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Villeurbanne, France

bInstitut Lumière Matière, UMR CNRS 5306, Univ Lyon, Université Claude Bernard Lyon 1, F-69622 Villeurbanne, France
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Jeanne Marvig, 31055 Toulouse, France

fInstitut für Physik, Martin-Luther-Universität Halle-Wittenberg, 06120 Halle (Saale), Germany

Abstract

Carbon nanotubes have extraordinary mechanical properties, but modifications of their structure tend to

weaken them. Here, we have studied by experiments and modelling the one-dimensional filling of single

chirality (6,5) carbon nanotubes with iodine and water. We show that iodine-filling can enhance the pressure

of radial collapse of these nanotubes by a factor 2 compared to the empty (6,5) tubes. For water filling,

this enhancement factor reduces to 1.4. Our single-chirality study allows correlating the different Raman

signatures of the radial collapsing process, which was not possible in samples with mixed chiralities. A clear

spectroscopic signature of the collapse pressure can thus be given: it is the pressure at which the G-band

frequency evolution with pressure softens while the radial breathing mode intensity vanishes. These new

criteria for the detection of radial collapse allow correcting some existing discrepancies in the literature.

Finally, we discuss the impact of molecular filling on the radial mechanical stability as a function of the

tube diameter. It results that molecular filling allows for a superior stability effect than filling with tubes

(i.e. multi-wall carbon nanotubes). The stability enhancement tends to grow with the tube diameter and

depends strongly on the nature of the filling molecules.

Keywords: carbon nanotubes, single chirality, high pressure, radial collapse, nanotube filling, enhanced

mechanical stability
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1. Introduction

Carbon nanotube geometry is an important pa-

rameter when considering their mechanical prop-

erties. In fact, whereas the extraordinary me-

chanical properties of single-wall carbon nanotubes

(SWCNT) are essentially diameter-independent

and linked to the sp2 in-plane graphene mechani-

cal properties [1], it is quite different for the radial

mechanical properties which are determined by the

nanotube diameter [2–5]. SWCNT can be uniquely

defined by their chiral indices (n,m), a vector de-

fined in a graphene plane determining how to roll

it to obtain a nanotube. The chirality determines

the electronic (metallic or semiconducting) and pe-

culiar optical properties of SWCNT [6]. From a

geometrical point of view, different chiral indices

can give rise to very similar values of nanotube di-

ameter. The mechanical properties of SWCNT are

considered to be diameter and not chirality depen-

dent with perhaps some exceptions for low chiral

indices [7].

More particularly, the phase diagram of empty

SWCNT shows that they are mechanically stable

in a limited diameter domain comprised between

0.44 nm and ∼5 nm [5, 8]. Outside of this domain,

either free-standing tubes do not exist (for lower di-

ameters) or they are found in a radially collapsed

geometry (for larger diameters). Applying pressure

leads to the radial collapse of SWCNT [2–5] with a

pressure of radial collapse which can be well repro-

duced by continuum mechanics in a diameter do-

main comprised between ∼ 1 nm and ∼ 2.5 nm [5].

Carbon nanotube molecular filling offers a route

to simultaneously modify the physico-chemical

properties of SWCNT [9, 10] and increase their

mechanical stability while protecting the encapsu-

lated 1-D molecular structure [11, 12]. Endohe-

dral intercalation thus offers a route for physico-

chemical modifications, while avoiding bonding to

other chemical species or creating defects, which

both are mechanisms that introduce mechanical un-

stability [13]. Nanotube filling is not expected to af-

fect the axial stiffness and strength, whereas the ra-

dial mechanical properties may be significantly im-

proved [7, 12, 14]. All these considerations are par-

ticularly important for applications in nanocompos-

ite materials which may be submitted to different

mechanical efforts [15–17], or in pressure- or strain-

driven devices based on carbon nanotubes [18, 19].

There have been many studies probing the me-

chanical, electronic, vibrational or structural prop-

erties of single wall carbon nanotubes at high pres-

sure, using X-ray or neutron diffraction [20, 21],

photoluminescence [7, 22], optical absorption spec-

troscopy [23, 24], electronic transport measure-

ments [25] but the studied samples have been

mostly composed of mixtures of nanotubes with dif-

ferent chiralities or, in the very few cases in which

a unique carbon nanotube has been studied at high

pressure, its chirality was not identified [18]. There

is thus a lack of studies of single chirality samples

at high pressure, studies that would allow corre-

lating the pressure evolution of properties with a

given chirality or diameter, as well as the effect of

molecular filling on these properties. This is par-

ticularly important when comparing experimental

results with results obtained from atomistic mod-

elling which are performed for a single type of nan-

otube with, therefore, a single well-defined chirality.
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The above considerations also apply to Raman

spectroscopy. In fact, Raman spectroscopy is a very

sensitive characterization tool widely used for inves-

tigating the mechanical and electronic properties

of CNT under extreme conditions – mainly under

compression – allowing following in situ structural

transformations [7, 26–36]. The Radial Breathing

Mode (RBM) offers an accurate measurement of the

structural tunability, since its frequency is inversely

proportional to the SWCNT diameter and its in-

tensity is strongly dependent on the optical tran-

sition energies. The RBM therefore constitutes an

accurate probe of the radial deformation and the

nanotube radial collapsing process. Furthermore,

because it is related to the E2g modes, the G-band

constitutes an accurate probe of the strain and dop-

ing in sp2 systems such as carbon nanotubes [37] or

graphene [38, 39]. In SWCNT, the G-band is usu-

ally split into its G+ and G− components, related

to the E2g modes propagating either along the tube

axis or its circumference, respectively. However,

while the RBM position and intensity is directly de-

pendent on the nanotube chirality, the G+ and G−

components only show a poor dependence on the

chirality and diameter – with an increased depen-

dence on the diameter for the G− mode, as small

diameters induce large out-of-plane constraints on

the sp2 bonds. As a consequence, in a sample of

SWCNT with mixed chiralities, while each RBM

peak corresponds to a given individual chirality,

the G-band always arises from the mixture of all

chiralities. A study performed on a single-chirality

sample would thus provide the intrinsic G-band re-

sponse of a single nanotube chirality to an external

constraint such as pressure, opening the path for an

accurate direct confrontation between experiments

and atomistic models.

In this paper, we investigate the mechanical sta-

bility of SWCNT samples with a high proportion of

(6,5) chirality, either individualized or in bundles,

in three cases: empty, water-filled, or iodine-filled.

We investigate, through experiments and atomistic

modelling, the effect of molecular filling on the ra-

dial stability of SWCNT by studying samples with

mostly a single chirality. From the experimental

point of view, Raman spectroscopy allows correlat-

ing pressure-induced changes in the tube geometry

thanks to signature evolutions both in the RBM

and in the G-band Raman signal for a single chiral-

ity. This correlation has been in fact up to now not

possible due to the study of mixed chirality sam-

ples.

2. Experimental and computational meth-

ods

Chirality-selected (6,5) SWCNT were obtained

using the Aqueous Two-Phase Separation (ATP)

method [40, 41] from a CoMoCAT SWCNT pow-

der (Sigma-Aldrich, SG65i) – initially containing a

large proportion (& 45 %) of (6,5) SWCNT. First, a

Stock 1 mg/mL nanotube dispersion was obtained

by sonication in 1 % aqueous sodium deoxycholate

(DOC) solution. Then, two surfactant-polymer so-

lutions (S1 and S2) were prepared using polyethy-

lene glycol (PEG), dextran, DOC, sodium dodecyl

sulfate (SDS) and sodium cholate (SC) – the full de-

tails are gathered in Tab. S1. The stock nanotube

solution added with S1 was then centrifuged at 9500

rcf. The bottom solution was collected, mixed with
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S2, and centrifuged again. The top phase, now con-

taining a majority of (6,5) SWCNT (Fig. 1(a)), was

then collected and submitted to a cycle of washing

in water and ethanol, filtration, and annealing at

600 ◦C in argon to remove the polymers surround-

ing the nanotube bundles. To allow the nanotubes

to be filled, they then need to be opened. For that

purpose, part of the nanotubes were heated up to

the temperature of 550 ◦C in air with a ramp of

10 ◦C/min and then collected as soon as the tar-

get temperature was achieved. Aiming for a 10 %

mass loss, this annealing allows to selectively open

the nanotubes around the reactive sites located at

the tips and the defects [42, 43]. Further details on

this sample preparation are reported in the SI, as

well as a photo-luminescence excitation map of the

Stock and final solutions (Fig. S1).

To fill the (6,5) SWCNT with iodine, a mixture of

molar ratio 1:1.3 SWCNT buckypaper:iodine pow-

der was ground in a mortar. The mixture was

then transferred into a quartz ampule (6 mm di-

ameter) using a glass funnel. As iodine is sensi-

tive to air, the above steps were performed in a

tent under N2 atmosphere. Subsequently, the am-

pule was evacuated down to a reduced pressure of

20 Pa and kept subjected to this dynamic vacuum

for 2 h. Finally, the ampule was sealed by local

melting with a flame and placed into a furnace to

be heated up to 140 ◦C for 24 h. The iodine-filled

(6,5) SWCNT (I@SWCNT65) were then washed in

absolute ethanol until the liquid was colorless [44].

From Raman characterization (Fig. 1(b)), the filling

rate appeared to be close to 80 % (assuming that the

empty and filled nanotubes display the same RBM

Raman cross-section, which might not be the case).

This is a remarkable filling rate which was not able

to be achieved for nanotube samples made of ran-

dom diameters. The filling efficiency is of the same

range as that of C60 molecules when filling SWCNT

material containing a majority of (10,10) tubes.

This supports the statement that the main limita-

tion to high filling rate of SWCNT with molecules

is the presence of a fraction of CNT whose diame-

ters are not energetically optimized for hosting the

molecules involved – essentially, the CNT inner cav-

ity needs to be of similar diameter than the wanted

molecules to favor their adsorption. This is out of

the scope of this paper, but considering the high

doping power of iodine with respect to SWCNT (or

DWCNT), a I@SWCNT65-based material would be

worth studying regarding its transport properties.

Figure 1(c) shows a high angle annular dark field

TEM image of I@SWCNT65: many single-atom io-

dine chains (bright contrast) can be seen, which

confirms that iodine fills the tube cavities. Raman

spectroscopy of the nanotubes before and after the

filling procedure (Fig. 1(b)) shows that the (6,5)-

associated RBM mode is highly blue-shifted by the

insertion of iodine, from 295 cm−1 to 323 cm−1. In

spite of the filling procedure, the empty-tube RBM

signal is still clearly visible at 295 cm−1, which al-

lows independently following the evolution of both

empty and filled tubes under pressure. Unfortu-

nately, the complexity of the resonance Raman pro-

cess [45, 46], with the present knowledge, does not

allow for a precise quantification of the filling degree

beyond the rough estimate of 80 % filling. From the

Raman signal only, it is impossible to distinguish

between the case where 80 % of the tubes are fully

filled and 20 % are empty, the case where 100 % of
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Figure 1: (a) Schematics of the ATP procedure for separating nanotubes per chirality. The final solution, Top 2, contains a

large majority of (6,5) SWCNT as can be seen by the purple color of the solution, which is confirmed by Raman spectroscopy

(568.2 nm excitation laser). – (b) Raman spectra of the (6,5) nanotubes before (orange) and after (blue) filling with I2 (532 nm

excitation laser). Dashed grey lines are Lorentzian fits of the I@SWCNT65 spectrum. The four peaks fitting the iodine features

are centered at 102, 128, 140 and 149 cm−1 at ambient pressure. – (c) HAADF-TEM image of the iodine-filled (6,5) nanotubes.

Single-atom chains of iodine can clearly be seen as lines of bright dots, as highlighted in the zoomed area. Another image is

shown in Fig. S2. – (d) Upper image: schematics of the Diamond Anvil Cell apparatus principle showing the interior of the

experimental cavity defined between the diamonds and the metallic gasket. Enlargement: optical image of the sample chamber

taken through one of the diamonds showing a nanotube sample immersed in the liquid pressure transmitting medium and a

ruby chip used for pressure calibration. On this picture, the sample chamber hole diameter is ∼ 120 µm.

the tubes are filled at 80 %, and the case where

a mixture of both previous scenarios occurs. The

HRTEM images seem to show that when the tubes

are filled, they are filled with a high degree (see

Fig. S2 for a larger image). Although HRTEM

images are very local and might not be a reflec-

tion of the entirety of the sample, this observation

goes in the direction of the sample being a mix-

ture of highly filled tubes and empty ones, i.e. the

ones that were not opened or not accessible for io-

dine filling.. Fig. 1(b) also shows the additional

iodine signal in I@SWCNT65 between ∼ 102 and

∼ 143 cm−1.

A fraction of I@SWCNT65 powder was placed in-

side the diamond anvil cell (DAC) (Fig. 1(d)) using

a tungsten tip together with a small ruby chip for

pressure measurement using ruby fluorescence cal-

ibration [47]. A 4:1 methanol-ethanol mixture was

used as pressure transmitting medium (PTM), as

this alcohol mixture remains liquid (and thus per-

fectly hydrostatic) up to 10.5 GPa [48]. The pres-

sure was exerted through a deformable membrane

applying the driving force on the DAC piston [49],

up to a maximum pressure of 51 GPa (Fig. 1(d)).

At such high pressures, the nanotubes were mostly

destroyed [50] and reversibility was thus not ob-
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served (Fig. 2(a)).

The Raman spectra were recorded using a

LabRAM HR Evolution micro-Raman spectrome-

ter (Horiba Jobin-Yvon), with an excitation laser

line of 2.33 eV (532 nm). The scattered light

was collected in back-scattering geometry through

the diamond anvil and using a ×50 long-working

distance objective (Fig. 1(d)). The laser power

was increased as much as possible while check-

ing that the Raman signatures were not chang-

ing in position and shape, and power was kept be-

low ∼ 3.2 mW (before going through the diamond

anvil). The scattered light was dispersed by a 1800

grooves/mm grating, allowing for a spectral reso-

lution of ∼ 1 cm−1. The Raman spectra are then

subtracted of a polynomial background and fitted

using Lorentzian or Voigt functions (Voigt functions

are only used for iodine peaks above 15 GPa).

The calculations of the collapse of the empty

and filled with iodine and water CNT were car-

ried out by using the density functional tight-

binding (DFTB) method [51], as implemented in

the DFTB+ package [52]. DFTB method has suc-

cessfully been used simulate both empty [3, 4, 53]

and filled CNT [11]. The parameters to de-

scribe the carbon-carbon interaction were taken

from the matsci-0-3 set, [54] while we used halorg-

0-1 [55] set for iodine-iodine and iodine-carbon,

and mio-1-1 set [56] for oxygen-oxygen, hydrogen-

hydrogen, carbon-oxygen, carbon-hydrogen and

oxygen-hydrogen interactions. Computations were

performed on a single (6,5) nanotube unit, the

cell containing 364 carbon atoms (twice that num-

ber in the bundle case where two adjacent tubes

were considered), and having an initial dimension

of 10.8× 10.8× 40.64 Å3. Various filling conditions

were considered: empty tubes, empty tubes in a

bundle, tubes filled with 14 water molecules, and

tubes filled with 6 or 7 I2 molecules.

3. Results

Figure 2 displays the pressure evolution of the

Raman spectra of I@SWCNT65. The first two

bands at 102 and 143 cm−1 are attributed to the

iodine polyanions I3
– and I5

– forming inside the

tubes, respectively [14, 57–59]. We observe that

the position of these two bands at ambient pres-

sure in our tubes is significantly lower than the

one observed in the case of iodine inside tubes of

∼1.4 nm diameter (109 and 174 cm−1) [14]. We

also note that in our case, only 4 contributions to

these bands (or even 2 at higher pressures) are nec-

essary to fit our spectra (Fig. 1(b)), whereas for

larger and more dispersed diameter distributions,

up to 7 peaks were necessary [14]. This can be ex-

plained by the fact that 1.4 nm diameter nanotubes

allow for nonlinear polyiodine structures such as

L and V-shaped I5
– [14], while the ∼ 7.5 Å di-

ameter of (6,5) SWCNT only allows for single-file

structures. We thus expect the Raman spectrum

of I@SWCNT65 to show different spectral contri-

butions depending on nanotube diameter. More-

over, higher energy contributions are attributed to

nonlinear polyiodine chains [14, 60], and their ab-

sence thus shifts the spectrum to lower frequencies

– which matches our observations.

The pressure evolution of the position and width

of the iodine components is presented in Fig. 2(b-

d). As soon as the pressure increases, only three
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Figure 2: (a) Pressure evolution of the Raman spectra of I@SWCNT65, focused on the RBM and iodine modes. The lines

correspond to Lorentzian/Voigt fits of the experimental data (points). For clarity, the spectra are normalized to the maximum

intensity in this energy range, and then vertically shifted. The vertical lines are guides for the eye indicating the position of the

prominent peaks of polyiodine and empty/filled (6,5) nanotubes at room pressure. – Pressure evolution of the Raman RBM

and iodine peaks positions (b) and FWHM (c). Point size in (b) is proportional to normalized peak integrated intensity. The

lower frequency RBM peaks (∼ 296 cm−1 at room pressure) correspond to the empty tubes. – (d) Pressure evolution of the

RBM peak area for I@SWCNT65 (red) and empty (6,5) nanotubes (orange) in alcohol PTM. The gray signs correspond to

water-filled individualized (6,5) nanotubes in the Top 2 solution (Fig. 1(a)). This solution contains both empty and water-filled

nanotubes, and the PTM is a mixture of water, polymers and surfactants. Full fits of the water-filled sample are available in

Figs. S4 and S5. Dashed lines are guides to the eyes. In all panels, the vertical error bars are fitting standard errors, while the

horizontal ones come from the standard 5 % incertitude on pressure determination [47] – the same applies to Fig. 3.

Lorentzian components are needed to fit the io-

dine peaks (four at room pressure) – and this goes

down to two Voigt components for pressures above

15 GPa. In the [0,10] GPa range, the iodine com-

ponents are little affected by the increase in pres-

sure: the nanotube host screens the adsorbed iodine

from the applied pressure. For pressures between

10 and 30 GPa however, a 60 cm−1 blueshift is ob-

served. This coincides with an increasing faceti-

zation of the nanotubes together with progressive

polymerization between adjacent tubes, as simu-

lated by DFTB and shown in the snapshots dis-
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played in Fig. S6. Moreover, for pressures above

30 GPa, no further evolution of the iodine peaks

is observed, although they disappear at ∼ 50 GPa.

The peaks are retrieved when decreasing the pres-

sure, but the higher energy peak is now shifted to

154 cm−1 at room pressure (143 cm−1 before the

pressure cycle).

The pressure evolution of the RBM peak posi-

tion, width, and intensity is shown in Fig. 2(b-d).

The disappearing of the RBM signal shows that

the empty tubes (orange points) collapse around

9 GPa, while the iodine-filled ones (red points) col-

lapse at a much higher pressure of ∼ 24 GPa –

which corresponds to an enhanced mechanical re-

sistance to pressure for filled nanotubes [14, 32].

The same effect of an increased collapse pressure is

observed for water-filled individual (6,5) nanotubes

(gray points in Fig. 2(d)), but with a collapse pres-

sure of ∼ 15 GPa. Iodine filling thus seems to

greatly enhance the mechanical properties of such

small nanotubes compared to water filling.

These observations are confirmed by the evolu-

tion of the G-band with pressure shown in Fig. 3.

The latter shows a linear blueshift with pressure for

both water-filled and iodine-filled (6,5) SWCNT up

to the critical pressures of ∼16 and ∼24 GPa, re-

spectively. Above these critical pressures, the pres-

sure evolution of the G-band position moves to-

wards the pressure behavior of graphite [32, 34, 62],

indicating that the nanotubes are fully collapsed.

The full spectra are shown in Fig. S3. In Fig. 3, we

can also observe the convergence of the G+ and G−

components towards the graphite behavior. This is

not observed in mixed chirality tubes [7] and could

constitute an additional signature of the pressure-

1550
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∆
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[1
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]

Figure 3: Pressure evolution of the Raman G-band shift.

I@SWCNT65 data are shown in red for the G+ component

and orange for the G− one, while data for the individu-

alized water-filled tubes from the Top 2 sample are shown

in gray (G+ only for clarity). The full line corresponds to

the graphite equation of state [61], while the dashed line

is a guide for the eye corresponding to the linear fit of low-

pressure data. The vertical lines mark the onset of collapsing

pressures of 15 and 24 GPa determined from the observation

of the RBM peaks. Above 26.8 GPa, the G− component

become indiscernible in I@SWCNT65.

induced collapse which needs the study of single chi-

rality tubes to be put into evidence. We only show

the two components of the G-band for the iodine-

filled tubes in which we could estimate a dominant

proportion of filled tubes.

Interestingly, a wide range of collapsing pres-

sures are predicted with our DFTB computations

for (6,5) SWCNT in various conditions. For empty

nanotubes, Fig. 4 shows that the interaction of the

tubes with their neighbors has a tremendous effect

on the collapsing pressure, going from ∼ 24.1 GPa

for single tubes down to ∼ 15.7 GPa for bundles

of two nanotubes (see Fig. S6 for further details on

the intermediate structures). Note that given the

large number of atoms in a (6,5) SWCNT unit cell,
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Figure 4: (a) DFTB-computed relative variation of vol-

ume as a function of pressure for (6,5) SWCNT filled with

different molecules (H2O and I2). Except when specified

(bundle), a single tube was considered in the simulation

box. In the bundle case, the simulation box contains two

tubes. – (b) Snapshots of the cross-section of the main simu-

lated structures, at 0 pressure and at the maximum pressure

reached. More details and intermediate structures are shown

in Fig. S6.

only one or two tubes were considered in the DFTB

simulations to keep the computation feasible. Fur-

ther increasing the number of nanotubes in a bundle

might lead to the decreasing of the predicted col-

lapsing pressure, hence approaching experimental

observations.

4. Discussion

First of all, we underline that our Raman study

on single chirality (6,5) tubes allows to unequiv-

ocally correlate the different Raman spectroscopic

signatures of the radial collapse. The RBM dis-

appearance is observed in Fig. 2.(d) at 15-16 and

22-24 GPa for water-filled and iodine-filled (6,5)

tubes respectively. These are exactly the same pres-

sure values for which the G-band position deviates

from linearity with an associated softening for these

same (6,5) filled tubes (Fig. 3). This is a remark-

able result as in many previous works the collapse

pressure was identified as related to a change of

sign in the G-band pressure derivative of the wave-

length [10, 32]. We do also observe this effect, but at

a pressure 25 % higher than the collapse one. Col-

lapse pressures have therefore been overestimated

in many works, which can now be corrected using

the collapse pressure criteria for the G-band here

obtained.

Table 1 summarizes the collapse pressures ob-

tained by the different experimental and calcula-

tion methods used in our work. The DFTB val-

ues correspond to the first collapse observation with

the largest supercell as it will be discussed below.

We have also included results from the modified

Lévy-Carrier (mLC) formula proposed in Ref. [4]

as PCd
3 = 24αD(1 − β2/d2), with D the graphene

bending stiffness, β the lowest diameter for a free

standing tube, and α a coefficient having a value of

1.0 for the collapsing onset and 1.5 for the collaps-

ing end, as proposed in Ref. [63].

Overall, there is an excellent consistency and

agreement between experiments, DFTB modelling
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Table 1: Collapse pressures Pc (in GPa), obtained from the

RBM and G-band evolution of our Raman experiments and

DFTB modelling (for the largest simulation cell). Included

are the prediction of the collapsing onset and end of collaps-

ing from the modified Lévy-Carrier model [4] and this same

model including bundles. The two slash-separated values

correspond to observations or predictions for the onset and

end of the collapsing process, respectively.

(6,5) I2@(6,5) H2O@(6,5)

RBM 9 22 15

G-band - 24/35 16

DFTB 15.7 29 17.5

mLC 10.2/15.7 - -

mLC bundles 9.6/14.4 - -

and predictions from the mLC model. For filled

nanotubes, defining their collapse pressure from

DFTB calculations is not as straightforward as for

the empty ones, as can be seen from the various

snapshots of Fig. S6. Taking water-filled nanotubes

as an example, a sequence of two volume drops at

17.5 GPa and 29.5 GPa takes place, rending dif-

ficult the definition of a unique collapse pressure.

Taking the first volume drop as criterion for the col-

lapse pressure, the simulations reproduce the trend

of having a much larger collapse pressure for iodine-

filled tubes (∼ 29 GPa) than for water-filled ones

(∼ 17 GPa). This is then the criterion retained in

Table 1. These pressures are however 20 % and 13 %

larger, respectively, than the ones observed exper-

imentally – but this can be explained by the bun-

dle effect observed for empty nanotubes (Fig. 4), or

even due to non-hydrostatic effects as in bundle-

bundle contacts which are not considered in our

atomistic modelling.

Both experiments and calculations point to a

very weak effect of water-filling on the mechanical

stability of the (6,5) tubes with pressure. On the

contrary, iodine filling leads to a considerable exten-

sion of the stability domain of the order of 100 %

with respect to the empty (6,5) tube.
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Figure 5: (a) Onset of the collapse pressure versus nanotube

diameter: comparison between the modified Lévy-Carrier

model [4] and some experimental values from the present

work and Refs. [4, 7, 14, 24, 29, 32, 64] after applying our

spectroscopic criterion for collapse pressure determination.

The shaded area corresponds to the error bar around the

parameter β = 0.44 ± 0.04 in the modified Lévy-Carrier

model [4]. The open signs correspond to empty tubes, while

the solid signs are for filled tubes with the indicated fillers.

– (b) Pressure evolution of Γ = P f
c /P

e
c for the same points

as in panel (a). The reference P e
c is taken as the value

given by the modified Lévy-Carrier model [4]. The horizon-

tal line marks the value Γ = 1. The dashed line and empty

squares show the expected value of Γ for tubes filled with

nanotubes [4], using as smallest inner-tube diameter a value

of 0.3 nm [65].

The mLC model predictions [4] were based on

collapse pressures obtained experimentally on solu-
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tions having a mixture of tube chiralities. The col-

lapse pressures were then obtained from the drop-

vanishing of RBM intensity, procedure which we

have followed here. We note the good correspon-

dence between our observations of RBM vanish-

ing and the mLC predictions. All previous Ra-

man studies of carbon nanotube collapsing con-

cerned samples having mixtures of tube chiralities,

which prevented establishing a correspondence be-

tween the pressure evolution of the G-band – for

which all tubes are resonant – with the diameter-

discriminated signal of the RBMs. In the present

work, the G-band evolution can be directly related

to the (6,5) tubes having a diameter of 0.75 nm.

The onset and end of the collapse, as predicted

by the mLC model, correspond to two accidents

observed in the evolution of the empty tubes G-

band. Unfortunately, this very same pressure do-

main lies in the solidification region of the 4:1

methanol:ethanol PTM, which complicates the in-

terpretation.

We have gathered in Fig. 5(a) our collapse pres-

sure values with experimental results in literature

for different empty and filled SWCNT. The graph

shows the measured collapse pressure as a function

of the tube diameter. The continuous line corre-

spond to the modified Lévy-Carrier collapse pres-

sure of empty SWCNT [4] and the shading around

the line to its uncertainty. In addition to water or

iodine, other simple or mixed fillers were consid-

ered. The different molecular filled nanotubes cor-

respond to arc-discharge SWCNT which are mixed

chirality systems but having low diameter disper-

sion in which the collapse pressure values were ob-

tained with different spectroscopic criteria which as

given in Table S2 of the S.I. [7, 14, 29, 32, 64]. In

Table S2 of the S.I we also give the corrected col-

lapsed pressures using the spectroscopic criterion

for the collapse pressure for the G-band. Remark-

ably, some collapse pressure values for the same

molecular filling which appeared as extremely inco-

herent in the different publications, become much

intelligible now. This is for instance the case of ar-

gon filling for which collapse pressures>40 GPa [64]

or 11 GPa [29], lie both now in a domain between

10 and 14 GPa.

Remarkably, all the molecule-filled SWCNT

studied – i.e a total of 13 systems represented by

solid symbols in the figure – show a higher col-

lapse pressure than the corresponding empty tubes

(open symbols). The experimental values of the

empty tubes collapse pressure were obtained with

our same RBM spectroscopic criterion [4]. We may

define a stability factor Γ = P f
c /P

e
c characterizing

the enhancement of the radial collapsing pressure

by the filling of the tubes, where P e
c and P f

c are

the empty and filled tube collapse pressures, re-

spectively. We observe in Fig. 5(b) that Γ is larger

for large diameter tubes. We note that there is a

strong scattering of the collapse pressure in filled

tubes, which may not only be explained by the na-

ture of the filler but also by the filling rate which

has been shown to have a strong influence on the

collapse pressure value [11, 66] or the filling homo-

geneity [62]. Γ appears to be a complex function

including dependencies on the tube diameter, the

nature of the filler or the filling rate. In addition,

as in any other high pressure experiment, the non-

hydrostaticity of the pressure transmitting medium

can also affect the collapse pressure and hence the
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value of Γ. We also show in Fig. 5(b) the expected

value of Γ for tubes filled with nanotubes obtained

using the collapse pressure for MWCNT given in

Ref. [4] but using as limiting value for the smallest

possible supported nanotube, 0.3 nm [65]. We ob-

serve that molecular-filling offers a remarkably en-

hanced CNT radial stability as compared to tube-

filling.

Let us note that both empty and iodine-filled

SWCNT RBM peaks are partially retrieved after

the pressure cycle (Fig. 2), with an empty tube

signal intensity relative to the polyiodine compo-

nents comparable to the one before pressure was

applied. As the empty tubes are collapsed at 9 GPa

and the maximum pressure reached is 51 GPa, it

is unlikely that the initially empty tubes survive

the pressure cycle unscathed [7, 28]. Instead, the

iodine-filled tubes are most likely emptied of their

iodine when collapsing, resulting in retrieving the

empty tubes signal. This is corroborated by the

blueshift of the high energy polyiodine feature upon

pressure release, which indicates the occurrence of

nonlinear polyiodine chains after the pressure cy-

cle – which would be explained by the presence of

free, non adsorbed iodine. Finally, our calculations

show the formation of some I-C bonds associated

with the pressure-induced collapsing of iodine filled

(6,5) SWCNT. Although our experiments do not

provide clear evidence of this, it can be a factor

contributing to the opening of some tubes and the

subsequent release of free iodine after a pressure

cycle.

The evolution under pressure of the 1D iodine

structure encapsulated in the CNT constitutes by

itself an interesting subject. In fact, applying pres-

sure was shown to affect the bonding structure of

bulk halogens even at moderate pressures [67–69].

The iodine encapsulated in CNT with typical diam-

eters of ∼ 1.3 nm shows an evolution of the polyan-

ion distribution with pressure favoring either iodine

metallization or the formation of shorter polyanion

groups [14]. In our experiments, we observe that

the Raman peaks attributed to the polyanions are

strongly upshifted at the collapse pressure of the io-

dine filled CNT. This is quite different from results

on larger tubes where the iodine Raman peaks did

not show discontinuities at the collapse pressure,

but just a slight change of their pressure slope [14].

Our calculations did not allow to observe the initial

formation of polyanions at ambient pressures. This

has been observed in another work [70], but their

ab initio computations were difficult to implement

in the case of our high pressure study of chiral (6,5)

tubes, as the unit cell is rather long and contains a

large number of atoms.

We have only considered internal tube molecu-

lar filling in good correspondence with the HRTEM

observations on I@(6,5) samples. Is there a pos-

sibility for some inter-tube intercalation which we

should have not detected by HRTEM? Halogens

inter-tube intercalation has been in fact observed

in other works but shown to reduce the value of the

collapse pressure with respect to empty tubes [71].

We can then safely exclude inter-tube iodine inter-

calation in our study. In the case of water filling,

experiments show a lower pressure stabilization ef-

fect which could be interpreted as due to some par-

tial inter-tube filling. Nevertheless, the excellent

agreement of DFTB and experimental results on

the weaker Γ values, coupled with the absence of
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water inter-tube filling in our calculations, are also

in favor of the absence of any significant inter-tube

intercalation.

There remains a number of questions which have

not been addressed in the present work, as for in-

stance the effect of temperature on the stability of

filled nanotubes. It has been shown that a higher

temperature contributes to stabilizing the circular

cross-section in large diameter SWCNT [72]. We

may expect that the additional thermal agitation of

encapsulated molecules could then further enhance

the nanotube stability. Nevertheless, we may ex-

pect that the thermal contribution to the nanotube

stability becomes negligible for low diameter tubes

where the elastic energy is the dominant term.

Another aspect which was not addressed in the

present work is a potential evolution of the bun-

dle degree between pristine and filled nanotubes.

In fact, we cannot exclude that the different ma-

nipulations leading to the nanotubes filling could

quantitatively modify the bundling degree. As a

matter of fact, modelling predicts a lower stability

for bundles than for individualized nanotubes [5].

Nevertheless, such an effect being related to the sur-

face tension of the outer bundle surface, it is only

expected to have a significant effect for large diam-

eter tubes only [5] and hence again, as for thermal

effects, we do not expect a significant contribution

for (6,5) tubes.

5. Conclusions

We performed in situ high pressure experimen-

tal studies on single chirality SWCNT using Ra-

man spectroscopy combined with DFTB atomistic

modelling. Our study shows an increasing radial

stability of the (6,5) SWCNT once filled with a

1D-chain of molecules with respect to the pristine

tubes. Moreover, iodine filling leads to an improved

stability with respect to water filling. Our single

chirality study allows to establishing a clear spec-

troscopic signature for the onset of the collapse

pressure through the correlated drop of the RBM

intensity and the G-band wavenumber softening.

This criteria applied to the existing literature leads

to more coherent and correlated results. Finally,

we compared our results with the collapse pressure

of empty and filled SWCNT of different diameters.

This comparison shows that the radial collapsing of

SWCNT is significantly enhanced with molecular

filling having a superior effect to filling with other

nanotubes (MWCNT). The obtained enhancement

is strongly dependent on the filling species, but may

also be affected by other aspects as hydrostaticity,

filling ratio or homogeneity. These results show

that molecular filling may be used as a superior

method to improve the mechanical stability of car-

bon nanotubes either in device applications, cable

production or in the elaboration of nanocomposites.
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