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Abstract
Progress within physical oceanography has been concurrent with the increasing sophistication of
tools available for its study. The incorporation of machine learning (ML) techniques offers exciting
possibilities for advancing the capacity and speed of established methods and for making
substantial and serendipitous discoveries. Beyond vast amounts of complex data ubiquitous in
many modern scientific fields, the study of the ocean poses a combination of unique challenges
that ML can help address. The observational data available is largely spatially sparse, limited to the
surface, and with few time series spanning more than a handful of decades. Important timescales
span seconds to millennia, with strong scale interactions and numerical modelling efforts
complicated by details such as coastlines. This review covers the current scientific insight offered by
applying ML and points to where there is imminent potential. We cover the main three branches of
the field: observations, theory, and numerical modelling. Highlighting both challenges and
opportunities, we discuss both the historical context and salient ML tools. We focus on the use of
ML in situ sampling and satellite observations, and the extent to which ML applications can
advance theoretical oceanographic exploration, as well as aid numerical simulations. Applications
that are also covered include model error and bias correction and current and potential use within
data assimilation. While not without risk, there is great interest in the potential benefits of
oceanographic ML applications; this review caters to this interest within the research community.

1. Introduction

1.1. Oceanography: observations, theory, and
numerical simulation
The physics of the oceans have been of crucial
importance, curiosity and interest since prehistoric
times, and today remain an essential element in
our understanding of weather and climate, and a
key driver of biogeochemistry and overall marine
resources. The eras of progress within oceanography

have gone hand in hand with the tools available for its
study. Here, the current progress and potential future
role of machine learning (ML) techniques is reviewed
and briefly put into historical context.ML adoption is
not without risk, but is here put forward as having the
potential to accelerate scientific insight, performing
tasks better and faster, along with allowing avenues of
serendipitous discovery. This review focuses on phys-
ical oceanography, but concepts discussed are applic-
able across oceanography and beyond.
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Perhaps the principal interest in oceanography
was originally that of navigation, for exploration,
commercial and military purposes. Knowledge
of the ocean as a dynamical entity with predict-
able features—the regularity of its currents and
tides—must have been known for millennia. Know-
ledge of oceanography likely helped the successful
colonization of Oceania [180], and similarly Viking
and Inuit navigation [119], the oldest known dock
was constructed in Lothal with knowledge of the
tides dating back to 2500–1500 BCE [50], and Abu
Ma’shar of Baghdad in the 8th century CE correctly
attributed the existence of tides to the Moon’s pull.

The ocean measurement era, determining tem-
perature and salinity at depth from ships, starts in
the late 18th century CE. While the tools for a theory
of the ocean circulations started to become available
in the early 19th century CE with the Navier–Stokes
equation, observations remained at the core of ocean-
ographic discovery. The first modern oceanographic
textbook was published in 1855 by M. Mauri, whose
work in oceanography and politics served the slave
trade across the Atlantic, around the same time CO2’s
role in climate was recognized [96, 248]. The first
major global observational synthesis of the ocean can
be traced to the Challenger expeditions of 1873–75
CE [69], where observational data from various areas
was brought together to gain insight into the global
ocean. The observational synthesis from the Chal-
lenger expeditions gave a first look at the global dis-
tribution of temperature and salinity including at
depth, revealing the 3-dimensional structure of the
ocean.

Quantifying the time mean ocean circulation
remains challenging, as ocean circulation features
strong local and instantaneous fluctuations. Improve-
ments in measurement techniques allowed the
Swedish oceanographer Ekman to elucidate the
nature of the wind-driven boundary layer [87].
Ekman used observations taken on an expedition
led by the Norwegian oceanographer and explorer
Nansen, where the Fram was intentionally frozen
into the Arctic ice. The ‘dynamic method’ was intro-
duced by Swedish oceanographer Sandström and the
Norwegian oceanographer Helland-Hansen [217],
allowing the indirect computation of ocean currents
from density estimates under the assumption of a
largely laminar flow. This theory was developed fur-
ther by Norwegian meteorologist Bjerknes into the
concept of geostrophy, from the Greek geo for earth
and strophe for turning. This theory was put to the
test in the extensive Meteor expedition in the Atlantic
from 1925 to 1927 CE; they uncovered a view of the
horizontal and vertical ocean structure and circu-
lation that is strikingly similar to our present view
of the Atlantic meridional overturning circulation
[177, 210].

While the origins of geophysical fluid dynamics
(GFD) can be traced back to Laplace or Archimedes,

the era of modern GFD can be seen to stem
from linearizing the Navier–Stokes equations, which
enabled progress in understanding meteorology and
atmospheric circulation. For the ocean, pioneer-
ing dynamicists include Sverdrup, Stommel, and
Munk, whose theoretical work still has relevance
today [182, 232]. As compared to the atmosphere,
the ocean circulation exhibits variability over a much
larger range of timescales, as noted by [183], likely
spanning thousands of years rather than the few
decades of detailed ocean observations available at
the time. Yet, there are phenomena at intermediate
timescales (that is, months to years) which seemed
to involve both atmosphere and ocean, e.g. [186],
and indeed Sverdrup suggests the importance of the
coupled atmosphere-ocean system in [234]. In the
1940s much progress within GFD was also driven by
the second world war (WWII). The introduction of
accurate navigation through radar introduced with
WWII worked a revolution for observational oceano-
graphy together with bathythermographs intensively
used for submarine detection. Beyond in situ observa-
tions, the launch of Sputnik, the first artificial satellite,
in 1957 heralded the era of ocean observations from
satellites. Seasat, launched on the 27th of June 1978,
was the first satellite dedicated to ocean observation.

Oceanography remains a subject that must be
understood with an appreciation of available tools,
both observational and theoretical, but also numer-
ical. While numerical GFD can be traced back to
the early 1900s [2, 31, 209], it became practical
with the advent of numerical computing in the late
1940s, complementing that of the elegant deduc-
tion and more heuristic methods that one could
call ‘pattern recognition’ that had prevailed before
[11]. The first ocean general circulation model with
specified global geometry were developed by Bryan
and Cox [44, 45] using finite-difference methods.
This work paved the way for what now is a major
component of contemporary oceanography. The first
coupled ocean-atmosphere model of [167] eventu-
ally led to their use for studies of the coupled Earth
system, including its changing climate. The low-
power integrated circuit that gave rise to computers
in the 1970s also revolutionized observational ocean-
ography, enabling instruments to reliably record
autonomously. This has enabled instruments such as
moored current meters and profilers, drifters, and
floats through to hydrographic and velocity profil-
ing devices that gave rise to microstructure meas-
urements. Of note is the fleet of free-drifting Argo
floats, beginning in 2002, which give an extraordin-
ary global dataset of profiles [212]. Data assimila-
tion (DA) is the important branch ofmodern oceano-
graphy combining what is often sparse observational
data with either numerical or statistical ocean mod-
els to produce observationally-constrained estim-
ates with no gaps. Such estimates are referred to as
an ‘ocean state’, which is especially important for
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understanding locations and times with no available
observations.

Together the innovations within observations,
theory, and numerical models have produced dis-
tinctly different pictures of the ocean as a dynam-
ical system, revealing it as an intrinsically tur-
bulent and topographically influenced circulation
[101, 266]. Key large scale features of the circula-
tion depend on very small scale phenomena, which
for a typical model resolution remain parameterized
rather than explicitly calculated. For instance, fully
accounting for the subtropical wind-driven gyre cir-
culation and associated western boundary currents
relies on an understanding of the vertical transport
of vorticity input by the wind and output at the
sea floor, which is intimately linked to mesoscale
(ca. 100 km) flow interactions with topography [85,
133]. It has become apparent that localized small-
scale turbulence (0–100 km) can also impact the
larger-scale, time-mean overturning and lateral cir-
culation by affecting how the upper ocean interacts
with the atmosphere [95, 124, 242]. The prominent
role of the small scales on the large scale circula-
tion has important implications for understanding
the ocean in a climate context, and its representation
still hinges on the further development of our fun-
damental understanding, observational capacity, and
advances in numerical approaches.

The development of both modern oceanography
and ML techniques have happened concurrently, as
illustrated in figure 1. This review summarizes the
current state of the art in ML applications for phys-
ical oceanography and points towards exciting future
avenues. We wish to highlight certain areas where the
emerging techniques emanating from the domain of
ML demonstrate potential to be transformative. ML
methods are also being used in closely-related fields
such as atmospheric science. However, within ocean-
ography one is faced with a unique set of challenges
rooted in the lack of long-term and spatially dense
data coverage. While in recent years the surface of the
ocean is becoming well observed, there is still a con-
siderable problem due to sparse data, particularly in
the deep ocean. Temporally, the ocean operates on
timescales from seconds to millennia, and very few
long term time series exist. There is also considerable
scale-interaction, which also necessitates more com-
prehensive observations.

There remains a healthy scepticism towards some
ML applications, and calls for ‘trustworthy’ ML are
also coming forth from both the EuropeanUnion and
the United States government (Assessment List for
TrustworthyArtificial Intelligence [ALTAI], andman-
date E.O. 13 960 of 3 December 2020). Within the
physical sciences and beyond, trust can be fostered
through transparency. For ML, this means moving
beyond the ‘black box’ approach for certain applic-
ations. Moving away from this black box approach
and adopting a more transparent approach involves

gaining insight into the learned mechanisms that
gave rise to ML predictive skill. This is facilitated
by either building a priori interpretable ML applic-
ations or by retrospectively explaining the source
of predictive skill, coined interpretable and explain-
able artificial intelligence (IAI and XAI, respectively
[26, 134, 214, 228]). An example of interpretability
could be looking for coherent structures (or ‘clusters’)
within a closed budget where all terms are accounted
for. Explainability comes from, for example, tracing
theweights within aNeuralNetwork (NN) to determ-
ine what input features gave rise to its prediction.
With such insights from transparent ML, a syn-
thesis between theoretical and observational branches
of oceanography could be possible. Traditionally,
theoretical models tend towards oversimplification,
while data can be overwhelmingly complicated. For
advancement in the fundamental understanding of
ocean physics, ML is ideally placed to identify sali-
ent features in the data that are comprehensible to
the human brain. With this approach, ML could sig-
nificantly facilitate a generalization beyond the limits
of data, letting data reveal possible structural errors
in theory. With such insight, a hierarchy of concep-
tual models of ocean structure and circulation could
be developed, signifying an important advance in our
understanding of the ocean.

In this review, we introduce ML concepts
(section 1.2), and some of its current roles in the
atmospheric and Earth System Sciences (section 1.3),
highlighting particular areas of note for ocean applic-
ations. The review follows the structure outline illus-
trated in figure 2, with the ample overlap noted
through cross referencing the text. We review ocean
observations (section 2), sparsely observed for much
history, but now yielding increasingly clear insight
into the ocean and its 3D structure. In section 3 we
examine a potential synergy between ML and the-
ory, with the intent to distil expressions of theoretical
understanding by dataset analysis from both numer-
ical and observational efforts. We then progress from
theory to models, and the encoding of theory and
observations in numerical models (section 4). We
highlight some issues involvedwithML-based predic-
tion efforts (section 5), and end with a discussion of
challenges and opportunities for ML in the ocean sci-
ences (section 6). These challenges and opportunities
include the need for transparent ML, ways to support
decision makers and a general outlook. Appendix has
a list of acronyms.

1.2. Concepts in ML
Throughout this article, we will mention some
concepts from the ML literature. We find it then nat-
ural to start this paper with a brief introduction to
some of the main ideas that shaped the field of ML.

ML, a sub-domain of artificial intelligence (AI),
is the science of providing mathematical algorithms
and computational tools to machines, allowing them
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Figure 1. Timeline sketch of oceanography (blue) and ML (orange). The timelines of oceanography and ML are moving towards
each other, and interactions between the fields where ML tool as are incorporated into oceanography has the potential to
accelerate discovery in the future. Distinct ‘events’ marked in grey. Each field has gone through stages (black), with progress that
can be attributed to the available tools. With the advent of computing, the fields were moving closer together in the sense that ML
methods generally are more directly applicable. Modern ML is seeing an very fast increase in innovation, with much potential for
adoption by oceanographers. See table A1 for acronyms.

Figure 2.Machine learning within the components of oceanography. A diagram capturing the general flow of knowledge,
highlighting the components covered in this review. Separating the categories (arrows) is artificial, with ubiquitous feed-backs
between most components, but serves as an illustration.

to perform selected tasks by ‘learning’ from data.
This field has undergone a series of impressive break-
throughs over the last years thanks to the increas-
ing availability of data and the recent developments
in computational and data storage capabilities. Sev-
eral classes of algorithms are associated with the dif-
ferent applications of ML. They can be categorized
into threemain classes: supervised learning, unsuper-
vised learning, and reinforcement learning (RL). In
this review, we focus on the first two classes which
are the most commonly used to date in the ocean
sciences.

1.2.1. Supervised learning
Supervised learning refers to the task of inferring
a relationship between a set of inputs and their
corresponding outputs. In order to establish this rela-
tionship, a ‘labelled’ dataset is used to constrain

the learning process and assess the performance
of the ML algorithm. Given a dataset of N pairs
of input-output training examples {(x(i),y(i))}i∈1...N

and a loss function L that represents the discrepancy
between theMLmodel prediction and the actual out-
puts, the parameters θ of the ML model f are found
by solving the following optimization problem:

θ∗ = argmin
θ

1

N

N∑
i=1

L
(
f
(
x(i);θ

)
,y(i)

)
. (1)

If the loss function is differentiable, then gradient
descent based algorithms can be used to solve
equation (1). These methods rely on an iterative tun-
ing of the models’ parameters in the direction of
the negative gradient of the loss function. At each
iteration k, the parameters are updated as follows:

θk+1 = θk −µ∇L(θk) , (2)
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where µ is the rate associated with the descent and is
called the learning rate and∇ the gradient operator.

Two important applications of supervised learn-
ing are regression and classification. Popular stat-
istical techniques such as least squares or ridge
regression, which have been around for a long time,
are special cases of a popular supervised learning
technique called linear regression (in a sense, we may
consider a large number of oceanographers to be
early ML practitioners.) For regression problems, we
aim to infer continuous outputs and usually use the
mean squared error (MSE) or themean absolute error
(MAE) to assess the performance of the regression.
In contrast, for supervised classification problems we
sort the inputs to a number of classes or categor-
ies that have been pre-defined. In practice, we often
transform the categories into probability values of
belonging to some class and use distribution-based
distances such as the cross-entropy to evaluate the
performance of the classification algorithm.

Numerous types of supervised ML algorithms
have been used in the context of ocean research, as
detailed in the following sections. Notable methods
include:

• Linear univariate (or multivariate) regression (LR),
where the output is a linear combination of some
explanatory input variables. LR is one of the first
ML algorithms to be studied extensively and used
for its ease of optimization and its simple statistical
properties [181].

• k-nearest neighbours (KNN), where we consider an
input vector, find its k closest points with regard to
a specifiedmetric, then classify it by a plurality vote
of these k points. For regression, we usually take the
average of the values of the k neighbours. KNN is
also known as ‘analog methods’ in the numerical
weather prediction community [163].

• Support vector machines (SVM) [61], where the
classification is done by finding a linear separating
hyperplane with the maximal margin between two
classes (the term ‘margin’ here denotes the space
between the hyperplane and the nearest points in
either class.) In case of data which cannot be separ-
ated linearly, the use of the kernel trick projects the
data into a higher dimension where the linear sep-
aration can be done. Support vector regression (SVR)
are an adaption of SVMs for regression problems.

• Random forests (RF) that are a composition of a
multitude of decision trees (DT). DTs are construc-
ted as a tree-like composition of simple decision
rules [29].

• Gaussian process regression (GPR) [264], also called
kriging, is a general form of the optimal interpola-
tion algorithm, which has been used in the ocean-
ographic community for a number of years

• Neural networks (NN), a powerful class of universal
approximators that are based on compositions of

interconnected nodes applying geometric trans-
formations (called affine transformations) to
inputs and a nonlinearity function called an ‘activ-
ation function’ [66]

The recent ML revolution, i.e. the so-called deep
learning (DL) era that began in the early 2010s,
sparked off thanks to the scientific and engineer-
ing breakthroughs in training neural networks (NN),
combined with the proliferation of data sources
and the increasing computational power and stor-
age capacities. The simplest example of this advance-
ment is the efficient use of the algorithm of back-
propagation (known in the geocience community as
the adjoint method) combined with stochastic gradi-
ent descent for the training of multi-layer NNs, i.e.
NNs with multiple layers, where each layer takes
the result of the previous layer as an input, applies
the mathematical transformations and then yields an
input for the next layer [25]. DL research is a field
receiving intense focus and fast progress through its
use both commercially and scientifically, resulting in
new types of ‘architectures’ of NNs, each adapted to
particular classes of data (text, images, time series,
etc) [155, 219]. We briefly introduce the most pop-
ular architectures used in deep learning research and
highlight some applications:

• Multilayer perceptrons (MLP): when used without
qualification, this term refers to fully connected
feed forward multilayered neural networks. They
are composed of an input layer that takes the
input data, multiple hidden layers that convey the
information in a ‘feed forward’ way (i.e. from input
to output with no exchange backwards), and finally
an output layer that yields the predictions. Any
neuron in a MLP is connected to all the neurons
in the previous and to those of next layer, thus the
use of the term ‘fully connected’. MLPs are mostly
used for tabular data.

• Convolutional neural networks (ConvNet): con-
trarily to MLPs, ConvNets are designed to take
into account the local structure of particular type
of data such as text in 1D, images in 2D, volu-
metric images in 3D, and also hyperspectral data
such as that used in remote sensing. Inspired by
the animal visual cortex, neurons in ConvNets are
not fully connected, instead they receive informa-
tion from a subarea spanned by the previous layer
called the ‘receptive field’. In general, a ConvNet is
a feed forward architecture composed of a series of
convolutional layers and pooling layers and might
also be combined with MLPs. A convolution is
the application of a filter to an input that res-
ults in an activation. One convolutional layer con-
sist of a group of ‘filters’ that perform mathemat-
ical discrete convolution operations, the result of
these convolutions are called ‘feature maps’. The
filters along with biases are the parameters of the
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ConvNet that are learned through backpropaga-
tion and stochastic gradient descent. Pooling lay-
ers serve to reduce the resolution of feature maps
which lead to compressing the information and
speeding up the training of the ConvNet, they
also help the ConvNet become invariant to small
shift in input images [155]. ConvNets benefited
much from the advancements in GPU computing
and showed great success in the computer vision
community.

• Recurrent neural networks (RNN): with an aim
to model sequential data such as temporal signals
or text data, RNNs were developed with a hidden
state that stores information about the history of
the sequences presented to its inputs. While the-
oretically attractive, RNNs were practically found
to be hard to train due to the exploding/vanish-
ing gradient problems, i.e. backpropagated gradi-
ents tend to either increase too much or shrink
too much at each time step [127]. Long short term
memory (LSTM) architecture provided a solution
to this problem through the use of special hid-
den units [219]. LSTMs are to date the most pop-
ular RNN architectures and are used in several
applications such as translation, text generation,
time series forecasting, etc. Note that a variant
for spatiotemporal data was developed to integ-
rate the use of convolutional layers, this is called
ConvLSTM [224].

1.2.2. Unsupervised learning
Unsupervised learning is another major class of ML.
In these applications, the datasets are typically unla-
belled. The goal is then to discover patterns in the
data that can be used to solve particular problems.
One way to say this is that unsupervised classification
algorithms identify sub-populations in data distribu-
tions, allowing users to identify structures and poten-
tial relationships among a set of inputs (which are
sometimes called ‘features’ in ML language). Unsu-
pervised learning is somewhat closer to what humans
expect from an intelligent algorithm, as it aims to
identify latent representations in the structure of the
data while filtering out unstructured noise. At the
NeurIPS 2016 conference, Yann LeCun, a DL pion-
eer researcher, highlighted the importance of unsu-
pervised learning using his cake analogy: ‘If machine
learning is a cake, then unsupervised learning is the
actual cake, supervised learning is the icing, and RL is
the cherry on the top.’

Unsupervised learning is achieving considerable
success in both clustering and dimensionality reduc-
tion applications. Some of the unsupervised tech-
niques that arementioned throughout this review are:

• k-means, a popular and simple space-partitioning
clustering algorithm that finds classes in a dataset
by minimizing within-cluster variances [230].
Gaussian Mixture Models (GMMs) can be seen

as a generalization of the k-means algorithm that
assumes the data can be represented by a mixture
(i.e. linear combination) of a number of multi-
dimensional Gaussian distributions [176].

• Kohonen maps [also called Self Organizing Maps
(SOM)] is a NN based clustering algorithm that
leverages topology of the data; nearby locations in
a learnedmap are placed in the same class [147]. K-
means can be seen as a special case of SOMwith no
information about the neighbourhood of clusters.

• t-SNE and UMAP are two other clustering
algorithms which are often used for not only find-
ing clusters but also because of their data visu-
alization properties which enables a two or three
dimensional graphical rendition of the data [175,
250]. Thesemethods are useful for representing the
structure of a high-dimensional dataset in a small
number of dimensions that can be plotted. For
the projection, they use a measure of the ‘distance’
or ‘metric’ between points, which is a sub-field
of mathematics where methods are increasingly
implemented for t-SNE or UMAP.

• Principal Component Analysis (PCA) [191], the
simplest and most popular dimensionality reduc-
tion algorithm. Another term for PCA is Empir-
ical Orthogonal Function analysis (EOF), which
has been used by physical oceanographers formany
years, also called Proper Orthogonal Decomposi-
tion (POD) in computational fluids literature.

• Autoencoders (AE) are NN-based dimensionality
reduction algorithms, consisting of a bottleneck-
like architecture that learns to reconstruct the input
by minimizing the error between the output and
the input (i.e. ideally the data given as input and
output of the autoencoder should be interchange-
able). A central layer with a lower dimension than
the original inputs’ dimension is called a ‘code’
and represents a compressed representation of the
input [149].

• Generative modelling: a powerful paradigm that
learns the latent features and distributions of a
dataset and then proceeds to generate new samples
that are plausible enough to belong to the ini-
tial dataset. Variational auto-encoders (VAEs) and
generative adversarial networks (GANS) are two
popular techniques of generative modelling that
benefited much from the DL revolution [111, 144].

Between supervised and unsupervised learning
lies semi-supervised learning. It is a special case where
one has access to both labelled and unlabelled data. A
classical example is when labelling is expensive, lead-
ing to a small percentage of labelled data and a high
percentage of unlabelled data.

Reinforcement learning is the third paradigm of
ML; it is based on the idea of creating algorithms
where an agent explores an environment with the
aim of reaching some goal. The agent learns through
a trial and error mechanism, where it performs an
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action and receives a response (reward or punish-
ment), the agent learns by maximizing the expec-
ted sum of rewards [238]. The DL revolution did
also affect this field and led to the creation of a new
field called deep reinforcement learning (Deep RL)
[233]. A popular example of Deep RL that got huge
media attention is the algorithm AlphaGo developed
by DeepMind which beat human champions in the
game of Go [225].

The importance of understanding why an ML
method arrived at a result is not confined to ocean-
ographic applications. Unsupervised ML lends itself
more readily to being interpreted (IAI), but for
example for methods building on DL or NN in gen-
eral, a growing family ofmethods collectively referred
to as additive feature attribution (AFA) is becom-
ing popular, largely applied for XAI. AFA methods
aim to explain predictive skill retrospectively. These
methods include connectionweight approaches, local
interpretable model-agnostic explanations (LIME),
Shapley additive explanation (SHAP) and layer-wise
relevance propagation (LRP) [26, 153, 165, 179, 193,
208, 228, 246]. Non-AFAmethods rooted in ‘saliency’
mapping also exist [174].

The goal of this review paper is not to delve into
the definitions of ML techniques but only to briefly
introduce them to the reader and recommend ref-
erences for further investigation. The textbook by
Bishop [30] covers essentials of the fields of pattern
recognition andHsieh’s book [131] is probably one of
earliest attempts at writing a comprehensive review of
MLmethods targeted at earth scientists. Another not-
able review of statistical methods for physical ocean-
ography is the paper by Wikle et al [262]. We also
refer the interested reader to the book of Goodfellow
et al [25] to learn more about the theoretical found-
ations of DL and some of its applications in science
and engineering.

1.3. ML in atmospheric and the wider earth system
sciences
Precursors to modern ML methods, such as regres-
sion and principal component analysis, have of course
been used in many fields of Earth system science for
decades. The use of PCA, for example, was popular-
ized in meteorology in [162], as a method of dimen-
sionality reduction of large geospatial datasets, where
Lorenz also speculates here on the possibility of purely
statistical methods of long-term weather prediction
based on a representation of data using PCA. Meth-
ods for discovering correlations and links, including
possible causal links, between dataset features using
formal methods have seen much use in Earth sys-
tem science. e.g. [18]. For example, Walker [256] was
tasked with discovering the cause for the interannual
fluctuation of the Indian monsoon, whose failure
meant widespread drought in India, and in colonial
times also famine [68]. To find possible correlations,
Walker put to work an army of Indian clerks to carry

out a vast computation by hand across all available
data. This led to the discovery of the Southern Oscil-
lation, the seesaw in theWest-East temperature gradi-
ent in the Pacific, which we know now by its modern
name, El Niño Southern Oscillation (ENSO). Bey-
ond observed correlations, theories of ENSO and its
emergence from coupled atmosphere-ocean dynam-
ics appeared decades later [270]. Walker speaks of
statistical methods of discovering ‘weather connec-
tions in distant parts of the earth’, or teleconnections.
The ENSO-monsoon teleconnection remains a key
element in diagnosis and prediction of the Indian
monsoon [236, 237]. These and other data-driven
methods of the pre-ML era are surveyed in [42]. ML-
based predictive methods targeted at ENSO are also
being established [120]. Here, the learning is not dir-
ectly from observations but from models and reana-
lysis data, and outperform some dynamical models in
forecasting ENSO.

There is an interplay between data-driven meth-
ods and physics-driven methods that both strive to
create insight into many complex systems, where
the ocean and the wider Earth system science are
examples. As an example of physics-driven meth-
ods [11], Bjerknes and other pioneers discussed in
section 1.1 formulated accurate theories of the general
circulation that were put into practice for forecast-
ing with the advent of digital computing. Advances in
numerical methods led to the first practical physics-
based atmospheric forecast [199]. Until that time,
forecasting often used data-drivenmethods ‘that were
neither algorithmic nor based on the laws of phys-
ics’ [187]. ML offers avenues to a synthesis of data-
driven and physics-driven methods. In recent years,
as outlined below in section 4.3, new processors and
architectures within computing have allowed much
progress within forecasting and numerical modelling
overall. ML methods are poised to allow Earth sys-
tem science modellers to increase the efficient use of
modern hardware even further. It should be noted
however that ‘classical’ methods of forecasting such
as analogues also have becomemore computationally
feasible, and demonstrate equivalent skill, e.g. [73].
The search for analogues has becomemore computa-
tionally tractable as well, although there may also be
limits here [76].

Advances in numerical modelling brought in
additional understanding of elements in Earth sys-
tem science which are difficult to derive, or represent
from first principles. Examples include cloud micro-
physics or interactions with the land surface and bio-
sphere. For capturing cloud processes within mod-
els, the actual processes governing clouds take place
at scales too fine to model and will remain out of
reach of computing for the foreseeable future [221].
A practical solution to this is finding a representation
of the aggregate behaviour of clouds at the resolution
of a model grid cell. This has proved quite difficult
and progress over many decades has been halting
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[36]. The use of ML in deriving representations
of clouds is now an entire field of its own. Early
results include the results of [105], using NNs to
emulate a ‘super-parameterized’ model. In the super-
parameterized model, there is a clear (albeit artifi-
cial) separation of scales between the ‘cloud scale’
and the large scale flow. When this scale separation
assumption is relaxed, some of the stability problems
associated with ML re-emerge [41]. There is also a
fundamental issue of whether learned relationships
respect basic physical constraints, such as conserva-
tion laws [160]. Recent advances [27, 268] focus on
formulating the problem in a basis where invariances
are automatically maintained. But this still remains
a challenge in cases where the physics is not fully
understood.

There are at least two major efforts for the sys-
tematic use of ML methods to constrain the cloud
model representations in GCMs. First, the calibrate-
emulate-sample (CES [58, 81]) approach uses a more
conventional model for a broad calibration of para-
meters also referred to as ‘tuning’[129]. This is fol-
lowed by an emulator, that calibrates further and
quantifies uncertainties. The emulator is an ML-
based model that reproduces most of the variabil-
ity of the reference model, but at a lower computa-
tional cost. The low computational cost enables the
emulator to be used to produce a large ensemble
of simulations, that would have been too computa-
tionally expensive to produce using the model that
the emulator is based on. It is important to retain
the uncertainty quantification aspect (represented by
the emulated ensemble) in the ML context, as it is
likely that the data in a chaotic system only imper-
fectly constrain the loss function. Second, emulat-
ors can be used to eliminate implausible paramet-
ers from a calibration process, demonstrated by the
HighTune project [63, 130]. This process can also
identify ‘structural error’, indicating that the model
formulation itself is incorrect, when no parameter
choices can yield a plausible solution. Model errors
are discussed in section 5.1. In an ocean context, the
methods discussed here can be a challenge due to
the necessary forwards model component. Note also,
that ML algorithms such as GPR are ubiquitous in
emulating problems thanks to their built-in uncer-
tainty quantification. GPR methods are also popular
because their application involves a low number of
training samples, and function as inexpensive substi-
tutes for a forward model.

Model resolution that is inadequate for many
practical purposes has led to the development of data-
drivenmethods of ‘downscaling’. For example climate
change adaptation decision-making at the local level
based on climate simulations too coarse to feature
enough detail. Most often, a coarse-resolution model
output is mapped onto a high-resolution reference
truth, for example given by observations [4, 251].
Empirical-statistical downscaling (ESD, [24]) is an

example of suchmethods.While ESD emphasized the
downscaling aspect, all of these downscaling meth-
ods include a substantial element of bias correction.
This is highlighted in the name of some of the pop-
ular methods such as Bias Correction and Spatial
Downscaling [265] and Bias Corrected Constructed
Analogue [171]. These are trend-preserving statistical
downscaling algorithms, that combine bias correction
with the analoguemethod of Lorenz [164].MLmeth-
ods are rapidly coming to dominate the field as dis-
cussed in section 5.1, with examples ranging from
precipitation (e.g. [252]), surface winds and solar
outputs [231], as well as to unresolved river trans-
port [108]. Downscaling methods continue to make
the assumption that transfer functions learned from
present-day climate continue to hold in the future.
This stationarity assumption is a potential weakness
of data-drivenmethods [74, 192], that requires a syn-
thesis of data-driven and physics-based methods as
well.

2. Ocean observations

Observations continue to be key to oceanographic
progress, with ML increasingly being recognized as
a tool that can enable and enhance what can be
learned from observational data, performing conven-
tional tasks better/faster, as well as bring together dif-
ferent forms of observations, facilitating comparison
with model results. ML offers many exciting oppor-
tunities for use with observations, some of which are
covered in this section and in section 5 as supporting
predictions and decision support.

The onset of the satellite observation era brought
with it the availability of a large volume of effect-
ively global data, challenging the research community
to use and analyse this unprecedented data stream.
Applications of ML intended to develop more accur-
ate satellite-driven products go back to the 90s [241].
These early developments were driven by the data
availability, distributed in normative format by the
space agencies, and also by the fact that models
describing the data were either empirical (e.g. mar-
ine biogeochemistry [218]) or too computationally
costly and complex (e.g. radiative transfer [143]).
More recently, ML algorithms have been used to
fuse several satellite products [116] and also satel-
lite and in-situ data [52, 70, 142, 170, 185]. For the
processing of satellite data, ML has proven to be a
valuable tool for extracting geophysical information
from remotely sensed data (e.g. [51, 82]), whereas
a risk of using only conventional tools is to exploit
only a more limited subset of the mass of data avail-
able. These applications are based mostly on instant-
aneous or very short-term relationships and do not
address the problem of how these products can be
used to improve our ability to understand and fore-
cast the oceanic system. Further use for current recon-
struction using ML [169], heat fluxes [106], the
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3-dimensional circulation [228], and ocean heat con-
tent [135] are also being explored.

There is also an increasingly rich body of literat-
ure mining ocean in-situ observations. These lever-
age a range of data, including Argo data, to study a
range of ocean phenomena. Examples include assess-
ingNorth Atlanticmixed layers [172], describing spa-
tial variability in the Southern Ocean [138], detecting
El Niño events [128], assessing how North Atlantic
circulation shifts impacting heat content [71], and
finding mixing hot spots [213]. ML has also been
successfully applied to ocean biogeochemistry. While
not covered in detail here, examples include mapping
oxygen [110] and CO2 fluxes [46, 152, 259].

Modern in-situ classification efforts are often
property-driven, carrying on long traditions within
physical oceanography. For example, characteristic
groups or ‘clusters’ of salinity, temperature, density or
potential vorticity have typically been used to delin-
eate important watermasses and to assess their spatial
extent, movement, and mixing [121, 126]. However,
conventional identification/classification techniques
assume that these properties stay fixed over time. The
techniques largely do not take interannual and longer
timescale variability into account. The prescribed
ranges used to define water masses are often some-
what ad-hoc and specific (e.g. mode waters are often
tied to very restrictive density ranges) and do not gen-
eralize well between basins or across longer timescales
[9]. Although conventional identification/classifica-
tion techniques will continue to be useful well into
the future, unsupervisedML offers a robust, alternat-
ive approach for objectively identifying structures in
oceanographic observations [33, 138, 197, 213].

To analyse data, dimensionality and noise reduc-
tion methods have a long history within oceano-
graphy. PCA is one such method, which has had a
profound influence on oceanography since Lorenz
first introduced it to the geosciences in 1956 [162].
Despite the method’s shortcomings related to strong
statistical assumptions and misleading applications,
it remains a popular approach [178]. PCA can be
seen as a super sparse rendition of k-means cluster-
ing [72] with the assumption of an underlying nor-
mal distribution in its commonly used form. Overall,
different forms of ML can offer excellent advantages
over more commonly used techniques. For example,
many clustering algorithms can be used to reduce
dimensionality according to how many significant
clusters are identifiable in the data. In fact, unsuper-
visedML can sidestep statistical assumptions entirely,
for example by employing density-based methods
such as DBSCAN [227]. Advances within ML are
making it increasingly possible and convenient to
take advantage of methods such as t-SNE [227] and
UMAP, where the original topology of the data can
be conserved in a low-dimensional rendition.

Interpolation of missing data in oceanic fields is
another application where ML techniques have been

used, yielding products used in operational contexts.
For example, Kriging is a popular technique that
was successfully applied to altimetry [154], as it can
account for observation from multiple satellites with
different spatio-temporal sampling. In its simplest
form, kriging estimates the value of an unobserved
location as the linear combination of available obser-
vations. Kriging also yields the uncertainty of this
estimate, which has made it popular in geostatistics.
EOF-based techniques are also attracting increasing
attention with the proliferation of data. For example,
the DINEOF algorithm [6] leverages the availabil-
ity of historical datasets, to fill in spatial gaps within
new observations. This is done via projection onto
the space spanned by dominant EOFs of the historical
data. The use of advanced supervised learning, such
as DL, for this problem in an oceanographic contexts
is still in its infancy. Attempts exist in the literature,
including deriving a DL equivalent of DINEOF for
interpolating SST [19].

3. Exchanges between observations and
theory

Progress within observations, modelling, and theory
go hand in hand, and ML offers a novel method for
bridging the gaps between the branches of ocean-
ography. When describing the ocean, theoretical
descriptions of circulation tend to be oversimplified,
but interpreting basic physics from numerical sim-
ulations or observations alone is prohibitively diffi-
cult. Progress in theoretical work has often come from
the discovery or inference of regions where terms in
an equation may be negligible, allowing theoretical
developments to be focused with the hope of obser-
vational verification. Indeed, progress in identifying
negligible terms in fluid dynamics could be said to
underpin GFD as a whole [249]. For example, Sver-
drup’s theory [235] of ocean regions where the wind
stress curl is balanced by the Coriolis term inspired a
search for a predicted ‘level of no motion’ within the
ocean interior.

The conceptual and numerical models that
underlie modern oceanography would be less valu-
able if not backed by observational evidence, and
similarly, findings in data from both observations
and numerical models can reshape theoretical mod-
els [101]. ML algorithms are becoming heavily used
to determine patterns and structures in the increas-
ing volumes of observational and modelled data [33,
47, 71, 128, 138, 139, 172, 197, 213, 229, 240]. For
example, ML is poised to help the research com-
munity reframe the concept of ocean fronts in ways
that are tailored to specific domains instead of ways
that are tied to somewhat ad-hoc and overgeneralized
property definitions [54]. Broadly speaking, this area
of work largely utilizes unsupervised ML and is thus
well-positioned to discover underlying structures
and patterns in data that can help identify negligible
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Figure 3. Cartoon of the role of data within
oceanography. While eliminating prior assumptions
within data analysis is not possible, or even desirable,
ML applications can enhance the ability to perform
pure data exploration. The ‘top down’ approach (left)
refers to a more traditional approach where the
exploration of the data is firmly grounded in prior
knowledge and assumptions. Using ML, how data is
used in oceanographic research and beyond can be
changed by taking a ‘bottom up’ data-exploration
centred approach, allowing the possibility for
serendipitous discovery.

terms or improve a conceptual model that was previ-
ously empirical. In this sense, ML methods are well-
placed to help guide and reshape established theor-
etical treatments, for example by highlighting over-
looked features. A historical analogy can be drawn
to d’Alembert’s paradox from 1752 (or the hydro-
dynamic paradox), where the drag force is zero on
a body moving with constant velocity relative to the
fluid. Observations demonstrated that there should
be a drag force, but the paradox remained unsolved
until Prandtl’s 1904 discovery of a thin boundary
layer that remained as a result of viscous forces. Dis-
coveries like Prandtl’s can be difficult, for example
because the importance of small distinctions that
here form the boundary layer regime can be over-
looked. ML has the ability to be both objective, and
also to highlight key distinctions like a boundary
layer regime. ML is ideally poised to make discover-
ies possible through its ability to objectively analyse
the increasingly large and complicated data available.
Using conventional analysis tools, finding patterns
inadvertently rely on subjective ‘standards’ e.g. how
the depth of the mixed layer or a Southern Ocean
front is defined [54, 75, 243]. Such standards leave
room for bias and confusion, potentially perpetu-
ating unhelpful narratives such as those leading to
d’Alembert’s paradox.

With an exploration of a dataset that moves bey-
ond preconceived notions comes the potential for
making entirely new discoveries. It can been argued
that much of the progress within physical oceano-
graphy has been rooted in generalizations of ideas put
forward over 30 years ago [101, 137, 184]. This found-
ation can be tested using data to gain insight in a
‘top-down’ manner (figure 3). ML presents a possible
opportunity for serendipitous discovery outside of
this framework, effectively using data as the founda-
tion and achieving insight purely through its objective
analysis in a ‘bottom up’ fashion. This can also be

achieved using conventional methods but is signi-
ficantly facilitated by ML, as modern data in its
often complicated, high dimensional, and volumin-
ous form complicates objective analysis. ML, through
its ability to let structures within data emerge, allows
the structures to be systematically analysed. Such
structures can emerge as regions of coherent covari-
ance (e.g. using clustering algorithms from unsuper-
vised ML), even in the presence of highly non-linear
and intricate covariance [227]. Such structures can
then be investigated in their own right and may
potentially form the basis of new theories. Such
exploration is facilitated by using an ML approach
in combination with IAI and XAI methods as appro-
priate. Unsupervised ML lends itself more readily
to IAI and to many works discussed above. Object-
ive analysis that can be understood as IAI can also
be applied to explore theoretical branches of ocean-
ography, revealing novel structures [47, 229, 240].
Examples where ML and theoretical exploration have
been used in synergy by allowing interpretability,
explainability, or both within oceanography include
[228, 269], and the concepts are discussed further in
section 6.

As an increasingly operational endeavour, phys-
ical oceanography faces pressures apart from fun-
damental understanding due to the increasing
complexity associated with enhanced resolution or
the complicated nature of data from both observa-
tions and numerical models. For advancement in the
fundamental understanding of ocean physics, ML
is ideally placed to break this data down to let sali-
ent features emerge that are comprehensible to the
human brain.

3.1. ML and hierarchical statistical modelling
The concept of a model hierarchy is described by
[125] as a way to fill the ‘gap between simulation
and understanding’ of the Earth system. A hier-
archy consists of a set of models spanning a range
of complexities. One can potentially gain insights
by examining how the system changes when mov-
ing between levels of the hierarchy, i.e. when vari-
ous sources of complexity are added or subtracted,
such as new physical processes, smaller-scale features,
or degrees of freedom in a statistical description.
The hierarchical approach can help sharpen hypo-
theses about the oceanographic system and inspire
new insights. While perhaps conceptually simple, the
practical application of a model hierarchy is non-
trivial, usually requiring expert judgement and cre-
ativity. ML may provide some guidance here, for
example by drawing attention to latent structures
in the data. In this review, we distinguish between
statistical and numerical ML models used for this
purpose. For ML-mediated models, a goal could
be discovering other levels in the model hierarchy
from complex models [11]. The models discussed in
sections 2 and 3 constitute largely statistical models,
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such as ones constructed using a k-means applica-
tion, GANs, or otherwise. This section discusses the
concept of hierarchical models in a statistical sense,
and section 4.2 explores the concept of numerical
hierarchical models. A hierarchical statistical model
can be described as a series of model descriptions
of the same system from very low complexity (e.g. a
simple linear regression) to arbitrarily high. In theory,
any statistical model constructed with any data from
the ocean could constitute a part of this hierarchy, but
here we restrict our discussion to models constructed
from the same or very similar data.

The concept of exploring a hierarchy of models,
either statistical or otherwise, using data could also
be expressed as searching for an underlying manifold
[161]. The notion of identifying the ‘slow manifold’
postulates that the noisy landscape of a loss function
for one level of the hierarchy, conceals a smoother
landscape in another level. As such, it should be plaus-
ible to identify a continuum of system descriptions.
ML has the potential to assist in revealing such an
underlying slow manifold, as described above. For
example, equation discovery methods shown prom-
ise as they aim to find closed form solutions to
the relations within datasets representing terms in a
parsimonious representation (e.g. [100, 220, 269] are
examples in line with [11]). Similarly, unsupervised
equation exploration could hold promise for utilizing
formal ideas of hypothesis forming and testing within
equation space [140].

In oceanographic ML applications, there are tun-
able parameters that are often only weakly con-
strained. A particular example is the total number
of classes K in unsupervised classification problems
[138, 139, 172, 227, 229]. Although one can estim-
ate the optimal value K∗ for the statistical model,
for example by using metrics that reward increased
likelihood and penalize overfitting (e.g. the Bayesian
information criteria (BIC) or the Akaike informa-
tion criterion (AIC)), in practice it is rare to find
a clear value of K∗ in oceanographic applications.
Often, tests like BIC or AIC return either a range
of possible K∗ values, or they only indicate a lower
bound for K. This is perhaps because oceanographic
data is highly correlated across many different spa-
tial and temporal scales, making the task of separating
the data into clear sub-populations a challenging one.
That being said, the parameter K can also be inter-
preted as the complexity of the statistical model. A
model with a smaller value of K will potentially be
easier to interpret because it only captures the domin-
ant sub-populations in the data distribution. In con-
trast, a model with a larger value of K will likely be
harder to interpret because it captures more subtle
features in the data distribution. For example, when
applied to Southern Ocean temperature profile data,
a simple two-class profile classification model will
tend to separate the profiles into those north and
south of the Antarctic Circumpolar Current, which

is a well-understood approximate boundary between
polar and subtropical waters. By contrast, more com-
plex models capture more structure but are harder to
interpret using our current conceptual understand-
ing of ocean structure and dynamics [138]. In this
way, a collection of statistical models with different
values of K constitutes a model hierarchy, in which
one builds understanding by observing how the rep-
resentation of the system changes when sources of
complexity are added or subtracted [125]. Note that
for the example of k-means, while a range of K val-
ues may be reasonable, this does not largely refer to
merely adjusting the value of K and re-interpreting
the result. This is because, for example, if one moves
from K = 2 to K = 3 using k-means, there is no a pri-
ori reason to assume they would both give physically
meaningful results. What is meant instead is similar
to the type of hierarchical clustering that is able to
identify different sub-groups and organize them into
larger overarching groups according to how similar
they are to one another. This is a distinct approach
within ML that relies on the ability to measure a ‘dis-
tance’ between data points. This rationale reinforces
the view that ML can be used to build our concep-
tual understanding of physical systems, and does not
need to be used simply as a ‘black box’. It is worth
noting that the axiom that is being relied on here is
that there exists an underlying system that the ML
application can approximate using the available data.
With incomplete and messy data, the tools available
to assess the fit of a statistical model only provide
an estimate of how wrong it is certain to be. To cre-
ate a statistically rigorous hierarchy, not only does
the overall co-variance structure/topology need to be
approximated, but also the finer structures that would
be found within these overarching structures. If this
identification process is successful, then the structures
can be grouped with accuracy as defined by statist-
ical significance. This can pose a formidable challenge
that ML in isolation cannot address; it requires guid-
ance fromdomain experts. For example, within ocean
ecology, [227] derived a hierarchical model by group-
ing identified clusters according to ecological simil-
arity. In physical oceanography, [213] grouped some
identified classes together into zones using established
oceanographic knowledge, in a step from a more
complex statistical model to a more simplified one
that is easier to interpret. When performing such
groupings, one has to pay attention to a balance of
statistical rigour and domain knowledge. Discover-
ing rigorous and useful hierarchical models should
hypothetically be possible, as demonstrated by the
self-similarity found in many natural systems includ-
ing fluids, but limited and imperfect data greatly
complicate the search,meaning that checking for stat-
istical rigour is important.

As a possible future direction, assessing models
using IAI and XAI and known physical relationships
will likely make finding hierarchical models that are
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meaningful much easier. Unsupervised ML is more
intuitively interpretable than supervisedML andmay
prove more useful for identifying such hierarchical
models. Moving away from using ML in a ‘black box’
sense, with IAI andXAI or otherwise, may yield a syn-
thesis of observations and theory, allowing the field to
go beyond the limitations of either; theory may allow
one to generalize beyond the limits of data, and data
may reveal possible structural errors in theory.

4. From theory to numerical models

The observation of patterns in data is the precursor
to a theory, which can lead to predictive models,
provided theory can be converted to practical com-
putation. In this section, we discuss how ML could
change the way theory is represented within ocean
modelling. To represent the ocean using numer-
ical models is to help filling in missing information
between observations. In addition, models act as vir-
tual laboratories in which we can work to understand
physical relationships. For example, how the separ-
ation of boundary currents such as the Gulf Stream
depends on local topography or boundary condi-
tions. The focus of this discussion will be on mod-
els that represent the three-dimensional ocean circu-
lation, but most of these ideas can also be used in the
context of modelling sea-ice, tides, waves, or biogeo-
chemistry. We also discuss a recurring issue within
oceanmodelling: the presence of coastlines that com-
plicate the application of methods that are convolu-
tional or spectral.

4.1. Timescales and space scales
When building numerical models, the ocean is
largely treated like a typical fluid that follows the
Navier–Stokes equations, and the challenges faced
therein are similar to those presented by general com-
putational fluid dynamics. The filamentation of the
flow results in scale interactions thatmake it necessary
to represent all spatial scales within the model, while
the model resolution needs to be truncated due to the
finite nature of computational power. The dynamics
at different scales can either be represented via the
explicit, resolved representation within the model or
via the parametrization of sub-grid-scales as a turbu-
lent closure.

Much research has gone into the formulation
of parametrizations to represent the sub-grid-scales.
Such representations range from classical closures for
turbulent fluids, using formulations such as Gent-
McWilliams [104] that take the dynamics of sub-
grid ocean eddies into account, to empirical closure
schemes that are determined by comparing simula-
tions at a target resolution to simulations at higher
resolution [60, 215]. Lately, ML has also been used
to learn the sub-grid-scale, either via the direct learn-
ing of the terms using NNs [34] or via the learning

of the underlying equations [269]. Similar and prom-
ising DA applications are also emerging, discussed in
section 5.2.

Next to the representation of the sub-grid-scale,
numerical ocean models are also prone to errors
due to the necessary discretization of the differential
equations on a numerical grid. A number of meth-
ods are used to discretize the equations [83], includ-
ing finite difference, finite volume, and finite element
methods. In comparison to the atmosphere, spectral
discretizationmethods cannot easily be applied to the
ocean due to the presence of coastlines, as creating
a representation using global basis functions is not
straightforward.

In the presence of perfect data and adequate com-
putational power with which to train a DL applica-
tion, it would be theoretically possible to learn the
dynamics of the ocean with no knowledge of the
equations of motion. This is because DL can learn
the update of the physical fields based on time-series
of observations or model data. This has been done
successfully for certain atmospheric applications [78,
204, 261] and for an idealized ocean model [99].
However, DL representations of the ocean are more
difficult than for the atmosphere. This is because
there is much less reliable three-dimensional train-
ing data available for the ocean spatially, and because
relevant time-scales of the ocean are much longer
together with the shorter time scales that together
make up the ocean state. This is because the ocean
has important low-frequency variability, resulting in
a need for longer training data sets. Furthermore,
coastlines form lateral boundaries that may reduce
the quality ofNN solutions. This is because,NNmod-
els often require a certain stencil of local information
to update the physical fields at a given gridpoint. For
example, CNNs performbest if the underlying system
is invariant by translation. While grid-points on land
could be incorporated into local stencils with pre-
defined values, the presence of coastlines may reduce
the amount of training data for specific pattern of
the coast line. Also, having sharp discontinuities from
ocean to land pixels results in a more challenging
problem for NN in general. For example, a CNN
could spend a considerable amount of its parameters
learning the coastline boundary patterns, which may
not be of interest if the user is focusing on ocean-only
patterns.

ML tools could also serve as a method to rep-
resent the ocean with fewer degrees of freedom than
a full conventional numerical model. Such use cases
for ML include being used (1) as part of a coupled
Earth systemmodel that is either used for short-term
weather forecasts, or (2) in long climate simulations.
For example, if a model is only trying to represent
the surface fields that are most important for the
coupling to the atmosphere, the model could focus
on the use of the leading principal components (if
these can be derived in the presence of coastlines),
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and learn the interactions between the different com-
ponents using data from a time-series extracted from
long model (or observational) trajectories. Here, a
first approach towards building low-order ML mod-
els using a barotropic model showed that results from
high-dimensional ML tools from DL, such as com-
plex RNNs, may not necessarily provide better results
when compared to ML techniques that are based on
regression techniques and stochastic forcing [5].

The surface of the ocean has strong and direct
impact on society, and ML tools may help to bet-
ter understand and characterize its dynamics. For
coupled models, the importance of representing the
interactions between the atmosphere and sea ice
components is well established. However, allowing
this interaction involves major computational chal-
lenges and uncertainties, associated with understand-
ing of the complex feedback and coupling processes
between system components.Many surface processes,
for example ocean waves and storm surges, are typic-
ally excluded from long-term ocean simulations and
modelled separately, although exceptions exist [226].
This exclusion is largely because of the very large dif-
ferences in phase speeds, for example between sur-
face waves and the deep ocean that result in a baro-
tropic (fast) component being treated separately from
a baroclinic (slow) component [112, 245]. However,
there are now approaches to improvewave and sea-ice
modelling or predictions using ML, that either try to
improve on the computational efficiency or the accur-
acy of conventional methods [8, 56, 195, 200, 271].

4.2. Concepts of ML and hierarchical numerical
modelling
This section discusses hierarchical modelling in a
numerical sense, complementing section 3.1 that dis-
cusses hierarchical modelling in a statistical sense.
Within oceanography, observations and theory are
more meaningful when viewed together. Observa-
tional scientists (see section 2) make choices of what
to sample based on some prior conceptions of rel-
evance, and of course theory is ungrounded without
data. In epistemology, this is often summarized in
Duhem’s formulation, ‘theory is data-laden, and
data is theory-laden’ [80]. In talking about climate
and weather modelling, Edwards made the corollary,
‘models are data-laden, and data ismodel-laden’ [86].
For example, the concept of a reanalysis dataset comes
from a model. The sequence from observations to
theory to models and predictions shows this inter-
play. This is a key sequence where we expect ML to
display its strengths, e.g. where IAI and XAI meth-
ods may yield a synthesis of observations and the-
ory, allowing one to go beyond the limitations of
either: theory allowing one to generalize beyond the
limits of data, and data revealing possible structural
errors in theory as detailed in section 3. Ideally, we
would like to go beyond these and use ML to dis-
cover the underlying equations (e.g. [43]), and deliver

a model hierarchy that can then be implemented
numerically [11, 125]. While simple in principle, in
practice this concept is less straightforward to imple-
ment. An example of a form of equation discovery
can be seen in Zanna and Bolton’s [269] reduction
of resolved turbulent dynamics into a representation
suitable for use in coarse-grainedmodels. The coarse-
grained models represent a different level of the hier-
archy, if tiers are set by horizontal resolution. ThisML
model was arrived at applying an RVM, with the dif-
ferent equation terms serving as the input. This is an
example where the results of an ML application yield
a parsimonious closed-form representation, and are
therefore interpretable. Using XAI, it would also be
possible to infer what gave theML application its pre-
dictive skill, which could eliminate e.g. contamina-
tion from numerical issues that are model resolution
specific. Methods constituting equation discovery are
an exciting, and potentially powerful, way ML could
impact numerical modelling, particularly if IAI/XAI
can be applied to ensure the ML application predict-
ive skill is grounded in physics.

4.3. Computational challenges
Since the first ocean general circulation model [44,
45], available computational power has grown expo-
nentially, following Moore’s law. The realization that
the ocean is fundamentally turbulent and topograph-
ically influenced [101, 266] resulted in numerical
model development focused on increasing model
complexity and refining the model discretization.
Numerical model performance is often measured
in simulated years per day (SYPD). Computational
challenges largely manifest as a balance between
preserving the significant legacy present in current
ocean modelling codes and harnessing the significant
advances within the field of high performance com-
puting, which is often tailored to ML. ML is a trillion
dollar industry which is based on high-performance
computing power [57]. It is therefore driving devel-
opments in modern supercomputing.

The growth of processing speed in supercom-
puters is no longer exponential, but improvements
in the computational efficiency of ocean models are
still possible through customization of the comput-
ing hardware. ML may likely have a place within a
revision of ocean models to improve their computa-
tional efficiency. Even within Earth system models as
a whole, a ‘digital revolution’ has been called for [20],
where harnessing efficiency in modern hardware is
central. Computers can increasingly be customized
as hardware is becoming more heterogeneous, mean-
ing that different components for data movement
and processing can be combined [21]. Examples of
such heterogeneous hardware include the so-called
Graphical Processing Units (GPU), Tensor Processing
Units, Field-Programmable Gate Arrays, and Applic-
ation Specific Integrates Circuits, which largely are
highly compatible with ML. To take advantage of this
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heterogeneous hardware,making current oceanmod-
els ‘portable’, a significant effort would be necessary
[21]. Current oceanmodels use the Fortran program-
ming language and are parallelized to run on many
processors via interfaces such as MPI and OpenMP.
This parallelization approach is not compatible with
hardware accelerators such as GPUs. Compatibility
could be achieved via re-writing or enhancement
by programming interfaces such as OpenACC or
Cuda. Some model groups are investigating a move
to newer computing languages, such as Julia (such as
the Oceananigans model as part of the CliMA project
[203]). Languages like Julia can hide technical details
in high-level descriptions of the model code making
itmore portable. So-called domain-specific languages
can be used to facilitate portability [118]. Here, the
main algorithmic motives are formulated into library
functions that can be ported to different systems with
no need to change the model code that is used by the
model developer.

ML is expected to play a role in issues associated
with the purely computational approach to ocean
modelling, beyond devising portability to different
hardware accelerators such as GPUs. Hardware accel-
erators are best suited to problems of high operational
intensity (floating-point operations per memory
operation). The discretized differential equations
governing fluid flow typically result in sparse oper-
ations resulting from near-neighbour dependencies
(‘stencils’). Stencil codes remain notorious for their
low operational intensity [15] resulting in poor
computational performance, and despite substantial
efforts in recent years there has been little progress
[12, 188]. This problem is accentuated in oceans,
whose long timescales often require O(1000 SYPD)
for the basic dynamics to emerge. The role of ML
in emulating turbulent ocean dynamics is likely to
be critical in achieving the level of performance
required. This is because resolving key phenomena
such as mesoscale eddies remain computationally
out of reach, and the current parameterizations such
as from Gent and Mc Willians [104] discussed in
section 4.1 continue to exhibit deficiencies in simu-
lating meridional eddy transport [98].

ML, and in particular DL, could play a signific-
ant role in improve computational efficiency of ocean
models due to its ability to work with low numerical
precision. Many operations are memory bandwidth
bound, and as DL is based on dense linear algebra it
is capable of working with very low numerical pre-
cision, such as IEEE half precision with 16 bits per
variable [150]. The trend towards ML hardware that
is optimized for dense linear algebra and low numer-
ical precision may have an impact on future ocean
modelling. The use of low numerical precision has
been discussed for weather and climate models [79].
The NEMO model [117] was run in single preci-
sion with 32 bits per variable instead of the default
of double precision with 64 bits per variable [244],

and half precision with 16 bits per variable is being
explored for weather and climate models [145] and
hardware that is customized for ML has been tested
to speed-up expensive components of conventional
models [122]. However, in particular for the long-
term simulations needed in the ocean, care needs
to be taken to make sure that rounding errors do
not impact on conservation laws. Certain specific
aspects of ocean dynamics require a large dynamic
range. For instance, sea level rise, which is a secu-
lar change measured in cm/century, must be simu-
lated against a backdrop where surface waves have an
amplitude measured in O(m) and a phase speed of
O(100 m s−1), at least 8 orders of magnitude larger
over a typical ocean timestep. For subsequent ana-
lysis, it is worth noting that using lower numerical
precision would also impact the ability of doing ana-
lysis on budgets, as closing these can be complicated
when rounding errors are biased.

ML is being explored as amethod to emulate com-
putationally costly components of oceanmodels. This
was done successfully in a number of studies [41,
206] for physical parametrization schemes of atmo-
spheric models. For ocean modelling, NN emulat-
ors could for example speed-up biogeochemical com-
ponents [190], which often form a large cost-fraction
for ocean models in climate predictions, or sea-ice
models, which are often a computational bottleneck
as they are difficult to parallelize. ML could also be
useful for improving advection schemes and learn-
ing local corrections and limiters of fluxes between
grid-cells [146]. Furthermore, it may also be pos-
sible to improve efficiency of oceanmodels with semi-
implicit timestepping schemes. Here, ML could be
used to precondition solver for the large linear prob-
lem that needs to be solved in every timestep by estim-
ating the results [3].

The exponential growth of computing power has
been accompanied by an exponential growth in data
volume. This growth represents a big challenge for
operational weather and climate predictions [13]. As
data movement is very expensive and a bottleneck in
performance, ocean models need to be ‘data-centric’
and the workflow of the model should be designed in
a way that would reduce data movement to a min-
imum. For example, data is conventionally simply
written to discs or tapes after a model simulation,
to be retrieved by users afterwards for analysis. A
data-centric workflow would process data on-the-fly
before it is stored.ML, and in particular unsupervised
ML, would be essential in enabling domain scientists
to extract the relevant information in such a data-
centric workflow. However, such a workflow would
also results in additional requirements in terms of
the training of staff and the software and hardware
infrastructure of weather and climate centres [77].
For example, it is not trivial to incorporate ML tools
that are commonly developed using the program-
ming language Python, into atmosphere or ocean
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models that are typically written in Fortran. Efforts
towards such integration are taking shape, with lib-
raries in development that linkNNs into Fortran code
[65, 194].

Also of note is the increased difficulty in extract-
ing scientifically interesting information from the vast
amounts of data produced by numerical models that
is stored. The complexity and sheer size of many of
these data hinder data dissemination and analysis
and severely hamper efforts to analyse the data and
address research goals. This emerging class of prob-
lems can be illustrated by the Coupled Model Inter-
comparison Project (CMIP) ensemble now in its sixth
phase, which is expected to generate an estimated
40 000 TB of climate model data, a 20-fold increase in
data volume from the previous phase [90, 92]. Many
variables needed for analysis are effectively unavail-
able due the difficulty in saving or sharing the data.
ML has the capacity to efficiently analyse large data-
sets as shown in section 2 and 3, but it has also been
used to infer, for example, information about sub-
surface currents [53, 169], eddy heat fluxes [106] and
full 3-dimensional dynamics in CMIP6 [228]. ML in
many forms has the potential to be highly valuable
for researchers interested in the analysis of data that
is increasingly large, potentially sparse, and partially
unavailable for logistical reasons [91].

4.4. Enforcing physical priors in MLmethods
When physical constraints are enforced within ML
techniques, this is equivalent to incorporating phys-
ical understanding into the applications. Using stat-
istical language, we can describe this process as
‘enforcing physical priors’. ML techniques backed by
massive datasets have achieved groundbreaking res-
ults in vision, speech, and natural language pro-
cessing, but they have yet to reach the physical ocean-
ography community or largely the physical sciences
in general. The ocean is governed by complex phe-
nomena that have been studied by oceanographers for
centuries, and taking advantage of this scientific her-
itage is one way of helping ML techniques reduce the
search space of solutions, i.e. by guiding them using
physical theories. This research direction is increas-
ingly attracting attention as it helps constrain ML
algorithms to be physically plausible and facilitates
the interpretation of the results by domain experts.
There is a broad spectrum of techniques to supple-
ment ML with physical constraints [263], of which
only the most directly relevant are discussed here.

The simplest way to enforce physical priors is
through the loss function used to train theMLmodel.
Concretely, this is done by adding an error term
related to the physical constraint that needs to be
respected, such as a conservation law. For example, if
the output field F in a regression problem need to be
divergence-free, the term ∥∇F∥ is added to the total
loss function to ensure that the divergence of F is close
to zero. This approach has its mathematical roots in

the theory of Lagrange multipliers. It can also be seen
as a way of doing regularization, meaning that finding
solutions that generalize well to unseen data is more
likely. However, adding physical priors as terms in
loss functions comes with a price, which is the prob-
lem of weighting different loss terms to impose which
ones are most important. The problem of weighting
can be solved using cross-validation techniques. With
cross-validation, a holdout dataset called a validation
dataset is left apart, and the weights of the losses are
tuned to achieve the best performance by compar-
ison to this validation dataset. However, such cross-
validation techniques can be difficult when the num-
ber of constraints is high.

A second strategy that has gained much attention
in the recent years is enforcing the constraints dir-
ectly in the mapping function used for learning. This
strategy is best suited toNNs given their flexibility and
the rich design choices that enable them to be tailored
to specific data. The NN architecture is designed with
the physical priors inmind. For example, if we already
know that the quantity wewant to find is amultiplica-
tion of two quantities, then we can encode this inside
the neural net by creating two sub-networks whose
outputs are multiplied in the last layer [38, 94].

While enforcing physical priors has been a very
active area of research in the atmospheric community
(see section 1.3), few papers investigating the poten-
tial of combining ML and physics can be found
in the ocean science literature. In the following we
cite some of these examples. Authors in [34] recon-
struct subgrid eddy momentum forcing using Con-
vNets and found that enforcing a constraint on global
momentum conservation can best be done by either
postprocessing the ConvNet’s output or hardcod-
ing a last layer in the ConvNet that removes the
spatial mean of the data. [269] proposes to use an
equation discovery algorithm, namely Relevance Vec-
tor Machines (RVM), for ocean eddy parameteriza-
tions. Few attempts have been made to forecast ocean
variables using a mix of physical models and DL
tools, notably in [28] where authors model an advec-
tion diffusion equation in a DL architecture used
to forecast SST, while [88] tackle the same problem
by combining an autoencoder with ideas from Lya-
punov analysis, and [158], where a NN is embedded
inside a one-layer quasi-geostrophic numericalmodel
to reduce its bias towards a 3D ocean model.

Enforcing physical priors by solving differen-
tial equations with ML techniques is an active
research direction that features the development of
interesting tools for the ocean community, which
are still under-exploited. Physically informed neural
networks (PINNs) [202] is a notable example of
a technique that leverages the power of NNs to
solve differential equations such as the incompress-
ible Navier–Stokes equation [136] without a need
for mesh generation, which could accelerate model
development. Other recent techniques for learning
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ordinary differential equations using either NNs [55]
or a combination of NNs and physical-based com-
ponents [201] are a promising line of research at the
interface of NNs and differential equations, which to
the best of the authors’ knowledge has not yet been
applied to ocean modelling.

5. Frommodels to predictions

A basic goal and a test of the understanding of a
physical process is the ability to predict its beha-
viour. Predictions of the weather for several days
are a major geoscientific success. Such forecasts have
improved with the increasing availability of compu-
tational power and observational networks, as well
as better algorithms and process understanding [22].
However, predictions of the Earth system on longer
timescales are still a major challenge. This is problem-
atic, as predictions often form the basis of decision
making. Understanding model error, and combining
models with observations, is also at the core of sup-
porting decision makers discussed in section 6.

5.1. Model bias andmodel error
Bias and error in models are addressed through a sys-
tematic process of improvements in our understand-
ing, but the needs of decision support can be imme-
diate. Constraining simulations using observations
is the process of data assimilation, covered below in
section 5.2. But where errors are recalcitrant, ocean-
ographers and applied scientists in general use meth-
ods of ‘artificial’ error reduction, driven by comparis-
ons against data. An early example of correcting for a
bias related to the ocean’s role in climate is the use
of ‘q-flux adjustments’, or simply flux adjustments.
Here, the issue was a persistent error in the evapor-
ative flux from the ocean surface. The adjustment to
ameliorate this bias was a correction to restore energy
balance to the coupled system by artificially adding a
compensation term [168]. This adjustment method
fell into disfavour owing to its blatant ‘fudge factor’
nature [223], although recent studies indicate that
‘flux adjusted’ models continue to exhibit greater pre-
dictive skill [253].

When assessing a prediction from a model, the
accuracy of the output can be assessed by com-
paring to a ‘truth’ benchmark. Such a benchmark
can for example be from observations or a tar-
get model representation of the system. Observa-
tions, although mostly not complete, constitute a
best guess. This process can also identify ‘structural
error’, also mentioned in section 1.3, indicating that
the model formulation itself is incorrect. Compared
to observations, model outputs can show differences
that cannot only be attributed to differences in initial
conditions, but instead reflect errorswithin themodel
itself discussed in section 5.2 below. Some of these
errors can be explained by unresolved scales in the
discretized version of numerical models, but model

errors can also originate from incomplete physical
knowledge. For example, within a sub-gridscale para-
meterization the exact physics that need to be rep-
resented may be unclear, as discussed in section 4.
Incomplete physical knowledge also impacts uncer-
tainties in the parameters used, for example in the
coupling terms between model components. Within
model error as a whole, there may be a systematic
component, which is referred to as model bias.

For post-processing of model output, statistical
methods, related to ML, have been used to correct
biases (for example [151, 222] or flux adjustments).
Bias correction methods are used frequently in oper-
ational weather predictions with DL playing an ever-
increasing role [14, 113, 205]. However, using down-
scaling as described in section 1.3, ML can also be
used to relate model output with local information,
such as the local topography at very high resolution
or observations that are available, to improve pre-
dictions when model simulations have already fin-
ished. Called up-scaling within the ML community,
some of the mapping procedures used for downscal-
ing, such as GANs, even allow for uncertainty quanti-
fication [156]. Within climate models, the LRP XAI
method have successfully been used to identify key
model biases for certain prediction tasks [16], with
potential for application to the ocean. However, the
LRP method application is still in its infancy.

5.2. Ocean data assimilation
5.2.1. Data assimilation methods: a brief history and
main assumptions
Data assimilation (DA) is the process of constrain-
ing a theoretical representation of a system, usually
using a numerical or statistical model, using a collec-
tion of observations. The results of this process typ-
ically include optimized estimates of (1) the time-
evolving state of the system (sometimes called the
‘trajectory’), (2) initial conditions, (3) boundary con-
ditions, and (4) other intrinsicmodel parameters (e.g.
mixing coefficients). The optimization process typ-
ically consists of correcting the values of the initial
conditions, boundary conditions, and model para-
meters in order to minimize a selected model-data
misfit metric. To use the language of the theory of
differential equations, one may think of DA as a set
of methods for rigorously identifying which solution,
among the family of solutions to a system of differen-
tial equations, best satisfies the given constraints.

Although there is a long history of DA in numer-
ical weather prediction stretching across much of the
20th century, oceanographic DA only began in the
late 1980s. The first experiments were regional [211],
followed a few years later by the ambitious World
Ocean Circulation Experiment (WOCE, [267]), and
a community was subsequently assembled under
the Global Ocean Data Assimilation Experiment
(GODAE, [23]). These first DA approaches used in
weather and ocean prediction were directly derived

16



Environ. Res. Lett. 16 (2021) 073008 M Sonnewald et al

using optimal interpolation [107] and were based on
strong assumptions, namely that the evolutionmodel
is linear and perfect and that the data error distribu-
tion is unbiased and well-represented by a Gaussian.
In time, DA algorithms evolved to relax some of these
assumptions, extending the scope of DA applications
to the ocean.

The developments within DA have led to
two main sets of techniques. These are ensemble
approaches, of which the ensemble Kalman fil-
ter (EnKF) is a standard example, and variational
approaches such as four dimensional variational
assimilation (4DVar). Both classes of methods con-
ceptually represent the abstract trajectory of the tar-
get system as a probability distribution across pos-
sible trajectories. EnKF constructs an ensemble of
forecast states such that the ensemble mean and the
sample covariance are expected to be the best estim-
ates. A core assumption is that the ensemble probab-
ility distribution can be well-represented by a Gaus-
sian function [89]. The 4DVar method uses a linear
model to calculate which perturbations to the initial
conditions, boundary conditions, and parameters
tend to increase the agreement between the time-
evolving state of the model and the observational
constraints [62].

Each of the DA classes of methods are used in
their various flavours for both global or regional
studies [97, 157, 173, 189, 216, 254]. DA is used
routinely both in operational forecast and reanalysis
mode.DA is used in the framework of several national
and international projects. In no particular order,
examples include the ECCO10 project, ECMWF11 or
the NOAA NCEP12 Global Ocean Data Assimilation
System (GODAS) in the USA.

In idealized comparisons between the two classes
of methods, EnKF produces more accurate estim-
ates for shorter assimilation windows, whereas 4DVar
produces more accurate estimates when data con-
straints are sparse. For ocean applications, data
is often sparse, making 4DVar attractive [141].
In practice, different DA approaches derived from
optimal interpolation, 3DVar, the EnKF, or 4DVar
are used [64]. The type depends on the application
(e.g. short-term forecast or climate application), the
available computing resources, the type of observa-
tions that are assimilated, and the historical expertise
in each group.

5.2.2. Model errors and ML within data assimilation
Historically, DA techniques mainly focus on the
estimation of the state of the system, but the estim-
ation of model error in the DA process is increasingly

10 Estimating the Circulation and Climate of the Ocean.
11 The European Centre for Medium-Range Weather Forecasts.
12 National Oceanic and Atmospheric Administration, National
Centers for Environmental Prediction.

important [49]. Several approaches that are used to
handle model error apply DA frameworks that can
be considered ML approaches [59, 239]. The estima-
tion of model errors is particularly important if DA is
being used to calculate forecasts over long timescales,
i.e. from sub-seasonal to decadal scales. This is of par-
ticular importance for ocean forecasts, where times-
cales are longer than in the atmosphere; DA has been
shown to be effective in this context [257].

5.2.3. Data assimilation and ML
Several studies have highlighted the connection
between DA and ML [1, 32, 37, 102]. The connec-
tion is more direct with 4DVar, in which a func-
tion that quantifies model-data disagreement (i.e. a
‘cost function’) is minimized using a gradient des-
cent algorithm, wherein an adjoint model calculates
the gradient. In this perspective, 4DVar is approxim-
ately equivalent to the process of training of a neural
network for regression. This is because the adjoint
model can be seen as equivalent to the gradient back-
propagation process [132, 148].

There are several ways ML can be used in com-
bination with a DA framework. First, a data-driven
model can be used to emulate a numericalmodel, par-
tially or totally to provide the forecast. The object-
ive is then to correct the model error, or to decrease
the computational cost [159]. Note that emula-
tion could become instrumental, since DA meth-
ods increasingly rely on ensemble runs, which are
costly [48]. As DA allows one to bring the model
and observations close enough together to represent
the same physical situation, DA can in principle be
used to extend the learning of parametrization to the
learning of improved models directly from observa-
tions [35, 39], described further in the section 4. It is
still unclear whether observations are too sparse for
this approach to be successful within ocean model-
ling. This is particularly the case, because the time
period where dense observations are available is rel-
atively short, compared to the long timescales that
are known to be important for ocean dynamics.
Another benefit of using an ML emulators arises
because most ML tools, such as NNs, are easy to
differentiate. Given the structure of NN (intercon-
nected simple operators), and the libraries used to
implement them, the computation of the gradient of
the NN model is straightforward and efficient. This
means that the computation can be used to efficiently
develop tangent linear and adjointmodel code, which
is required for DA methods such as 4DVar [123].
This is noteworthy, because traditionally the devel-
opment of tangent linear and adjoint models has
required major efforts from the research community,
either by manually coding an adjoint or by the
semi-automatic process of algorithmic differentiation
(e.g. [109]).
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Second, ML can be instrumental in strongly
coupled DA. Strongly coupled DA consists of correct-
ing a coupled system (e.g. ocean-atmosphere) in a
unified way. This allows, for example, atmospheric
observations to constrain the ocean state and vice
versa, which is not the case in uncoupled DA, where
only ocean observations are used to constrain the
ocean system. Strongly coupled DA is expected to be
efficient but challenging due to the high variety of
temporal and spatial scales [198]. In this sense, ML
can be used to relax some strong assumptions of the
DA algorithm (e.g. the assumption that the errors
follow a Gaussian distribution), or to isolate relev-
ant scales in observational and model states. Tradi-
tional DA algorithms correct the state of the model
either directly, or by using a linear transformation.
ML could extend this approach by applying a non-
linear transformation to the space before computing
the DA correction. Some examples of this approach
have been developed [7, 93, 114, 166], but so far
none of them have been applied to realistic ocean DA
setups.

Finally, ML can help deal with the mass of avail-
able observations. In section 2, we discussed how
ML can help derive new type of products from
observations. These new products are good candid-
ates for inclusion in a DA system. ML can also be
used to provide more accurate and/or faster obser-
vation operators, for example to emulate satellite
observations [35].

6. Discussion: towards a new synthesis of
observations, theory, modelling, and
prediction in ocean sciences usingML

6.1. The need for transparent ML
To increase confidence in the use of ML, stepping
out of the ‘black box’ is advisable. Towards this, hav-
ing ML methods be transparent is very important.
A transparent ML application is one where source
of skill is known, or put differently why the ML
came to its conclusion. Possibly the largest hurdles
for ML adoption are a lack of trust and the diffi-
culty of generalization. These two are linked, and if
generalization is not reached trust is certainly not
merited for ML applications within oceanography.
Generalization refers to a model’s ability to properly
adapt to new, previously unseen data. Within ocean-
ography and beyond, the ideal generalization would
come from the ML application learning the under-
lying physics. With a lack of good data coverage, the
possible underspecification [67] and shortcut learn-
ing [103] are important to keep in mind, where a
model can seemingly perform well for example in
the current climate but will fail in a future scenario
as something physical was not learned. These issues
are ubiquitous and not unique to oceanography or to
Earth science, with a call for ‘physics informed’ ML

[207]. Accordingly, the field of ML already has, and
is, developing methods to address these issues such
as ‘few shot learning’ and ‘transfer learning’. Here,
for ‘few shot learning’ the ML models are developed
to deal with very small amounts of training data
[258]. Using ‘transfer learning’ refers to where NN
are trained on general tasks, but are used and adap-
ted to specific applicationswithout the need to retrain
from scratch. If it is possible to reliably quantify and
account for the uncertainties associated with an ML
application during training, this could also increase
confidence in the model, but assessing the reliabil-
ity may face challenges similar to underspecification.
Recent works show promising progress toward this
by learning a probability distribution of outcomes
that can be stochastically sampled [81, 115]. For
uncertainty quantification, the uncertainty could be
determined during training with ML, likely increas-
ing the reliability of the results. Other methods such
as regularization, invariances, dimensionality reduc-
tions are also a powerful tool to increase the gener-
alization skill. For climate applications, a key issue
when trainingML applications is that the system they
are being trained on is largely non-stationary. This
complicates the problem of generalization even fur-
ther, butMLmethods have demonstrated that having
good generalization skills in a non-stationary context
is possible [196]. Increasingly, the ML community is
suggesting a focus on using IAI [214], driven among
other things by the consistent racial and gender bias
revealed in DL applications. With the ability to inter-
pret the ML model itself, and intuitively discern if it
is meaningful, the danger of introducing such bias is
likely reduced dramatically. Similarly, XAI methods
for example for NN, that retrospectively explain the
source of ML predictive skill, can also help inspire
confidence [84, 174, 246]. XAI methods such as lay-
erwise relevance propagation (LRP [10, 193]) have
been gaining traction within the atmosphere [16, 17,
40, 246], and ocean, but making their application
explicitly appropriate to oceanography, and indeed
the physical sciences in general, may require targeted
method development.

6.2. Decision support
There is a need for accurate and actionable inform-
ation about the ocean for a wide range of decision
making. As noted above in section 5.1, the need
for actionable predictions and decision support can
short-circuit the scientific process of error elimina-
tion. This is because the information may have ‘cus-
tomers’/users with an immediate need: for example
decisions on shorelines ranging from building sea-
walls, issuing housing permits, to setting insurance
premiums. ML may play a role in bridging the gap
between what model-based predictions are able to
provide, and what users wish to know. The role of
data-driven methods could be particularly important
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for filling in the gaps where theory andmodels under-
specify the system, potentially leaving considerable
uncertainty as noted in section 5.2.

The reliable quantification of uncertainties is
often essential to support decision making. However,
uncertainty quantification is often difficult for con-
ventional approaches used in ocean science. This is
because model errors cannot be described by phys-
ical equations or physical reasoning in most applica-
tions, and errors are often noisy and non-linear. On
the other hand, model error can often be diagnosed
against a reference truth, such as observations or tar-
get model simulations. Therefore, ML can be useful
for the quantification of uncertainties. In particular as
datasets from different data sources, on different ref-
erence grids and for different variables can be fused
and compared using ML techniques. For example,
ML can be used to post-process ensemble simula-
tions [222], and Bayesian ML techniques can also be
used to learn the uncertainty quantification together
with the ML tool. In addition, targeted loss function
design could help target, and lessen areas of uncer-
tainty important for specific decisions. In anML con-
text, the models can be calibrated or tuned toward a
particular loss function [129]. A loss function could
be designed to capture physical constraints, such as
the closure of the energy budget in climate simula-
tions. However, loss functions can also be specific-
ally designed for use cases in decision support. An
open area of research remains in relating the results
that may be obtained from different calibrations (loss
functions) of the same system trained on the same
data.

ML can help to map model data and observa-
tions to predict or detect events for which we can-
not provide a useful physical representation of the
interactions. This could, for example, be a mapping
from observational data of a time series in a spe-
cific location or observations from a buoy, to large-
scale model data with the goal of making custom-
ized predictions of surface waves and local wind. Such
data could for example be used for a sailing competi-
tion. Such tools based on ML could become essential
for decision support, for example when used to pre-
dict sea levels [255]. ML based mapping tools could
also be useful to inform where more observational
data is needed, for example when deciding where
to sample on a cruise or where to send autonom-
ous platforms. To date, satellite images are largely
used, but added guidance from ML techniques could
be very valuable, particularly if sub-surface observa-
tions are the target [52, 169, 228]. ML may eventu-
ally be used to support observational campaigns in
near-real time by interactively connecting networks
of non-autonomous and autonomous observing plat-
forms (e.g. gliders) to decision planning systems.
These systems can take environmental conditions,

target observations, and task scheduling into account.
The vision is to have a ‘cyberinfrastructure’ that can
maximize the spatiotemporal coverage of the obser-
vations without a specific need for human interven-
tion. The potential use of such observational plan-
ning and adjustment systems is being explored by
international initiatives such as the Southern Ocean
Observing System (SOOS, www.soos.aq/). Similarly,
for planning legislation, having knowledge of what is
within a nations marine area and how this may con-
nect to the surrounding ocean can be very valuable.
HereML has been used to provide actionable inform-
ation [227], as the ocean does not adhere to borders
drawn by humans.

Next to DL methods, the calibration of paramet-
ers is very important as many within atmosphere and
ocean models cannot be validated within their phys-
ical uncertainty range. Because they cannot be val-
idated, the parameters need to be tuned [58, 247].
Given this physical uncertainty, using ML and DL
in particular will likely be very valuable as noted
in section 4. If successful, such breakthroughs could
help inform a wide range of decisions including
those based on climate models such as CMIP, or in
a more general sense. This is particularly the case
for longer timescale integrations from seasonal and
onward, due to the longer timescale active within the
ocean.

An important component of supporting decision
makers is communication. The ability to communic-
ate effectively between the people that are making
decisions and oceanographers can pose a problem.
Oceanographers would need to be aware of what is
useful information, and how to provide this. Decision
makers largely may not have intimate knowledge of
what available tools are capable of addressing, but
mainly knowledge of the problem at hand. While
seeming trivial, improving this line of communica-
tion is an important component of increasing the util-
ity of oceanographic work.

6.3. Challenges and opportunities
In this review, we have highlighted some of the many
challenges within observational, computational, and
theoretical oceanography where ML offers an excit-
ing opportunity to improve the speed and efficiency
of conventional work and also to explore completely
new avenues. As a merger of two distinct fields, there
is ample opportunity to incorporate powerful, estab-
lished ML methods that are largely new to oceano-
graphy as a field. While not without risk, the poten-
tial benefits of ML methods is creating increasing
interest in the field. This review has presented some
of the challenges and opportunities involved when
leveraging ML techniques to improve the modelling,
observing, fundamental understanding, and predic-
tion of the ocean system.

19

https://www.soos.aq/


Environ. Res. Lett. 16 (2021) 073008 M Sonnewald et al

ML applications fundamentally rely on the data
available for learning, and here the ocean presents a
unique challenge for ML applications. The import-
ant timescales in the ocean range from seconds to
millennia, with strong interactions between processes
across those scales. For example, a wind gust can trig-
ger a phytoplankton bloom. Observations are largely
sparse, noisy, and unbalanced. Temporally, very few
long-timescale observations exist that spanmore than
a few decades. A general problem with models of
the ocean, either ML derived or more conventional,
is that the system is highly non-stationary. With cli-
mate change, themean state and its variance are liable
to change, and a model that is trained from today’s
data may not be general enough to accurately rep-
resent an ocean in a warmer climate. Other compon-
ents of the Earth system such as land or atmospheric
models, or GFD in general, also face similar chal-
lenges, but they are exacerbated within oceanography
due to the lack of spatial and temporal observational
coverage.

ML offers many avenues with which the chal-
lenges listed above could be tackled. For example,
with instantaneous processes (such as radiative trans-
fer) or small spatial scale problems (for example
eddy detection), a cross-validation approach with an
associated independent test dataset could be fruit-
ful. Indeed, cross-validation is widely advisable. On
longer timescales, methods related to physical con-
straints would likely offer better results. Hybrid
approaches for combining physics-driven models
and ML models are becoming increasingly useful
to aid the development of ocean models and to
increase their computational efficiency on HPC plat-
forms. Such ‘Neural Earth System Models’ (NESYM
[134]) can, for example, use ML for parameter-
ization of sub-gridscale processes. Pairings of ML
and conventional methods also show great promise
for improving signal-to-noise ratios during training
while also anchoring ML learning to a stronger phys-
ical foundation [260].

Both the field of oceanography and ML are
quickly evolving, and the computational tools avail-
able to implement ML techniques are also becom-
ing increasingly accessible. With ample enthusiasm
for ML applications to address oceanographic prob-
lems, it is also important to keep in mind that
ML as a field is largely not concerned with the
physical sciences. Approaching ML applications with
caution and care is necessary to ensure meaning-
ful results. The importance of increasing trust in
ML methods also highlights a need for collab-
oration between oceanographers and ML domain

experts. ML as a field is developing very swiftly,
and promoting collaboration can help develop meth-
ods that are tailored to also suit the needs of
oceanographers.

This review has outlined the recent advances and
some remaining challenges associated withML adop-
tion within oceanography. As with any promising
new set of methods, while there is ample opportun-
ity, it is also worth noting that ML adoption also
comes with risk. However, exploring the full potential
and charting the limits of ML within oceanography is
crucial and deserves considerable attention from the
research community.
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Appendix

Table A1. List of acronyms.

Abbreviation Description

4DVar 4-dimensional variational assimilation
AE autoencoder
AI Artificial intelligence
AIC Akaike information criterion
BIC Bayesian information criterion
ConvNet convolutional neural network
DBSCAN density-based spatial clustering of applications with noise
DA data assimilation
DL deep learning
DNN deep neural network
ECCO estimating the circulation and climate of the ocean
EnKF ensemble Kalman filter
EOF empirical orthogonal functions
GAN generative adversarial network
GFD geophysical fluid dynamics
GMM Gaussian mixture model
GODAE global ocean data assimilation experiment
GODAS global ocean data assimilation system
GPR Gaussian process regression
GPU graphical processing units (GPU)
HPC high performance computing
IAI interpretable artificial intelligence
KNN K nearest neighbours
LR linear regression
MAE mean absolute error
ML machine learning
MLP multi-layer perceptron
MSE mean square error
NESYM neural earth system models
NN neural networks
PCA principal component analysis
PINN physics informed neural networks
RF random forest
RL reinforcement learning
RNN recurrent neural network
RVM relevance vector machines
SGD stochastic gradient descent
SOM self organizing maps
SVM support vector machines
SVR support vector regression
t-SNE t-distributed stochastic neighbour embedding
UMAP uniform manifold approximation and projection
VAE variational autoencoder
XAI explainable artificial intelligence
WOCE world ocean circulation experiment
WWII World War II
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