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Microfluidic systems consisting of a square microchannel with an orthogonal side branch10

are promising tools to enrich or sort suspensions of deformable capsules. To allow their11

operating control, we numerically consider a train of initially spherical identical capsules,12

equally spaced along the axis of the feeding channel. The capsules have a strain-hardening13

membrane, an internal fluid viscosity identical to the external fluid one, and a size14

comparable to that of the channel. We study the influence of the interspacing on the15

capsule path selection at the channel bifurcation using a three-dimensional immersed-16

boundary lattice-Boltzmann method. Our objectives are to establish a phase diagram17

and identify the critical interspacing above which hydrodynamic interaction between18

capsules no longer affects their path selection. We find two main regimes. At low19

interspacing, strong capsule interaction leads to an unsteady regime for which the capsule20

path selection follows either a periodic or a disordered state. Above a critical initial21

interspacing dct, a steady regime is achieved where interaction between capsules is too22

weak to affect their path selection. The capsules then follow an identical steady trajectory.23

We find that the dependence of the interspacing dct, normalised by the capsule radius,24

on the flow split ratio falls onto a universal curve regardless of the flow strength, capsule25

size and membrane shear elasticity. We also compare the path selection of a capsule26

train with that of a two-capsule system, and discuss applications of the present results27

in controlling capsule trains in microfluidic suspension enrichment devices.28

Key words: capsule train; branched microchannel; capsule interaction; path selection;29

suspension enrichment30

1. Introduction31

There is considerable interest in the design of microfluidic systems to enrich very dilute32

suspensions of particles such as cancer cells or high added value drugs or reagents (Hur33

et al. 2011; Kok et al. 2015; Warkiani et al. 2015; Nivedita et al. 2017; Wang et al. 2017).34

One class of devices relies on the use of a bifurcating channel where the particles are sent35

into one specific branch, by means of hydrodynamic forces. Correspondingly, a number of36

numerical models have focused on the path selection of a capsule (a liquid drop enclosed37

by an impermeable deformable membrane) suspended in an external fluid flowing through38

a straight microchannel with a side branch (Barber et al. 2008; Woolfenden & Blyth39

2011; Wang et al. 2016; Villone et al. 2017; Wang et al. 2018). Considering a capsule40
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allows us to model a wide variety of particles from cells to encapsulated drugs. The41

path selection of a single capsule has been found to be dependent on the flow rate split42

between the two branches, capsule deformation (Villone et al. 2017), capsule position in43

the feeding channel (Barber et al. 2008), flow inertia (Wang et al. 2016), and bifurcation44

geometry (Wang et al. 2018). This indicates that such a bifurcated channel is promising45

as a microfluidic tool for suspension enrichment or for sorting deformable capsules/cells.46

However, the above studies mostly considered a single capsule: this corresponds to a very47

dilute system where capsules are so far apart in the bifurcation, that the hydrodynamic48

interaction between them is too weak to affect their individual trajectory. The question49

which arises in practice is how dilute the suspension should be for the interactions between50

capsules to be negligible and the separation system to be fully under control.51

Relevant to hydrodynamic interaction between capsules, extensive research has con-52

cerned the flow of dense red blood cells suspensions at a bifurcation (Pries et al. 1990;53

Hyakutake & Nagai 2015; Shen et al. 2016; Balogh & Bagchi 2017; Ye & Peng 2019), as54

a model for blood flows in the microcirculation. The primary focus of these studies was55

on the overall cell partitioning at the bifurcation. In dense suspensions, hydrodynamic56

interactions between multiple cells are strong, complicated and difficult to control.57

Therefore, a dense suspension may not be an ideal situation for sorting or enrichment58

using the aforementioned microfluidic geometry.59

Studies of the hydrodynamic interaction between capsules in a branched microchannel60

in a dilute suspension are very limited. Barber et al. (2011) pioneered the research61

of two-dimensional (2D) capsules at a symmetric Y-shaped bifurcation. It was found62

that the existence of a capsule in a downstream branch could block the entrance of the63

following one into the same branch, when the distance between capsules is sufficiently64

small. However, the work was limited to a pair of capsules in 2D flows, which is a strong65

limitation because capsules are three-dimensional objects.66

The present study aims to systematically consider, for the first time, the hydrodynamic67

interaction and path selection of a train of three-dimensional (3D) initially spherical68

capsules flowing in a microfluidic asymmetric bifurcation consisting of a straight square69

channel with an orthogonal side branch of the same cross-section. The capsules are70

identical, initially equally spaced, and their size is comparable to the cross-sectional71

dimension of the channel. They are enclosed by a strain-hardening membrane and the72

internal fluid has the same viscosity as the external fluid. The capsules are centred along73

the feeding channel axis by hydrodynamic forces or by some flow-focusing devices. The74

objectives of the present study are two-fold: first, to uncover the influence of the initial75

interspacing between capsules in the feeding channel on the path selection phase diagram76

of capsules at the channel bifurcation region; secondly, to establish the threshold in77

initial interspacing above which hydrodynamic interactions become too weak to affect78

the capsule path selection (i.e. a capsule destination is identical to that of a single non-79

interacting capsule).80

The paper is organised as follows: the flow geometry of the branched channel, the81

governing equations and the main parameters are presented in §2; the numerical method82

and validations are presented in §3. To facilitate the understanding of the results of83

a capsule train, we first consider the path selection of two capsules at the channel84

bifurcation in §4. The results of a capsule train are then presented in §5, where we focus85

on the path selection phase diagram and the critical initial interspacing dct above which86

capsule interactions have negligible effects on capsule path selection. In §6, we discuss87

the relationship between a capsule train and a two-capsule system, and the implications88

of the present results to practical capsule enrichment experiments. Finally we summarise89

our findings in §7.90
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Figure 1. Geometry of the branched channel used in the 3D simulation. The shadow
represents the bifurcation region. Top left inset shows the geometry in 3D.

2. Problem statement91

We consider a train of equally spaced liquid-core capsules flowing through a straight92

channel with an orthogonal side branch. The channel geometry is shown in figure 1. Both93

the straight channel and the side branch have the same square cross-section with a side94

length of 2l. The length of the upstream parent channel is 20l, and the length of both95

daughter channels is 10l. The side branch and the straight channel are centre-connected,96

their joining corners are rounded, as is usually the case in microchannels fabricated using97

soft lithography. We choose a curvature radius of 0.4l and study the influence of this value98

in the numerical validation section §3. A three-dimensional Cartesian coordinate system99

is defined with the x-axis along the axis of the straight channel, z-axis along the side100

branch axis and x = y = z = 0 at the bifurcation centre.101

All the capsules are initially spherical with radius a. Each capsule is enclosed by a102

hyperelastic membrane with a small bending stiffness. The fluids inside and outside the103

capsule are incompressible Newtonian liquids with identical viscosity µ and density ρ.104

Capsules are regularly released on the centreline of the parent channel within the cross-105

section Sc, which is at a distance 2l from the entrance S0 (figure 1). The release of a new106

capsule occurs when the mass centre of the capsule ahead arrives at the plane S′c which107

is at a distance d downstream from Sc. Such an approach allows us to consider a train108

of capsules with an initial interspacing d without using a very long parent channel. We109

identify quantities related to the ith capsule with the index i.110

The fluid motion in the channel is governed by the Navier-Stokes equations. A no-slip111

boundary condition is imposed at the channel wall. Fully developed laminar channel flow112

profiles are set at the inlet S0 and the two outlets S1 and S2 with flow rates Q0, Q1113

and Q2, respectively, such that Q0 = Q1 + Q2. The velocity profile at the inlet square114

cross-section S0 is (Pozrikidis 1997; Hu et al. 2012):115

u(y, z) =
πV
∑[

1
n3 − coshnπy/2l

n3 coshnπ/2

]
sinnπ(z/2l + 1/2)

2
[
π4

96 −
∑ tanhnπ/2

n5π/2

] n = 1, 3, . . . (2.1)

where V is the mean flow velocity. The present flow-rate-control setup models microfluidic116

applications where flow is controlled by multiple syringe pumps. The fluid also has a no-117

slip boundary condition at both sides of the membrane of each capsule. The load q on the118
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membrane which is due to the viscous traction jump is balanced by the in-plane elastic119

tension tensor T and bending force fb. Thus the membrane equilibrium equation is120

q +∇s · T + f b = 0 (2.2)

where ∇s = (I − nn) · ∇ is the surface gradient operator with n representing the unit121

normal vector to the deformed surface.122

The shear deformation and membrane dilatation of the capsule membrane are modeled123

by the strain-hardening Skalak’s (SK) law (Skalak et al. 1973), with strain energy density124

W per unit undeformed surface area given by:125

W =
1

4
Gs
(
I21 + 2I1 − 2I2

)
+

1

4
CGsI

2
2 , (2.3)

where Gs is the surface shear elastic modulus, and the area dilation modulus is Ks =126

(1 + 2C)Gs . The deformation invariants I1 = λ1
2 + λ2

2 − 2 and I2 = (λ1λ2)2 − 1 are127

defined in terms of the two principal extension ratios λ1 and λ2. The SK law allows us to128

modulate the resistance to area dilation through the value of C. The SK law with C = 1129

has been found to appropriately model artificial capsules with a polymerised albumin130

membrane subjected to compression between two parallel plates (Carin et al. 2003; Risso131

& Carin 2004; Rachik et al. 2006) or to pore flow in a microfluidic channel (Hu et al.132

2013). We thus set C = 1 in this study. The principal elastic tensions τ1 and τ2 in the133

membrane plane are given by134

τ1 =
Gsλ1
λ2

(λ21 − 1 + Cλ22I2), τ2 =
Gsλ2
λ1

(λ22 − 1 + Cλ21I2). (2.4)

Bending resistance of the membrane is modelled using Helfrich’s bending energy135

formulation (Zhong-Can & Helfrich 1989)136

Eb =
kc
2

∫
A

(2H − c0)2dA, (2.5)

where kc is the bending modulus, A is the surface area, H is the mean curvature, and137

c0 is the spontaneous curvature that is set to zero. The bending force density obtained138

from the bending energy function is (Zhong-Can & Helfrich 1989; Guckenberger & Gekle139

2017)140

fb = kc[(2H + c0)(2H2 − 2κg − c0H) +∇s · ∇s(2H − c0)]n, (2.6)

where κg is the Gaussian curvature, n is the outwards unit normal vector. A small141

bending resistance kc = 0.0008Gsl
2 is used in the present study to prevent the formation142

of membrane wrinkles. The present model is therefore valid mainly for capsules with a143

thin membrane, where the membrane bending has negligible effect on global deformation144

of the capsules (Dupont et al. 2015). Our results suggest that when kc is in the range of145

[0.0002, 0.0032]Gsl
2, capsule trajectories (i.e., the paths of the mass centres of capsules)146

under the same flow conditions are visually identical (not shown).147

The problem parameters are:148

• The branch flow ratio q = Q2/(Q1 +Q2),149

• The Reynolds number Re = 2ρV l/µ, where V is the mean velocity at the inlet S0,150

• The capsule confinement ratio a/l,151

• The capillary number Ca = µV/Gs which measures the relative deformability of the152

capsule,153

• The initial interspacing d/l (or d/a) between two neighbouring capsules in the parent154

channel.155

An important result of the numerical simulation, which will prove to be crucial to156
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understand the path selection of capsules in a train, is the residence time ti of the ith157

capsule in the bifurcation region. It is defined as the time interval during which there158

is at least one membrane node of the ith capsule that lies within the bifurcation region159

(−1.4l 6 x 6 1.4l, −l 6 y 6 l, −l 6 z 6 1.4l, as shown by the shadowed domain in figure160

1). As we will see in the following, it is useful to compare ti with t0, which represents161

the residence time of a single capsule under the same flow condition.162

3. Numerical method and its validation163

The capsule fluid interaction problem is solved by an immersed boundary lattice164

Boltzmann (LB) method (Sui et al. 2008; Wang et al. 2016). The fluid flow is solved165

by a three-dimensional nineteen-velocity (D3Q19) LB model with a grid size ∆x =166

∆y = ∆z = 0.04l. At the walls of the branched channel, the no-slip boundary condition167

is applied using a second-order bounce-back scheme based on interpolation (Bouzidi168

et al. 2001). A second-order non-equilibrium extrapolation method (Guo et al. 2002)169

is employed to impose the velocity boundary conditions at the inlet and outlets of the170

channel.171

The three-dimensional capsule membrane is discretized into flat triangular elements.172

The membrane elastic force acting at the discrete nodes are calculated though a finite173

element membrane model (Sui et al. 2008) from the elastic tensions and constitutive law174

given in equations 2.3 and 2.4. To calculate the bending force (Equation 2.6), the required175

curvatures are determined using the method of Meyer et al. (2003). The interaction176

between the fluid and the capsule is modelled using the immersed boundary method of177

Peskin (1977). More details on the numerical framework can be found in Appendix C.178

The three-dimensional capsule surface is discretized into 8192 flat triangular elements179

with 4098 nodes. The membrane mesh size is therefore of the same order as the LB grid180

size ∆x, with a maximum element edge length ∆Lc ∼ 0.046l and a ratio ∆Lc/∆x < 1.15.181

For each simulation, the flow field is computed first. All the capsules reach their steady-182

state shapes after travelling a distance of approximately 5l for the starting point. A183

capsule is removed from the computational domain, when its centre is at a distance of184

2l from an outlet. The flow field at the outlets is therefore not significantly perturbed by185

the presence of the capsules.186

The method has been verified extensively for a single capsule in a branched tube or187

channel flow in our previous studies (Wang et al. 2016, 2018). Here we further examine188

the effect of fluid grid size on the dynamics of multiple capsules flowing in the branched189

channel. We first consider two capsules with a/l = 0.6 and d = 2l at Re = 10, Ca = 0.1190

and q = 0.50. Three levels of LB meshes with grid size ∆x = 0.0625l , ∆x = 0.04l191

and ∆x = 0.03125l are tested. The trajectories of the mass centres of the two capsules192

are shown in figure 2(a). The first capsule enters the side branch and blocks the second193

capsule, which consequently enters the downstream straight channel. The trajectories194

from the two fine meshes ∆x = 0.04l, ∆x = 0.03125l are almost identical. We also195

consider the residence time of the two capsules, and the results from simulations with196

the different mesh resolutions are presented in table 1. As a second test, we study a train197

of capsules with a/l = 0.6 and d = 6.2l at Re = 10, Ca = 0.1 and q = 0.45. This case will198

be described and discussed in detail in §5.1 and Appendix A. The capsule path selection is199

unsteady where the destinations of the capsules in the train alternate periodically between200

the two downstream branches. The normalised capsule residence time as a function of201

capsule index, from simulations with the three resolutions, is presented in figure 2(b).202

The results suggest that a mesh resolution of ∆x = 0.04l is sufficient to give reasonably203

accurate results.204
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Figure 2. (a) Trajectories of two capsules with a/l = 0.6 flowing in the branched channel at
Re = 10, Ca = 0.1, q = 0.50, d = 3.33a = 2l. Different grid resolutions are used: ∆x = 0.0625l
(dash line), ∆x = 0.04l (dash-dot line), ∆x = 0.03125l (solid line).The symbols 5 and � denote
the trajectories of the first (grey colour) and second (red colour) capsules respectively. t1, t2,
t3 represent three time instances. (b) Normalised residence time ti/t0 as a function of capsule
index i for a/l = 0.6, Re = 10, Ca = 0.1, q = 0.45 and d = 10.33a = 6.2l.

Mesh
Single
capsule

First
capsule

Second
capsule

∆x =0.0625l 7.29 6.25 5.38
∆x =0.040l 7.30 6.26 5.39
∆x =0.03125l 7.30 6.26 5.39

Table 1. Normalised capsule residence time tiV/l obtained from simulations with different
grid resolutions.

The present simulation is based on the immersed boundary method. Accordingly, a205

Dirac delta function distributes the membrane force over a band of surrounding Eulerian206

fluid grids with a thickness of approximately 2∆x on each side of the membrane (see207

Appendix C). As a result, when the distance between two capsules or a capsule and the208

channel wall approaches 2∆x, the present method is not be able to resolve the flow in the209

gap. This tends to happen in the channel bifurcation when capsules have a short initial210

interspacing. In the present study we have limited our simulations to cases with d > 2.5a211

for which the minimum thickness of the gap is larger than ∼ 2∆x. Our main aim is to212

identify the critical interspacing d above which interaction between capsules is too weak213

to affect their path selection. The limitation of the numerical method therefore does not214

affect our results.215

We also consider the effect of the length of the channels. After being released, a capsule216

deforms and reaches a steady shape before its centre of mass has travelled a distance of217

approximately 5l from its initial position in Sc. Since the maximum initial interspacing218

between adjacent capsules d is 14.5l in the present study, the length of 20l of the parent219

channel is long enough to allow at least two adjacent capsules to reach steady shape220

before entering the channel bifurcation. Therefore the present setup serves as a good221

approximation of a long parent channel where there is a train of equally spaced capsules.222

We have also examined the effect of the lengths of both downstream channels, and found223

extending them to 14l had no visible effect on trajectories of capsules at the channel224

bifurcation.225

We have tested the effect of the curvature radius of the rounded corner on capsule path226

selection by considering smaller radii of 0.1l and 0.2l. We find that the changes do not227
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Figure 3. (a) Trajectories of a single capsule at different flow split ratios q. (b) Residence time
of the capsule as a function of q. Parameters are a/l = 0.6, Ca = 0.1, Re = 10. Dash-dot line in
(b) marks the critical branch flow split ratio qc.

affect the results presented in this paper. For example, for capsules with a/l = 0.6 and228

0.2, the critical flow split ratio for a single capsule and the critical initial interspacing229

at which a second capsule is blocked by the first one and enters a different downstream230

branch (in two-capsule simulations) are the same at the three values of the corner radius231

considered.232

It should be noted that Bryngelson & Freund (2016, 2018) found that a train of red233

blood cells flowing along the centreline of a capillary tube may become unstable and234

break into an irregular flow. In the present study we consider initially spherical capsules235

and have not observed any instability when capsules are in the feeding channel.236

4. Path selection of two capsules237

We first consider the path selection of two identical capsules at various initial interspac-238

ing. Such a problem has not been systematically studied so far. A thorough understanding239

of two-capsule interactions will set up the foundation for the understanding of the path240

selection of a capsule train.241

4.1. Path selection of a single capsule242

We first recall the path selection of a single capsule at the channel bifurcation. Such a243

problem has been extensively studied by Wang et al. (2016, 2018), in the limit of relatively244

small confinement ratio with a/l 6 0.4 in bifurcations with sharp corners. In the rounded245

corner channel, capsules can flow through the bifurcation region without getting too close246

to the corner wall because of high lubrication forces. It is therefore possible to consider247

a large capsule confinement ratio a/l = 0.6. For a/l = 0.6 we find that the results are248

qualitatively similar to those of smaller confinement ratio: the capsule path selection is249

primarily determined by the flow split ratio q. Figure 3(a) shows the trajectories of a250

capsule centre of mass at different flow split ratios for Re = 10 and Ca = 0.1 (Movies 1251

and 2). In this case, the critical flow split ratio qc = 0.49. It is taken as the average of252

the two successive branch flow ratios q wherein a capsule enters the side branch for the253

higher or remains in the main channel for the lower. The value of qc is determined within254

±0.01 in the present study, and is presented in table 2 of Appendix B. The critical flow255

split ratio qc depends on the flow strength, capsule size and membrane shear elasticity,256

as well as the channel geometry.257
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Figure 4. Illustration of the two interaction modes (a/l = 0.6, Ca = 0.1, Re = 10, q = 0.55).
The two capsules are shown at different times t1 and t3 before and after passing the bifurcation,
respectively, and at time t2, when the mass centre of Capsule 2 is at x = 0. The solid and dash
lines are the trajectories of Capsule 1 (grey) and Capsule 2 (red). The colour contour represents
the pressure field pl/µV in plane y = 0 at time t2. (a) Blocking mode (d = 3.33a = 2l,
V t1/l = −1.3, V t2/l = 2.7, V t3/l = 5.9 ); (b) following mode (d = 6.67a = 4l, V t1/l = −0.1,
V t2/l = 3.8, V t3/l = 7.1). Here we define t = 0 as the time when the first capsule reaches the
bifurcation region.

Figure 5. Residence time of the two capsules as a function of initial interspacing d at a/l = 0.6,
Ca = 0.1, Re = 10, q = 0.55. The blocking mode takes place at d = 3.33a and the following
mode prevails at d > 5a.

The residence time t0 of the capsule in the bifurcation region, non-dimensionalized by258

l/V is shown in figure 3(b) at different q. It appears that the dimensionless residence time259

V t0/l → ∞ when q → qc, which suggests that a capsule gets stuck in the bifurcation260

region when q = qc. Therefore, we can expect a pile-up of capsules at the bifurcation261

when q ∼ qc. The above results can help us understand the path selection of two capsules,262

which we present in the following section.263

4.2. Two modes of interaction: following or blocking264

We consider the influence of the initial interspacing d on the path selection of two265

capsules (Capsule 1 followed by Capsule 2) at the bifurcation for various values of flow266

strength, membrane shear elasticity and capsule size. For all the cases considered, the267

destination of Capsule 1 is not changed. However, Capsule 2 either follows Capsule 1 into268

the same branch (following mode) or gets blocked by Capsule 1 and enters a different269
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Figure 6. Trajectories of the (a) first, and (b) second capsule at the channel bifurcation at
different initial interspacing (a/l = 0.6, Ca = 0.1, Re = 10, q = 0.55). The solid lines in (a) and
(b) are the trajectories of a single capsule. Time evolution of the z−axis position of the mass
centre of the (c) first, and (d) second capsule when it is traveling through the bifurcation region.
The solid lines in (c) and (d) are the results of a single capsule.

branch (blocking mode). The two modes of interaction are illustrated in figure 4 for two270

capsules with a/l = 0.6 at different initial interspacing for Ca = 0.1, Re = 10, q = 0.55.271

At such a flow split, a single capsule flows into the side branch, which is the path taken272

by Capsule 1. The path of Capsule 2 depends strongly on what happens when it reaches273

the bifurcation. We define t2 as the time at which the centre of mass of Capsule 2 is274

at x = 0. For a small initial separation (d = 3.33a = 2l), when Capsule 2 arrives at275

the bifurcation, Capsule 1 is still around. A high lubrication pressure then builds up276

between the two capsules, as appears clearly from the pressure field contours shown in277

figure 4a at time t2. This high pressure blocks the upwards motion of Capsule 2, which278

can therefore only enter the downstream main channel (Movie 3). At a longer initial279

interspacing d = 6.67a = 4l), Capsule 1 has almost left the bifurcation at time t2 when280

Capsule 2 arrives (figure 4b). The large separation leads to interactions which are too281

weak to prevent the second capsule from entering the side branch (Movie 4).282

The strength of the interaction between capsules can also be evaluated by the relative283

change in residence time, compared with the single capsule case. Figure 5 presents the284

effect of the initial interspacing d on the residence time of the two capsules, normalised285

by the residence time t0 of a single capsule under the same flow conditions. It is quite286

interesting to see that the interaction between the two capsules has very little effect on287

Capsule 1, whose normalised residence time is only slightly reduced compared to the288



10 R.X. Lu et al.

Figure 7. Typical phase diagram of the interaction modes of two capsules for a/l = 0.6,
Ca = 0.1, Re = 10. Triangles: blocking mode; circles: following mode; dash-dot line: critical
branch flow ratio qc for a single capsule. The dash lines represents the critical interspacing dc2
at which the blocking-to-following transition happens.

single capsule case. This is true even for d = 3.33a where the strong interaction leads to289

blocking. The trajectories of the mass centre of Capsule 1 at different d can be found in290

figure 6(a), and time evolutions of the z-axis position of the mass centre of Capsule 1291

are shown in figure 6(c). The results of the two figures confirm that the motion of the292

first capsule is not significantly affected by the other capsule. The fine details of figure293

6(c) indicate that, at a same time t, the z-axis position of the mass centre of Capsule 1294

is larger when the initial interspacing between capsules is shorter. This is due to the fact295

that a shorter initial interspacing leads to a stronger interaction.296

Compared with the first capsule, the hydrodynamic interaction, however, has a stronger297

effect on Capsule 2 motion. This can be seen in figure 5, where the residence time of298

Capsule 2 is doubled when a blocking mode takes place at d = 3.33a. The interaction299

also causes the trajectory of the mass centre of Capsule 2 to move further towards the300

downstream main channel (figure 6b) until the transition from following to blocking301

happens at a small initial interspacing. At the same instance, the z-coordinate of the302

mass centre of Capsule 2 decreases when d decreases (figure 6d).303

4.3. A typical phase diagram304

A typical phase diagram of capsule interaction is presented in figure 7 for two capsules305

with a/l = 0.6 at Re = 10, Ca = 0.1. In figure 7, the dash-dot line marks the critical306

branch flow ratio (qc = 0.49) of a single non-interacting capsule. The following mode is307

represented by circles, and the blocking mode by triangles. The blocking mode tends to308

take place when the initial interspacing d is small and/or the flow split ratio is close to309

the critical branch flow ratio.310

The critical interspacing dc2, corresponding to the blocking-to-following transition for311

a two-capsule system (hence the index 2 in dc2), increases sharply when the |q − qc|312

decreases. This is linked to the fact that the residence time of a single capsule at the313

bifurcation region (figure 3b) increases when |q − qc| decreases. Consequently, when q is314

near qc, the first capsule spends a long time in the bifurcation region, and is therefore315

likely to interact with the second capsule at the corner. To avoid blocking, it is thus316

advisable to use a flow split ratio q < 0.4 or q > 0.6, depending on which branch the317

capsules are to be sent to.318

It should be noted that when Barber et al. (2011) studied the interaction of two-319
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Figure 8. Normalised residence time ti/t0 as a function of capsule index i with decreasing initial
capsule interspacing d for a/l = 0.6, Re = 10, Ca = 0.1, q = 0.55. Full black squares: capsules
that enter the side branch; empty red squares: capsules that enter the straight branch.

dimensional capsules at a symmetric Y-shape bifurcation, they not only observed follow-320

ing and blocking modes, but also identified a herding mode in which the destination of the321

first capsule was changed due to interaction with the second capsule. Herding happens322

when the two capsules are almost in touch and are off-centred before they arrive at the323

bifurcation. Herding is not observed in the present study, possibly due to the present324

larger capsule interspacing d > 3.33a or 2l.325

Except for the herding mode, our results are qualitatively similar to those of Barber326

et al. (2011). However, in the present study, we consider a three-dimensional system. We327

have provided a detailed analysis of the mode transition and a phase diagram relating328

the path selection modes to the flow split ratio.329

5. Path selection of a capsule train330

The two-capsule interaction process leads to an increase of the residence time of the331

second capsule, that depends on the initial interspacing (figure 5). A natural question332

that arises is whether the increase of residence time will accumulate for a train of333

capsules, leading eventually to a blocking mode. We thus consider the influence of334

the initial interspacing d between adjacent capsules on the path selection of a capsule335

train consisting of identical capsules at various flow strength, for capsules with different336

membrane shear elasticity and sizes.337

5.1. Steady and unsteady regimes338

For all the cases considered, we find, for a given value of q, that the path selection of339

a capsule train is steady and stable for large enough initial interspacing d but becomes340
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Figure 9. Normalised residence time ti/t0 as a function of capsule index i with decreasing initial
capsule interspacing d for a/l = 0.6, Re = 10, Ca = 0.1, q = 0.45. Full black squares: capsules
that enter the straight branch; empty red squares: capsules that enter the side branch.

Figure 10. Comparison of the steady trajectory of a capsule train with the trajectory of a
single capsule at the same flow split for a/l = 0.6, Ca = 0.1, Re = 10, (a) q = 0.45, d = 11.67a;
(b) q = 0.55, d = 7.5a.

unstable when d decreases. This phenomenon is best illustrated for a/l = 0.6, Re = 10341

and Ca = 0.1, a situation for which a single capsule has a critical flow split ratio qc = 0.49.342

Figures 8 and 9 show the effect of the initial capsule interspacing d on the normalised343

residence time ti/t0 and destination of the ith capsule at flow split ratio q = 0.55 and344

0.45, respectively. Note that a single capsule flows into the side branch at q = 0.55 but345

enters the downstream main channel at q = 0.45.346

When d is above a threshold interspacing dct (where the index t refers to ‘train’), the347

path selection of capsules in a train reaches a steady regime, as shown in figure 8(a) for348

capsules with d = 7.5a at q = 0.55, and figure 9(a) for d = 11.67a at q = 0.45 (movie 5).349

For such large values of d, the hydrodynamic interactions are too weak to affect the path350

selection of the capsules, which all take the same path as a single one would, but the351
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Figure 11. Path selection states for a capsule train as a function of capsule initial interspacing
and flow split ratio for a/l = 0.6, Ca = 0.1, Re = 10. Squares, triangles and circles: following,
periodic and disordered states, respectively; black solid lines: minimum initial interspacing dct
for following regime; dash-dot line: critical branch flow ratio qc of a single capsule.

trajectory is slightly different from that of a single capsule (figure 10). We then have a352

situation which is analogous to the following regime observed for two capsules. Compared353

with a single capsule, the steady-state residence time of capsules in the train has been354

increased by 24% and 5%, in figure 8(a) and figure 9(a), respectively. Clearly the increase355

of residence time does not accumulate to lead to a blocking event.356

When the capsule initial interspacing d is below the threshold dct, which is about 7a357

for the cases of figure 8 at q = 0.55 and 11a for figure 9 at q = 0.45, the path selection of358

the capsule train becomes unsteady with a succession of periodic and disordered states,359

when d is decreased. In the periodic state, the residence time of individual capsules360

oscillates periodically with respect to the capsule index (figures 8b and 9b, movie 6). In361

the disordered state, the residence time oscillates irregularly with respect to the capsule362

index and can increase by more than two-fold from the residence time of a single capsule363

having the same flow conditions (figures 8c and 9c, movie 7). The path selection is also364

erratic. This unsteady regime is somewhat different from the blocking situation of two365

capsules: indeed, it is difficult to predict the path of a given capsule when d is smaller366

than dct. More details regarding the unsteady regime can be found in appendix A.367

5.2. Phase diagram368

The phase diagram of path selection state as a function of capsule initial interspacing369

and flow split ratio is shown in figure 11 for a capsule train with a/l = 0.6 at Ca = 0.1,370

Re = 10. The threshold interspacing dct between the following and unsteady regimes371

increases sharply when the flow split q approaches the critical branch flow ratio qc. This372

can be expected from the results of two-capsule interaction. Note that for d < dct, it is373

very difficult to predict which regime (periodic or disordered) will occur as a very small374

change in d for a given q can lead to a change of state.375

We have made an extensive study of the effects of capsule size, flow strength and376

capsule membrane shear elasticity on the capsule interspacing threshold dct. The results377

are summarised in figure 12, where dct/a is plotted as a function of q−qc, where qc is the378
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Figure 12. Master curve of the threshold interspacing dct as a function of q − qc.

Figure 13. Threshold interspacing dct normalised by the length scale t0Vc as a function of
q − qc. Symbols in the figure are the same as those in figure 12.

critical flow split ratio for a single capsule. The values of qc for all cases in the present379

study have been presented in table 2 in Appendix B. From figure 12 it is very interesting380

to find that all the data points collapse reasonably well onto a single master curve. We381

have also carried out simulations of capsules with a strain-softening neo-Hookean (NH)382

membrane (Green & Adkins 1960), with a strain energy function given by:383

W =
1

2
Gs

(
I1 − 1 +

1

I2 + 1

)
. (5.1)

Compared with the SK membrane, the NH law leads to slightly larger capsule deformation384

(not shown). However, as shown in figure 12, the results of capsule interspacing threshold385

dct can still be well predicted by the master curve.386

We also consider the threshold interspacing dct normalised by the length scale t0Vc,387

where Vc is the steady velocity of a capsule in the feeding channel and t0 is the capsule388

residence time in the bifurcation. Figure 13 shows that dct/t0Vc is always below unity.389

An initial interspacing of t0Vc can, therefore, be used to guarantee that the capsules in390

the train are in the steady regime. It corresponds to the case where a capsule arrives in391

the bifurcation region, when the previous one leaves the region. We thus conclude that392
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Figure 14. Comparison of the threshold initial interspacings of the two-capsule system and the
capsule train (a/l = 0.6, Re = 10, and Ca = 0.1). Black solid line: dct for a capsule train; dash
line: dc2 for two capsules; dash-dot line: qc of a single capsule.

capsule interactions are too weak to affect their path selection when there is only one393

capsule in the bifurcation region at any time.394

6. Discussion395

6.1. Comparison with a two-capsule system396

The threshold interspacing dct of a capsule train is compared with the critical dc2 of a397

two-capsule system for the same flow conditions (a/l = 0.6 at Re = 10 and Ca = 0.1) in398

figure 14. Since dct is always higher than dc2, it would be misleading to use the results399

from the two-capsule model to determine the minimum interspacing necessary to obtain400

a following regime in a train. This shows that the full capsule train analysis is necessary401

to be able to control the path selection of a train.402

6.2. Relevance to experiments403

The present study provides practical guidelines for experiments, in which bifurcated404

channels are used for capsule sorting or enrichment. We find that using a straight405

channel with a right-angled side branch is robust as long as hydrodynamic interactions406

between capsules in the train are too weak to affect the path selection process. The407

model presented in the previous section will be useful to experimentalists to estimate the408

minimum interspacing to set between capsules in the feeding channel and ensure that409

capsules with the same properties have the same destination.410

In order to maximize the number of capsules, it will be interesting to run the process411

with a capsule interspacing as close as possible to the critical value dct. Indeed, the412

volume fraction of capsules in the suspension is a direct function of d. Many microfluidic413

cell enrichment devices (Hur et al. 2011; Warkiani et al. 2016) are typically operated with414

cell volume concentration much lower than 1% in order to avoid cell interactions. But415

our study shows that the present bifurcated channel can be run at much higher volume416

fractions. For instance, if one enriches a capsule suspension in a microchannel such that417

a/l = 0.6, Ca = 0.1, Re = 10 and q = 0.55, the 3D LB simulations predict dct = 7.58a,418

which corresponds to a capsule volume fraction in the feeding channel of 8.3%. This shows419

the potential offered by a device as simple as a microfluidic channel with a right-angled420

side branch for sorting or enrichment applications. Note that various techniques, such as421

surface acoustic waves (Wood et al. 2008) or inertial flows (Lee et al. 2010; Kahkeshani422
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φ

Figure 15. Fraction φ of capsules entering the side channel as a function of the initial
interspacing d at a/l = 0.6, Ca = 0.1, Re = 10. Full symbols correspond to the steady states;
empty symbols correspond to the unsteady states.

et al. 2016), have been developed to organise particles following in a microchannel into423

trains with controlled interspacing. These techniques can be employed with the present424

branched channel platform to process suspensions with high concentration of capsules.425

When enriching capsule suspensions, it is also desirable to operate the microfluidic426

device at a flow split ratio close to qc, so that capsules can be captured with as little427

suspending fluid as possible in the chosen daughter branch. But if q ∼ qc, the master428

curve of dct, provided in figure 12, shows that a long initial capsule interspacing is needed429

to avoid capsule interaction at the bifurcation. There is thus a compromise to be found430

when choosing the flow split ratio q and the capsule interspacing d in order to optimize431

the capsule concentration in the chosen daughter branch and thus the device throughput.432

Let φ be the fraction of capsules of the train that enter the side channel. It is shown in433

figure 15 for different values of d and q under the same conditions as those of figure 11434

(a/l = 0.6, Ca = 0.1 and Re = 10), for which a single capsule has a critical flow split435

ratio qc = 0.49. When q is close to qc, the capsule fraction φ remains constant over a436

large range of values of d. It then quickly reaches zero or unity depending on q, when437

d . dct − 3a. When the flow split ratio is far away from qc, φ, however, changes almost438

linearly with the capsule interspacing d. Figure 15 will help experimentalists choose the439

values of q and d depending on the capsule fraction that can be tolerated in the other440

branch.441

Most simulations of the present study have been conducted at a flow Reynolds number442

Re = 10 where there is a finite inertial effect. The condition is relevant to the flow of443

artificial capsules with a polymerized albumin membrane, which typically have a radius444

in the range of 30-200 µm (?Chu et al. 2011; de Loubens et al. 2014; Gubspun et al.445

2016). If we flow such capsules with a = 60 µm in a channel with a half side length of446

l = 100µm (a/l = 0.6), using a fluid with µ = 0.01 Pa s and ρ = 1000 kg/m3, a flow447

Reynolds number of Re = 10 can be achieved when the flow speed averages 0.5 m/s.448

In a straight channel, this corresponds to a pressure drop of 35.2 kPa per centimetre449

channel length. For polymerised albumin capsules with a = 60 µm, a reasonable value of450

membrane shear elasticity is Gs ∼ 0.05 Nm−1 (Chu et al. 2011; de Loubens et al. 2014),451

which leads to Ca/Re = 0.01. We have also considered flows with Re = 1 and 40. Note452

that our earlier work (Wang et al. 2016, 2018) has suggested that at Re = 1 the effect of453
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inertia on capsule path selection is negligible. As shown in figure 12, which plots dct/a as454

a function of q− qc, inertia does not significantly affect the master curve when Re 6 40.455

It is also worth mentioning that, in channel flow, inertia has been found to cause456

suspended rigid or deformable particles to migrate from the channel centreline (???). The457

off-centre motion is less pronounced for deformable particles since deformation enhances a458

lift force that drives particles towards the channel centreline. In the present study, we have459

considered capsules that are initially centered on the channel centreline. In experiments460

this can be achieved by using some upstream flow-focusing modules (?Vesperini et al.461

2017). We have not observed any off-centre migration in the parent channel in all cases462

considered.463

7. Conclusion464

The present work is the first systematic 3D computational study of the path selec-465

tion of a train of spherical capsules flowing through a branched microfluidic channel.466

To understand the hydrodynamic interaction between capsules and interpret the path467

selection of a capsule train, we have also considered a pair of capsules in the same channel468

bifurcation. We find that capsule interaction crucially depends on the capsule interspacing469

in the feeding channel and the flow rate split ratio at the bifurcation. Generally a shorter470

capsule interspacing and a flow split ratio that is closer to the critical value at which471

a capsule gets stuck at the bifurcation will lead to stronger capsule interaction in the472

channel bifurcation region. Interestingly, our results suggest that the interaction has little473

effect on the first capsule of the pair, however, it can significantly retard the motion of474

the second capsule. This can be quantified by the ratio of a capsule residence time in475

the channel bifurcation to that of a single non-interacting capsule. With the capsule476

interspacing decreasing, the ratio of the residence time of the second capsule increases,477

suggesting stronger retarding effect, till the second capsule gets blocked by the first one478

and enters a different downstream branch. This interesting phenomenon provides the479

foundation to understand the path selection of a capsule train in the channel bifurcation.480

For a capsule train flowing through the bifurcation, a natural question that arises481

is whether the retarding effect from capsule interaction on a following capsule will482

accumulate in the capsule train. Our path selection phase diagrams, obtained from483

extensive numerical simulations covering capsules with different sizes, membrane laws and484

shear elasticity, capsule interspacing, and at various flow strength and flow split ratios,485

suggest that there are mainly two path selection regimes. The regimes are separated by486

a critical initial interspacing dct, that depends on flow conditions and capsule properties.487

When it is above dct, capsule interaction is not strong and its effect does not accumulate.488

The capsules adapt to a new steady trajectory which is very close to that of a single non-489

interacting capsule. Therefore capsule interaction does not have any effect on capsule490

destination. However, when the capsule interspacing is below qc, the effect of strong491

capsule interaction accumulates and leads to an unsteady regime where capsules are492

frequently blocked by those flowing ahead and enter a different downstream branch.493

Interestingly we find that the interspacing threshold dct, normalised by the capsule494

radius, at various flow split ratios and strength, for capsules with different sizes,495

membrane shear elasticity fall into the same master curve. We also find that the critical496

interspacing dct is always less than the length scale of t0Vc. The present study provides497

useful guidelines to avoid strong capsule interaction in experiments where branched498

microchannel bifurcations are used for sorting or enriching suspensions.499

500
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Appendix A. Unsteady path-selection regime of the capsule train515

The unsteady regime of the capsule train is due to an accumulation of the effect of516

capsule interaction. Compared with a non-interacting capsule, a longer residence time ti517

of the ith capsule in a train results from the hydrodynamic interaction with the (i− 1)th518

capsule, which causes an apparent reduction of the initial interspacing between the ith519

and (i+1)th capsules. This leads to an even longer residence time of the (i+1)th capsule.520

The increase of residence time accumulates, till triggering a blocking event, which is the521

feature of the unsteady path-selection regime of the capsule train.522

In the unsteady regime, the path selection of the capsule train may be periodic or523

disordered. Figure 16(a) shows the trajectories of individual capsules in the periodic524

state for a/l = 0.6, Ca = 0.1, Re = 10, q = 0.45, d = 10.33a, corresponding to figure525

9(b). The five represented capsules (i.e., from the 20th to the 24th) form a periodic group526

and their normalised residence time increases with the capsule index as can be seen527

from the small figure inset. The time evolution of the z-coordinate of the capsule mass528

centres are presented in figure 16(b). From the 20th to the 23rd capsule, the trajectory529

of the capsule moves gradually towards the side branch. The highest z−coordinate that530

the mass centre of a capsule can reach also increases with the capsule index. Figures531

17(a − f) present the instantaneous profiles of the capsules starting from the 19th one,532

when they are leaving the bifurcation region. It is clear from figures 17(b − e) that the533

distance between one capsule leaving the bifurcation and the following one is decreasing,534

resulting in stronger capsule interaction in the bifurcation region. Not surprisingly this535

has led to a blocking event, which takes place on the 24th capsule. Note that the gradual536

decrease of the interspacing between capsules near the bifurcation in figures 17(b− e) is537

due to the increase in residence time of the capsule that is leaving the bifurcation.538

Figures 18(a− b) show the capsule trajectories and z−coordinate of their mass centres539

in the disordered state for a/l = 0.6, Ca = 0.1, Re = 10, q = 0.45, d = 9a, corresponding540

to figure 9(c). Similarly to the previous case, the 20th to 22nd capsules form a group on541

track to a following-to-blocking transition. However, two capsules (the 22nd and 23rd)542

are this time trapped at the bifurcation, which affects the motions of the following few543

capsules (see figure 18, and the instantaneous capsule profiles in figure 19) and disrupts544

the regularity of the path selection of the capsule train.545
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Figure 16. Periodic state: (a) Trajectories of individual capsules forming a periodic group for
a/l = 0.6, Ca = 0.1, Re = 10, q = 0.45, d = 10.33a, corresponding to figure 9(b). The figure
inset shows the evolution of the capsule residence time ti/t0 with respect to capsule index. (b)
Time evolution of the z-coordinate of the mass centres of capsules in (a).

Figure 17. Capsule profiles when the (a) 19th, (b) 20th, (c) 21st, (d) 22nd, (e) 23rd and (f)
24th capsule leaves the channel bifurcation, in the periodic state shown in figure 16. The time
instances from (a) to (f) are 79.2, 81.5, 86.1, 90.2, 95.1 and 97.9, respectively.
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Figure 18. Disordered state: (a) Trajectories of individual capsules for a/l = 0.6, Ca = 0.1,
Re = 10, q = 0.45, d = 9a, corresponding to figure 9(c). The figure inset shows the evolution
of the capsule residence time ti/t0 with respect to capsule index. (b) Time evolution of the
z-coordinate of the mass centres of capsules in (a).

Figure 19. Capsule profiles when the 22nd or 23rd capsule is near the channel bifurcation, in
the disordered state shown in figure 18. The time instances from (a) to (d) are 82.4, 84.2, 87.8
and 92.1, respectively.

Appendix B. Values of qc546
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Parameters qc
Ca = 0.1, Re = 10, a/l = 0.6 0.49
Ca = 0.01, Re = 10, a/l = 0.6 0.51
Ca = 0.1, Re = 10, a/l = 0.2 0.55
Ca = 0.1, Re = 10, a/l = 0.4 0.53
Ca = 0.01, Re = 1, a/l = 0.6 0.49
Ca = 0.4, Re = 40, a/l = 0.6 0.49
Ca = 0.1, Re = 10, a/l = 0.6 (NH law) 0.49

Table 2. Values of qc of all cases

Appendix C. Immersed boundary lattice Boltzmann method547

In the lattice Boltzmann method (LBM), fluid is treated as fictive particles that collide548

and spread along discrete directions at each spatial position. The distribution function549

fi(x, t) is the main quantity in LBM. It gives the probability of finding a particle having550

lattice velocity ei at position x and time t. The discrete lattice Boltzmann equation for551

the D3Q19 model used in this study reads (?Guo et al. 2002):552

fi(x + ei∆t, t+∆t)− fi(x, t) = −1

τ
[fi(x, t)− feqi (x, t)] +∆tFi, (C 1)

where ∆t is the time step, feqi (x, t) is the equilibrium distribution function, τ is the non-553

dimensional relaxation time related to the fluid viscosity and Fi is the forcing term related554

to the fluid body force density f(x, t) (Guo et al. 2002). The macroscopic quantities (e.g.555

velocity, pressure) can be obtained from the particle distribution function. The lattice556

Boltzmann equation can recover the incompressible Navier-Stokes equations through557

Chapman-Enskog expansion.558

The immersed boundary method (IBM) of Peskin (1977) has been used to solve the559

fluidcapsule interaction. In IBM, the no-slip boundary condition on the capsule membrane560

is satisfied by letting the membrane nodes move at the same velocity as the fluid around it.561

This will cause the capsule to deform. The body force density induced by the membrane562

on the fluid is obtained from distributing membrane forces by:563

f(x, t) =

∫
S

(fe + f b)δ(x− x′)dx′, (C 2)

where fe and f b are the elastic and bending force densities of the capsule membrane,564

respectively. The terms x′ and x represent the coordinates of membrane and fluid nodes,565

respectively. The three-dimensional smoothed Dirac delta function is chosen to be:566

δ(x− x′) = δ(x− x′)δ(y − y′)δ(z − z′), (C 3)

where567

δ(r) =

{
1
4 (1 + cos( π|r|2∆x )) |r| 6 2∆x.

0 otherwise.
(C 4)

The same Dirac delta function is used to obtain the velocity of capsule membrane nodes568

by interpolating the local fluid velocity.569
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V. 2016 Characterization of the mechanical properties of cross-linked serum albumin601

microcapsules: effect of size and protein concentration. Colloid Polym. Sci. 294, 1381–602

1389.603

Guckenberger, A. & Gekle, S. 2017 Theory and algorithms to compute helfrich bending604

forces: A review. J. Phys.: Condens. Matter 29 (20), 203001.605

Guo, Z.-L., Zheng, C.-G. & Shi, B.-C. 2002 Discrete lattice effects on the forcing term in the606

lattice boltzmann method. Phys. Rev. E 65, 046308.607

Hu, X.-Q., Salsac, A.-V. & Barthès-Biesel, D. 2012 Flow of a spherical capsule in a pore608

with circular or square cross-section. J. Fluid Mech. 705, 176–194.609
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