In ∈ {−3,−2,−1,−0,+0}. For In = −3 we obtain γ
(`)
n > 0 (x̂n = 0) only when m

(`)
c1→vn =

m
(`)
c2→vn = m

(`)
c3→vn = +1, i.e. one can estimate the correct value of the bit only if all messages

have the maximum allowed value (+Nq). For the case of In = −2 (respectively In = −1) we

can see 3 (respectively 6) configurations to correctly estimate the bit.

The effect of low precision messages is even more pronounced on the message update at

the VNU. Considering In = −3, m(`)
c1→vn = m

(`)
c2→vn = +1, and ϕv = 1 (ϕs = ϕv)

we obtain m
(`+1)
vn→c3 = Ψv (−3,+1,+1) = −0 using (14), i.e. the VNU will propagate an

incorrect message despite the correct values of the check-to-variable (or incoming in this

case) messages. This kind of VNU error propagation has a negative impact on the decoding

process and contributes to the observed high error floor. A similar behavior can be observed

for other configurations such as m(`+1)
vn→c3 = Ψv

(
In = −2,m

(`)
c1→vn = +1,m

(`)
c2→vn = +0

)
= −0

or m(`+1)
vn→c3 = Ψv

(
In = −2,m

(`)
c1→vn = +0,m

(`)
c2→vn = +0

)
= −0.

B. Mitigation of the Early Appearance of the Error Floor

To mitigate the appearance of the early error floor, we propose a modification of the VN update

that involves changing the maximum amplitude of the check-to-variable messages from Nq to

Ω > Nq after a given number of iterations Lm. The amplitude Nq is used for the first Lm − 1

iterations, and then a larger amplitude Ω > Nq is used from iteration Lm until the end of

decoding. Then the modified VNU rule is given by

m
(`+1)
vn→cm = Ψv

(
In,
{
m

(`)
c→vn

}
c∈V(vn)\{cm}

)
=
(

sign
(
m

(`+1),U
vn→cm

)
,S
(

max
(⌊∣∣∣m(`+1),U

vn→cm

∣∣∣⌋− b, 0) , Nq

))
. (17)

where b ∈ {ϕs, ϕa, ϕ0} is the offset and the unsaturated variable-to-check message m(`+1),U
vn→cm is

redefined as:

m(`+1),U
vn→cm =

µ
(`)
vn→cm

2
+ In +

∑
c∈V(vn)\{cm}

w(`)
c→vn , (18)
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with the value of w(`)
c→vn depending on the iteration:

w(`)
c→vn =


m

(`)
c→vn , if ` < Lm,

m
(`)
c→vn , if ` ≥ Lm and

∣∣∣m(`)
c→vn

∣∣∣ < Nq,(
sign

(
m

(`)
c→vn

)
,Ω
)
, if ` ≥ Lm and

∣∣∣m(`)
c→vn

∣∣∣ = Nq.

(19)

In addition, the APP computation at a VN vn is redefined as follows

γ
(`)
n = Ψa

(
In,
{
w

(`)
c→vn

}
c∈V(vn)

)
= In +

1

2
ξ sign(In) +

∑
c∈V(vn)

(
w(`)
c→vn +

1

2
sign

(
w(`)
c→vn

))
. (20)

The variable-to-check messages m(`+1)
vn→cm ∈ BM are computed using (17), and the CNU generates

check-to-variable messages m(`+1)
cm→vn ∈ BM with (8).

Table IX: Optimal values to implement the (qch, q = qch − 1)-bit SP-MS decoders.

(dv = 3, dc = 6) (dv = 4, dc = 64)

(qch, q) Ω Lm α∗ (ϕ∗s , ϕ
∗
a, ϕ

∗
0) Ω Lm α∗ (ϕ∗s , ϕ

∗
a, ϕ

∗
0)

(3, 2) 2 0 0.6 (1,−,−) 2 13 0.50 (1,−,−)

(4, 3) 4 0 1.16 (1, 1, 0) 5 13 0.95 (1, 1, 1)

Table X: All values that can take γ(`)n = Ψa

(
In, w

(`)
c1→vn , w

(`)
c2→vn , w

(`)
c3→vn

)
, with w(`)

c3→vn = +2.

In −3 −2 −1 −0 +0

w
(`)
c2→vn\w

(`)
c1→vn −2 −0 +0 +2 −2 −0 +0 +2 −2 −0 +0 +2 −2 −0 +0 +2 −2 −0 +0 +2

−2 −6 −4 −3 −1 −5 −3 −2 0 −4 −2 −1 111 −3 −1 0 222 −2 000 111 333

−0 −4 −2 −1 111 −3 −1 0 222 −2 0 111 333 −1 111 222 444 000 222 333 555

+0 −3 −1 0 222 −2 0 111 333 −1 111 222 444 0 222 333 555 111 333 444 666

+2 −1 111 222 444 0 222 333 555 111 333 444 666 222 444 555 777 333 555 666 888

The optimal values of α∗, ϕ∗ = (ϕ∗s, ϕ
∗
a, ϕ

∗
0), and the new parameters Ω and Lm, computed with

Monte Carlo simulations, are reported in Table IX, and those values are used to implement the

(qch, q = qch − 1)-bit SP-MS decoders for the dv = 3 and dv = 4 LDPC codes.

To illustrate how the proposed method helps the decoder, we use the example of the (3, 2)-bit

SP-MS decoder and consider the parameters presented in Table IX. The new values of the APP

γ
(`)
n computed after iteration Lm are shown in Table X. The circled numbers correspond to the

new configurations for which we can estimate the correct value of the bit with our modification.

As an example for In = −3, we observe that from a single configuration (Table VIII), we

now have 5 configurations (Table X) to correctly estimate the bit. Calculating the variable-

to-check message m
(`+1)
vn→c3 for In = −3, m(`)

c1→vn = m
(`)
c2→vn = +1, and ϕv = 1 (ϕ∗s = ϕv),
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using the modified VNU, the output message now propagates the correct sign, with m
(`+1)
vn→c3 =

Ψv

(
In = −3, w

(`)
c1→vn = +2, w

(`)
c2→vn = +2

)
= +0.

Figure 9 shows the simulation results of the (qch, q = qch−1)-bit SP-MS decoders for dv ∈ {3, 4}

LDPC codes. We can see that the proposed modification helps greatly to lower the error floor.
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Figure 9: Lowering error floors for dv = 3 and dv = 4 LDPC codes.

The FER performance curves obtained using the optimal values presented in Table IX, plotted

in Figure 10, show that the (4, 3)-bit SP-MS decoder is slightly better than the (4, 4)-bit OMS

decoder. In addition, the (3, 2)-bit SP-MS decoder is better than the (3, 3)-bit MS/OMS decoder

for the dv = 4 LDPC code. In the case of the dv = 3 LDPC code, we observe a loss of

performance of the (3, 2)-bit SP-MS compared with the (3, 3)-bit MS.

The proposed method to mitigate the appearance of the early error floor can be easily adapted to

the case of MS/OMS decoders. First the unsaturated variable-to-check message is redefined

as m
(`+1),U
vn→cm = In +

∑
c∈V(vn)\{cm}w

(`)
c→vn , where w

(`)
c→vn = Ω sign

(
m

(`)
c→vn

)
if ` ≥ Lm and∣∣∣m(`)

c→vn

∣∣∣ = Nq, otherwise, w(`)
c→vn = m

(`)
c→vn . Then the variable-to-check message is computed

with m
(`+1)
vn→cm = Λ

(
m

(`+1),U
vn→cm , ϕv

)
. Finally, the APP computation is redefined as γ(`)n = In +∑

c∈V(vn)w
(`)
c→vn . The check-to-variable message is computed using (4). For example, we obtain

with MC simulation that (Ω = 2, Lm = 12, α∗ = 0.68, ϕv = 1) optimizes the FER performance

of the (3, 2)-bit OMS decoder for the IEEE 802.3 ETHERNET code; we have observed that the

(3, 2)-bit OMS decoder has almost the same performance as the (3, 3)-bit OMS decoder, and

we have not observed the appearance of the error floor at Eb/N0 = 5 dB.
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Figure 10: Comparison of the performance of (qch, q = qch − 1)-bit SP-MS decoders with the

MS and OMS decoders after lowering the error floor.

VII. HARDWARE COMPLEXITY OF SIGN-PRESERVING MIN-SUM DECODERS

A. Reduction of Wires and Memory

The decoding performance results indicate that the (qch, q = qch − 1)-bit SP-MS decoder is a

good candidate for hardware implementation. The memory and the number of wires used in an

implementation is the same for the MS, OMS, and SP-MS decoders when the same precision is

used (qch = q). Considering a fully parallel architecture, when the precision q goes from 3 bits

to 2 bits, the reduction of wires is 33.33%, whereas when the precision q goes from 4 bits to 3

bits, a reduction of 25% of wires is obtained. For a layered architecture, a memory reduction of

up to 33.33% can be obtained when check-to-variable messages are stored. In the case of storing

the variable-to-check messages in the compressed format4of [40] that requires the storage of the

signs, first and second minima, and the index of the first minima, a memory reduction of up to

15.38% can be achieved for the regular (dv = 3, dc = 6) LDPC code.

The FER results show that the (4, 3)-bit SP-MS can achieve the performance of the (5, 5)-bit

OMS, thus promoting a significant reduction of the wires (by 40%), with negligible performance

degradation (0.028 dB for dv = 6, see Table VII for other values). In addition, a reduction of

4The size of memory required to store the check-to-variable messages of a CN of degree dc is: dc +blog2(dc)c+1+2(q−1).
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up to 40% in the size of the memory can be achieved by using q = 3 bits message precision

instead of q = 5 bits.

B. Synthesis results on FPGA

In this section, we present the synthesis result of a fully parallel architecture on the Xilinx

XC7V2000T-1FLG1925 FPGA chip for the IEEE 802.3 ETHERNET code. The main available

resources of the FPGA are: (i) 2,443,200 Slice Registers, (ii) 1,221,600 Slice LUTs, and (iii)

351,321 LUT-FF pairs.

The FPGA resource utilization of the OMS and SP-MS decoders is listed in Table XI. In addition,

the maximum clock frequency that each decoder can reach is listed. From the results obtained,

we can see that the maximum clock frequency of (qch, q = qch−1)-bit SP-MS is higher compared

to the maximum clock frequency of the (qch, q = qch)-bit OMS, we observe an increase in the

clock frequency of up to 30%. Reduced precision for the messages entails reduced complexity

of the VNUs and CNUs and reduced wires in implementation, and thus a reduced critical path,

which promotes a higher clock frequency (i.e. the throughput is increased).

When comparing the use of FPGA resources, we can clearly see that the (qch, q = qch − 1)-bit

SP-MS decoders use less resources than the (qch, q = qch)-bit OMS decoders. A large savings of

FPGA resources can be observed: around 27% of slice registers and 56% of slice LUTs for low

precision (qch = 3, q = 2) compared to precision (qch = 3, q = 3), and 20% of slice registers and

48% of slice LUTs for precision (qch = 4, q = 3) compared to precision (qch = 4, q = 4). These

results confirm that the complexity of update rules is reduced when the precision of messages

is reduced.

Table XI: Synthesis results on FPGA for the IEEE 802.3 ETHERNET code.

Decoder (qch, q)
Maximum Clock Number of slice Number of slice Number of fully Wires

Frequency (MHz) registers LUTs used LUT-FF pairs reduction

OMS (3, 3) 111.100 (0.0%) 45061 (0.0%) 463739 (0.0%) 38917 (0.0%) 0.0%

SP-MS (3, 2) 133.582 (+20.24%) 32773 (−27.27%) 204091 (−55.99%) 32773 (−15.78%) −33.33%

OMS (4, 4) 87.790 (0.0%) 59397 (0.0%) 666300 (0.0%) 51205 (0.0%) 0.0%

SP-MS (4, 3) 113.814 (+29.64%) 47109 (−20.68%) 345913 (−48.08%) 47109 (−7.99%) −25.0%

From all these results, we can conclude that the SP-MS decoder is better overall than the

MS/OMS decoder. Not only does the SP-MS decoder have better performance, it also reduces

the complexity of the VN and CN processing, and finally it has a better convergence speed.
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Table XII: Comparison of the SP-MS decoder with other decoders reported in the literature.

This work [23] [17] [18] [20] [19] [28] [32] [27] [25]

Decoder SP-MS
Finite OMS with Split-row-16 Normalized Reduced Delayed Improved MTFM-based APP based

Alphabet post-proc. MS Prob. MS Complexity MS Stochastic Differential Binary Stochastic MS

(qch, q) (3, 2) (4, 3) (4, 3) (4, 4) (5, 5) (4, 3) (6, 6) (5, 1) (6, 1) (6, 1) (2, 2)

Maximum
20 14 5

8 + 6
11 9 30

600
315

400
48

Iterations post-proc. (with post-proc) (with post-proc)

Eb/N0 (dB)† 4.5 4.33 4.95 4.37 4.55 4.45 4.35 4.7 4.5 4.45 4.86

Architecture full-parallel
unrolled

partial-parallel full-parallel full-parallel layer-parallel full-parallel full-parallel full-parallel full-parallel
full-parallel

† At a BER level of 10−7.

VIII. COMPARISON WITH OTHER STUDIES

Many decoders have been proposed in the literature for the IEEE 802.3 ETHERNET code, and

some of them are listed in Table XII. In Figure 11, we compare the error correction performance

of the SP-MS decoders and the decoders listed in Table XII. The BER/FER curves of the decoders

listed in Table XII were taken directly from the cited papers. All SP-MS decoders exhibit better

BER/FER performance than the (4, 3)-bit finite alphabet decoder [23], the (2, 2)-bit APP based

MS decoder [25], and the (5, 1)-bit delayed stochastic decoder [28].

Additionally, the (3, 2)-bit SP-MS decoder has almost the same performance as the (5, 5)-bit

split-row-16 MS decoder [18] and the (4, 3)-bit normalized probabilistic MS decoder [20] with

a much lower hardware complexity. Comparing the (3, 2)-bit SP-MS decoder with the (6, 1)-bit

improved differential binary decoder [32] and the (6, 1)-bit MTFM-based stochastic decoder [27],

we observe that all three decoders have almost the same performance. It is worth mentioning

that the (3, 2)-bit SP-MS decoder uses only 20 iterations whereas the 1-bit LDPC decoders [27],

[28], [32] use more than 300 iterations.

As a last remark, we observe that the SP-MS decoders exhibit an error floor at a FER level of

10−8 due to trapping sets.

IX. CONCLUSION

In this paper, we have proposed a new message-passing iterative LDPC decoder which uses a

sign-preserving factor that helps the decoder keeping the sign information of extrinsic messages

during the VNU processing. The sign-preserving factor also helps increasing the reliability

of variable-to-check messages and thus helps the finite precision iterative decoder improving

the error-correcting performance. We have also proposed an offset model that depends on the

magnitude of unsaturated variable-to-check messages. Density Evolution was used to optimize
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Figure 11: Performance comparison of the SP-MS decoders with other decoders reported in the

literature for the IEEE 802.3 ETHERNET code.

our SP-MS decoder performance. The analysis conducted with DE has shown that the sign

preservation of messages is always beneficial for low precision SP-MS decoders. The DE

threshold results for SP-MS decoders have also shown that the precision of messages can be

reduced by one bit while maintaining the same error-correcting performance. The finite-length

Monte Carlo simulations have corroborated the DE analysis.

For the regular dv = 3 and dv = 4 LDPC codes, reducing the precision of the messages creates an

early error floor. To mitigate the appearance of the early error floor, we have proposed a method

that involves increasing the maximum amplitude of the check-to-variable messages during the

VNU processing.

In this study, we have demonstrated that the (4, 3)-bit SP-MS decoders can achieve the same

error-correcting performance as the (5, 5)-bit MS/OMS decoders, and the (3, 2)-bit SP-MS

decoders outperform the (3, 3)-bit MS/OMS decoders, with a SNR gain of up to 0.43 dB. We

have also shown that the SP-MS decoders converge faster than the MS/OMS decoders. With the

synthesis results on an FPGA, we have also demonstrated the low hardware complexity required

by the SP-MS decoders.
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