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This paper provides a time domain model for the propagation of transient ultrasonic waves in a self-similar porous material having a rigid frame. This model is based on the formalism of Stillinger-Palmer-Stavrinou, which consists in modeling the fractal material as a porous medium with a non-integer dimensional space. This paper is devoted to the time-domain analytical calculus of the reection and transmission operators that are expressed in terms of Mittag-Leer functions. A sensitivity numerical study using ultrasonic reected and transmitted waves is performed, highlighting the eect of of the material's physical parameters (fractal dimension, tortuosity, viscous characteristic length and porosity) on the waveforms.

Introduction

Natural media and many engineering materials have highly complicated structures [START_REF] Feder | Fractals[END_REF][START_REF] Oleschko | Fractal scattering of microwaves from soils[END_REF][START_REF] Balankin | Fractal features of a crumpling network in randomly folded thin matter and mechanics of sheet crushing[END_REF][START_REF] Liu | Quantication of the microstructures of Bakken shale reservoirs using multi-fractal and lacunarity analysis[END_REF][START_REF] Balankin | Mapping physical problems on fractals onto boundary value problems within continuum framework[END_REF].

Many porous materials possess a self-similar structure exhibiting scale invariance over many length scales [START_REF] Korvin | Fractal Models in the Earth Sciences[END_REF][START_REF] Sahimi | Flow and Transport in porous media and Fractured rocks[END_REF][START_REF] Balankin | Anomalous diffusion of uid momentum and Darcy-like law for laminar ow in media with fractal porosity[END_REF]. For such materials, classical homogenization methods become inapplicable because heterogeneities play an important role on almost all scales [START_REF] Balankin | A continuum framework for mechanics of fractal materials I : from fractional space to coninuum with fractal metric[END_REF][START_REF] Yu | Analysis of ow in fractal porous media[END_REF][START_REF] Balankin | Map of uid ow in fractal porous medium into fractal continuum ow[END_REF][START_REF] Naja | Geometrical clusters of Darcy's reservoir model and ising universality class[END_REF].

The self-similar material can be dened as a medium with non-integer (fractal) mass dimension [START_REF] Feder | Fractals[END_REF][START_REF] Falconer | The Geometry of Fractal Sets[END_REF][START_REF] Tarasov | Anisotropic fractal media by vector calculus in non-integer dimensional space[END_REF][START_REF] Tarasov | Vector calculus in non-integer dimensional space and its applications to fractal media[END_REF]. The non-integer Hausdor dimension is the main characteristic of self similar media and materials but does not fully reects of the specic properties of these media.

The self-similar structure of real materials cannot be observed on all scales, but only for discrete sizes of inhomogeneities belonging to an interval [r min , r max ] where r min (resp r max ) is the smallest (resp. the largest) scale [START_REF] Dollinger | Bi-asymptotic fractals : fractals between lower and upper bounds[END_REF] present in the object. Self-similarity is a typical property of fractal objects. Fractal [START_REF] Mandelbrot | The Fractal Geometry of Nature[END_REF][START_REF] Barnsley | Fractals everywhere[END_REF] sets are a particular case of self-similar sets.

The fractal porous material can be characterized by the relation between the mass M (W s ) of a spherical region W s of this material and the radius R of this region, in the form [START_REF] Tarasov | Anisotropic fractal media by vector calculus in non-integer dimensional space[END_REF][START_REF] Tarasov | Vector calculus in non-integer dimensional space and its applications to fractal media[END_REF] 

M (W s ) = CR Dm ,
where C is a constant. The parameter D m is called the mass dimension [START_REF] Hausdor | Dimension und äusseres Mass[END_REF][START_REF] Schleicher | Hausdor dimension, its properties and its surprises[END_REF] of the fractal medium, and is generally a non-integer less than 3. Anisotropic fractal materials can be characterized by the power-law relation for the mass of the parallelepiped region W p in the form [START_REF] Tarasov | Anisotropic fractal media by vector calculus in non-integer dimensional space[END_REF] 

M (W p ) = CL d 1 x L d 2 y L d 3 z ,
where the parameter d k is non-integer dimension along X k -axis, k = 1, 2, 3, and L x , L y , L z represent three edges that meet at one vertex. The parameter d k describes how to increase the medium mass in the case of increasing the size of the parallelepiped along one axis, when the parallelepiped sizes along other axes do not change. The sum D m = d 1 + d 2 + d 3 is called the fractal mass dimension of the anisotropic fractal medium.

An important conclusion about the behavior of the self similar material can be obtained using continuum models with a non-integer dimensional space [START_REF] Tarasov | Anisotropic fractal media by vector calculus in non-integer dimensional space[END_REF][START_REF] Tarasov | Vector calculus in non-integer dimensional space and its applications to fractal media[END_REF][START_REF] Barnsley | Fractals everywhere[END_REF][START_REF] Demmie | Waves in Fractals media[END_REF][START_REF] Li | Fractal solids, product measures and fractional wave equations[END_REF][START_REF] Ostoja-Starzewski | Continuum mechanics models of fractal porous media : Integral relations and extremum principles[END_REF][START_REF] Ostoja-Starzewski | From fractal media to continuum mechanics[END_REF][START_REF] Joumaa | On the wave propagation in isotropic fractal media[END_REF][START_REF] Tarasov | Wave equation for fractal solid string[END_REF][START_REF] Tarasov | Acoustic waves in fractal media : non-integer dimensional spaces approach[END_REF]. Johnson et al [START_REF] Johnson | Theory of dynamic permeability and tortuosity in uid-saturated porous media[END_REF] introduced the notion of fractal to describe the roughness of the surface pores (uid-structure interface) and to calculate a correction of the viscous attenuation in a porous material due to this roughness. The propagation in porous media with fractal structure was also considered Wilson [START_REF] Wilson | Relaxation-matched modeling of propagation through porous media, including fractal pore structure[END_REF].

In 1973, Wilson [START_REF] Wilson | Quantum eld -theory models in less than 4 dimensions[END_REF] suggested the axioms for integrals in a non-integer dimensional space.

Four years later, Stillinger [START_REF] Stillinger | Axiomatic basis for spaces with non-integer dimensions[END_REF] introduced a mathematical basis of integration in spaces with noninteger dimensions and generalized the Laplace operator in these spaces. Svozil [START_REF] Svozil | Quantum eld theory on fractal spacetime : a new regularisation method[END_REF] developed the product measure method, extended later by Palmer and Stavrinou [START_REF] Palmer | Equations of motion in a non-integer dimensional space[END_REF] to multiple variables and dierent degrees of connement in orthogonal directions.

In this work, we calculate, analytically and numerically, the reection and transmission operators in the time domain for ultrasonic propagation in a self-similar porous material of non-integer dimension. The Stillinger-Svozil-Palmer-Starvinou formalism is used to derive the reection and transmission coecients rst in the Laplace domain and then in the time domain by analytically performing the inverse Laplace transform. In our model, the pore space is a fractal and the matrix is non-fractal, so that we can then use the classical expressions for the dynamic tortuosity and compressibility to describe the visco-thermal losses in a fractal porous material. The sensitivity study allows us to highlight important conclusions on the eect of each physical parameter (porosity, tortuosity, viscous characteristic length, fractal dimension) on the reected and transmitted waveforms.

Model

C. Palmer and P.N. Stavrinou [START_REF] Palmer | Equations of motion in a non-integer dimensional space[END_REF] have generalized the formalism of Stillinger [START_REF] Stillinger | Axiomatic basis for spaces with non-integer dimensions[END_REF] for a noninteger dimensional space to n orthogonal coordinates. The Euler Lagrange equations have been derived using the principle of least action in such spaces. The integral calculus in a non-integer dimensional space [START_REF] Stillinger | Axiomatic basis for spaces with non-integer dimensions[END_REF][START_REF] Palmer | Equations of motion in a non-integer dimensional space[END_REF] is greatly facilitated with the method of dimensional regularization [START_REF] Stillinger | Axiomatic basis for spaces with non-integer dimensions[END_REF][START_REF] Palmer | Equations of motion in a non-integer dimensional space[END_REF]. The calculus of an integral over an area of non-integer dimension D in the direction

x, where : (0 ≤ D ≤ 1), can be done with a regularization of the measure using the following relation [START_REF] Svozil | Quantum eld theory on fractal spacetime : a new regularisation method[END_REF][START_REF] Muslih | Mandelbrot scaling and parametrization invariant theories[END_REF] 

d D x = σ D (x)dx,
where

σ D (x) = π D 2 x D-1 Γ(D/2) , ( 1 
)
where Γ is the Gamma function.

The principle of least action, based on the variational method, makes it possible to determine the equations of motion by doing an integral calculation. This method [START_REF] Berbiche | Transient acoustic wave in self-similar porous material having rigid frame : Low frequency domain[END_REF][START_REF] Fellah | Transient Ultrasonic Wave Propagation in Porous Material of non-integer space dimension[END_REF] is used to establish the equation of propagation of a wave in a porous medium along a direction x, of non-integer dimension D, the generalisation to a space consisting of three directions can be done immediately thanks to the product of measurements [START_REF] Muslih | Mandelbrot scaling and parametrization invariant theories[END_REF]. The corresponding Lagrangian L is a functional of the eld ψ(x, t) considered (which can be a pressure eld for example), and of its temporal and spatial derivatives which we note ∂ t ψ(x, t) and ∂ x ψ(x).

S = t f t i L (ψ(x, t), ∂ t ψ(x, t), ∂ x ψ(x, t)) dt.
Expressed in terms of the Lagrangian density l, the action is written as

S = t f t i dt Ω l (ψ(x, t), ∂ t ψ(x, t), ∂ x ψ(x, t)) d D x,
where d D x represents the measurement in the x direction and Ω the limits of the integration space. Since the dimension of the space in this direction is not integer, the measure is given by the relation [START_REF] Feder | Fractals[END_REF].

The variational method consists in making an innitesimal variation of the exact solution sought, as ψ 0 (x, t) assuming that its values at times t i and t f remain unchanged. An innitely close solution is obtained which is given, together with its spatial and temporal derivatives, by the following expressions

ψ(x, t) = ψ 0 (x, t) + δψ(x, t), ∂ t ψ(x, t) = ∂ t ψ 0 (x, t) + δ (∂ t ψ(x, t)) , ∂ x ψ(x, t) = ∂ x ψ 0 (x, t) + δ (∂ x ψ(x, t)) .
The principle of least action states that the action must remain stationary for small changes in the elds ψ(x, t), which is expressed as

δS = t f t i dt Ω dx σ D (x) ∂L ∂ψ δψ + σ D (x) ∂L ∂(∂ t ψ) δ(∂ t ψ) + σ D (x) ∂L ∂(∂ x ψ) δ(∂ x ψ) = 0 .
By reversing the dierentiation and integrating by parts the last two terms of the above equation, we obtain

t f t i dt Ω dx σ D (x) ∂L ∂ψ -σ D (x)∂ t ∂L ∂(∂ t ψ) -σ D (x)∂ x ∂L ∂(∂ x ψ) - ∂L ∂(∂ x ψ) ∂ x (σ D (x)) δψ = 0,
knowing that this equation is valid whatever the variation of δψ, and that

∂ x (σ D (x)) = (D 1 -1) π D 1 2 x D-2 Γ D 1 2 = D -1 x σ D (x).
(

) 2 
The Euler-Lagrange equation obtained for a medium of non-integer dimension D in a direction

x is given by [START_REF] Palmer | Equations of motion in a non-integer dimensional space[END_REF][START_REF] Berbiche | Transient acoustic wave in self-similar porous material having rigid frame : Low frequency domain[END_REF] 

∂L ∂ψ - ∂ ∂x   ∂L ∂ ∂ψ ∂t   - D -1 x ∂L ∂ ∂ψ ∂x = 0, (3) 
where L is the Lagrangian density. When D = 1, the classical Euler Lagrange equation for a medium of integer dimension is found.

In the case of a homogeneous porous material with a rigid frame, which is a particular case of the Biot Theory [START_REF] Biot | Theory of Propagation of Elastic Waves in a Fluid-Saturated Porous Solid. II. Higher Frequency Range[END_REF], the expression of the Lagrangian density is given by [START_REF] Berbiche | Transient acoustic wave in self-similar porous material having rigid frame : Low frequency domain[END_REF][START_REF] Fellah | Transient Ultrasonic Wave Propagation in Porous Material of non-integer space dimension[END_REF] 

L = 1 2 ρ ∂u ∂t 2 -K a ∂u ∂x 2 , ( 4 
)
where u is the particle displacement, ρ is the uid density and K a is the adiabatic bulk modulus of the uid.

The equations of acoustics in the equivalent uid model for a non-fractal porous material (D = 1) are given by [START_REF] Fellah | Transient Ultrasonic Wave Propagation in Porous Material of non-integer space dimension[END_REF] 

ρ ∂ 2 u ∂t 2 = - ∂p ∂x , p = -K a ∂u ∂x ,
where p is the acoustic pressure.

Taking into account the uid-structure exchanges in the porous material, the density and compressibility of the uid are "renormalized" by the tortuosity operator α(t) and the compressibility operator β(t), via the relations : ρ → ρ α(t) and K a → K a / β(t).

As was mentioned in Balankin et al [START_REF] Balankin | Anomalous diffusion of uid momentum and Darcy-like law for laminar ow in media with fractal porosity[END_REF], it is imperative to distinguish between three types of scale-invariant permeable media : 1) porous media in which the matrix is a fractal, whereas the pore space is non-fractal, (e.g. the Menger sponge and fractal aggregates) ; 2) fractally permeable media in which the pore space is a fractal, whereas the matrix is non-fractal, (e.g. the inverse

Menger sponge and media with fractal pore and/or fracture networks) ; 3) materials with the fractal matrix-pore interfaces, e.g. fracture surfaces. In this study, we are in the second case, in which the pore space is a fractal and the matrix is non-fractal, since M (W ) = CR D M is the mass of uid which is self-similar, we can thus use the expressions of the tortuosity and compressibility α(t) and β(t) used for classical porous materials. Fig. 1 shows an example of a self-similar microstructure of a porous material.

In the asymptotic domain corresponding to the high frequency range, the expressions of α(t)

and β(t) are given by [START_REF] Fellah | Transient Ultrasonic Wave Propagation in Porous Material of non-integer space dimension[END_REF][START_REF] Fellah | Transient acoustic wave propagation in rigid porous media : A time-domain approach[END_REF][START_REF] Fellah | Direct and inverse scattering of transient acoustic waves by a slab of rigid porous material[END_REF] 

α(t) = α ∞ δ(t) + 2 Λ η πρ f 1/2 t -1/2 , β(t) = δ(t) + 2(γ -1) Λ η πP rρ f 1/2 t -1/2 . (5)
In these equations, P r is the Prandtl number, δ(t) is the Dirac function, η is the uid viscosity, γ is the adiabatic constant α ∞ is the tortusoity, Λ and Λ are the viscous and thermal characteristic lengths. In this model the time convolution of t -1/2 with a function is interpreted as a semi derivative operator following the denition of the fractional derivative of order ν given by [START_REF] Samko | Fractional Integrals and Derivatives : Theory and Applications[END_REF]

] D ν [x(t)] = 1 Γ(-ν) t 0 (t -u) -ν-1 x(u)du, (6) 
Using the Euler-Lagrange equation (Eq. 3), the expression of the Lagrangian (Eq. 4) and the viscous and thermal losses in the porous material (Eq. 5), we deduce the propagation equation for the porous material in a non-integer dimension space in the high frequency range [37]

∂ 2 p(x, t) ∂x 2 - ρα ∞ K a ∂ 2 p(x, t) ∂t 2 - 2α ∞ √ ρη K a 2 Λ + 2(γ -1) Λ √ P r ∂ 3/2 p(x, t) ∂t 3/2 + D -1 x ∂p(x, t) ∂x = 0. ( 7 
)
The rst two terms, ∂ 2 p(x,t) ∂x 2

and ρα∞ Ka ∂ 2 p(x,t) ∂t 2 , describe the wave propagation with a wavefront speed c = Ka ρα∞ , the third term, the fractional derivative on time,

2α∞ √ ρη Ka 2 Λ + 2(γ-1) Λ √ P r ∂ 3/2 p(x,t) ∂t 3/2
describes the attenuation of the wave due to the visco-thermal exchanges between uid and structure, and nally the last term D-1

x ∂p(x,t) ∂x describes the self-similarity of the material via its fractal dimension D.

Reection and transmission problem

The geometry of the problem is shown in Fig. 2. Consider a porous material of fractional dimension occupying the region 0 ≤ x ≤ L. By considering that the incident sound wave is launched in the region x ≤ 0, the expression of the acoustic eld is given by

p 1 (x, t) = p i (x, t) + p r (x, t) , x < 0,
where the incident and reected acoustic pressures at x = 0 are respectively given by

p i (x, t) = t 0 p i (τ ) δ t -τ - x c 0 dτ, (8) 
p r (x, t) = t 0 R (τ ) p i 0, t -τ + x c 0 dτ, (9) 
where : c 0 = K a /ρ is the velocity in the free uid, δ(t) is the Dirac function, p i (t) the incident signal and R the reection operator in the time domain.

The second region (II) where : 0 ≤ x ≤ L is occupied by a porous medium of fractional spatial dimension, in which the acoustic wave obeys the propagation equation

∂ 2 p 2 (x, t) ∂x 2 - 1 c 2 ∂ 2 p 2 (x, t) ∂t 2 -e t 0 ∂ 2 p 2 (x, t ) ∂t 2 dt √ t -t + D -1 x ∂p 2 (x, t) ∂x = 0, ( 10 
)
where D is the fractional dimension (0 < D < 1). The coecients c and B are given by

1 c 2 = ρα ∞ K a , e = 2α ∞ √ ρη K a 2 Λ + 2(γ -1) Λ √ P r . (11) 
In the third region x ≥ L, the transmitted eld is given by

p 3 (x, t) = t 0 T (τ ) p 0, t -τ - L c - (x -L) c 0 dτ, ( 12 
)
where T is the transmission operator in the time domain.

We will use the Laplace transform for the reection and transmission problem in a slab of porous material of non-integer spatial dimension. Let us note by P (x, z) the Laplace transform of p(x, t), dened by

P (x, z) = L [p(x, t)] = ∞ 0 exp(-zt)p(x, t)dt. (13) 
The Laplace transform of the propagation equation ( 10) is given by

d 2 P 2 (x, z) dx 2 + D -1 x dP 2 (x, z) dx -k 2 (z) P 2 (x, z) = 0, (14) 
where

k 2 (z) = z 2 1 c 2 + e π z .
The Laplace transform of the eld outside the slab is given by

P 1 (x, z) = exp -z x c 0 + R(z) exp z x c 0 P i (z), x ≤ 0, (15) 
P 3 (x, z) = T (z) exp - L c + (x -L) c 0 z P i (z), x ≥ L. (16) 
Here P 1 (x, z) and P 3 (x, z) are respectively the Laplace transform of the eld on the left and on the right of the slab, P i (z) denotes the Laplace transform of the incident eld p i (t) and nally R(z) and T(z) are the Laplace transform of the reection and the transmission operators, respectively.

Inside the material, the expression of the acoustic eld in the Laplace domain is given by

P 2 (x, z) = a (z) x ν I ν [xk (z)] + b (z) x ν K ν [xk (z)] , (17) 
where ν = 1 -D 2 , as 0 < D < 1 ; we deduce that 1 2 < ν < 1.

I ν [xk (z)] and K ν [xk (z)] are the modied Bessel functions. The coecients a (z) and b (z) are determined using the continuity conditions of the acoustic eld P (x, z) at the interfaces x = 0 and x = L of the porous material

P 1 0 -, z = P 2 0 + , z
and P 2 L -, z = P 3 (L+, z) .

Using relations ( 15) and ( 16), we obtain :

P 1 (0 -, z) = (1 + R(z)) P i (z), P 3 (L -, z) = T (z) exp - L c z P i (z). ( 18 
)
Taking into account the fact that lim x→0

x ν I ν (xk(z)) = 0, and lim

x→0 x ν K ν [xk] = 2 ν-1 Γ(ν) k ν in Ref. 42,
we deduce the expressions of a(z) and b(z

) b(z) = k ν (z) 2 ν-1 Γ(ν) P 1 (0 -, z), a(z) = 1 L ν I ν (Lk(z)) P 3 (L -, z) -b(z) K ν (Lk(z)) I ν (Lk(z)) . ( 19 
)
The expression of the pressure eld inside the material is then given by

P 2 (x, z) = x L ν I ν (xk(z)) I ν (Lk(z)) P 3 (L -, z) + (xk(z)) ν [I ν (Lk(z)) K ν (xk(z)) -I ν (xk(z)) K ν (Lk(z))] 2 ν-1 Γ(ν)I n u (Lk(z)) P 1 (0 -, z), (20) 
where P 3 (L -, z) and P 1 (0 -, z) are given by the relations (18).

Reection and Transmission coecients

In this section, the reection and transmission coecients are derived in the Laplace domain, for a porous material of non-integer spatial dimension, using the boundary conditions of ow velocity at the interfaces x = 0 and x = L.

2.1

Interface x = 0

In the regions (1) (x ≤ 0) and (2) (0 ≤ x ≤ L), the Euler equations are given by

ρ 0 ∂v 1 (x, t) ∂t | x=0 = - ∂p 1 (x, t) ∂x | x=0 , (21) 
t 0 ρ (t -τ ) ∂v 2 (x, τ ) ∂τ | x=0 dτ = - ∂p 2 (x, t) ∂x | x=0 , (22) 
where v 1 (x, t) and v 2 (x, t) represent the acoustic velocity eld in the regions (1) and ( 2), respectively. In Eq. 22 ; ρ(t) = ρ 0 α(t) and α(t) is given by Eq. 5. The tortuosity operator is equal to 1, in the free space (region (1)).

The ow continuity relation at x = 0 is given by

v 1 (x, t) = φv 2 (x, t) . ( 23 
)
Using the Euler relations [START_REF] Demmie | Waves in Fractals media[END_REF][START_REF] Li | Fractal solids, product measures and fractional wave equations[END_REF] and the ow continuity relation [START_REF] Ostoja-Starzewski | Continuum mechanics models of fractal porous media : Integral relations and extremum principles[END_REF], we obtain

t 0 ρ (t -τ ) ∂p 1 (x, τ ) ∂x | x=0 dτ = φρ 0 ∂p 2 (x, t) ∂x | x=0 . (24) 
In the Laplace domain, equation ( 24) is given by

ρ (z) z c 0 (R(z) -1) P i (z) = φρ 0 ∂P 2 (x, z) ∂x | x=0 , (25) 
where

ρ (z) = L [ρ(t)] ; is the Laplace transform of ρ(t).
As the porous material is of non-integer dimension, the spatial derivative of the pressure eld is given by

∂P 2 (x, z) ∂x = ∂P 2 (x, z) ∂ D x ∂ D x ∂x , (26) 
the fractional derivative of order D is obtained using the regularization method [34]

∂ D x = π D 2 |x| D-1 Γ D 2 ∂x = f (ν)x 1-2ν dx, where f (ν) = π 1-ν Γ(1 -ν) . (27) 
Using ( 26) and ( 27), we obtain

∂P 2 (x, z) ∂x = f (ν)x 1-2ν ∂ D P 2 (x, z) ∂x .
Knowing that

∂P 2 (x, z) ∂ D x = k(z)x ν [a(z)I ν-1 (kx) -b(z)K ν-1 (kx)] ,
we obtain

∂P 2 (x, z) ∂x = k(z)f (ν)x 1-ν [a(z)I ν-1 (kx) -b(z)K ν-1 (kx)]
By replacing a(z) and b(z) with their values (19)

∂P 2 (x, z) ∂x = k(z)f (ν)x 1-ν × I ν-1 (xk(z)) L ν I ν (Lk(z)) P 3 (L -, z) - k ν 2 ν-1 Γ(ν) I ν-1 (xk(z))K ν (Lk(z)) + K ν-1 (xk(z))I ν (Lk(z)) I ν (Lk(z)) P 1 (0 -, z) . (28) 
Using the following relations

lim x→0 x 1-ν I ν-1 (xk(z)) = k ν-1 (z) 2 ν-1 1 Γ(ν) , K ν-1 (xk(z)) = π 2 
I -ν+1 (xk(z)) -I ν-1 (xk(z)) sin(ν -1)π = - π 2 
I -ν+1 (xk(z)) -I ν-1 (xk(z)) sin πν = - Γ(ν)Γ(1 -ν) 2 [I -ν+1 (xk(z)) -I ν-1 (xk(z))] ,
from where

lim x→0 x 1-ν K ν (xk(z)) = π(1 -ν) 2 ν k ν-1 , one has lim x→0 ∂P 2 (x, z) ∂x = k ν 2 ν-1 f (ν) Γ(ν) × 1 L ν I ν (Lk(z)) P 3 (L -, z) - k 2 ν K ν (Lk(z)) + Γ(ν)Γ(1 -ν)I ν (Lk(z)) Γ(ν)I ν (Lk(z)) P 1 (0 -, z) , (29) 
we also know that

K ν (Lk(z)) + Γ(ν)Γ(1 -ν)I ν (Lk(z)) = Γ(ν)Γ(1 -ν)I -ν (Lk(z)). (30) 
Therefore, we get

lim x→0 ∂P 2 (x, z) ∂x = k ν 2 ν-1 f (ν) Γ(ν) 1 L ν I ν (Lk(z)) P 3 (L -, z) - k 2 ν Γ(1 -ν) I ν (Lk(z)) I ν (Lk(z)) P 1 (0 -, z) . ( 31 
)
Relation ( 25) is nally written

- zρ(z) c 0 (1 -R(z)) = φρ 0 k 2 ν f (ν) Γ(ν) 2 L ν I ν (Lk(z)) T (z)e -L c z -2 k 2 ν Γ(1 -ν) I ν (Lk(z)) I ν (Lk(z)) (1 + R(z)) .( 32 
) 2.2 Interface x = L
At the interface x = L, the Euler equation is written in the two regions ( 2) and (3) (x ≥ L)

as t 0 ρ (t -τ ) ∂v 2 (x, τ ) ∂ (τ ) | x=L -dτ = - ∂p 2 (x, t) ∂x | x=L -, (33) 
ρ f ∂v 3 (x, t) ∂t | x=L + = - ∂p 3 (x, t) ∂x | x=L + . (34) 
The ow continuity relation at x = L is given by

v 3 (x, t) = φv 2 (x, t) (35) 
Using the Euler relations [START_REF] Palmer | Equations of motion in a non-integer dimensional space[END_REF][START_REF] Muslih | Mandelbrot scaling and parametrization invariant theories[END_REF] and the ow continuity relation [START_REF] Berbiche | Transient acoustic wave in self-similar porous material having rigid frame : Low frequency domain[END_REF], we obtain

t 0 ρ (t -τ ) ∂p 3 (x, τ ) ∂x | x=L dτ = φρ 0 ∂p 2 (x, t) ∂x | x=L . (36) 
In the Laplace domain, equation ( 36) is given by

- z c 0 ρ (z) P 3 (L, z) = φρ 0 ∂P 2 (x, z) ∂x | x=L . (37) 
Using the expression [START_REF] Johnson | Theory of dynamic permeability and tortuosity in uid-saturated porous media[END_REF], relation [START_REF] Fellah | Transient Ultrasonic Wave Propagation in Porous Material of non-integer space dimension[END_REF] becomes

- zρ(z) c 0 T (z) exp - L c z = φρ 0 f (ν) × k(z)I ν-1 [Lk(z)] L 2ν-1 I ν [Lk(z)] P 3 (L, z) - k(z) 2 ν-1 ν 1 Γ(ν) I ν-1 (Lk(z))K ν (Lk(z)) + K ν-1 (Lk(z))I ν (Lk(z)) L ν-1 I ν (Lk(z)) ,
and since

I ν-1 (Lk(z))K ν (Lk(z)) + K ν-1 (Lk(z))I ν (Lk(z)) = 1 Lk(z) ,
we obtain

-zρ(z) c 0 T (z) exp - L c z = φρ 0 f (ν) × k(z)I ν-1 (Lk(z)) L 2ν-1 I ν (Lk(z)) T (z) exp L c z -2 k(z) 2L ν (1 + R(z)) Γ(ν)I ν (Lk(z)) .( 38 
)
The equation system constituted by relations [START_REF] Svozil | Quantum eld theory on fractal spacetime : a new regularisation method[END_REF] and [START_REF] Allard | Propagation of Sound in Porous Media : Modeling Sound Absorbing Materials[END_REF] gives the expressions of the reection and transmission coecients R(z) and T (z) in the Laplace domain

R(z) = (Ψ(z) -Φ(z)) (Φ(z) + Ω(z)) -Θ(z)Υ(z) Θ(z)Υ(z) -(Φ(z) + Ψ(z)) (Φ(z) + Ω(z)) , (39) 
T (z) = -2Θ(z)Φ(z) exp -L c z Θ(z)Υ(z) -(Φ(z) + Ψ(z)) (Φ(z) + Ω(z)) , (40) 
where

Φ(z) = zρ(z) c 0 , Υ(z) = φρ 0 k(z) 2 ν f (ν) Γ(ν) 2 L ν I ν (Lk(z))
,

Ψ(z) = 2 k(z) 2 ν Γ(1 -ν) I -ν (Lk(z)) I ν (Lk(z)) , Ω(z) = φρ 0 f (ν) k(z) L 2ν-1 I ν-1 (Lk(z)) I ν (Lk(z)) , Θ(z) = 2 k(z) 2L ν 1 Γ(ν)I ν (Lk(z))
.

In the high frequency domain, corresponding to z → +∞, the system [START_REF] Svozil | Quantum eld theory on fractal spacetime : a new regularisation method[END_REF][START_REF] Allard | Propagation of Sound in Porous Media : Modeling Sound Absorbing Materials[END_REF] simplies to

A + Bz 2ν-1 R(z) -Cz ν-1/2 exp (-Lk(z)) exp -z L c T (z) = A -Bz 2ν-1 , Qz ν-1/2 exp (-Lk(z)) R(z) -H exp - L c z T (z) = -Qz ν-1/2 exp (-Lk(z)) , (41) 
where the coecients A, B, C, Q, and H are given by

A = 2 ν-1 c ν Γ(ν)α ∞ φc 0 f (ν) , B = Γ(1 -ν) (2c) ν , C = √ 2π L (ν-1/2) √ c , Q = √ 2π 2 (ν-1) c (ν+1/2) L (ν-1/2) Γ(ν) , H = 1 cL (2ν-1) + α ∞ φc 0 f (ν) . (42) 
The solution of the system [START_REF] Samko | Fractional Integrals and Derivatives : Theory and Applications[END_REF] gives the expressions of the reection R(z) and transmission T (z) coecients in the high frequency domain

R(z) = H A -Bz 2ν-1 + CQz 2ν-1 exp (-2Lk(z)) H (A + Bz 2ν-1 ) -CQz 2ν-1 exp (-2Lk(z)) , T (z) = 2AQz ν-1/2 exp (-Lk(z)) exp L c H (A + Bz 2ν-1 ) -CQz 2ν-1 exp (-2Lk(z)) . (43) 
These expressions can be developed in series of powers of exp (-2Lk(z)) to bring out the eect of the interfaces of the material While it is of theoretical interest to consider multiple reections in transmission and reection, in the experimental reality [START_REF] Fellah | Direct and inverse scattering of transient acoustic waves by a slab of rigid porous material[END_REF][START_REF] Roncen | Inverse identication of a higher order viscous parameter of rigid porous media in the high frequency domain[END_REF][START_REF] Roncen | Bayesian inference for the ultrasonic characterization of rigid porous materials using reected waves by the rst interface[END_REF][START_REF] Fellah | Measuring the porosity and the tortuosity of porous materials via reected waves at oblique incidence[END_REF][START_REF] Fellah | Measuring the porosity of porous materials having a rigid frame via reected waves : A time domain analysis with fractional derivatives[END_REF], a temporal windowing process is performed, which allows sensing the rst transmitted wave and the reected wave at the rst interface of the porous material. This is to avoid interference from other signals that spuriously reected by stray objects. These waves arrive shifted with a time delay. The second transmitted wave makes a return trip, in the material layer, as compared to the rst transmitted wave, it is more attenuated (since air-saturated porous materials are quite absorbent). The reason for avoiding capturing it is because it interferes with the spurious undesirable reections of the rst transmitted wave with the receiving transducer and the material interface. It is therefore not always, particularly for resistive materials, direct to distinguish and separate them. The second transmitted wave's amplitude is very small and is embedded in the noise, making the signal-to-noise ratio very low.

R(z) = A -Bz 2ν-1 A + Bz 2ν-1 + 2A A + Bz 2ν-1 n≥0 CQz 2ν-1 H (A + Bz 2ν-1 ) n+1 exp (-2(n + 1)Lk(z)) , T (z) = 2AQz ν-1/2 exp L c z H (A + Bz 2ν-1 ) . n≥0 CQz 2ν-1 H (A + Bz 2ν-1 )
As for the reected wave at the second interface within the porous layer, it makes one round trip more than the wave reected by the rst interface (the rst wave instantly reected by the material). The second wave reected at the rear interface of the porous layer interferes with the wave reected at the rst interface and the other reected by the receiver transducer. This wave is generally very attenuated after a round trip from its propagation in the resistive porous layer.

We can therefore conclude that only the rst transmitted wave and the wave reected by the rst interface of the porous material can be reliably exploitable experimentally. It is therefore not necessary to calculate the contributions of multiple reections in transmission and reection since we capture only the rst wave.

Let us consider the simple case, where we only take into account the rst transmitted and reected waves by the interfaces of the porous material. It is then sucient to retain the rst term of the series appearing in the second members of R(z) and T (z)

R(z) = A -Bz 2ν-1 A + Bz 2ν-1 + 2ACQz 2ν-1 H (A + Bz 2ν-1 ) 2 exp (-2Lk(z)) , (45) 
T (z) = 2AQz ν-1/2 exp L c z H (A + Bz 2ν-1 ) exp (-Lk(z)) . ( 46 
)
By replacing z by jω, we nd the expressions of the reection and transmission coecients in the frequency domain.

Reection and Transmission operators in the time domain

To obtain the analytical expressions of the reection and transmission operators in the time domain, it is necessary to calculate the inverse Laplace transforms of the reection and transmission coecients. The expression ( 45) can rewrite as

R(z) = A B 1 z 2ν-1 + A/B - z 2ν-1 z 2ν-1 + A/B + 2ACQ B 2 H z 2ν-1 (z 2ν-1 + A/B) 2 exp (-2Lk(z)) . (47) 
The inverse Laplace transforms of the dierent terms of the reection and transmission coecients (Eqs. 46 and 47) are expressed using the Mittag-Leer function [START_REF] Diethelm | Algorithms for the fractional calculus : a selection of numerical methods[END_REF] with two parameters (Appendix. A)

E ϑ,ζ (z) = n≥0 z n Γ (ϑn + ζ) , (48) 
where Γ(x) is the Gamma function of the second kind. In addition, the inverse Laplace transform of exp (-lk(z)) is given by : L -1 (exp (-lk(z))) = G(t, l), which represents the Green function of the porous material (Appendix B).

We obtain the temporal expressions of the reection and transmission operators

R(t) = A B t 2ν-2 E 2ν-1,2ν-1 - A B t 2ν-1 -E 1 E 2ν-1,0 - A B t 2ν-1 + 2ACQ B 2 E t 0 τ 2ν-2 E 1 2ν-1,0 - A B τ 2ν-1 G t -τ, 2L c dτ.
(49)

T (t) = 2AQ BE t 0 τ ν-3 2 E 2ν-1,ν-1 2 - A B τ 2ν-1 G t -τ + L c , L c dτ, (50) 
where

E (1) ϑ,ζ (z) = d dz E ϑ,ζ (z).
(51)

The rst two terms of the reection operator :

A B t 2ν-2 E 2ν-1,2ν-1 -A B t 2ν-1 -E 1 E 2ν-1,0 -A B t 2ν-1
depending on the Mittag-Leer function represent the contribution of the rst interface x = 0, the third term : 2ACQ

B 2 E t 0 τ 2ν-2 E 1 2ν-1,0 -A B τ 2ν-1 G t -τ, 2L
c dτ corresponds to the contribution of the second interface x = L, this end wave reected by the second interface of the slab makes a round trip inside the material and travels the distance 2L designated by the Green's

function G t -τ, 2L c .
The transmission operator (50) designates the rst direct transmitted wave having propagated in a material of thickness L, and the Green function G t -τ + L c , L c describes this propagation.

Integer dimensional space

Let us consider the special case of the porous material of integer space dimension ; D = 1, which is equivalent to ν = 1 2 , since : ν = 1 -D 2 , and by taking into account only the rst reection interface for the reection coecient and the rst transmitted wave (Eqs. 45 and 46), we obtain the following relations in the Laplace domain

R = A (ν= 1 2 ) -B (ν= 1 2 ) A (ν= 1 2 ) + B (ν= 1 2 ) , T = 2A (ν= 1 2 ) Q (ν= 1 2 ) exp L c z H (ν= 1 2 ) A (ν= 1 2 ) + B (ν= 1 2 )
exp (-Lk(z)) .

For ν = 1 2 , the coecients A, B, C, D and H have the values :

A (ν= 1 2 ) = πc 2 α ∞ φc 0 , B (ν= 1 2 ) = π 2c , C (ν= 1 2 ) = 2π c , Q (ν= 1 2 ) = 2 c , H (ν= 1 2 ) = 1 c + α ∞ φc 0 .
which gives :

R = √ α ∞ -φ √ α ∞ + φ , T = 4 √ α ∞ φ φ + √ α ∞ 2 exp (-Lk(z)) .
In the time domain, the expressions of the reection and transmission operators are given by

R(t) = √ α ∞ -φ √ α ∞ + φ δ(t), T (t) = 4 √ α ∞ φ φ + √ α ∞ 2 G t + L c , L c .
These expressions are exactly the same as those found in the literature for the reection and transmission coecients in a classical porous medium of integer dimension [START_REF] Fellah | Direct and inverse scattering of transient acoustic waves by a slab of rigid porous material[END_REF]. From the general expressions of the reection and transmission coecients (Eqs. 45 and 46) in a porous medium of non-integer spatial dimension, we nd the particular case of classic porous mediums studied a few years ago [START_REF] Fellah | Direct and inverse scattering of transient acoustic waves by a slab of rigid porous material[END_REF].

Numerical simulation and discussion

In this section, numerical simulations of waves transmitted and reected by a porous material of non-integer dimension are given and discussed. The above parameters are not, in general, independent, meaning that when one of them is varied the others will also varied in an unknown manner, but theses parameters are still varied in this work to be able to study their separarated inuence on the transmitted and/or reected waves. The physical properties of the material are : thickness L = 1cm, fractal dimension D = 0.45, porosity φ = 0.95, tortuosity α ∞ = 1.07, viscous characteristic length Λ = 300µm, thermal characteristic length Λ = 900µm. The incident signal (Eq. 8) used in the simulations is given in Fig. 3.

Figure 4 shows the wave transmitted by a porous material of non-integer dimension for different values of the fractional dimension D. These transmitted signals are simulated by convolving the transmission operator (Eq. 50) with the incident signal (Eq. 8) given in Fig. 3, using relation [START_REF] Naja | Geometrical clusters of Darcy's reservoir model and ising universality class[END_REF]. From Figure 4, we can see that the amplitude of the transmitted wave increases with the value of the non-integer dimension. However, this tendency is reversed for the large values of D. Indeed, the transmitted wave corresponding to D = 0.95 is more attenuated than the wave corresponding to D = 0.7. We can thus say that there are two regimes : one valid for the low values of D where the material is not very resistive, and another regime for the high values of D, where the porous material is resistive (more absorbent).

Figure 5 gives the numerical simulations of the transmitted waves for dierent values of the tortuosity α ∞ . A signicant change is observed on the amplitude and arrival time of the signals.

The acoustic wave is all the more attenuated as the tortuosity is high. An important change is observed in the wave speed (time lag between the simulated signals). By increasing the value of the tortuosity α ∞ , the signal arrives late, because its wavefront velocity c decreases (Eq. 11).

This phenomenon is also observed in the case of non-fractal porous media (of dimension D=1) [START_REF] Fellah | Direct and inverse scattering of transient acoustic waves by a slab of rigid porous material[END_REF].

The sensitivity to porosity is studied in Figure 6. A signicant change in signal amplitude is observed while the signal arrival time remains virtually unchanged. By decreasing the porosity, the proportion of the uid in which the acoustic wave propagates in the porous medium decreases, making the medium more resistive and absorbent, which leads to a decrease in the amplitude of the transmitted wave. The velocity of the wavefront does not change because its expression (Eq. 11) does not depend on the porosity. The simulations in Figure 6 are done with a value of the fractal dimension D = 0.45, by decreasing this value to D = 0.1, the transmitted wave becomes completely insensitive to the porosity. We can therefore conclude that the sensitivity to porosity of the transmitted wave is all the more important as the value of the fractal dimension is large.

The sensitivity to viscous characteristic length (Λ) in transmission is studied in Figure 7. We observe that the transmitted wave is very sensitive to this parameter, which in fact describes the viscous acoustic interactions and losses in the material, and gives us an idea on the radius of the narrow pores associated with viscous exchanges. The amplitude of transmitted wave decreases as the viscous length decreases, which is the characteristic of absorbent materials. Note that the signals are more dispersive as the value of Λ decreases. This is explained by the fact that this parameter intervenes in the coecient e (Eq. 11) of the fractional term of the propagation equation (Eqs. 7 and 10). The fractional derivative describes the temporal dispersion of the signal due to visco-thermal exchanges between the uid and the structure of the fractal porous medium.

From this sensitivity study, we can conclude that fractal dimension, tortuosity, porosity and viscous characteristic length are very important parameters for ultrasonic wave propagation in fractal porous media. These parameters act dierently on the transmitted waveform (amplitude, dispersion and wavefront velocity).

Let us now study the sensitivity of the reected wave to the physical parameters, and more particularly the sensitivity of the wave reected by the rst interface, given by the rst two terms of expression (49) of the reection operator in the time domain, or the rst term of the expression (45) of the reection coecient in the Laplace domain.

The numerical simulation of the reected wave is obtained by convolving the reection operator with the incident wave given in gure 3. The results (Fig. 8) show that by increasing the value of the non-integer dimension D, the wave reected at the rst interface decreases in amplitude (i.e., is more attenuated), which means that the material becomes less resistive. This tendency is observed in transmission except for large values of D where the tendency is reversed in transmission.

The study of the sensitivity of the reected wave to tortuosity, for a xed value of the fractal dimension at D = 0.45, reveals no variation of the wave for dierent values of tortuosity, however, for the value D = 0.99 (close to non-fractal porous), the reected wave becomes very sensitive to tortuosity (Fig. 9). By increasing the value of tortuosity, the medium becomes more resistive and therefore the amplitude of the reected wave is greater. For this large value of the fractal dimension (D = 0.99), we get closer to the results of the non-fractal case [START_REF] Fellah | Measuring the porosity and the tortuosity of porous materials via reected waves at oblique incidence[END_REF][START_REF] Fellah | Measuring the porosity of porous materials having a rigid frame via reected waves : A time domain analysis with fractional derivatives[END_REF], however for lower values of D, the eect of the tortuosity becomes negligible.

Figures 10 and11 show the eect of porosity on the reected wave at the rst interface. The wave reected at the rst interface is theoretically independent of the viscous charac-teristic length (Eqs. 45 and 49), and so the sensitivity study with respect to this parameter is unnecessary. This sensitivity study using numerical simulations of transmitted and reected waves has allowed to highlight the most inuential physical parameters. In transmission, the eect of tortuosity and viscous characteristic length is important for both small and large values of the fractal dimension. However, the eect of porosity is not signicant for small values of the fractal dimension. In reection, the viscous characteristic length does not appear naturally in the expression of the reected wave at the rst interface. The sensitivity of the tortuosity and the porosity on the rst reected wave is signicant for large values of the fractal dimension. Finally, the fractal dimension appears to be the most important parameter in both modes (reected and transmitted) simultaneously, which leads us to conclude that this parameter is essential in the description of the acoustic propagation in fractal porous media and that it is necessary to develop methods to characterize it.

CONCLUSION

In this paper, ultrasound propagation in a fractal porous material with a rigid structure has been studied. The Stillinger-Palmer-Stavrinou formalism was used, in which the fractal porous material was modeled as a non-integer dimension material. The responses of the material were rst derived in the Laplace domain by computing the reection and transmission coecients.

Then, in a second step, analytical calculations of the inverse Laplace transform gave the reection and transmission operators in the time domain, using the properties of Mittag-Leer functions. Numerical simulations of the reected and transmitted waves revealed the sensitivity of physical parameters describing the propagation such as fractal dimension, tortuosity, viscous characteristic length and porosity. The fractal dimension was the most inuential parameter in both reection and transmission. This work opens perspectives for solving direct and inverse problems in natural and articial porous media with self-similarity.

APPENDIX. B

L -1 (exp (-lk(z))) = G(t, l) is the inverse Laplace transform of exp (-lk(z)), where l is a positive constant (thickness), given the Green function of the porous medium :

G(t, l) =                0 if 0 ≤ t ≤ l c , Ξ(t) + ∆ t-l/c 0 h(t, ξ)dξ if t ≥ ϕ, (52) 
with

Ξ(t) = e 4 √ π ϕ (t -l c ) 3/2 exp - e 2 ϕ 2 16(t -l c )
, where h(τ, ξ) has the following form :

h(ξ, τ ) = - 1 4π 3/2 1 (τ -ξ) 2 -l 2 /c 2 1 ξ 3/2 1 -1 exp - χ(µ, τ, ξ) 2 (χ(µ, τ, ξ) -1) µdµ 1 -µ 2 ,
and where

χ(µ, τ, ξ) = ∆µ (τ -ξ) 2 -l 2 /c 2 + e (τ -ξ) 2 /8ξ, e = ec 2 0 √ π, and ∆ = πe 2 c 4 0 ,
where : e is given by Eq. 11. 

n

  exp (-(2n + 1)Lk(z)) .

( 44 )

 44 Relations[START_REF] Roncen | Bayesian inference for the ultrasonic characterization of rigid porous materials using reected waves by the rst interface[END_REF] represent the general expressions of the reection and transmission coecients R(z) and T (z) taking into account the multiple reections at the interfaces of the material (x = 0 and x = L).
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 10 Figure10corresponds to the value of the fractal dimension D equal to 0.45 and gure 11 to D=0.99. We note that in gure 10 the eect of porosity is not as important as in gure 11. This result means that the eect of porosity is important in reection for large values of the fractal dimension. This trend is similar to what we observed with tortuosity.

Figure 1 .

 1 Figure 1. Example of a self-similar microstructure of a porous material, each pore splits into two pores when passing from one scale to another.

Figure 2 .

 2 Figure 2. The geometry of the problem for unidirectional propagation in a porous slab occupying the space 0 ≤ x ≤ L.

Figure 3 .

 3 Figure 3. Incident signal used for numerical simulations.

Figure 4 .

 4 Figure 4. (Color online) Variation of the ultrasonic waveform transmitted by a self-similar porous material for dierent values of the fractal dimension D, the values of the other parameters have been kept constant (L = 1cm, φ = 0.95, α ∞ = 1.07, Λ = 300µm and Λ = 900µm).

Figure 5 .

 5 Figure 5. (Color online) Variation of ultrasonic waveform transmitted by a self-similar porous material for dierent values of the tortuosity α ∞ , the values of the other parameters have been kept constant (L = 1cm, φ = 0.95, D = 0.45, Λ = 300µm and Λ = 900µm).

Figure 6 .

 6 Figure 6. (Color online) Variation of ultrasonic waveform transmitted by a self-similar porous material for dierent values of the porosity φ, the values of the other parameters have been kept constant (L = 1cm, α ∞ = 1.07, D = 0.45, Λ = 300µm and Λ = 900µm).

Figure 7 .

 7 Figure 7. (Color online) Variation of ultrasonic waveform transmitted by a self-similar porous material for dierent values of the viscous characteristic length Λ, the values of the other parameters have been kept constant (L = 1cm, φ = 0.95, α ∞ = 1.07, D = 0.45 and Λ = 900µm).
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 8 Figure 8. (Color online) Variation of ultrasonic waveform reected by a self-similar porous material for dierent values of the fractal dimension D, the values of the other parameters have been kept constant (φ = 0.95, α ∞ = 1.07).

Figure 9 .

 9 Figure 9. (Color online) Variation of ultrasonic waveform reected by a self-similar porous material for dierent values of the tortuosity α ∞ and for a value of the fractal dimension : D = 0.99, the value of porosity is φ = 0.95.

Figure 10 .

 10 Figure 10. (Color online) Variation of ultrasonic waveform reected by a self-similar porous material for dierent values of the porosity φ and for a value of the fractal dimension : D = 0.45, the value of tortuosity is α ∞ = 1.07.

Figure 11 .

 11 Figure 11. (Color online) Variation of ultrasonic waveform reected by a self-similar porous material for dierent values of the porosity φ and for a value of the fractal dimension : D = 0.99, the value of tortuosity is α ∞ = 1.07.
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APPENDIX. A

The following inverse Laplace transforms depend on the Mittag-Leer function E ϑ,ζ (z) (Eq. 48) :

where, relation (51) is used.