Antoine Heranval 
email: antoine.heranval@sorbonne-universite.fr
  
Olivier Lopez 
email: olivier.lopez@sorbonne-universite.fr
  
Maud Thomas 
email: maud.thomas@sorbonne-universite.fr
  
Application of machine learning methods

Keywords: Natural Catastrophe, Generalized Linear Models, Lasso and Elastic-Net penalties, Extreme Gradient Boosting, Random Forests Mathematics Subject Classification (2020) MSC code1, MSC code2, more

come    

Introduction

According to the Fédération Française des Assurances, FFA (French Federation of Insurance Companies), the cost of damages caused by natural disasters, such as drought, is expected to increase in the coming years in France [START_REF]Etude : Changement climatique et assurance à l'horizon 2040[END_REF]. In France, drought is responsible for about 30% of the total amount of natural disaster claims paid by the French regime CatNat (Régime d'indemnisation des catastrophes naturelles) [START_REF]Sécheresse géotechnique, de la connaissance de l'aléa à l'analyse de l'endommagement du bâti[END_REF]. This regime also deals with events of floods, such as the one of 2016 in the Seine and Loire areas, but also cyclone events such as Irma in 2017, or earthquake as in Le Teil in 2019, its scope is large. For drought this represents almost 14 billions euros since 1989, for the most extreme years, like 2003, the cost can rise up to 2 billion euros. The rise in drought event numbers is clear: indeed, since the creation of the regime in 1982, half of the most costly drought events have occurred after 2010 (3 out of 6) [START_REF]Sécheresse géotechnique, de la connaissance de l'aléa à l'analyse de l'endommagement du bâti[END_REF]. This is mainly due to the general growth of wealth in France and to climate change. Individual houses properties in general are especially targeted by drought due to clay-related subsidence. Clay-related subsidence is caused by clay shrinking and swelling in response to wetting and drying conditions. Because of the volumetric changes in soil mass, clay shrinking and swelling cause vertical and horizontal ground movements, which can lead to significant damages to infrastructure and especially to individual houses [START_REF]Avant de construire -prendre en compte les risques du terrain[END_REF][START_REF] Assadollahi | The impact of climatic events and drought on the shrinkage and swelling phenomenon of clayey soils interacting with constructions[END_REF]. These damages have equally been reported in other countries and the associated cost is high, reported to reach £500 millions per annum in the UK, for instance [START_REF] Pritchard | Probabilistic soil moisture projections to assess Great Britain's future clay-related subsidence[END_REF].

In this paper, we propose a methodology to estimate the total amount of the consequences, on the buildings, of a drought event shortly after its occurrence for the entire French insurance market. The main goal is to provide insurance companies tools to assess the severity of future drought events. Because of the large incurred amounts, the potential involvement of the government, or the quality of prevention and assistance delivered to policyholders, evaluating the order of magnitude of the cost of such an episode is challenging but of the upmost importance.

The specificity of the French system, under the "Régime Catastrophe Naturelle" (CatNat regime), makes it even more challenging. This Regime leans on a precise administrative procedureinvolving both insurance companies and the government-that oversees the compensation and the management of the relevant claims. Financial assistance is provided through a specific decree, that acknowledges the "catastrophe naturelle". The decree is published only after an examination process that can take a significant amount of time. The approach we develop in this paper aims at predicting whether a geographic area (namely a town) will be affected by a drought event.

The knowledge of such information will allow to determine the amount of reserves required to face such an event and estimate the cost from the number of potentially exposed houses. In this regime, only the effect of drought on the buildings, mainly individual houses are taken into account.

Our methodology to predict the cost of drought events relies on the comparison of different statistical methods such as Generalized Linear Models (combined with Lasso and Elastic-Net penalties [START_REF] Friedman | Regularization paths for generalized linear models via coordinate descent[END_REF]) with machine learning algorithms, such as Random Forests [START_REF] Breiman | Random forests[END_REF][START_REF] Wright | ranger: A fast implementation of random forests for high dimensional data in[END_REF] or Extreme Gradient Boosting [START_REF] Chen | XGBoost: A scalable tree boosting system[END_REF]. The calibration of these methods is performed on a large database provided by Mission Risques Naturels, covering approximately 70% of the French non-life insurance market. An important difficulty stands in the fact that this database is very imbalanced. Indeed, catastrophic events such as drought are relatively rare, and thus no claim data are available for most geographical areas. To improve the performance and benefit from all the models considered, we propose an aggregation of the outcomes on which we can base new predictions. The predictions obtained from the different models are thus assessed with Precision and Recall curves, F 1scores and confusion matrices.

Since our purpose is to evaluate the amount of a drought episode shortly after its occurrence (and not to predict this occurrence), our evaluation is based on meteorological indicators related to this natural phenomenon. The total cost of the damage is estimated from the knowledge of the intensity of a drought, measured from these available factors, as suggested by [START_REF] Corti | Simulating past droughts and associated building damages in France[END_REF]. In [START_REF] Corti | Simulating past droughts and associated building damages in France[END_REF], the authors relied on simulations to highlight the meteorological influence in the drought-induced building damages. Recent works [START_REF] Ecoto | One-step ahead sequential super learning from short times series of many slightly dependent data, and anticipating the cost of natural disasters[END_REF][START_REF] Charpentier | Predicting drought and subsidence risks in France[END_REF] provide insight to the evaluation of the impact of drought on buildings. Concerning France, the study of [START_REF] Ecoto | One-step ahead sequential super learning from short times series of many slightly dependent data, and anticipating the cost of natural disasters[END_REF] uses a Super Learner methodology to predict the cost of a claim at city level. However, the prediction setting is not identical to ours, as the data linked to the natural disaster decision of the cities analyzed in [START_REF] Ecoto | One-step ahead sequential super learning from short times series of many slightly dependent data, and anticipating the cost of natural disasters[END_REF] is already known at the time of the prediction. Close to our prediction aim, [START_REF] Charpentier | Predicting drought and subsidence risks in France[END_REF] uses various data and indices to measure the severity of the drought. This work uses similar statistical models to predict the frequency but also the intensity of droughts, based on a different dataset than ours.

Along with our proposal described below, all these approaches, contribute to a better predictive evaluation of the impact of drought. Awareness on the economic impact of drought is relatively new in France and up to our knowledge, [START_REF] Ecoto | One-step ahead sequential super learning from short times series of many slightly dependent data, and anticipating the cost of natural disasters[END_REF][START_REF] Charpentier | Predicting drought and subsidence risks in France[END_REF] are the only two references related to the evaluation of the insured loss that are publicly available, while the studies conducted by insurance companies stay confidential.

The rest of the paper is organized as follows. In Section 2, we describe the framework of this problem and the variable used to predict the cost. Section 3 is devoted to the general description of the statistical models used for the prediction. In Section 4, these models are applied to a real database. Section 5 presents the results of the cost prediction. The paper ends with a discussion in Section 6.

Description of the problem and associated data

This section presents the French CatNat Regime in Section 2.1 and the context of this work, which consists in predicting that a town will be affected by a claim. The database, developed by Mission Risques Naturels (MRN), used to perform this prediction is described in Section 2.3. The covariates are presented in Section 2.4. We particularly focus, in this last section, on a spatialtemporal meteorological index, the Standardized Soil Wetness Index (SSWI) used to characterize the intensity of drought. The propensity of the soil to clay shrinking and swelling relies on the cartography produced by the Bureau de Recherches Géologiques et Minières (BRGM), a French geological and mining research institute [START_REF] Vincent | Cartographie de l'aléa retrait-gonflement et plans de prévention des risques[END_REF]. Finally, the whole methodology is summarized in Section 2.5.

Short description of the specificity of French CatNat regime

In France, natural disaster are insured through a public-private partnership, called the CatNat Regime. This specific French framework strongly dictates natural disaster claim management. This natural disaster compensation scheme was created by the Law of July 13 1982, and is based on a solidarity principle: for every contract, the same additional premium insurance rate, fixed by the government, is used to compensate for the losses of natural disasters. The scope of its application is large: for example, it covers floods, mudslides, earthquakes and landslides. However, storms, hail and snow are not included. Without going into the functional details of this compensation regime, it is important to note that before receiving the compensation, a government decree, published in the "Journal Officiel", where all laws and legislative events of the French Republic are published, acknowledges that a given city is in the state of natural disaster. To receive compensation, the policyholder of the affected city has to wait that the request to the CatNat commission is accepted.

This decree comes after an official request from the mayor of the city asking to the government to recognize the event as a natural disaster. The decree is issued by an inter-ministerial commission, which assesses the exceptional situation of the event at city level. For drought events, the evaluation is based on the soil type and moisture. This corresponds to the exposition of clay shrinking and swelling (soil type) and the meteorological intensity of the drought in the city (moisture). The classification of the propensity to clay shrinking and swelling is publicly available through a fixed cartography produced by the BRGM shown in Figure 2 [START_REF] Vincent | Cartographie de l'aléa retrait-gonflement et plans de prévention des risques[END_REF]. To measure the wetness of the soil, the commission uses an indicator developed with the French meteorological institute Météo France. This indicator of the clay risk factor consists of several geological indices obtained from experts. Based on the values of this index collected over several months and on whether the city has clay areas, the decree will recognize the city in a natural drought disaster state [START_REF]Procédure de reconnaissance de l'état de catastrophe naturelle -Révision des critères permettant de caractériser l'intensité des épisodes de sécheresse-réhydratation des sols à l'origine de mouvements de terrain différentiels[END_REF][START_REF]Contribution de Météo-France à l'analyse de la sécheresse géotechnique à l'attention de la Commission CatNat pour l'année[END_REF][START_REF]Météo-France dans le dispositif CATNAT sécheresse[END_REF]. This process is long, the average time between the occurrence of the drought event and the commission's decision is of about 18 months [START_REF]Sécheresse géotechnique, de la connaissance de l'aléa à l'analyse de l'endommagement du bâti[END_REF]. Of note, there will be no compensation from this Governmental scheme if no request is made, or if the commission refuses the request. In this case, additional coverage may be provided by the natural disaster victim's insurance company. However for the clay-related subsidence this is very rare in France. Considering the large amounts at stake and the long delay, insurance companies are trying to anticipate the total cost of such events. Estimating the cost of a drought episode as soon as possible after its occurrence is thus of utmost importance.

A binary classification problem

A first step to predict the cost of a drought event would be to identify the cities that are more likely to be officially recognized as affected by such a natural disaster. Unfortunately, this is a difficult task since firstly, the meteorological index used by the commission as one of the criteria is not publicly available early enough after the occurrence and secondly, there is an uncertainty on whether the city will make a request to the commission.

To overcome this issue, we propose to predict the cities that may have a claim. Taking advantage of our partnership with the MRN, we have access to a database containing the past drought claims that have been filed by policyholders in France.

Mathematically speaking, we are dealing with a binary classification problem. Let Y ∈ {0, 1} denote the response variable and X ∈ R p the covariates, Y = Y ij is equal to 1 if a drought event has occurred in city i in year j and 0 otherwise. Our goal is thus to estimate P[Y = 1 | X]. The results of this prediction problem are then linked with a cost in Section 2.5. In the next sections, we describe the database and the covariates used to address this problem.

The SILECC database

We have access to the database of the claims related to climatic and natural disaster in France (SILECC) [4] thanks to a partnership with the MRN. This database covers about 70% of the French non-life insurance market by aggregating the claims of 12 major French insurance companies. This database records the natural disaster claims in France from 1987 to 2018. Every claim has been standardized and geolocalized. It is very useful for the insurance market and the FFA since it enables the tracking of the type of claims related to natural hazards, where they have occurred and update the cartography of clay shrinking and swelling, as mentioned in Section 2.4.

While the database covers several natural hazards, we focused on drought events, i.e claims related to clay shrinking and swelling. Since some companies did not contribute of 1989, we chose to focus on the period from 2003 to 2018, for which we had a sufficient number of claims. This period provides strong representativeness of drought events in France and covers major episodes such as the ones observed in 2003 and in 2011. We used the data from 2003 to 2017 for estimation and 2018 was kept as an illustration of our prediction methods.

In the database, the number of cities affected by a claim represents 6% of the total number of cities in mainland France. This corresponds in average to 1 948 cities with a claim per year, out of 34 840 cities in mainland France. This ratio varies during our time period: for example, a large number of claims was observed, in 2003 where 25 % of the total number of cities were affected by a claim, 12 % and 10 % in 2017 and 2011 respectively. Figure 1 shows the yearly percentage of cities affected by a claim out of the total number of cities affected by a claim between 2003 and 2017. 

Covariates

To characterize the propensity to clay shrinking and swelling in the soil, we rely on an indicator based on geological expertise used to provide the cartography published by the BRGM [START_REF] Vincent | Cartographie de l'aléa retrait-gonflement et plans de prévention des risques[END_REF]. This index is a complex aggregation of characteristics related to the lithology (measuring the formation and the proportion of clay), to the mineralogical composition of the clay area (with a special focus on the proportion of smectites which are of particular importance), and to results of tests performed by laboratories on claims that have occurred in a given region. Historical claims are also used to reflect the frequency of incidents in the area. Updating this index has been done with the help of MRN in 2019, as described in [START_REF]Lettre d'information de la Mission Risques Naturels 30[END_REF]. Once computed, this index can be understood as a risk factor, and a ranking of the different areas is performed, defining three hierarchical classes, providing a national cartography (at city level) that describes the propensity to clay swelling. This cartography is shown in Figure 2 from [START_REF] Vincent | Cartographie de l'aléa retrait-gonflement et plans de prévention des risques[END_REF].

This cartography allows us to compute the surface and the proportion of each zone (low, medium and high) at city level. We then estimated the number of individual houses in each zone using the data of INSEE in 2015 (French public statistical organization). To take the evolution of the number of individual houses into account, we applied an augmentation or reduction of 1% for each year [START_REF] Arnold | Le parc de logements en France au 1er janvier 2018[END_REF].

Regarding the meteorological index, as the one used by the commission will, from experience, not be published early enough for useful rapid cost prediction, we used another spatial-temporal meteorological index, the Standardized Soil Wetness Index (SSWI), produced by Météo-France, as an indicator of the severity of a drought event. This index comes from a research project of Météo-France called Climsec, described in [START_REF] Vidal | Impact du changement climatique sur les sécheresses en France[END_REF]. The calculation of the SSWI is done through the analysis of precipitation, soil moisture and streamflow outputs from the Safran-Isba-Modcou (SIM) hydrometerological suites [START_REF] Habets | The SAFRAN-ISBA-MODCOU hydrometeorological model applied over France 113[END_REF], and inspired by the Standardized Precipitation Index (SPI) computation procedures [START_REF] Mckee | The relationship of drought frequency and duration to time scales[END_REF]. The description of the SSWI is beyond the scope of this paper, a description can be found in [START_REF] Vidal | Evolution of spatio-temporal drought characteristics: validation, projections and effect of adaptation scenarios[END_REF]. Four time series are then obtained from the SSWI time series as moving averages over one, three, six and twelve months. This gives us four indices for each month representing the wetness of the soil.

The SSWI is a standardized index, takes thus values centered around 0. A negative value suggests drought whereas a positive one suggests wetness. Figure 3 shows the geographical distribution of the SSWI for 2018. We can see that it is highly variable and that 2018 was a year with an important drought in France. We also computed four other indices to characterize the drought event itself, as defined in [START_REF] Vidal | Evolution of spatio-temporal drought characteristics: validation, projections and effect of adaptation scenarios[END_REF].

the duration: the number of consecutive months during which the SSWI is negative; the severity: the absolute value of the minimal value of the SSWI reached during the event; the magnitude: the absolute value of the sum of the SSWI during the event, the rarity: a classification of the severity in 7 classes (Extremely wet, Very wet, Wet, Normal, Dry, Very dry and Extremely dry) as shown in Figure 4.

These indices are calculated for each city and for each year. In the case of multiple events (in our case the maximum is four events) in one year, we use the value of the indices for all events occurring during the year. Figure 4 illustrates the definition of these indices on one example. We also used indications related to the decree for the natural disaster. Indeed criteria leading to a given decree for a city affected by a natural disaster have changed six times over the past 20 years. Therefore the same effects might not lead to the same consequences in our database, depending on the period. All of these constraints make the prediction delicate. To overcome this, we implemented a variable that indicates the criteria used by the commission at the time of the claim. We also considered the results of the decision of the commission if they had used our SSWI meteorological index instead of theirs.

Overall, our database contains 155 variables and 522 600 observations (all variables are numerical and categorical variables are encoded as binary variables). A table with a description of these variables can be found along with the code on a Git. In summary, we have 96 covariates relative to the SWI (the minimum, and maximum of each index for each month), 37 variables describing the drought events, 4 for the criterion used by the commission, 4 on past declarations of a natural disaster, 1 on the city population, 1 on its urban area, and 11 for the propensity of shrinking and swelling of clay and for the number of houses in each area.

Those variables along with the database described in Section 2.3 constitute our learning database, on which machine learning models, described in Section 3, will be trained.

Overall methodology

The first step of our method is to predict the cities that could file a claim as soon as a drought event occurs. For that, we used different machine learning models described in Section 3. Once the cities that are likely to be affected by a drought event are identified, we calculated the number of houses in these cities that have a propensity to clay shrinking and swelling. For the latter, we used the cartography done by the BRGM (Figure 2), and counted the number of houses in the city with a propensity to clay shrinking and swelling which are, houses localized in a zone with medium and strong propensity. We then used linear regression to link the number of houses to the cost of the event. This linear model has been trained on our claim database. Figure 5 summarizes this overall methodology. Let us write the cost for a city as random variable Z = Y × M, where Y = 1 if the city has a claim (and 0 otherwise), and M is the amount of the claim, the classical approach typically assumes that Y and M are independent. This assumption may be questionable. A possibility to avoid it would be, for example to consider a more elaborate model for M as the one we developed below, for example linking M through a large number of covariates (so that Y and M may be independent but conditionally on the values of these covariates). However, this would require more information that we do not have at our disposal.

Statistical models

In this section, we describe the different models that we will use and combine them to perform the prediction. The tuning is reported with the code on Git. Section 3.1 is devoted to the Generalized Linear Model with elastic-net estimator, which is a parametric model adapted to covariates with high dimension. Random forests are described in Section 3.2, while a short presentation of boosting methods like Extreme Gradient Boosting is done in Section 3.3.

Generalized linear model with penalty

The Generalized Linear Model (GLM), see for example [START_REF] Nelder | Generalized linear models[END_REF] or [START_REF] Denuit | Mathematiques de l'Assurance Non-Vie. Tome II: Tarification et Provisionnement[END_REF], is a generic way to consider regression problems which is widely used in insurance. This class of models states that, for a response variable Y and X ∈ R p some covariates,

g (E[Y |X]) = Xβ,
with β ∈ R p is the vector of unknown parameters, and g some monotonous known function, called the link function. Additionally, the conditional distribution of Y given X is assumed to belong to some fixed family of distribution from the exponential family.

In a binary classification problem such as ours, the distribution of Y | X is assumed to be a Bernoulli distribution with unknown parameter p(X) = E[Y |X]. Regarding the link function g, a standard choice consists in taking g(y) = logit(y) = log (y/(1 -y)) . This corresponds to the canonical link function, the link function leading to the best theoretical properties in GLM. It is also a simple function that maps [0, 1] into R.

Estimation can be performed by maximizing the likelihood of the model. However, in our case, the dimension p of the covariates is relatively high. This creates a problem since the statistical precision diminishes with the number of coefficients to estimate. Moreover, many numerical issues can occur. On the other hand, most variables are likely to be irrelevant (but of course, one does not know which by advance). Hence, the GLM elastic-net estimator (GLMNET) is a way to reduce dimension by solving the numerical instability [START_REF] Zou | Regularization and variable selection via the elastic net[END_REF].

Let f β (y, x) denote the likelihood of the model. The GLMNET estimator is defined as

β = arg max β n i=1 log(f β (Y i , X i )) -λ {α∥β∥ 1 + (1 -α)∥β∥ 2 } ,
with ∥β∥ 1 (resp. ∥β∥ 2 ) denotes the l 1 -(resp. l 2 -) norm of the vector β, the hyper-parameters λ and α being positive constant. The penalization of the log-likelihood by ∥β∥ 2 corresponds to a Ridge penalization (see [START_REF] Marquardt | Ridge regression in practice[END_REF]), which stabilizes the estimation result by reducing some numerical issues that may happen in high dimension. On the other hand, the penalization by ∥β∥ 1 corresponds to a Lasso penalty (see [START_REF] Tibshirani | Regression shrinkage and selection via the lasso[END_REF]), designed to produce a sparse model, i.e. a model in which most coefficients of β are equal to zero. Hence it allows one to reduce the effective dimension of the covariates. The constants λ and α are chosen by cross-validation.

The advantage of GLMNET is to produce an intelligible and easily interpretable model. On the other hand, being able to automatically select the variables that have an effect on Y allows us to consider a model complex enough to expect a good fit. Nevertheless, the underlying parametric assumption may be too strong in practice. This is why we also turn towards "blackboxes" techniques from machine learning.

Random Forests

Random Forests (RF) constitute a machine learning procedure based on the aggregation of regression trees [START_REF] Breiman | Random forests[END_REF]. Regression trees, as introduced by Breiman [START_REF] Breiman | Classification and regression trees[END_REF], estimate the function p(x) by

p(x) = K j=1 p j R j (x), (1) 
where, for all x, R j (x) = 0 for all j except for one. Namely, R j are "rules" that are associated with a partition of the covariate space, allowing to affect x to the unique set of the partition to which it belongs. In regression trees, these partitions are hyper-rectangles, that is R j (x) = 1 if and only if x ∈ ∩ d k=1 {x : x k,l ≤ x l ≤ x k,r }, where x = (x 1 , ..., x d ). This partition is obtained iteratively through the CART algorithm, see [START_REF] Breiman | Classification and regression trees[END_REF]. The estimation of the values p j is then done for each region of the space R j (x).

Regression trees have many appealing properties, like allowing to introduce non-linearities while still producing a model which can be easily understood. However, their main drawback is their instability: new incoming data may disrupt the structure of the partition. RF are a way to stabilize this technique, while capturing more elaborate shapes of regression function p(x). They are obtained by averaging regression trees with some specificities:

each tree is of small size (a small value of K in Equation (1) is imposed); each tree grows on a separate bootstrap sample; the rules of a given tree are based only on a small subset of d covariates (subset which is selected randomly), where d is an hyperparameter of the method.

Extreme Gradient Boosting

Extreme Gradient Boosting (XGBOOST), see [START_REF] Chen | XGBoost: A scalable tree boosting system[END_REF], is an alternative method to RF which also relies on regression trees, but instead of fitting these trees simultaneously, they are fitted iteratively. The predictor p (t) (x) at the t-th step of the algorithm is obtained from the predictor p (t-1) (x) at the (t -1)-th step by p (t-1) (x) + π t (x), where π t (x) is a regression tree selected in order to make the loss function decrease as much as possible, that is to maximize the log-likelihood in the Bernoulli case with a regularization penalty. Let ℓ(y i , p (t-1) (x i )) denote the negative log-likelihood for observation i (y i , x i ) at step t -1 (this function is also called cross-entropy in the learning literature). At step t, the algorithm tries to find π t that minimizes

n i=1 ∂ 2 ℓ(y i , p (t-1) (x i )) × π t (x i ) + 1 2 ∂ 2 2 ℓ(y i , p (t-1) (x i )) × π 2 t (x i ) + pen(π t ),
where pen denotes the regularization penalty, and ∂ 2 (resp. ∂ 2 2 ) denotes the (resp. second order) partial derivative of a function with respect to its second argument.

Prediction results for the SILECC database

This section presents the prediction results obtained with the database SILECC for the different models described in Section 3. The evaluation of the performance is made through the F 1 -score, Precision and Recall curves and confusion matrices, described in Section 4.1. The tuning of the different parameters of the models are then shown in Section 4.2 and the results in Section 4.3.

Evaluation of the performance

To assess the performance of the different models, we have randomly split our database into a train set (80%) and test set (20%). Recall that our database is very imbalanced in the sense that the proportion of cities that have had a claim is very small.

Common methods to assess the performance of binary classifiers include true positive and true negative rates, and ROC (Receiver Operating Characteristics) curves, which display the true positive rate against the false positive rate. These methods, however, are uninformative when the classes are severely imbalanced. In this context, F 1 -score and Precision-Recall curves (PRC) have been shown to be more informative [START_REF] Brownlee | Imbalanced Classification with Python: Better Metrics, Balance Skewed Classes, Cost-Sensitive Learning[END_REF][START_REF] Saito | The precision-recall plot is more informative than the ROC plot when evaluating binary classifiers on imbalanced datasets[END_REF] where p c is a cut-off probability varying between 0 and 1. Precision quantifies the number of correct positive predictions out all positive predictions made; and Recall (often also called Sensitivity) quantifies the number of correct positive predictions out of all positive predictions that could have been made. Both focus on the Positives class (the minority class, cities with a claim) and are unconcerned with the Negatives (the majority class, cities without a claim).

The F 1 -score combines these two measures in a single index by taking the harmonic mean of those two values. It is derived from the F-Measure introduced in [START_REF] Chinchor | Muc-5 evaluation metrics[END_REF] and [START_REF] Rijsbergen | Information retrieval 2nd ed buttersworth[END_REF] and defined as

F 1 = 2 • Precision • Recall Precision + Recall . ( 2 
)
To closer the F 1 -score is to 1, the better the prediction model is.

PRC display the values of Precision and Recall as the cut-off probability p c varies from 0 to 1. The PR curve of a skillful model bows towards the point with coordinates [START_REF]Catastrophes naturelles : la facture salée des sécheresses à répétition[END_REF][START_REF]Catastrophes naturelles : la facture salée des sécheresses à répétition[END_REF]. The curve of a no-skill classifier will be a horizontal line on the plot with a y-coordinate proportional to the number of Positives in the dataset. For a balanced dataset this will be 0.5 [START_REF] Brownlee | Imbalanced Classification with Python: Better Metrics, Balance Skewed Classes, Cost-Sensitive Learning[END_REF].

PRC and F 1 -score are complementary in our approach. The PRC is used on the probability outcomes of the models, it gives the best configuration and the best model, whereas the F 1 -score is used to select the best threshold value used in the prediction of the two classes, for each model. We will detail this process in the next section.

Parameter tuning

Let us recall that we consider three types of models for which hyperparameters need to be tuned:

-Generalized Linear Models with penalization: as already mentioned in Section 3.1, this parameter is tuned using cross-validation; -Random Forests: the parameters are the number K of trees, and the number d of factors to be selected randomly for each bootstrap sample. The maximum depth value of each tree has been set as unlimited to reduce the tuning complexity, since primary analysis showed the weak impact of this hyperparameter on our particular dataset; -XGBOOST: regression trees are used as base learners, where the depth of each tree is limited to 6 to obtain relatively small trees and allow a larger number of boosting rounds which is the hyperparameter we focused on for tuning.

We started with the default parameters of the R-package ranger [START_REF] Wright | ranger: A fast implementation of random forests for high dimensional data in[END_REF] for Random Forests, and of xgboost [START_REF] Chen | XGBoost: A scalable tree boosting system[END_REF] for XGBOOST. Then, a grid search has been performed to optimize these parameters. The final selected parameters are d = 12 and K = 500. for the Random Forests, and 100 boosting rounds have been used for XGBOOST. The AUCPR metric has been used to optimize these parameters, since our dataset is imbalanced, see [START_REF] Saito | The precision-recall plot is more informative than the ROC plot when evaluating binary classifiers on imbalanced datasets[END_REF].

Results

In this section, we present the main results of our analysis for the models presented in Section 3. We also consider the aggregation of these 3 models. For the aggregation (AGGREGATE), we examined the mean of the three probability outcomes of each model, to make a synthesis of all of the predictions. For each, Figure 6 shows ROC and PRC and Table 1 the Area Under the Curve (AUC) for both ROC and PRC. The closer the AUC is to 1 the better the prediction method.

In Table 1, notice that the AUC for the ROC are close to 1 for all four models while AUC for the PRC have values around 0.60. This illustrates what has been explained in Section 4.1, ROC curves are uninformative for imbalanced dataset, since ROC curves focus equally on the Positives and Negatives classes. Therefore, when the Negatives class is largely predominant in the dataset, a model always predicting a Negative will have an AUC close to 1, but will not predict any of the Positives. The AUC PRC in Table 1 shows that the XGBOOST and RF provide better results on our data than the GLMNET. The aggregation gives the best results which is a strong advocate for the use of this method. The PR curves in Figure 6 seem to be reasonable given our classification problem: they are not perfect but the trade-off is acceptable. The XGBOOST and RF seem to work better, as the beginning of the graph decreases slower in comparison to the one in the GLMNET. It is also very interesting to see that the aggregation smooths the results and takes the best out of each model. The beginning of the graph is less discontinuous. Thus the aggregation appears to be the best model to use for the prediction.

We then selected a threshold to make the prediction, that is the value of the cut-off probability p c over which we consider the prediction to be a 1. A classical value of 0.5 seems arbitrary as the predictions we try to make are rare and so a probability of 0.5 can already be a strong score. To select the threshold we used the F 1 -score and tried different thresholds with a step of 0.001. The results are presented in table 2.

Again, we see that the best F 1 -score is obtained by the aggregation of the models, with a value of 0.576 and a threshold of 0.264. We find the same order as before, with the XGBOOST working better than the Random Forest. The thresholds range between 0.2 and 0.3 confirming the idea that the threshold 0.5 would have been arbitrary and would not have made the best prediction.

Figure 7 shows the confusion matrices for each model. Out of the 5 924 cities affected by a claim in the test set, the all four models predicted between 3 157 and 3 526 cities affected by a claim. This means that all four models manage to predict more than half of the cities affected by a claim. Of note, GLMNET does more false predictions, which can explain the differences seen in the F 1 -score. When we examine the confusion matrices, there are no other notable differences between the other models.

Variable importance

Variable importance measures how much a variable influences the predictions made from a given model. The more a model relies on a variable to make predictions, the more important it is for the model. Variable importance provides also a tool to interpret "black-box" models and their performance [START_REF] Tibshirani | Regression shrinkage and selection via the lasso[END_REF]. The variable importance is based on different metrics depending on the considered model. For GLMNET, it is measured by the value of the coefficient associated with the variable, after standardization of the data. Concerning RF, the variable importance corresponds to the Gini index for classification [START_REF] Tibshirani | Regression shrinkage and selection via the lasso[END_REF][START_REF] Wright | ranger: A fast implementation of random forests for high dimensional data in[END_REF]. For XGBOOST, the variable importance represents the fractional contribution of each feature to the model based on the total gain of the splits of the feature. A higher percentage means a more important predictive feature. Table 3 reports the top 10 contributing variables according to the relevant metrics for each model.

GLMNET seems to rely more on meteorological data and less on the description of the city. Both tree methods, RF and XGBOOST, rely more on a combination of exposition to shrinking and swelling of clay and past declaration of events than on the meteorological data. We only show the top 10 most important variables, but the meteorological data remain significant for RF and XGBOOST, and are ranked just after. Nevertheless it is interesting to note that the meteorological variables are not the most important. This could explain the differences we see in the results, especially as RF and XGBOOST seem to give very similar results, in terms of AUC PRC score but also for the number of cities correctly predicted. All available variables are not used, which is expected as we choose to give more than 100 variables and use methods that will be able to choose the relevant ones.

Cost prediction

In this section, we explain our methodology to predict the cost of a drought event. The model for evaluating the cost is described in Section 5.1 and the final results are shown in Section 5.2.

Linear regression

We already mentioned that the cost of a drought event is likely to be correlated with the number of houses in the area. Based on the SILECC database, we fitted a model to quantify this impact. Since the database represents 70% of the insurance market, we multiplied each cost by 1.42 to obtain a cost for the entire French market. We aggregated several events of a same year to reduce the variability in the estimation. 

with standard errors of 1.15e + 08 for the intercept and 55.79 for the number of houses. We found a good correlation between these two variables in our database, with a R 2 = 0.84 and a residual standard error of 2.198e + 08. Figure 8 shows that the linear regression is a good approximation for our problem. We use the 95% confidence interval, which we will use for our prediction. This linear model is of course very rough, but has to be fitted on the small number of observations that we have (only 15), which explains the choice for the most simple regression model. Although the R 2 is relatively close to 1, one should of course not be overconfident on this fit due to the small number of points used to estimate the model parameters.

Results of the cost prediction for 2018

The previous model is then linked with the prediction models of Section 3. Once we have the number of houses we can then estimate a cost with a confidence interval. In our case, the total loss can be written as

L = N i=1 Y i M i ,
where Y i = 1 if a claim occurred and 0 otherwise, and M i is the corresponding amount of the claim (for which we know the number of houses n i ), and N is the number of considered cities. If Y i and M i are independent, then the variance is

Var(Y i M i | X) = E[M 2 ]p i (1 -p i ) + p i Var(M ) ,
where p i = P(Y i = 1|X). Hence the variance σ 2 of L can be estimated by

σ 2 = n i=1 m2,i p i (1 -p i ) + p i σ2 ,
where σ is the estimated standard error in the linear regression model of Section 5.1, and m2,i = σ2 + ( α + βn i ) 2 , with ( α, β) = (-4.121e + 08, 464.4), as estimated in the previous section.

Then the 95% confidence intervals of our estimation can be approximated by

L ± 1.96 σ 2
The results of this estimation are displayed in Table 4. The FFA estimated the cost of the drought in France for 2018 to 900 million euros [10], with competing estimations between 1 100 and 1 300 million euros [START_REF]Catastrophes naturelles : la facture salée des sécheresses à répétition[END_REF]. The outcome of the aggregation model shows the same results. Even if we do not have a very good precision at the city level, the general cost is consistent with the observed data.

Among these four classes of predictors, the penalized Generalized Linear Model tends to considerably underestimate the cost, being significantly lower than the benchmark evaluation of the FFA. The three other methods provide more plausible results, probably due to the fact that they are more flexible than a simple parametric approach, and therefore have more ability to capture complex phenomena. On the other hand, the random forests produce an estimation beyond the most pessimistic evaluations of the risk by the market, which seems to advocate to rely on the estimations of the two other approaches, the aggregation or the XGBOOST.

The difference in the predicted costs is essentially due a difference in the predicted number of houses. Which, itself, is related to the number of cities predicted by each model, as we can notice in Table 5. We can note for 2018 that RF predicts more cities with a claim whereas GLMNET predicts less. This once again advocates for the use of the aggregation because it has an averaging effect on the prediction and allows us to take the best of each prediction. 

Conclusion and discussions

In this work, we developed a novel methodology to predict the cost of the consequences of drought for the entire French market. We first used a Generalized Linear Model with Elastic-Net penalization, Random Forest and Extreme Gradient Boosting models with different discriminant thresholds to predict the cities that may be affected by a claim. Based on these predictions, we calculated the number of houses that have a propensity to clay shrinking and swelling and then computed the total cost through a linear regression. We obtained encouraging results for such a complex phenomenon, although several uncertainties remain. Despite moderate results for the prediction of the impacted cities, we obtained coherent results for the cost prediction. The database we used, the process of natural catastrophes and the nature of this hazard of drought, make the modeling very complex and uncertain. Indeed, our database is based on past claims, reported by different insurers and contain some imprecision, that may impact the results of the prediction of the probability for a city to be affected by a claim.

The second difficulty is the process linked to the decrees of natural disasters. To be able to obtain compensation, and therefore to appear in our database, the city must have been recognized as eligible by the interministry commission. There may have been claims that were not recognized. Our models might predict such claims, but we do not have the information to assess whether the prediction is correct or not. Also, in the past 20 years, the criteria for a city to be recognized in the state of natural catastrophe has changed six times. Therefore, in our train database, we may have different characteristics that will have different effects depending on the criterion.

Moreover, with the meteorological and geological variables that were at our disposal, only a fraction of the factors that drive the risk were addressed. The interaction between the structure of the house and the composition of the soil plays an important role to determine whether the house will be damaged by a drought event. We took the nature of the soil into account with the BRGM indicators but it is very difficult to take the structure of the house into account due to the lack of data on the different types of foundations, especially at a local level.

We also faced difficulties to assess our model. As mentioned above there is uncertainty on the results due to the recognition process. More generally it is difficult to find the right score to judge a model, especially with imbalanced data. Furthermore, the prediction that we make can only be verified for one or two years, and even more if we want to have all the claims. The results are encouraging but need to be consolidated by more accurate predictions.

Despite these difficulties, the methods we developed allowed us to improve the prediction of the costs from drought in this particular French context. The techniques we used could be improved with additional amount of data, and with additional knowledge on the spatial dependence phenomena between cities (namely how two close cities may coordinate or not their responses). Let us stress that the main advantage of our approach is to provide a fast answer to the question of the cost of such natural events, in a context where the time to react is important to optimize risk management. Finally, let us mention that the methods we developed could also be extended to approximate or predict the index used by the CatNat commission, in order to improve the prediction.
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 1 Fig. 1 Yearly percentage of cities affected by a claim out of the total number of cities affected by a claim between 2003 and 2017
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 4 Fig. 4 Description of the four indices based on the SSWI we use based on one example. 1 represents the duration of the event, 2 its severity, 3 its magnitude and 4 its rarity.
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  . They are both based on the values of Precision(p c ) = true positives true positives + false positives against the values of Recall(p c ) = true positives true positives + false negatives
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 6 Fig. 6 ROC (Left) and PR (Right) curves for a) GLMNET b) RF c) XGBOOST d) AGGREGATE on the test sample (containing 5 924 cities with a claim and 98 596 without a claim).
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 17 Fig. 7 Confusion matrices for a) GLMNET b) RF c) XGBOOST d) AGGREGATE on the test sample.

  The largest yearly cost was observed in 2003 with 2 billion euros and the average yearly cost between 2003 and 2017 was of 415 million euros per year. The number of houses has a similar distribution, with an average of 1.7 million houses per year reaching 4,7 millions in 2003. Denoting M as the cost of an event, we can write E[M ] = Number of houses × 464.4 -4.121e + 08,

Fig. 8

 8 Fig. 8 Linear regression for the cost of claims Vs. number of houses. The points are the observations, the blue line the regression line and the grey are the confidence band.

Table 1

 1 ). AUC of the different models

	MODEL	AUC ROC AUC PRC
	GLMNET	0.907	0.503
	RF	0.933	0.604
	XGBOOST	0.936	0.609
	AGGREGATE 0.936	0.615

Table 2 Best

 2 

	MODEL	F1-score Thresholds
	GLMNET	0.503	0.221
	RF	0.570	0.306
	XGBOOST	0.573	0.291
	AGGREGATE 0.576	0.264

Table 3

 3 Top 10 most important variables according to the relevant metrics for each model GLMNET RF XGBOOST Max value of the SSWI 12 for February Number of past declaration of natural catastrophe Number of past declaration of natural catastrophe Max value of the SSWI 12 for August Surface with no propensity of shrinking and swelling of clay Number of events for the previous year Max value of the SSWI 6 for November Number of houses Number of houses Max value of the SSWI 12 for June Proportion of the surface with weak propensity of shrinking and swelling of clay Surface with weak propensity of shrinking and swelling of clay Max value of the SSWI 3 for August

		Surface with urban area	Min value of the SSWI 1 for August
	Ranking of the severity of the events	Surface with medium propensity of shrinking and swelling of clay	Min value of the SSWI 3 for October
	Max value of the SSWI 12 for June	Number of houses with medium propensity of shrinking and swelling of clay	Number of past refusal with the calculation done with our SSWI
	Min value of the SSWI 12 for June	Total Duration of the events of drought	Surface with medium propensity of shrinking and swelling of clay
	Max value of the SSWI 12 for January	Number of events for the previous year	Number of houses with medium propensity of shrinking and swelling of clay
	Max value of the SSWI 6 for January	Min value of the SSWI 6 for November	Total Duration of the past events of drought

Table 4

 4 Estimates and confidence intervals of the predicted costs for 2018 (in euros)

Table 5

 5 Predicted number of sensitive houses and cities for the 2018-drought

	MODEL	Number of cities Number of sensitive houses
	GLMNET	1 364	2 134 000
	RF	5 525	4 371 000
	XGBOOST	1 800	2 991 000
	AGGREGATE	1 823	2 966 000
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