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Abstract This paper addresses the prediction of the total damage costs brought on by a drought
episode under the French “Régime de Catastrophes Naturelles”. Due to the specificity of this
natural disaster compensation scheme, an early prediction of the cost of a disaster is needed to
improve strategic decisions. Taking advantage of the access, thanks to a partnership with the
Mission Risques Naturels, to a database of natural disaster claims fed by the major French insur-
ance companies, we combine the information of drought event claims contained in this database
with meteorological and socioeconomic data to achieve a more comprehensive knowledge of the
exposure. Our prediction approach relies on the comparison of different statistical models and
machine learning algorithms. To improve the prediction performance, we propose an aggregation
of the different models. Since the main difficulty encountered is imbalanced data as a large ma-
jority of cities are not affected by a drought event, the predictions are assessed by F1-scores and
Precision and Recall curves.
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Extreme Gradient Boosting · Random Forests
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1 Introduction

According to the Fédération Française des Assurances, FFA (French Federation of Insurance
Companies), the cost of damages caused by natural disasters, such as drought, is expected to in-
crease in the coming years in France [3]. In France, drought is responsible for about 30% of the to-
tal amount of natural disaster claims paid by the French regime CatNat (Régime d’indemnisation
des catastrophes naturelles) [5]. This regime also deals with events of floods, such as the one of
2016 in the Seine and Loire areas, but also cyclone events such as Irma in 2017, or earthquake
as in Le Teil in 2019, its scope is large. For drought this represents almost 14 billions euros since
1989, for the most extreme years, like 2003, the cost can rise up to 2 billion euros. The rise in
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drought event numbers is clear: indeed, since the creation of the regime in 1982, half of the most
costly drought events have occurred after 2010 (3 out of 6) [5]. This is mainly due to the general
growth of wealth in France and to climate change. Individual houses properties in general are
especially targeted by drought due to clay-related subsidence. Clay-related subsidence is caused
by clay shrinking and swelling in response to wetting and drying conditions. Because of the vol-
umetric changes in soil mass, clay shrinking and swelling cause vertical and horizontal ground
movements, which can lead to significant damages to infrastructure and especially to individual
houses [2,12]. These damages have equally been reported in other countries and the associated
cost is high, reported to reach £500 millions per annum in the UK, for instance [27].

In this paper, we propose a methodology to estimate the total amount of the consequences,
on the buildings, of a drought event shortly after its occurrence for the entire French insurance
market. The main goal is to provide insurance companies tools to assess the severity of future
drought events. Because of the large incurred amounts, the potential involvement of the govern-
ment, or the quality of prevention and assistance delivered to policyholders, evaluating the order
of magnitude of the cost of such an episode is challenging but of the upmost importance.

The specificity of the French system, under the “Régime Catastrophe Naturelle” (CatNat
regime), makes it even more challenging. This Regime leans on a precise administrative procedure—
involving both insurance companies and the government—that oversees the compensation and
the management of the relevant claims. Financial assistance is provided through a specific decree,
that acknowledges the “catastrophe naturelle”. The decree is published only after an examination
process that can take a significant amount of time. The approach we develop in this paper aims
at predicting whether a geographic area (namely a town) will be affected by a drought event.
The knowledge of such information will allow to determine the amount of reserves required to
face such an event and estimate the cost from the number of potentially exposed houses. In
this regime, only the effect of drought on the buildings, mainly individual houses are taken into
account.

Our methodology to predict the cost of drought events relies on the comparison of different
statistical methods such as Generalized Linear Models (combined with Lasso and Elastic-Net
penalties [22]) with machine learning algorithms, such as Random Forests [13,34] or Extreme
Gradient Boosting [17]. The calibration of these methods is performed on a large database pro-
vided by Mission Risques Naturels, covering approximately 70% of the French non-life insurance
market. An important difficulty stands in the fact that this database is very imbalanced. Indeed,
catastrophic events such as drought are relatively rare, and thus no claim data are available for
most geographical areas. To improve the performance and benefit from all the models considered,
we propose an aggregation of the outcomes on which we can base new predictions. The predic-
tions obtained from the different models are thus assessed with Precision and Recall curves, F1−
scores and confusion matrices.

Since our purpose is to evaluate the amount of a drought episode shortly after its occurrence
(and not to predict this occurrence), our evaluation is based on meteorological indicators related
to this natural phenomenon. The total cost of the damage is estimated from the knowledge of the
intensity of a drought, measured from these available factors, as suggested by [19]. In [19], the
authors relied on simulations to highlight the meteorological influence in the drought-induced
building damages. Recent works [21,16] provide insight to the evaluation of the impact of drought
on buildings. Concerning France, the study of [21] uses a Super Learner methodology to predict
the cost of a claim at city level. However, the prediction setting is not identical to ours, as the
data linked to the natural disaster decision of the cities analyzed in [21] is already known at the
time of the prediction. Close to our prediction aim, [16] uses various data and indices to measure
the severity of the drought. This work uses similar statistical models to predict the frequency
but also the intensity of droughts, based on a different dataset than ours.
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Along with our proposal described below, all these approaches, contribute to a better pre-
dictive evaluation of the impact of drought. Awareness on the economic impact of drought is
relatively new in France and up to our knowledge, [21,16] are the only two references related
to the evaluation of the insured loss that are publicly available, while the studies conducted by
insurance companies stay confidential.

The rest of the paper is organized as follows. In Section 2, we describe the framework of this
problem and the variable used to predict the cost. Section 3 is devoted to the general description
of the statistical models used for the prediction. In Section 4, these models are applied to a real
database. Section 5 presents the results of the cost prediction. The paper ends with a discussion
in Section 6.

2 Description of the problem and associated data

This section presents the French CatNat Regime in Section 2.1 and the context of this work,
which consists in predicting that a town will be affected by a claim. The database, developed by
Mission Risques Naturels (MRN), used to perform this prediction is described in Section 2.3. The
covariates are presented in Section 2.4. We particularly focus, in this last section, on a spatial-
temporal meteorological index, the Standardized Soil Wetness Index (SSWI) used to characterize
the intensity of drought. The propensity of the soil to clay shrinking and swelling relies on the
cartography produced by the Bureau de Recherches Géologiques et Minières (BRGM), a French
geological and mining research institute [33]. Finally, the whole methodology is summarized in
Section 2.5.

2.1 Short description of the specificity of French CatNat regime

In France, natural disaster are insured through a public-private partnership, called the CatNat
Regime. This specific French framework strongly dictates natural disaster claim management.
This natural disaster compensation scheme was created by the Law of July 13 1982, and is
based on a solidarity principle: for every contract, the same additional premium insurance rate,
fixed by the government, is used to compensate for the losses of natural disasters. The scope
of its application is large: for example, it covers floods, mudslides, earthquakes and landslides.
However, storms, hail and snow are not included. Without going into the functional details
of this compensation regime, it is important to note that before receiving the compensation, a
government decree, published in the “Journal Officiel”, where all laws and legislative events of the
French Republic are published, acknowledges that a given city is in the state of natural disaster.
To receive compensation, the policyholder of the affected city has to wait that the request to the
CatNat commission is accepted.

This decree comes after an official request from the mayor of the city asking to the government
to recognize the event as a natural disaster. The decree is issued by an inter-ministerial com-
mission, which assesses the exceptional situation of the event at city level. For drought events,
the evaluation is based on the soil type and moisture. This corresponds to the exposition of
clay shrinking and swelling (soil type) and the meteorological intensity of the drought in the city
(moisture). The classification of the propensity to clay shrinking and swelling is publicly available
through a fixed cartography produced by the BRGM shown in Figure 2 [33]. To measure the
wetness of the soil, the commission uses an indicator developed with the French meteorological
institute Météo France. This indicator of the clay risk factor consists of several geological indices
obtained from experts. Based on the values of this index collected over several months and on
whether the city has clay areas, the decree will recognize the city in a natural drought disaster
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state [7,8,9]. This process is long, the average time between the occurrence of the drought event
and the commission’s decision is of about 18 months [5]. Of note, there will be no compensation
from this Governmental scheme if no request is made, or if the commission refuses the request.
In this case, additional coverage may be provided by the natural disaster victim’s insurance com-
pany. However for the clay-related subsidence this is very rare in France. Considering the large
amounts at stake and the long delay, insurance companies are trying to anticipate the total cost
of such events. Estimating the cost of a drought episode as soon as possible after its occurrence
is thus of utmost importance.

2.2 A binary classification problem

A first step to predict the cost of a drought event would be to identify the cities that are more
likely to be officially recognized as affected by such a natural disaster. Unfortunately, this is a
difficult task since firstly, the meteorological index used by the commission as one of the criteria
is not publicly available early enough after the occurrence and secondly, there is an uncertainty
on whether the city will make a request to the commission.

To overcome this issue, we propose to predict the cities that may have a claim. Taking
advantage of our partnership with the MRN, we have access to a database containing the past
drought claims that have been filed by policyholders in France.

Mathematically speaking, we are dealing with a binary classification problem. Let Y ∈ {0, 1}
denote the response variable and X ∈ Rp the covariates, Y = Yij is equal to 1 if a drought event
has occurred in city i in year j and 0 otherwise. Our goal is thus to estimate P[Y = 1 | X]. The
results of this prediction problem are then linked with a cost in Section 2.5. In the next sections,
we describe the database and the covariates used to address this problem.

2.3 The SILECC database

We have access to the database of the claims related to climatic and natural disaster in France
(SILECC) [4] thanks to a partnership with the MRN. This database covers about 70% of the
French non-life insurance market by aggregating the claims of 12 major French insurance compa-
nies. This database records the natural disaster claims in France from 1987 to 2018. Every claim
has been standardized and geolocalized. It is very useful for the insurance market and the FFA
since it enables the tracking of the type of claims related to natural hazards, where they have
occurred and update the cartography of clay shrinking and swelling, as mentioned in Section 2.4.

While the database covers several natural hazards, we focused on drought events, i.e claims
related to clay shrinking and swelling. Since some companies did not contribute of 1989, we chose
to focus on the period from 2003 to 2018, for which we had a sufficient number of claims. This
period provides strong representativeness of drought events in France and covers major episodes
such as the ones observed in 2003 and in 2011. We used the data from 2003 to 2017 for estimation
and 2018 was kept as an illustration of our prediction methods.

In the database, the number of cities affected by a claim represents 6% of the total number of
cities in mainland France. This corresponds in average to 1 948 cities with a claim per year, out
of 34 840 cities in mainland France. This ratio varies during our time period: for example, a large
number of claims was observed, in 2003 where 25 % of the total number of cities were affected
by a claim, 12 % and 10 % in 2017 and 2011 respectively. Figure 1 shows the yearly percentage
of cities affected by a claim out of the total number of cities affected by a claim between 2003
and 2017.
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Fig. 1 Yearly percentage of cities affected by a claim out of the total number of cities affected by a claim between
2003 and 2017

2.4 Covariates

To characterize the propensity to clay shrinking and swelling in the soil, we rely on an indicator
based on geological expertise used to provide the cartography published by the BRGM [33].
This index is a complex aggregation of characteristics related to the lithology (measuring the
formation and the proportion of clay), to the mineralogical composition of the clay area (with a
special focus on the proportion of smectites which are of particular importance), and to results
of tests performed by laboratories on claims that have occurred in a given region. Historical
claims are also used to reflect the frequency of incidents in the area. Updating this index has
been done with the help of MRN in 2019, as described in [6]. Once computed, this index can
be understood as a risk factor, and a ranking of the different areas is performed, defining three
hierarchical classes, providing a national cartography (at city level) that describes the propensity
to clay swelling. This cartography is shown in Figure 2 from [33].

This cartography allows us to compute the surface and the proportion of each zone (low,
medium and high) at city level. We then estimated the number of individual houses in each zone
using the data of INSEE in 2015 (French public statistical organization). To take the evolution
of the number of individual houses into account, we applied an augmentation or reduction of 1%
for each year [11].

Regarding the meteorological index, as the one used by the commission will, from experience,
not be published early enough for useful rapid cost prediction, we used another spatial-temporal
meteorological index, the Standardized Soil Wetness Index (SSWI), produced by Météo-France,
as an indicator of the severity of a drought event. This index comes from a research project of
Météo-France called Climsec, described in [32]. The calculation of the SSWI is done through
the analysis of precipitation, soil moisture and streamflow outputs from the Safran-Isba-Modcou
(SIM) hydrometerological suites [23], and inspired by the Standardized Precipitation Index (SPI)
computation procedures [25]. The description of the SSWI is beyond the scope of this paper, a
description can be found in [31]. Four time series are then obtained from the SSWI time series
as moving averages over one, three, six and twelve months. This gives us four indices for each
month representing the wetness of the soil.

The SSWI is a standardized index, takes thus values centered around 0. A negative value
suggests drought whereas a positive one suggests wetness. Figure 3 shows the geographical dis-
tribution of the SSWI for 2018. We can see that it is highly variable and that 2018 was a year
with an important drought in France.



6 Antoine HERANVAL1,2∗ et al.

Fig. 2 Cartography of the propensity of clay shrinking and swelling clay in France. Source: BRGM [33]

Fig. 3 Cartography of the SSWI for the year 2018. ©MRN. Sources: Météo France SSWI, ADMIN EXPRESS
(IGN)

We also computed four other indices to characterize the drought event itself, as defined in
[31].

– the duration: the number of consecutive months during which the SSWI is negative;
– the severity: the absolute value of the minimal value of the SSWI reached during the event;
– the magnitude: the absolute value of the sum of the SSWI during the event,
– the rarity: a classification of the severity in 7 classes (Extremely wet, Very wet, Wet, Normal,

Dry, Very dry and Extremely dry) as shown in Figure 4.
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These indices are calculated for each city and for each year. In the case of multiple events (in
our case the maximum is four events) in one year, we use the value of the indices for all events
occurring during the year. Figure 4 illustrates the definition of these indices on one example.

Fig. 4 Description of the four indices based on the SSWI we use based on one example. 1 represents the duration
of the event, 2 its severity, 3 its magnitude and 4 its rarity.

We also used indications related to the decree for the natural disaster. Indeed criteria leading
to a given decree for a city affected by a natural disaster have changed six times over the past
20 years. Therefore the same effects might not lead to the same consequences in our database,
depending on the period. All of these constraints make the prediction delicate. To overcome this,
we implemented a variable that indicates the criteria used by the commission at the time of the
claim. We also considered the results of the decision of the commission if they had used our SSWI
meteorological index instead of theirs.

Overall, our database contains 155 variables and 522 600 observations (all variables are nu-
merical and categorical variables are encoded as binary variables). A table with a description of
these variables can be found along with the code on a Git. In summary, we have 96 covariates
relative to the SWI (the minimum, and maximum of each index for each month), 37 variables
describing the drought events, 4 for the criterion used by the commission, 4 on past declarations
of a natural disaster, 1 on the city population, 1 on its urban area, and 11 for the propensity of
shrinking and swelling of clay and for the number of houses in each area.

Those variables along with the database described in Section 2.3 constitute our learning
database, on which machine learning models, described in Section 3, will be trained.

2.5 Overall methodology

The first step of our method is to predict the cities that could file a claim as soon as a drought
event occurs. For that, we used different machine learning models described in Section 3. Once
the cities that are likely to be affected by a drought event are identified, we calculated the number
of houses in these cities that have a propensity to clay shrinking and swelling. For the latter,
we used the cartography done by the BRGM (Figure 2), and counted the number of houses in
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the city with a propensity to clay shrinking and swelling which are, houses localized in a zone
with medium and strong propensity. We then used linear regression to link the number of houses
to the cost of the event. This linear model has been trained on our claim database. Figure 5
summarizes this overall methodology.

Fig. 5 Overall methodology.

Let us write the cost for a city as random variable Z = Y ×M, where Y = 1 if the city has
a claim (and 0 otherwise), and M is the amount of the claim, the classical approach typically
assumes that Y and M are independent. This assumption may be questionable. A possibility to
avoid it would be, for example to consider a more elaborate model for M as the one we developed
below, for example linking M through a large number of covariates (so that Y and M may be
independent but conditionally on the values of these covariates). However, this would require
more information that we do not have at our disposal.

3 Statistical models

In this section, we describe the different models that we will use and combine them to perform the
prediction. The tuning is reported with the code on Git. Section 3.1 is devoted to the Generalized
Linear Model with elastic-net estimator, which is a parametric model adapted to covariates
with high dimension. Random forests are described in Section 3.2, while a short presentation of
boosting methods like Extreme Gradient Boosting is done in Section 3.3.

3.1 Generalized linear model with penalty

The Generalized Linear Model (GLM), see for example [26] or [20], is a generic way to consider
regression problems which is widely used in insurance. This class of models states that, for a
response variable Y and X ∈ Rp some covariates,

g (E[Y |X]) = Xβ,

with β ∈ Rp is the vector of unknown parameters, and g some monotonous known function,
called the link function. Additionally, the conditional distribution of Y given X is assumed to
belong to some fixed family of distribution from the exponential family.

In a binary classification problem such as ours, the distribution of Y | X is assumed to be a
Bernoulli distribution with unknown parameter p(X) = E[Y |X]. Regarding the link function g,
a standard choice consists in taking g(y) = logit(y) = log (y/(1− y)) . This corresponds to the
canonical link function, the link function leading to the best theoretical properties in GLM. It is
also a simple function that maps [0, 1] into R.

Estimation can be performed by maximizing the likelihood of the model. However, in our case,
the dimension p of the covariates is relatively high. This creates a problem since the statistical
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precision diminishes with the number of coefficients to estimate. Moreover, many numerical issues
can occur. On the other hand, most variables are likely to be irrelevant (but of course, one does
not know which by advance). Hence, the GLM elastic-net estimator (GLMNET) is a way to
reduce dimension by solving the numerical instability [35].

Let fβ(y, x) denote the likelihood of the model. The GLMNET estimator is defined as

β̂ = argmax
β

n∑
i=1

log(fβ(Yi, Xi))− λ {α∥β∥1 + (1− α)∥β∥2} ,

with ∥β∥1 (resp. ∥β∥2) denotes the l1−(resp. l2−) norm of the vector β, the hyper-parameters λ
and α being positive constant. The penalization of the log-likelihood by ∥β∥2 corresponds to a
Ridge penalization (see [24]), which stabilizes the estimation result by reducing some numerical
issues that may happen in high dimension. On the other hand, the penalization by ∥β∥1 corre-
sponds to a Lasso penalty (see [30]), designed to produce a sparse model, i.e. a model in which

most coefficients of β̂ are equal to zero. Hence it allows one to reduce the effective dimension of
the covariates. The constants λ and α are chosen by cross-validation.

The advantage of GLMNET is to produce an intelligible and easily interpretable model.
On the other hand, being able to automatically select the variables that have an effect on Y
allows us to consider a model complex enough to expect a good fit. Nevertheless, the underlying
parametric assumption may be too strong in practice. This is why we also turn towards “black-
boxes” techniques from machine learning.

3.2 Random Forests

Random Forests (RF) constitute a machine learning procedure based on the aggregation of
regression trees [13]. Regression trees, as introduced by Breiman [14], estimate the function p(x)
by

p̂(x) =

K∑
j=1

pjRj(x), (1)

where, for all x, Rj(x) = 0 for all j except for one. Namely, Rj are “rules” that are associated
with a partition of the covariate space, allowing to affect x to the unique set of the partition to
which it belongs. In regression trees, these partitions are hyper-rectangles, that is Rj(x) = 1 if
and only if x ∈ ∩d

k=1{x : xk,l ≤ xl ≤ xk,r}, where x = (x1, ..., xd). This partition is obtained
iteratively through the CART algorithm, see [14]. The estimation of the values pj is then done
for each region of the space Rj(x).

Regression trees have many appealing properties, like allowing to introduce non-linearities
while still producing a model which can be easily understood. However, their main drawback is
their instability: new incoming data may disrupt the structure of the partition. RF are a way to
stabilize this technique, while capturing more elaborate shapes of regression function p(x). They
are obtained by averaging regression trees with some specificities:

– each tree is of small size (a small value of K in Equation (1) is imposed);
– each tree grows on a separate bootstrap sample;
– the rules of a given tree are based only on a small subset of d covariates (subset which is

selected randomly), where d is an hyperparameter of the method.
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3.3 Extreme Gradient Boosting

Extreme Gradient Boosting (XGBOOST), see [17], is an alternative method to RF which also re-
lies on regression trees, but instead of fitting these trees simultaneously, they are fitted iteratively.
The predictor p̂(t)(x) at the t−th step of the algorithm is obtained from the predictor p̂(t−1)(x)
at the (t− 1)−th step by p̂(t−1)(x) + πt(x), where πt(x) is a regression tree selected in order to
make the loss function decrease as much as possible, that is to maximize the log-likelihood in
the Bernoulli case with a regularization penalty.

Let ℓ(yi, p̂
(t−1)(xi)) denote the negative log-likelihood for observation i (yi, xi) at step t − 1

(this function is also called cross-entropy in the learning literature). At step t, the algorithm tries
to find πt that minimizes

n∑
i=1

∂2ℓ(yi, p̂
(t−1)(xi))× πt(xi) +

1

2
∂2
2ℓ(yi, p̂

(t−1)(xi))× π2
t (xi) + pen(πt),

where pen denotes the regularization penalty, and ∂2 (resp. ∂2
2) denotes the (resp. second order)

partial derivative of a function with respect to its second argument.

4 Prediction results for the SILECC database

This section presents the prediction results obtained with the database SILECC for the different
models described in Section 3. The evaluation of the performance is made through the F1−score,
Precision and Recall curves and confusion matrices, described in Section 4.1. The tuning of the
different parameters of the models are then shown in Section 4.2 and the results in Section 4.3.

4.1 Evaluation of the performance

To assess the performance of the different models, we have randomly split our database into a
train set (80%) and test set (20%). Recall that our database is very imbalanced in the sense that
the proportion of cities that have had a claim is very small.

Common methods to assess the performance of binary classifiers include true positive and
true negative rates, and ROC (Receiver Operating Characteristics) curves, which display the true
positive rate against the false positive rate. These methods, however, are uninformative when
the classes are severely imbalanced. In this context, F1−score and Precision-Recall curves (PRC)
have been shown to be more informative [15,29]. They are both based on the values of

Precision(pc) =
true positives

true positives + false positives

against the values of

Recall(pc) =
true positives

true positives + false negatives

where pc is a cut-off probability varying between 0 and 1. Precision quantifies the number of
correct positive predictions out all positive predictions made; and Recall (often also called Sen-
sitivity) quantifies the number of correct positive predictions out of all positive predictions that
could have been made. Both focus on the Positives class (the minority class, cities with a claim)
and are unconcerned with the Negatives (the majority class, cities without a claim).
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The F1−score combines these two measures in a single index by taking the harmonic mean
of those two values. It is derived from the F-Measure introduced in [18] and [28] and defined as

F1 = 2 · Precision · Recall
Precision + Recall

. (2)

To closer the F1−score is to 1, the better the prediction model is.
PRC display the values of Precision and Recall as the cut-off probability pc varies from 0 to

1. The PR curve of a skillful model bows towards the point with coordinates (1, 1). The curve of
a no-skill classifier will be a horizontal line on the plot with a y-coordinate proportional to the
number of Positives in the dataset. For a balanced dataset this will be 0.5 [15].

PRC and F1−score are complementary in our approach. The PRC is used on the probability
outcomes of the models, it gives the best configuration and the best model, whereas the F1−score
is used to select the best threshold value used in the prediction of the two classes, for each model.
We will detail this process in the next section.

4.2 Parameter tuning

Let us recall that we consider three types of models for which hyperparameters need to be tuned:

– Generalized Linear Models with penalization: as already mentioned in Section 3.1, this pa-
rameter is tuned using cross-validation;

– Random Forests: the parameters are the number K of trees, and the number d of factors
to be selected randomly for each bootstrap sample. The maximum depth value of each tree
has been set as unlimited to reduce the tuning complexity, since primary analysis showed the
weak impact of this hyperparameter on our particular dataset;

– XGBOOST: regression trees are used as base learners, where the depth of each tree is limited
to 6 to obtain relatively small trees and allow a larger number of boosting rounds which is
the hyperparameter we focused on for tuning.

We started with the default parameters of the R-package ranger [34] for Random Forests,
and of xgboost [17] for XGBOOST. Then, a grid search has been performed to optimize these
parameters. The final selected parameters are d = 12 and K = 500. for the Random Forests,
and 100 boosting rounds have been used for XGBOOST. The AUCPR metric has been used to
optimize these parameters, since our dataset is imbalanced, see [29].

4.3 Results

In this section, we present the main results of our analysis for the models presented in Section
3. We also consider the aggregation of these 3 models. For the aggregation (AGGREGATE), we
examined the mean of the three probability outcomes of each model, to make a synthesis of all of
the predictions. For each, Figure 6 shows ROC and PRC and Table 1 the Area Under the Curve
(AUC) for both ROC and PRC. The closer the AUC is to 1 the better the prediction method.

In Table 1, notice that the AUC for the ROC are close to 1 for all four models while AUC
for the PRC have values around 0.60. This illustrates what has been explained in Section 4.1,
ROC curves are uninformative for imbalanced dataset, since ROC curves focus equally on the
Positives and Negatives classes. Therefore, when the Negatives class is largely predominant in
the dataset, a model always predicting a Negative will have an AUC close to 1, but will not
predict any of the Positives.
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a) b)

c) d)

Fig. 6 ROC (Left) and PR (Right) curves for a) GLMNET b) RF c) XGBOOST d) AGGREGATE on the test
sample (containing 5 924 cities with a claim and 98 596 without a claim).

MODEL AUC ROC AUC PRC
GLMNET 0.907 0.503
RF 0.933 0.604
XGBOOST 0.936 0.609
AGGREGATE 0.936 0.615

Table 1 AUC of the different models

The AUC PRC in Table 1 shows that the XGBOOST and RF provide better results on our
data than the GLMNET. The aggregation gives the best results which is a strong advocate for
the use of this method. The PR curves in Figure 6 seem to be reasonable given our classification
problem: they are not perfect but the trade-off is acceptable. The XGBOOST and RF seem
to work better, as the beginning of the graph decreases slower in comparison to the one in the
GLMNET. It is also very interesting to see that the aggregation smooths the results and takes the
best out of each model. The beginning of the graph is less discontinuous. Thus the aggregation
appears to be the best model to use for the prediction.

We then selected a threshold to make the prediction, that is the value of the cut-off probability
pc over which we consider the prediction to be a 1. A classical value of 0.5 seems arbitrary as
the predictions we try to make are rare and so a probability of 0.5 can already be a strong score.
To select the threshold we used the F1-score and tried different thresholds with a step of 0.001.
The results are presented in table 2.

Again, we see that the best F1−score is obtained by the aggregation of the models, with a
value of 0.576 and a threshold of 0.264. We find the same order as before, with the XGBOOST
working better than the Random Forest. The thresholds range between 0.2 and 0.3 confirming
the idea that the threshold 0.5 would have been arbitrary and would not have made the best
prediction.

Figure 7 shows the confusion matrices for each model. Out of the 5 924 cities affected by a
claim in the test set, the all four models predicted between 3 157 and 3 526 cities affected by a
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MODEL F1-score Thresholds
GLMNET 0.503 0.221
RF 0.570 0.306
XGBOOST 0.573 0.291
AGGREGATE 0.576 0.264

Table 2 Best F1−score and thresholds associated for each model.

a) b)

c) d)

Fig. 7 Confusion matrices for a) GLMNET b) RF c) XGBOOST d) AGGREGATE on the test sample.

claim. This means that all four models manage to predict more than half of the cities affected by
a claim. Of note, GLMNET does more false predictions, which can explain the differences seen
in the F1−score. When we examine the confusion matrices, there are no other notable differences
between the other models.

4.4 Variable importance

Variable importance measures how much a variable influences the predictions made from a given
model. The more a model relies on a variable to make predictions, the more important it is
for the model. Variable importance provides also a tool to interpret “black-box” models and
their performance [30]. The variable importance is based on different metrics depending on the
considered model. For GLMNET, it is measured by the value of the coefficient associated with the
variable, after standardization of the data. Concerning RF, the variable importance corresponds
to the Gini index for classification [30,34]. For XGBOOST, the variable importance represents
the fractional contribution of each feature to the model based on the total gain of the splits of
the feature. A higher percentage means a more important predictive feature. Table 3 reports the
top 10 contributing variables according to the relevant metrics for each model.

GLMNET seems to rely more on meteorological data and less on the description of the city.
Both tree methods, RF and XGBOOST, rely more on a combination of exposition to shrinking
and swelling of clay and past declaration of events than on the meteorological data. We only
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Table 3 Top 10 most important variables according to the relevant metrics for each model

GLMNET RF XGBOOST
Max value of the SSWI 12 for February Number of past declaration of natural catastrophe Number of past declaration of natural catastrophe
Max value of the SSWI 12 for August Surface with no propensity of shrinking and swelling of clay Number of events for the previous year
Max value of the SSWI 6 for November Number of houses Number of houses
Max value of the SSWI 12 for June Proportion of the surface with weak propensity of shrinking and swelling of clay Surface with weak propensity of shrinking and swelling of clay
Max value of the SSWI 3 for August Surface with urban area Min value of the SSWI 1 for August
Ranking of the severity of the events Surface with medium propensity of shrinking and swelling of clay Min value of the SSWI 3 for October
Max value of the SSWI 12 for June Number of houses with medium propensity of shrinking and swelling of clay Number of past refusal with the calculation done with our SSWI
Min value of the SSWI 12 for June Total Duration of the events of drought Surface with medium propensity of shrinking and swelling of clay
Max value of the SSWI 12 for January Number of events for the previous year Number of houses with medium propensity of shrinking and swelling of clay
Max value of the SSWI 6 for January Min value of the SSWI 6 for November Total Duration of the past events of drought

show the top 10 most important variables, but the meteorological data remain significant for
RF and XGBOOST, and are ranked just after. Nevertheless it is interesting to note that the
meteorological variables are not the most important. This could explain the differences we see in
the results, especially as RF and XGBOOST seem to give very similar results, in terms of AUC
PRC score but also for the number of cities correctly predicted. All available variables are not
used, which is expected as we choose to give more than 100 variables and use methods that will
be able to choose the relevant ones.

5 Cost prediction

In this section, we explain our methodology to predict the cost of a drought event. The model
for evaluating the cost is described in Section 5.1 and the final results are shown in Section 5.2.

5.1 Linear regression

We already mentioned that the cost of a drought event is likely to be correlated with the number
of houses in the area. Based on the SILECC database, we fitted a model to quantify this impact.
Since the database represents 70% of the insurance market, we multiplied each cost by 1.42 to
obtain a cost for the entire French market. We aggregated several events of a same year to reduce
the variability in the estimation. The largest yearly cost was observed in 2003 with 2 billion euros
and the average yearly cost between 2003 and 2017 was of 415 million euros per year. The number
of houses has a similar distribution, with an average of 1.7 million houses per year reaching 4,7
millions in 2003. Denoting M as the cost of an event, we can write

E[M ] = Number of houses× 464.4− 4.121e+ 08, (3)

with standard errors of 1.15e+08 for the intercept and 55.79 for the number of houses. We found
a good correlation between these two variables in our database, with a R2 = 0.84 and a residual
standard error of 2.198e+08. Figure 8 shows that the linear regression is a good approximation
for our problem. We use the 95% confidence interval, which we will use for our prediction.

This linear model is of course very rough, but has to be fitted on the small number of
observations that we have (only 15), which explains the choice for the most simple regression
model. Although the R2 is relatively close to 1, one should of course not be overconfident on this
fit due to the small number of points used to estimate the model parameters.

5.2 Results of the cost prediction for 2018

The previous model is then linked with the prediction models of Section 3. Once we have the
number of houses we can then estimate a cost with a confidence interval. In our case, the total
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Fig. 8 Linear regression for the cost of claims Vs. number of houses. The points are the observations, the blue
line the regression line and the grey are the confidence band.

loss can be written as

L =

N∑
i=1

YiMi,

where Yi = 1 if a claim occurred and 0 otherwise, and Mi is the corresponding amount of the
claim (for which we know the number of houses ni), and N is the number of considered cities. If
Yi and Mi are independent, then the variance is

Var(YiMi | X) =
(
E[M2]pi(1− pi) + piVar(M)

)
,

where pi = P(Yi = 1|X). Hence the variance σ2 of L can be estimated by

σ̂2 =

n∑
i=1

(
m̂2,ipi(1− pi) + piσ̃

2
)
,

where σ̃ is the estimated standard error in the linear regression model of Section 5.1, and

m̂2,i = σ̃2 + (α̂+ β̂ni)
2,

with (α̂, β̂) = (−4.121e+ 08, 464.4), as estimated in the previous section.
Then the 95% confidence intervals of our estimation can be approximated by

L̂± 1.96σ̂2

The results of this estimation are displayed in Table 4. The FFA estimated the cost of the
drought in France for 2018 to 900 million euros [10], with competing estimations between 1 100
and 1 300 million euros [1]. The outcome of the aggregation model shows the same results. Even
if we do not have a very good precision at the city level, the general cost is consistent with the
observed data.

Among these four classes of predictors, the penalized Generalized Linear Model tends to
considerably underestimate the cost, being significantly lower than the benchmark evaluation
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MODEL Lower bound Estimate Upper bound
GLMNET 461 125 885 579 350 811 697 575 737

RF 1 396 432 680 1 618 225 685 1 840 018 69
XGBOOST 839 262 189 977 086 655 1 114 911 122

AGGREGATE 796 820 728 965 750 651 1 134 680 547

Table 4 Estimates and confidence intervals of the predicted costs for 2018 (in euros)

of the FFA. The three other methods provide more plausible results, probably due to the fact
that they are more flexible than a simple parametric approach, and therefore have more ability
to capture complex phenomena. On the other hand, the random forests produce an estimation
beyond the most pessimistic evaluations of the risk by the market, which seems to advocate to
rely on the estimations of the two other approaches, the aggregation or the XGBOOST.

The difference in the predicted costs is essentially due a difference in the predicted number of
houses. Which, itself, is related to the number of cities predicted by each model, as we can notice
in Table 5. We can note for 2018 that RF predicts more cities with a claim whereas GLMNET
predicts less. This once again advocates for the use of the aggregation because it has an averaging
effect on the prediction and allows us to take the best of each prediction.

MODEL Number of cities Number of sensitive houses
GLMNET 1 364 2 134 000

RF 5 525 4 371 000
XGBOOST 1 800 2 991 000

AGGREGATE 1 823 2 966 000

Table 5 Predicted number of sensitive houses and cities for the 2018-drought

6 Conclusion and discussions

In this work, we developed a novel methodology to predict the cost of the consequences of
drought for the entire French market. We first used a Generalized Linear Model with Elastic-Net
penalization, Random Forest and Extreme Gradient Boosting models with different discriminant
thresholds to predict the cities that may be affected by a claim. Based on these predictions, we
calculated the number of houses that have a propensity to clay shrinking and swelling and then
computed the total cost through a linear regression.

We obtained encouraging results for such a complex phenomenon, although several uncer-
tainties remain. Despite moderate results for the prediction of the impacted cities, we obtained
coherent results for the cost prediction. The database we used, the process of natural catastro-
phes and the nature of this hazard of drought, make the modeling very complex and uncertain.
Indeed, our database is based on past claims, reported by different insurers and contain some
imprecision, that may impact the results of the prediction of the probability for a city to be
affected by a claim.

The second difficulty is the process linked to the decrees of natural disasters. To be able to
obtain compensation, and therefore to appear in our database, the city must have been recognized
as eligible by the interministry commission. There may have been claims that were not recognized.
Our models might predict such claims, but we do not have the information to assess whether the
prediction is correct or not. Also, in the past 20 years, the criteria for a city to be recognized in
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the state of natural catastrophe has changed six times. Therefore, in our train database, we may
have different characteristics that will have different effects depending on the criterion.

Moreover, with the meteorological and geological variables that were at our disposal, only a
fraction of the factors that drive the risk were addressed. The interaction between the structure
of the house and the composition of the soil plays an important role to determine whether the
house will be damaged by a drought event. We took the nature of the soil into account with the
BRGM indicators but it is very difficult to take the structure of the house into account due to
the lack of data on the different types of foundations, especially at a local level.

We also faced difficulties to assess our model. As mentioned above there is uncertainty on
the results due to the recognition process. More generally it is difficult to find the right score to
judge a model, especially with imbalanced data. Furthermore, the prediction that we make can
only be verified for one or two years, and even more if we want to have all the claims. The results
are encouraging but need to be consolidated by more accurate predictions.

Despite these difficulties, the methods we developed allowed us to improve the prediction of
the costs from drought in this particular French context. The techniques we used could be im-
proved with additional amount of data, and with additional knowledge on the spatial dependence
phenomena between cities (namely how two close cities may coordinate or not their responses).
Let us stress that the main advantage of our approach is to provide a fast answer to the question
of the cost of such natural events, in a context where the time to react is important to optimize
risk management. Finally, let us mention that the methods we developed could also be extended
to approximate or predict the index used by the CatNat commission, in order to improve the
prediction.
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Qualité Construction (2014). URL https://qualiteconstruction.com/publication/

avant-de-construire-prendre-en-compte-les-risques-du-terrain/
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