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Introduction

A collective motion occurs when the behaviour of a group of individuals is dominated by the mutual interaction between them. This behaviour arises in many different contexts both for non-living and living systems, as for instance nematic fluids, simple 1 robots, bacteria colonies, flocks of birds, schools of fishes, human crowds, see for instance [START_REF] Vicsek | Collective motion[END_REF]. In a nutshell, all microscopic mathematical models of collective motion are based on one or more of the following elementary mechanisms: alignment, see [START_REF] Vicsek | Novel Type of Phase Transition in a System of Self-Driven Particles[END_REF], [START_REF] Cucker | On the mathematics of emergence[END_REF], and references therein, separation and cohesion [START_REF] D'orsogna | Self-Propelled Particles with Soft-Core Interactions: Patterns, Stability, and Collapse[END_REF][START_REF] Strömbom | Collective motion from local attraction[END_REF]. Concerning alignment models, a popular one is represented by the Cucker-Smale model [START_REF] Cucker | On the mathematics of emergence[END_REF], which was originally proposed to describe the dynamics in flocks of birds, but then it was extended to cover more general phenomena, as for instance animal herding [START_REF] Couzin | Effective leadership and decision-making in animal groups on the move[END_REF]. The hypothesis underlying to the Cucker-Smale model is that the force acting on every individual is a weighted average of the differences of its velocity with those of the others, and this force decays when the mutual distance between the individuals increases. Some preliminary analytical results about the time asymptotic behaviour of the model has been proven in [START_REF] Cucker | On the mathematics of emergence[END_REF][START_REF] Ha | A simple proof of Cucker-Smale flocking dynamics and mean-field limit[END_REF], and then a lot of papers investigated the behaviour of this dynamical model in many directions, see for instance [START_REF] Carrillo | Young-Pil Mean-field limits: from particle descriptions to macroscopic equations[END_REF] and [START_REF] Natalini | On The Mean Field limit for Cucker-Smale models[END_REF] for a comprehensive list of references.

In recent years, there was a lot of interest about collective motion of cells driven by chemical stimuli, see [START_REF] Szabò | Phase transition in the collective migration of tissue cells: Experiment and model[END_REF][START_REF] Belmonte | Self-propelled particle model for cell-sorting phenomena[END_REF][START_REF] Arboleda-Estudillo | Movement Directionality in Collective Migration of Germ Layer Progenitors[END_REF][START_REF] Sepúlveda | Collective Cell Motion in an Epithelial Sheet Can Be Quantitatively Described by a Stochastic Interacting Particle Model[END_REF][START_REF] Joie | Migration and orientation of endothelial cells on micropatterned polymers: a simple model based on classical mechanics[END_REF][START_REF] Colin | Modeling of the migration of endothelial cells on bioactive micropatterned polymers[END_REF][START_REF] Colombi | Differentiated cell behavior: a multiscale approach using measure theory[END_REF], and the reviews [START_REF] Hatzikirou | Collective guidance of collective cell migration[END_REF][START_REF] Méhes | Collective motion of cells: from experiments to models[END_REF]. Focusing on the family of Cucker-Smale models, in [START_REF] Di Costanzo | A hybrid mathematical model for self-organizing cell migration in the zebrafish lateral line[END_REF] a model for the morphogenesis in the zebrafish lateral line primordium was proposed, where a Cucker-Smale model was coupled with other cell mechanisms (chemotaxis, attraction-repulsion, damping effects) to describe the formation of neuromasts, see [START_REF] Haas | Chemokine signaling mediates self-organizing tissue migration in the zebrafish lateral line[END_REF][START_REF] Lecaudey | Dynamic Fgf signaling couples morphogenesis and migration in the zebrafish lateral line primordium[END_REF] for the experimental basis of this model. The description of the cell behaviour is hybrid: while particles are considered discrete entities, endowed with a radius R describing their circular shape, the chemical signal ϕ is supposed to be continuous and its time derivative is equal to a diffusion term, a source term depending on the position of each particle, and a degradation term. A simplified version of the model in [START_REF] Di Costanzo | A hybrid mathematical model for self-organizing cell migration in the zebrafish lateral line[END_REF] was proposed in [START_REF] Di Costanzo | A hybrid model of collective motion of discrete particles under alignment and continuum chemotaxis[END_REF] to allow a full analytical investigation. This simplified model reads as follows:

           ẋi = v i , vi = β N N j=1 1 1 + x i -x j 2 R 2 σ (v j -v i ) + η∇ x ϕ(x i ), ∂ t ϕ = D∆ϕ -κϕ + f (x, X(t)), (1) 
Initial data are given by initial position and velocity for each particle:

X(0) = X 0 , V (0) = V 0 ,
with X = (x 1 , . . . , x N ), V = (v 1 , . . . , v N ), and by the initial concentration of signal, that it is assumed ϕ(x, 0) := ϕ 0 = 0. (2) Here x i , v i are the position and velocity of the i-th cell and ϕ stands for a generic chemical signal produced by the cells themselves and such that the cells are attracted towards the direction where ∇ x ϕ is growing. For this simple model in [START_REF] Di Costanzo | A hybrid model of collective motion of discrete particles under alignment and continuum chemotaxis[END_REF] a full analytical theory was developed in the two-dimensional case with a fixed but arbitrary number N of particles, and results of globally in time existence and uniqueness of solutions were proved, as well as the time-asymptotic linear stability. Other analytical results, for more general hybrid models, can be found in [START_REF] Menci | Global solutions for a path-dependent hybrid system of differential equations under parabolic signal[END_REF].

In this paper we aim to prove the mean-field limit for a general class of models including [START_REF] Ambrosio | Gradient Flows in Metric Spaces and in the Space of Probability Measures[END_REF] towards Vlasov type kinetic equations, together with the hydrodynamic mean-field limit of such models towards Euler type equations, coupled with chemotaxis. To our knowledge, both limits, and the related kinetic and Euler equations, and a fortiori their rigorous derivation, are new in the literature.

Let us describe the class of particle systems we will handle in the present article. Consider on R 2dN ((x i (t)) i=1,...,N , (v i (t)) i=1,...,N ) := (X(t), V (t)) the following vector field

(3) ẋi (t) = v i vi (t) = F i (t, X(t), V (t)) i = 1, . . . , N, (X(0), V (0)) = (X in , V in ) :
where

(4) F i (t, X, V ) = 1 N N j=1 γ(v i -v j , x i -x j ) + η∇ x ϕ t (x i ) + F ext (x i ),
γ is the collective interaction function, F ext is an external force and ϕ satisfies the equation ( 5)

∂ s ϕ s (x) = D∆ x ϕ -κϕ + f (x, X(s)), s ∈ [0, t], ϕ s=0 = ϕ in
for some κ, D, η ≥ 0 and function f of the form

(6) f (x, X) = 1 N N j=1 χ(x -x i ), χ ∈ C 1 c . The function γ : R d × R b → R × R d is supposed to be Lipschitz continuous 1 .
The case γ(y, w) = ψ(y)w. F = ϕ = 0, ψ bounded Lipschitz, covers the standard case of Cucker-Smale models.

For any fixed function ϕ in and any t, N we define the mapping Φ [START_REF] Belmonte | Self-propelled particle model for cell-sorting phenomena[END_REF][START_REF] Bolley | Stochastic Mean-Field Limit: Non-Lipschitz Forces & Swarming[END_REF][START_REF] Cañizo | A well-posedness theory in measures for some kinetic models of collective motion[END_REF][START_REF] Carrillo | Young-Pil Mean-field limits: from particle descriptions to macroscopic equations[END_REF].

t N = Φ t by (7) Φ t N : R 2dN -→ R 2dN Z in = (X in , V in ) -→ Z(t) = (X(t), V (t)) solution of
Note that Φ t N is not a flow.

We would like to derive a kinetic model corresponding to system [START_REF] Belmonte | Self-propelled particle model for cell-sorting phenomena[END_REF][START_REF] Bolley | Stochastic Mean-Field Limit: Non-Lipschitz Forces & Swarming[END_REF][START_REF] Cañizo | A well-posedness theory in measures for some kinetic models of collective motion[END_REF][START_REF] Carrillo | Young-Pil Mean-field limits: from particle descriptions to macroscopic equations[END_REF], that is the one particle (non-linear) PDE satisfied by the first marginal of the push-froward 2 1 through this paper we define Lip(f ) for f :

R n → R m , m, n ∈ N, as Lip(f ) := m i=1 (Lip(f i ) 2 .
2 We recall that the pushforward of a measure µ by a measurable function Φ is Φ#µ defined by ϕd(Φ#µ) := (ϕ • Φ)dµ for every test function ϕ.

Φ t #ρ in where ρ in ∈ P(R 2dN ), the space of probability measures on R 2dN and Φ t N is the mapping defined by [START_REF] Cucker | On the mathematics of emergence[END_REF].

The first difficulty is the fact that ρ

t N := Φ t N #ρ in N does not satisfy a closed PDE, except if ρ in N = ρ Z where (8) ρ Z := 1 N ! Σ∈Σ N δ σ( Z) , Z := ( X, V ) ∈ R 2dN .
Here Σ N is the group of permutations of N elements and ( 9) σ( Z) = σ( X, V ) := (x σ(1) , . . . , xσ(N) , vσ(1) , . . . , vσ(N) ).

In this case

ρ t N := ρ Φ t ( Z) satisfies (10) ∂ t ρ t N + V • ∇ X ρ t N = N i=1 ∇ v i • G i ρ t N where (11) G i (t, X, V ) = 1 N N j=1 γ(v i -v j , x i -x j ) + η∇ x Ψ t (x i ) + F ext (x i ),
Ψ (and therefore G i too) depends on the solution ρ t N and satisfies the equation ( 12)

∂ t Ψ t (x) = D∆ x Ψ -κΨ + f (x, ρ s N ;1 ), s ∈ [0, t],
with g given by [START_REF] Di Costanzo | A hybrid model of collective motion of discrete particles under alignment and continuum chemotaxis[END_REF] f (x,

ρ s N ;1 ) = R 2d χ(x -y)ρ s N ;1 (y, ξ)dydξ,
where, denoting Φ t N ( Z) = (x 1 (t), . . . , xN (t), v1 (t), . . . , vN (t)), ρ s N ;1 (y, ξ)

:= R 2d(N -1) ρ t N (y, x 2 , . . . , x N , ξ, v 2 , . . . , v N )dx 2 . . . dx N dv 2 . . . dv N = R 2d(N -1) ρ Φ t N ( Z) (y, x 2 , . . . , x N , ξ, v 2 , . . . , v N )dx 2 . . . dx N dv 2 . . . dv N (see Lemma 4.1 below) = 1 N N i=1 δ(y -xi (t))δ(ξ -vi (t)) =: µ Φ t N ( Z) (see Lemma 4.1 below).
In turn, this suggests that the (non local in time) Vlasov equation associated to the particle system [START_REF] Belmonte | Self-propelled particle model for cell-sorting phenomena[END_REF][START_REF] Bolley | Stochastic Mean-Field Limit: Non-Lipschitz Forces & Swarming[END_REF][START_REF] Cañizo | A well-posedness theory in measures for some kinetic models of collective motion[END_REF][START_REF] Carrillo | Young-Pil Mean-field limits: from particle descriptions to macroscopic equations[END_REF] is

(14) ∂ t ρ t + v • ∇ x ρ t = ∇ v (ν(t, x, v)ρ t ), ρ 0 = ρ in where (15) ν(t, x, v) = γ * ρ t (x, v) + η∇ x ψ t (x) + F ext (x) and ψ s satisfies (16) ∂ s ψ s (x) = D∆ x ψ -κψ s + g(x, ρ s ), ψ 0 = ϕ in . with (17) g(x, ρ s ) = R 2d χ(x -y)ρ s (y, ξ)dydξ.
The kinetic equation associated to Cucker-Smale systems, introduced in [START_REF] Ha | From particle to kinetic and hydrodynamic descriptions of flocking[END_REF], has been derived in [START_REF] Ha | A simple proof of Cucker-Smale flocking dynamics and mean-field limit[END_REF][START_REF] Ha | Uniform stability of the Cucker-Smale model and applications to the mean-field limit[END_REF] and, for generalizations of type (3) with ϕ = 0 in [START_REF] Natalini | On The Mean Field limit for Cucker-Smale models[END_REF], but, in all these papers, without chemotaxis interaction. We refer to [START_REF] Ha | Uniform stability of the Cucker-Smale model and applications to the mean-field limit[END_REF][START_REF] Natalini | On The Mean Field limit for Cucker-Smale models[END_REF] for a large bibliography on the subject.

Let us finish this section by recalling the three following dynamics involved in this paper, denoted by (P) for (Particles), (LV) for (Liouville-Vlasov) and (V) for (Vlasov) and the strategy adopted in the proof of the main results:

(P )                              ẋi = v i , vi = F i (t, X(t), V (t)), (X(0), V (0)) = Z(0) = Z in ∈ R 2dN F i (t, X, V ) = 1 N N j=1 γ(v i -v j , x i -x j ) + η∇ x ϕ t (x) i + F ext (x i ), ∂ s ϕ s (x) = D∆ x ϕ -κϕ + f (x, X(s)), s ∈ [0, t], , ϕ 0 = ϕ in , f (x, X) = 1 N N j=1 χ(x -x j ); (LV )                            ∂ t ρ t N + V • ∇ X ρ t N = N i=1 ∇ v i • G i ρ t N , ρ o N = ρ in N = (ρ in ) ⊗N ∈ P(R 2dN ) G i (t, X, V ) = 1 N N j=1 γ(v i -v j , x i -x j ) + η∇ z Ψ t (x i ) + F ext (x i ), ∂ s Ψ s (x) = D∆ x Ψ -κΨ + g(x, ρ s N ;1 ), s ∈ [0, t], Ψ 0 = ϕ in , g(x, ρ s N ;1 ) = χ * ρ s N ;1 (x); (V )                    ∂ t ρ t + v • ∇ x ρ t = ∇ v (ν(t, x, v)ρ t ), ρ 0 = ρ in ∈ P(R 2d ) ν(t, x, v) = γ * ρ t (x, v) + η∇ x ψ t (x) + F ext (x), ∂ s ψ s (x) = D∆ x ψ -κψ + g(x, ρ s ), ψ 0 = ϕ in . g(x, ρ s ) = χ * ρ s (x). Note that (χ * ρ N ;1 (t))(x) = ( χ * ρ)(x, . . . , x), χ(X) = 1 N N j=1 χ(x j ).
The strategy of our approach can be summarized by the following estimates that we will establish in some Wasserstein topology,   

(Φ t N #ρ in N ) N ;1 ∼ (ρ t N ) N ;1 (t), Φ t N solution of (L), ρ t N of (LV ) with ρ 0 N = ρ in N ρ in N = (ρ in ) ⊗N (ρ t N ) N ;1 ∼ ρ t , ρ t solution of (V ) with ρ 0 = ρ in ,
so that, by triangle inequality,

(Φ t N #ρ in N ) N ;1 ∼ ρ t with,Φ t
N solution of (L) and ρ t solution of (V ) with ρ 0 = (ρ in N ) N ;1 .

The main results

Theorem 2.1. Let ρ in be a compactly supported probability on R 2dN , let Φ t N be the mapping generated by the particles system [START_REF] Belmonte | Self-propelled particle model for cell-sorting phenomena[END_REF][START_REF] Bolley | Stochastic Mean-Field Limit: Non-Lipschitz Forces & Swarming[END_REF][START_REF] Cañizo | A well-posedness theory in measures for some kinetic models of collective motion[END_REF][START_REF] Carrillo | Young-Pil Mean-field limits: from particle descriptions to macroscopic equations[END_REF] as defined by [START_REF] Cucker | On the mathematics of emergence[END_REF], and let τ ρ in be the function defined in formula (41) below.

Then, for any t ≥ 0,

W 2 (Φ t N #(ρ in ) ⊗N ) N ;1 , ρ t 2 ≤ τ ρ in (t)    N -1 2 d = 1 N -1 2 log N d = 2 N -1 d d > 2
where ρ t is the solution of the Vlasov equation [START_REF] Dobrushin | Vlasov equations[END_REF][START_REF] Figalli | A rigorous derivation from the kinetic Cucker-Smale model to the pressureless Euler system with nonlocal alignment[END_REF][START_REF] Fournier | On the rate of convergence in Wasserstein distance of the empirical measure[END_REF][START_REF] Haas | Chemokine signaling mediates self-organizing tissue migration in the zebrafish lateral line[END_REF] with initial condition ρ in provided by Theorem 8.1 below and W 2 is the quadratic Wasserstein distance whose definition is recalled in Definition 3.1.

Moreover, let us denote by ϕ t Z in the chemical density solution of [START_REF] Belmonte | Self-propelled particle model for cell-sorting phenomena[END_REF][START_REF] Bolley | Stochastic Mean-Field Limit: Non-Lipschitz Forces & Swarming[END_REF][START_REF] Cañizo | A well-posedness theory in measures for some kinetic models of collective motion[END_REF][START_REF] Carrillo | Young-Pil Mean-field limits: from particle descriptions to macroscopic equations[END_REF] with initial data (Z in , ϕ in ) and by ψ t ρ in the one solution of [START_REF] Dobrushin | Vlasov equations[END_REF][START_REF] Figalli | A rigorous derivation from the kinetic Cucker-Smale model to the pressureless Euler system with nonlocal alignment[END_REF][START_REF] Fournier | On the rate of convergence in Wasserstein distance of the empirical measure[END_REF][START_REF] Haas | Chemokine signaling mediates self-organizing tissue migration in the zebrafish lateral line[END_REF] with initial data (ρ in , ϕ in ). Then

R 2dN ∇ϕ t Z in -∇ψ t ρ in 2 ∞ (ρ in ) ⊗N (dZ in ) ≤ τ c (t)    N -1 2 d = 1 N -1 2 log N d = 2 N -1 d d > 2
where τ c is defined below by [START_REF] Ha | Uniform stability of the Cucker-Smale model and applications to the mean-field limit[END_REF].

Finally, the functions τ (t), τ c (t) depend only on t, Lip(γ), Lip(χ), Lip(∇χ), and the supports of Φ 

      ∂ t µ t + ∇(u t µ t ) = 0 ∂ t (µ t u t ) + ∇(µ t (u t ) ⊗2 ) = µ t γ(• -y, u t (•) -u t (y))µ t (y)dy + ηµ t ∇ψ t + µ t F ∂ s ψ s = D∆ψ -κψ + χ * µ s , s ∈ [0, t], (µ 0 , u 0 , ψ 0 ) = (µ in , u in , ϕ in ) ∈ H s , s > d 2 + 1. has a unique solution µ t , u t ∈ C([0, t]; H s ) ∩ C 1 ([0, T ]; H s-1 ), ψ t ∈ C([0, t]; H s ) ∩ C 1 ([0, T ]; H s-2 ) ∩ L 2 (0, T ; H s+1 ) and let ρ in = µ in (x)δ(v -u in (x)).
Then, for any t ∈ [0, T ],

W 2 (Φ t N #(ρ in ) ⊗N ) N ;1 , µ t (x)δ(v -u t (x)) 2 ≤ τ (t)    N -1 2 d = 1 N -1 2 log N d = 2 N -1 d d > 2 Moreover, R dN ∇ϕ t (X in ,u ⊗N (X in )) -∇ψ t ρ in 2 ∞ (µ in ) ⊗N (dX in ) ≤ τ c (t)    N -1 2 d = 1 N -1 2 log N d = 2 N -1 d d > 2 .
Proof of Theorem 2.1. Clearly Theorem 2.1 links the dynamics of the particle system [START_REF] Belmonte | Self-propelled particle model for cell-sorting phenomena[END_REF][START_REF] Bolley | Stochastic Mean-Field Limit: Non-Lipschitz Forces & Swarming[END_REF][START_REF] Cañizo | A well-posedness theory in measures for some kinetic models of collective motion[END_REF][START_REF] Carrillo | Young-Pil Mean-field limits: from particle descriptions to macroscopic equations[END_REF] and the one driven by the Vlasov system [START_REF] Dobrushin | Vlasov equations[END_REF][START_REF] Figalli | A rigorous derivation from the kinetic Cucker-Smale model to the pressureless Euler system with nonlocal alignment[END_REF][START_REF] Fournier | On the rate of convergence in Wasserstein distance of the empirical measure[END_REF][START_REF] Haas | Chemokine signaling mediates self-organizing tissue migration in the zebrafish lateral line[END_REF]. As an intermediate step we will consider the N -body Liouville type one defined by [START_REF] Couzin | Effective leadership and decision-making in animal groups on the move[END_REF][START_REF] D'orsogna | Self-Propelled Particles with Soft-Core Interactions: Patterns, Stability, and Collapse[END_REF][START_REF] Di Costanzo | A hybrid mathematical model for self-organizing cell migration in the zebrafish lateral line[END_REF][START_REF] Di Costanzo | A hybrid model of collective motion of discrete particles under alignment and continuum chemotaxis[END_REF].

We will proceed in several steps.

Step 1 [Section 4] : we will show that the marginal (Φ t N #(ρ in ) ⊗N ) N ;1 of the pushforward of the initial condition by the flow generated by the particle system [START_REF] Belmonte | Self-propelled particle model for cell-sorting phenomena[END_REF][START_REF] Bolley | Stochastic Mean-Field Limit: Non-Lipschitz Forces & Swarming[END_REF][START_REF] Cañizo | A well-posedness theory in measures for some kinetic models of collective motion[END_REF][START_REF] Carrillo | Young-Pil Mean-field limits: from particle descriptions to macroscopic equations[END_REF] and the marginal (ρ t N ;1 ) of the solution ρ t N of [START_REF] Couzin | Effective leadership and decision-making in animal groups on the move[END_REF][START_REF] D'orsogna | Self-Propelled Particles with Soft-Core Interactions: Patterns, Stability, and Collapse[END_REF][START_REF] Di Costanzo | A hybrid mathematical model for self-organizing cell migration in the zebrafish lateral line[END_REF][START_REF] Di Costanzo | A hybrid model of collective motion of discrete particles under alignment and continuum chemotaxis[END_REF] are close as N → ∞ in the same Wasserstein topology through an estimate for

W 2 ((Φ t N #(ρ in ) ⊗N ) N ;1 , (ρ t N ) N ;1 ).
Step 2 [Section 5] we will show that the marginal (ρ t N ;1 ) of the solution ρ t N of [START_REF] Couzin | Effective leadership and decision-making in animal groups on the move[END_REF][START_REF] D'orsogna | Self-Propelled Particles with Soft-Core Interactions: Patterns, Stability, and Collapse[END_REF][START_REF] Di Costanzo | A hybrid mathematical model for self-organizing cell migration in the zebrafish lateral line[END_REF][START_REF] Di Costanzo | A hybrid model of collective motion of discrete particles under alignment and continuum chemotaxis[END_REF], is close to the solution of a Vlasov type closed equation [START_REF] Dobrushin | Vlasov equations[END_REF][START_REF] Figalli | A rigorous derivation from the kinetic Cucker-Smale model to the pressureless Euler system with nonlocal alignment[END_REF][START_REF] Fournier | On the rate of convergence in Wasserstein distance of the empirical measure[END_REF][START_REF] Haas | Chemokine signaling mediates self-organizing tissue migration in the zebrafish lateral line[END_REF] derived below in Wasserstein metric by estimating W 2 ((ρ t N ) N ;1 , ρ t ). Step 3: [particle density] : we will use the triangular inequality for W 2 :

W 2 ((Φ t N #(ρ in ) ⊗N ) N ;1 , ρ t ) ≤ W 2 ((Φ t N #(ρ in ) ⊗N ) N ;1 , (ρ t N ) N ;1 ) + W 2 ((ρ t N ) N ;1 , ρ t ).
The first part of Theorem 2.1 is then given by the estimate given by Proposition

4.3 -namely W 2 ((Φ t N #(ρ in ) ⊗N ) N ;1 , (ρ t N ) N ;1 ) ≤ β ρ in (t) C d (N )
-and the one given by Proposition

5.1 -namely W 2 ((ρ t N ) N ;1 , ρ t ) ≤ α ρ in (t) √ N .
Step 4: [chemical density] : the chemical density estimate is obtained through the triangle inequality. We get

∇ϕ t Z in -∇ψ t ρ in 2 ∞ ≤ ∇ϕ t Z in -∇ψ t µ Z in ∞ + ∇ψ t µ Z in -∇ψ t ρ in ∞ 2 ≤ 2 ∇ϕ t Z in -∇ψ t µ Z in 2 ∞ + ∇ψ t µ Z in -∇ψ t ρ in 2 ∞ , (18) 
where [START_REF] Couzin | Effective leadership and decision-making in animal groups on the move[END_REF][START_REF] D'orsogna | Self-Propelled Particles with Soft-Core Interactions: Patterns, Stability, and Collapse[END_REF][START_REF] Di Costanzo | A hybrid mathematical model for self-organizing cell migration in the zebrafish lateral line[END_REF][START_REF] Di Costanzo | A hybrid model of collective motion of discrete particles under alignment and continuum chemotaxis[END_REF] with initial condition (ρ in

µ Z in := 1 N N l=1 δ z in l and ψ t ρ in solves
) ⊗N = µ ⊗N Z in .
Both terms in the right hand-side of ( 18) are estimated by Corollary 3.5:

∇ϕ t Z in -∇ψ t µ Z in 2 ∞ ≤ t 2 Lip(∇χ) 2 W 2 ((Φ t N #(µ Z in ) ⊗N ) N :1 , ρ t µ Z in ) 2 (19) ∇ψ t µ Z in -∇ψ t ρ in 2 ∞ ≤ t 2 Lip(∇χ) 2 W 2 (ρ t µ Z in , ρ t ρ in ) 2 , ( 20 
)
where ρ t µ Z in (resp. ρ t ρ in ) is the solution of the Vlasov equation with initial condition µ Z in (resp. ρ in ). W 2 ((Φ t N #(µ Z in ) ⊗N , ρ t µ Z in ) 2 is estimated by the first estimate of Theorem 2.1 we just proved in Step 3 -namely W 2 ((Φ t N #µ Z in , ρ t µ Z in ) 2 ≤ τ µ Z in , (t) N -1 2 d = 1 N -1 2 log N d = 2 N -1 d d > 2 -, while W 2 (ρ t µ Z in , ρ t ρ in ) 2 by the Dobrushin estimate in Theorem 8.1 -namely .W 2 (ρ t µ Z in , ρ t ρ in ) 2 ≤ 2e Γ(t) W 2 (µ Z in , ρ in ) 2 .
Therefore, by ( 18),( 20) and ( 19),

∇ϕ t Z in -∇ψ t ρ in 2 ∞ ≤ 2t 2 Lip(∇χ) 2 2e Γ(t) W 2 (µ Z in , ρ in ) 2 + τ µ Z in (t) N -1 2 d = 1 N -1 2 log N d = 2 N -1 d d > 2 and R 2dN ∇ϕ t Z in -∇ψ t ρ in 2 ∞ (ρ in ) ⊗N (dZ in ) ≤ 2t 2 Lip(∇χ) 2 2e Γ(t) CM 2 (ρ in ) N -1 2 d = 1 N -1 2 log N d = 2 N -1 d d > 2 + τ µ Z in (t) N -1 2 d = 1 N -1 2 log N d = 2 N -1 d d > 2 = 2t 2 Lip(∇χ) 2 (2e Γ(t) CM 2 (ρ in ) + τ µ Z in (t)) N -1 2 d = 1 N -1 2 log N d = 2 N -1 d d > 2 ≤ 2t 2 Lip(∇χ) 2 (2e Γ(t) CM 2 (ρ in ) + τρ in (t)) N -1 2 d = 1 N -1 2 log N d = 2 N -1 d d > 2 =: τ c (t) N -1 2 d = 1 N -1 2 log N d = 2 N -1 d d > 2 (21) 
by [START_REF] Villani | Topics in Optimal Transportation[END_REF] since one integrates in Z in on the support of (ρ in ) ⊗N so that supp(µ Z in ) ⊂ supp(ρ in ).

Step 5: [rate of convergence] : the estimate for τ ρ in (t) is proven at the end of Section 5 (see formula [START_REF] Villani | Optimal Transport. Old and New[END_REF]), the one for τ c (t) follows by [START_REF] Ha | Uniform stability of the Cucker-Smale model and applications to the mean-field limit[END_REF].

Proof of Corollary 2.2. Corollary 2.2 is a rephrasing of Theorem 2.1 in the monokinetic case, which is straightforward by using Theorem 6.1.

Remark 2.3. As it is clear from the step 3 above, an alternative to the second statement in Theorem 2.1 is the following.

∇ϕ t Z in -∇ψ t ρ in 2 ∞ ≤ 2t 2 Lip(∇χ) 2   2e Γ(t) W 2 (µ Z in , ρ in ) 2 + τ ρ in (t)    N -1 2 d = 1 N -1 2 log N d = 2 N -1 d d > 2   for each Z in ∈ supp((ρ in ) ⊗N ).

Technical Preliminaries

In this section we establish or recall several results which will be intensively used in the core of the proof of Theorem 2.1.

Wasserstein distances.

Let us start this section by recalling the definition of the first and second order Wasserstein distance W 2 (see [START_REF] Villani | Topics in Optimal Transportation[END_REF][START_REF] Villani | Optimal Transport. Old and New[END_REF]). Definition 3.1 (quadratic Wasserstein distance). The Wasserstein distance of order two between two probability measures µ, ν on R m with finite second moments is defined as

W 2 (µ, ν) 2 = inf γ∈Γ(µ,ν) R m ×R m |x -y| 2 γ(dx, dy)
where Γ(µ, ν) is the set of probability measures on R m × R m whose marginals on the two factors are µ and ν.

Likewise is the first order Wasserstein distance W 1 between two probability measures µ, ν on R m with finite moments is defined by the following. Definition 3.2.

W 1 (µ, ν) := sup{ R 2d f (µ -ν)| f ∈ C ∞ (R 2d ), Lip(f ) ≤ 1}. Lemma 3.3. (i) W 1 (µ, ν) ≤ W 2 (µ, ν), (ii) sup Lip f ≤1 | f (µ -ν)| = W 1 (µ, ν) ≤ W 2 (µ, ν), (iii)
The convergence in the weak topology (i.e., in the duality with C b (R 2d ) of sequences of probability measures with supports equibounded is equivalent to the convergence with respect to the distance W p , p = 1, 2 (in fact with respect to Wasserstein of all orders), Proof. The first and second items are exactly formulas (7.1) and (7.3) in [START_REF] Villani | Topics in Optimal Transportation[END_REF], The third item is a straightforward consequence of [43, Theorem 7.12 (iii)], since the weak convergence of equisupported sequences of measures implies the convergence of all of their moments Note that Lemma 3.3 implies that

(22) | f (µ -ν)| ≤ Lip f W 1 (µ, ν) ≤ Lip f W 2 (µ, ν)
3.2. The diffusion term. The three equations ( 5), ( 12), ( 16), namely

   ∂ s ϕ s (z) = D∆ z ϕ -κϕ + f (z, Y (s)), ϕ 0 = ϕ in ∂ s Ψ s (z) = D∆ z Ψ -κΨ + g(z, ρ s N ;1 ), Ψ 0 = ϕ in ∂ s ψ t (z) = D∆ z ψ -κψ + g(z, ρ s ), ψ 0 = ϕ in can be solved, denoting I =   1 1 1   , by   ϕ t (z) Ψ t (z) ψ t (z)   = e -κt t 0 e (t-s)D∆ z   f (z, X(s)) g(z, ρ s N ;1 ) g(z, ρ s )   ds + e -κt e tD∆ ϕ in I (24) = e -κt t 0 R d e - (z-z ) 2 4D(t-s) (4πD(t-s)) d 2   f (z , X(s)) g(z , ρ s N ;1 ) g(z , ρ s )   dsdz + e -κt e tD∆ ϕ in .I Note that ∇ z   ϕ t (z) Ψ t (z) ψ t (z) (23) 
  is given by the same formula after replacing χ by ∇χ in the definitions of f and g.

The following lemma will be systematically used inthe forthcoming sections. Lemma 3.4. Let ρ, ρ ∈ P(R d ) and µ ∈ Lip(R d ). Then, for all t ≥ 0,

(e t∆ µ) * (ρ -ρ ) L ∞ (R d ) ≤ Lip(µ)W p (ρ, ρ ), p = 1, 2.
Proof. On has

|(e t∆ µ) * (ρ -ρ )(x i )| = | (e t∆ µ)(x i -z)(ρ -ρ )dz| ≤ Lip ((e t∆ µ)(x i -•))W 2 (ρ, ρ ) ≤ Lip (e t∆ µ)W 2 (ρ, ρ ) ≤ Lip µW 2 (ρ, ρ ) since, by Lemma 3.3, sup Lip f ≤1 f (dµ -dν) = W 1 (µ, ν) ≤ W 2 (µ, ν), and |(e t∆ µ)(x) -(e t∆ µ)(y)| = |(e t∆ (µ(x -•) -e t∆ (µ(y -•))(0)| ≤ |µ(x) -µ(y)| ≤ Lip(µ)|x -y|.
Corollary 3.5. Let ϕ t and σ t solve [START_REF] Ha | A simple proof of Cucker-Smale flocking dynamics and mean-field limit[END_REF]. Then

∇ϕ t -∇ψ t L ∞ (R d ) ≤ t Lip(∇χ)W 2 ((Φ t N #(ρ in ) ⊗N ) N :1 , ρ t ).
3.3. Propagation of Wasserstein type estimates. In this paragraph, we establish a result used later as a black box, concerning the propagation of estimates in Wasserstein topology under general transport equation including the several types used in this paper.

Theorem 3.6. Let us define the set of compactly supported probability measure on R 2dN invariant by permutation:

P p c (R 2dN ) := {ρ ∈ P c (R 2dN ), ρ(σ(dZ)) = ρ(dZ), ∀σ ∈ Σ N } where σ(Z) is defined in (9).
Let us suppose that the two equations

(25) ∂ t ρ t i + V • ∇ X ρ t i = ∇ V . • (v i ([ρ in i ] ≤t , X, V )ρ t i ), ρ 0 i = ρ in i ∈ P p c (R 2dN ), i = 1, 2
, have the property of existence and uniqueness of solutions in C 0 (R + , P p c (R 2dN )). Here [START_REF] Jabin | Mean Field limit and propagation of chaos for Vlasov systems with bounded forces[END_REF] [

ρ in i ] ≤t : s ∈ [0, t] → ρ s i , i = 1, 2, and v i ([ρ in i ] ≤t , X, V
) is supposed to be invariant by permutations of the variables (x j , v j ), j = 1, . . . , N , is Lipschitz continuous with respect to (X, V ) and satisfies the estimate

v i (ψ ≤t , X, V ) ≤ γ 0 V , i = 1, 2 for some constant γ 0 < ∞, uniformly in X, V ∈ R 2dN , ψ ≤t : [0, t] → P p c (R 2dN ), t ∈ R. Let us finally define, for i = 1, 2, (ρ t i ) N :1 (x, v) := R 2d(N -1) ρ t (x, x 2 , . . . , x n ; v, v 2 , . . . , v N )dx 2 . . . dx N dv 2 . . . dv N N > 1 ρ t i (x, v), N = 1.
Then, for all t ∈ R + , and all i = 1, 2,

W 2 ((ρ t 1 ) N :1 , (ρ t 2 ) N :1 ) 2 ≤ e t 0 L 1 (s)ds W 2 (ρ in 1 , ρ in 2 ) 2 + 2 N t 0 R 2dN |v 1 ([ρ in 1 ] ≤s , Y, Ξ) -v 2 ([ρ in 2 ] ≤s , Y, Ξ)| 2 ρ s 2 (dY, dΞ)e t s L 1 (u)du ds with L 1 (t) = 2(1 + sup (X,V )∈ supp(ρ t 1 ) (Lip(v 1 (t, X, V )) (X,V ) ) 2 ).
The proof on Theorem 3.6 is given in Appendix A.

From particles to Liouville-Vlasov

In this section we estimate W 2 ((Φ t N #ρ in ) N ;1 , (ρ t N ) N :1 ), where Φ t N defined by ( 7) is generated by the particle system [START_REF] Belmonte | Self-propelled particle model for cell-sorting phenomena[END_REF][START_REF] Bolley | Stochastic Mean-Field Limit: Non-Lipschitz Forces & Swarming[END_REF][START_REF] Cañizo | A well-posedness theory in measures for some kinetic models of collective motion[END_REF][START_REF] Carrillo | Young-Pil Mean-field limits: from particle descriptions to macroscopic equations[END_REF] and ρ t N is the solution of the N -body Liouville type one defined by [START_REF] Couzin | Effective leadership and decision-making in animal groups on the move[END_REF][START_REF] D'orsogna | Self-Propelled Particles with Soft-Core Interactions: Patterns, Stability, and Collapse[END_REF][START_REF] Di Costanzo | A hybrid mathematical model for self-organizing cell migration in the zebrafish lateral line[END_REF][START_REF] Di Costanzo | A hybrid model of collective motion of discrete particles under alignment and continuum chemotaxis[END_REF] with initial data ρ in .

Applying Theorem 3.6 with

(v 1 ([(ρ in ) ⊗N ] ≤s , X, V )) i = F i (t, X, V ) = 1 N N j=1 γ(v i -v j , x i -x j ) + η∇ x ϕ t (x i ) + F ext (x i ) (v 2 ([(ρ in ) ⊗N ] ≤s , X, V )) i = G i (t, X, V ) = 1 N N j=1 γ(v i -v j , x i -x j ) + η∇ x Ψ t (x i ) + F ext (x i )
we get easily that, since the initial conditions are the same,

W 2 ((Φ t N #ρ in ) N ;1 , (ρ t N ) N :1 ) 2 (27) ≤ 4η 1 N N i=1 t 0 R 2dN |∇ϕ s (x i ) -∇Ψ s (x i )| 2 (Φ s N #(ρ in ) ⊗N )(dX, dV )e t s Lρ in (u)du ds with (28) Lρ in (u) = 2 + 2    sup i,l=1,...,N (X,V )∈supp(ρ t N ) Lip (γ) 2 (x i -x l ,v i -v l ) + 2uη Lip(∇χ) + Lip(F ext )    2 .
Therefore, we have to estimate

R 2dN |∇ϕ s (x i ) -∇Ψ s (x i )| 2 (Φ s N #(ρ in ) ⊗N )(dX, dV ) = R 2dN |∇ϕ s (x s i (X, V )) -∇Ψ s (x s i (X, V ))| 2 (ρ in ) ⊗N (dX, dV ) (29)
where we have denoted

(30) Φ t N (X, V ) =: (x t 1 (X, V ), . . . , x t N (X, V ), v t 1 (X, V ), . . . , v t N (X, V )) i.e. x t i (X, V ) is the x i -component of Φ t N (X, V ), We first remark that, in (23), f (•, X) = χ * µ Z ,
where, for any Z = (z 1 , . . . , z N ) ∈ R 2dN , the empirical measure µ Z is defined by [START_REF] Méhes | Collective motion of cells: from experiments to models[END_REF] µ

Z := 1 N N k=1 δ z k
Therefore, by [START_REF] Ha | From particle to kinetic and hydrodynamic descriptions of flocking[END_REF],

∇ϕ s (x s i (X, V )) = e -ηs s 0 e (s-u)∆ ∇χ * µ Φ u (X.V ) (x s i (X, V ))du so that, denoting ∇ l , l = 1, . . . , d, the d components of the vector ∇, R 2dN |∇ϕ s (x i ) -∇Ψ s (x i )| 2 (Φ t N #(ρ in ) ⊗N )(dX, dV ) (32) = e -2κs R 2dN s 0 e (s-u)∆ ∇χ * (µ Φ u (X,V ) -(ρ u N ) N ;1 )(x s i (X, V ))du 2 (ρ in ) ⊗N (dX, dV ), = e -2κs R 2dN d l=1 s 0 e (s-u)∆ ∇ l χ * (µ Φ u (X,V ) -(ρ u N ) N ;1 )(x s i (X, V ))du 2 (ρ in ) ⊗N (dX, dV ), ≤ e -2κs R 2dN d l=1 s 0 e (s-u)∆ ∇ l χ * (µ Φ u (X,V ) -(ρ u N ) N ;1 ) L ∞ (R d ) du 2 (ρ in ) ⊗N (dX, dV ), ≤ e -2κs d l=1 Lip(∇ l χ) 2 | s 0 W 2 (µ Φ u (X,V ) , (ρ u N ) N ;1 )du| 2 (ρ in ) ⊗N (dX, dV ), = e -2κs Lip(∇χ) 2 | s 0 W 2 (µ Φ u (X,V ) , (ρ u N ) N ;1 )du| 2 (ρ in ) ⊗N (dX, dV ), = e -2κs Lip(∇χ) 2 | s 0 W 2 ((ρ Φ u (X,V ) ) N :1 , (ρ u N ) N ;1 )du| 2 (ρ in ) ⊗N (dX, dV ),
where we have used Lemma 3.4 for the second inequality and the following result for the last equality.

Lemma 4.1. Let ρ Z be defined by [START_REF] Cucker | Emergent behavior in flocks[END_REF] and µ Z by [START_REF] Méhes | Collective motion of cells: from experiments to models[END_REF]. Then

µ Z = (ρ Z ) N :1 .
Proof. Let us recall that Σ N = {σ : {1, . . . , N } → {1, . . . , N }, σ one-to-one} so that #Σ N = N !. We have

• • • δ σ(Z) dz 2 . . . dz N = • • • δ σ(Z) l =σ(1) dz l Therefore 1 N ! σ∈Σ N δ σ(Z) N :1 = 1 N ! N l=1 σ∈Σ N int σ(l)=1 • • • δ σ(Z) l =σ(1) dz l = N l=1 #Σ N -1 N ! δ z l = N l=1 (N -1)! N ! δ z l = µ Z .
By [START_REF] Couzin | Effective leadership and decision-making in animal groups on the move[END_REF], ρ s Z := ρ Φ s (Z) solves the N -body Liouville type one defined by [START_REF] Couzin | Effective leadership and decision-making in animal groups on the move[END_REF][START_REF] D'orsogna | Self-Propelled Particles with Soft-Core Interactions: Patterns, Stability, and Collapse[END_REF][START_REF] Di Costanzo | A hybrid mathematical model for self-organizing cell migration in the zebrafish lateral line[END_REF][START_REF] Di Costanzo | A hybrid model of collective motion of discrete particles under alignment and continuum chemotaxis[END_REF]) with initial data ρ in := ρ Z . Therefore, by the Dobrushin estimate in Theorem 9.1, one has

(33) W 2 ((ρ Φ u (X,V ) ) N :1 , (ρ u N ) N ;1 ) ≤ 2e Γ N (u) W 2 ((ρ Z ) N :1 , ((ρ in ) ⊗N N :1 ) = 2e Γ N (u) W 2 (µ Z , ρ in ), so that |(∇ϕ s (x i ) -∇Ψ s (x i ))| 2 (Φ t N #(ρ in ) ⊗N )(dX, dV ) ≤ 4e -2κs Lip(χ) 2 s 0 e Γ N (u) du 2 W 2 (µ Z , ρ in ) 2 (ρ in ) ⊗N (dZ), ≤ 4e -2κs Lip(χ) 2 e sup u≤s Γ N (u) s 2 R 2d (x 2 + v 2 )ρ in (dx, dv)C    N -1 2 d = 1 N -1 2 log N d = 2 N -1 d d > 2 , ( 34 
)
thanks to the following result by Fournier and Guillin: Theorem 4.2 (Theorem 1 in [START_REF] Fournier | On the rate of convergence in Wasserstein distance of the empirical measure[END_REF]). Let ρ ∈ P(R 2d ) satisfy

R 2d (x 2 + v 2 )ρ(dx, dv) := M 2 (ρ) < ∞.
and let µ (X,V ) , (X, V ) ∈ R 2dN , be the empirical measure defined by [START_REF] Méhes | Collective motion of cells: from experiments to models[END_REF].

Then R 2dN W 2 (µ (X,V ) , ρ) 2 ρ ⊗N (dXdV ) ≤ C d (N )M 2 (ρ),
where

C d (N ) := C    N -1 2 d = 1 N -1 2 log N d = 2 N -1 d d > 2
where C depends only on d.

Therefore, we get by [START_REF] Jabin | Quantitative estimates of propagation of chaos for stochastic systems with W -1, ∞ kernels[END_REF] and [START_REF] Piccoli | Control to flocking of the kinetic Cucker-Smale model[END_REF] the final result of this section. sup

Proposition 4.3. W 2 ((Φ t N #ρ in ) N ;1 , (ρ t N ) N :1 ) ≤ β ρ in (t) C d (N ) with (35) β ρ in (t) 2 = 16η 2 t 2 Lip(∇χ) 2 e t sup s≤t Lρ in (s) e 2 sup s≤t Γ N (s) R 2d (x 2 + v 2 )ρ in (dx,
(x,v)∈ supp(ρ in ) (x 2 + v 2 ).
By its definition [START_REF] Lecaudey | Dynamic Fgf signaling couples morphogenesis and migration in the zebrafish lateral line primordium[END_REF], Lρ in (t) is, for fixed t, an increasing function of supp(ρ in ) and, by Remark 9.4, Γ N is independent of ρ in . Therefore βρ in (t) is, for fixed t, an increasing function of supp(ρ in ).

From Liouville-Vlasov to Vlasov

In this section we estimate W 2 ((ρ t N ) N :1 , ρ t ), where ρ t N is the solution of the N -body Liouville type one defined by [START_REF] Couzin | Effective leadership and decision-making in animal groups on the move[END_REF][START_REF] D'orsogna | Self-Propelled Particles with Soft-Core Interactions: Patterns, Stability, and Collapse[END_REF][START_REF] Di Costanzo | A hybrid mathematical model for self-organizing cell migration in the zebrafish lateral line[END_REF][START_REF] Di Costanzo | A hybrid model of collective motion of discrete particles under alignment and continuum chemotaxis[END_REF]) and ρ t is the solution of the Vlasov system [START_REF] Dobrushin | Vlasov equations[END_REF][START_REF] Figalli | A rigorous derivation from the kinetic Cucker-Smale model to the pressureless Euler system with nonlocal alignment[END_REF][START_REF] Fournier | On the rate of convergence in Wasserstein distance of the empirical measure[END_REF], with initial data (ρ in ) ⊗N and ρ in .

We first remark that (ρ t ) ⊗N solves the equation

∂ t (ρ t ) ⊗N + V • ∇ X (ρ t ) ⊗N = ∇ V . • (v 2 ([(ρ in ) ⊗N ] ≤t , X, V )(ρ t ) ⊗N ), with v 2 ([(ρ in ) ⊗N ] ≤t , •, •) := ν([ρ in ] ≤t , •, •) ⊗N .
Therefore, applying again Theorem 3.6 taking this time

(v 1 ([(ρ in ) ⊗N ] ≤s , X, V )) i = G i (t, X, V ) = 1 N N j=1 γ(v i -v j , x i -x j ) + η∇ x Ψ t (x i ) + F ext (x i ) (v 2 ([(ρ in ) ⊗N ] ≤s , X, V )) i = ν([ρ in ] ≤t , x i , v i ) = γ * ρ t (x i , v i ) + η∇ x ψ t (x i ) + F ext (x i ),
we get easily that

W 2 ((ρ t 1 ) N :1 , (ρ t 2 ) N :1 ) 2 ≤ 4 1 N N i=1 t 0 R 2dN   1 N N j=1 γ(x i -x j , v i -v j ) -γ * ρ s (x i , v i ) 2 N j=1 + η 2 |(∇ψ s (x i ) -∇Ψ s (x i ))| 2 (ρ s ) ⊗N (dX, dV )e t s
Lρ in (u)du ds, with the same factor Lρ in as in Section 4, namely

(37) Lρ in (u) = 2 + 2    sup i,l=1,...,N (X,V )∈supp(ρ t N ) Lip (γ) 2 (x i -x l ,v i -v l ) + 2uη Lip(∇χ) + Lip(F ext )    2 .
The first term in the integral has been estimated in [33, Lemma 3.5, Section 3] and we get

R 2dN 1 N N j=1 γ(x i -x j , v i -v j ) -γ * ρ s (x i , v i ) 2 (ρ s ) ⊗N (dX, dV ) ≤ 4 N sup (x,v),(x ,v )∈supp(ρ t ) |γ(x -x , v -v )| 2 .
It remains to estimate

(38) R 2dN |(∇ψ s (x i ) -∇Ψ s (x i ))| 2 (ρ t ) ⊗N (dX, dV ).
We have

|∇Ψ s (x i ) -∇ψ s (x i )| 2 = e -2κs | s 0 (e (s-s )∆ ∇χ) * ((ρ s N ) N ;1 -ρ s ))(x i )ds | 2 = e -2κs s 0 ds s 0 ds"((e (s-s )∆ ∇χ) * ((ρ s N ) N ;1 -ρ s )(x i )((e (s-s")∆ ∇χ) * ((ρ s" N ) N ;1 -ρ s" )(x i ).
But, by Lemma 3.4, (e (t-s)∆ ∇χ) * ((

ρ s N ) N ;1 -ρ s )(x i ) ≤ Lip (∇χ)W 2 ((ρ s N ) N ;1 , ρ s ). Therefore |∇Ψ s (x i ) -∇ψ s (x i )| 2 ≤ Lip (∇χ) 2 e -2κs s 0 s 0 W 2 ((ρ s N ) N ;1 , ρ s )W 2 ((ρ s" N ) N ;1 , ρ s" )ds ds",
and we get

W 2 ((ρ t N ) N ;1 , ρ t ) 2 ≤ 4 N t 0 sup (x,v),(x ,v )∈supp(ρ t ) |γ(x -x , v -v )| 2 e t s Lρ in (u)du ds + t 0 e t s L ρ in (u)du s 0 ds s 0 ds W 2 ((ρ s N ) N ;1 , ρ s )W 2 ρ s N ) N ;1 , ρ s ds := C ρ in (t) N + η Lip ∇χ 2 t 0 e -2κs e t s Lρ in (u)du ds × s 0 ds s 0 ds W 2 (ρ s N ) N ;1 , ρ s W 2 (ρ s N ) N ;1 , ρ s (39) Let us define f (t) = sup 0≤t ≤t W 2 (ρ t N ) N ;1 , ρ t 2 .
We have, since by the definition [START_REF] Szabò | Phase transition in the collective migration of tissue cells: Experiment and model[END_REF], C ρ in (t) is not decreasing,

f (t) ≤ C ρ in (t) N + η Lip ∇χ 2 t 0 e -2κs e t s Lρ in (u)du ds × s 0 ds s 0 ds W 2 (ρ s N ) N ;1 , ρ s W 2 (ρ s N ) N ;1 , ρ s ≤ C ρ in (t) N + η Lip ∇χ 2 t 0 e -2κs e t s Lρ in (u)du s 2 f (s)ds.
We conclude by the Grönwall Lemma,

W 2 ((ρ t N ) N ;1 , ρ t ) 2 ≤ f (t) ≤ C ρ in (t) N e η Lip ∇χ 2 t 0 e s sup u≤s Lρ in (u) s 2 2 ds := α ρ in (t) 2 N , (40) 
and get the final result of this section. Proposition 5.1.

W 2 ((ρ t N ) N ;1 , ρ t ) ≤ α ρ in (t) √ N .
Out of α ρ in , β ρ in , defined in ( 35)- [START_REF] Szabò | Phase transition in the collective migration of tissue cells: Experiment and model[END_REF] we define

(41) τ ρ in (t) = α ρ in (t) + β ρ in (t) √ C 2 ,
where C is the constant appearing in Theorem 4.2.

One sees immediately that C ρ in (t) defined by ( 39) is, for fixed t, an increasing function of supp(ρ in ).Therefore so is α ρ in (t) as defined by [START_REF] Sznitman | Topics in propagation of chaos[END_REF] so that, if we define [START_REF] Vicsek | Collective motion[END_REF] τρ

in (t) = α ρ in (t) + βρ in (t) √ C 2 ,
where C is the constant appearing in Theorem 4.2, we have ( 43)

supp(ρ in 1 ) ⊂ supp(ρ in 2 ) ⇒ τ ρ in 1 ≤ τρ in 1 ≤ τρ in 2 . Estimating τ ρ in (t).
By the same type of arguments than in the proof of [START_REF] Natalini | On The Mean Field limit for Cucker-Smale models[END_REF]Corollary 2.6 ] one can easily estimate τ ρ in (t) by using the estimates of Φ t N established in Proposition 7.2 and Theorem 7.3, on the support of ρ t N given by Theorem 8.1 and the support of ρ t in Theorem 8.1. We omit the details here.

We get, for some time independent constant C depending explicitly on and only on Lip(γ, Lip(χ), Lip(∇χ) and |supp(ρ in )|, [START_REF] Villani | Optimal Transport. Old and New[END_REF] τ ρ in (t) ≤ e e Ct .

Hydrodynamic limit

The hydrodynamic limit of Cucker-Smale models has provided up to now a large litterature, whose exhaustive quotation is beyond the scope of the present paper. We refer to [START_REF] Carrillo | Young-Pil Mean-field limits: from particle descriptions to macroscopic equations[END_REF] and the large bibliography therein. In [START_REF] Carrillo | Young-Pil Mean-field limits: from particle descriptions to macroscopic equations[END_REF], the corresponding Euler equation is derived for Cucker-Smale systems with friction, using the empirical measures formalism and in a modulated energy topology.

Our approach and results are different: we consider generalizations of frictionless Cucker-Smale models, coupled to chemotaxis through a diffusive interaction, for large numbers N of particles and we provide explicit rates of convergences in the quadratic Wasserstein metric towards Euler type equations.

Our result happens to be a simple corollary of our main result Theorem 2.1 in the case where ρ in is monkinetic, i.e.

ρ in (x, v) = µ in (x)δ(v -u in (x))
thanks to the following result: the monokinetic form is preserved by the Valsov equation ( 14) and the solution is furnished by the solution of a Euler type equation. Theorem 6.1. Let µ t , u t , ψ t be a solution to the following system

       ∂ t µ t + ∇(u t µ t ) = 0 ∂ t (µ t u t ) + ∇(µ t (u t ) ⊗2 ) = µ t γ(• -y, u t (•) -u t (y))µ t (y)dy + ηµ t ∇ψ t + µ t F ∂ s ψ s = D∆ψ -κψ + χ * µ s , s ∈ [0, t], (µ 0 , u 0 , ψ 0 ) = (µ in , u in , ψ in ) ∈ H s , s > d 2 + 1. where µ t , u t ∈ C([0, t]; H s ) ∩ C 1 ([0, T ]; H s-1 ), ψ t ∈ C([0, t]; H s ) ∩ C 1 ([0, T ]; H s-2 ) ∩ L 2 (0, T ; H s+1 ) 3 . Then ρ t (x, v) := µ t (x)δ(v -u t (x)) solves the following system        ∂ t ρ t + v • ∇ x ρ t = ∇ v (ν(t, x, v)ρ t ), ν(t, x, v) = γ(x, v) * ρ t + η∇ x ψ t (x) + F ext (x), ∂ s ψ s (z) = D∆ z ψ -κψ + g(z, ρ s ), ψ 0 = ψ in , ρ 0 (x, v) = µ in (x)δ(v -u in (x)).
Proof. When η = 0, the derivation of (45) out of (3.4) is standard, see e.g. [START_REF] Figalli | A rigorous derivation from the kinetic Cucker-Smale model to the pressureless Euler system with nonlocal alignment[END_REF] and [6, Section 1.2]. The addition of the term η∇ x ψ t is a straightforward generalization.

Notice that the Euler system in Theorem 6.1 can be compared to the so-called Preziosi model of vasculogenesis, where the nonlocal term in our Euler system is replaced by a phenomenological pressure gradient local in the density, see [START_REF] Preziosi | Modelling the formation of capillaries[END_REF].

Estimates on the solution of the particle system

Global existence and uniqueness for the system (P ) has been proved when γ is exactly the Cucker-Smale field in [START_REF] Di Costanzo | A hybrid mathematical model for self-organizing cell migration in the zebrafish lateral line[END_REF]. It is straightforward to adapt the proofs to the case of a general γ satisfying the hypothesis of the present paper. This situation is anyway fully included in [32, Theorem 6] and we have the following result.

Theorem 7.1. Let Lip(γ), Lip(∇χ) < ∞ and let Z in ∈ R 2dN . Then, for any N ∈ N,the Cauchy problem

(P )                              ẋi = v i , vi = F i (t, X(t), V (t)), (X(0), V (0)) = Z(0) = Z in ∈ R 2dN F i (t, Y, W ) = 1 N N j=1 γ(w i -w j , y i -y j ) + η∇ z ϕ t (z)| z=y i + F ext (y i ), ∂ s ϕ s (z) = D∆ z ϕ -κϕ + f (z, X(s)), s ∈ [0, t], f (z, X) = 1 N N j=1 χ(z -x j ).
has a unique global solution in C 0 (R, R 2dN ).

3 We suppose this regularity because it is somehow standard for mixed hyperbolic-parabolic systems (see [30, Theorem 2.9 p. 34 ], one certainly could low it down.

Estimates on the solution of (P ) can be easily obtained by the same kind of proof that in [START_REF] Natalini | On The Mean Field limit for Cucker-Smale models[END_REF]Appendix A]. We get the following result. Proposition 7.2. Let γ 0 = Lip(γ) + Lip(∇χ). Then, for all t ∈ R, the solution of (P )

satisfies |v i (t)| ≤ max j=1,...,N |v j (0)|e 2γ 0 t , i = 1, . . . , N, ||x 1 (t)| -|x i (0)|| ≤ max j=1,...,N |v j (0)| e 2γ 0 t -1 2γ 0 , i = 1, . . . , N.
Finally, we will need the following estimate on the derivative of the flow generated by the system (P ).

Theorem 7.3. Let z i (t) = x i (t), v i (t), i = 1, . . . , N be the solution of (P ) with initial date z i (0) = z in i .
Then, for all T ∈ R,

sup t≤T ∂z i (t) ∂z in j ≤ e (γ 1 +γ 2 T )t , i, j = 1, . . . , N with γ 1 = Lip(γ), γ 2 = Lip(∇χ).
In other words, sup

t≤T dΦ t N ∞ ≤ e (γ 1 +γ 2 T )t .
Proof. One easily get that, for each i, j = 1, . . . , N ,

∂ t ∂z i (t) ∂z in j ≤ Lip(γ) 1 N N l=1 ∂z l (t) ∂z in j + η Lip(∇χ) 1 N N l=1 t 0 ∂z l (s) ∂z in j ds
Therefore, since the right hand-side of the preceding equality doesn't depend on i,

∂ t N i=1 ∂z i (t) ∂z in j ≤ Lip(γ) N l=1 ∂z l (t) ∂z in j + η Lip(∇χ) t 0 N l=1 ∂z l (s) ∂z in j ds so that, since N i=1 ∂z i (0) ∂z in j = N i=1 ∂z in i ∂z in j = N i=1 δ i,j = 1, N i=1 ∂z i (t) ∂z in j -1 ≤ Lip(γ) t 0 N l=1 ∂z l (u) ∂z in j du + η Lip(∇χ) t 0 u 0 N l=1 ∂z l (s) ∂z in j dsdu ≤ (Lip(γ) + T η Lip(∇χ)) t 0 N l=1 ∂z l (u) ∂z in j du
and, by Grönwall Lemma,

∂z i (t) ∂z in j ≤ N i=1 ∂z i (t) ∂z in j ≤ e γ 1 t+γ 2 T t .
8. Existence, uniqueness and Dobrushin stability for the Vlasov system In this section we study the Vlasov system (V ) and prove the properties that satisfy its solution necessary for the proof of our main result. Theorem 8.1. Let Lip(γ), Lip(∇χ) < ∞ and let ν in ∈ P c (R 2d ), the set of compactly supported probability meausres. Then the Cauchy problem

(V )            ∂ t ρ t + v • ∇ x ρ t = ∇ v (ν(t, x, v)ρ t ), ρ 0 = ρ in ν(t, x, v) = γ * ρ t (x, v) + η∇ x ψ t (x) + F ext (x), ∂ s ψ s (z) = D∆ z ψ -κψ + g(z, ρ s ), ψ 0 = ϕ in . has a unique solution t → ρ t ψ t in C 0 (R, P c (R 2d ) × W 1,∞ (R d )). Moreover, if ρ in is supported in the ball B(0, R 0 ) of R 2d centered at the origin of radius R 0 , ρ t is supported in B(0, R t ) with R t = e (Lip(γ)+ F ext L ∞ (R d ) +η Lip(χ))t R 0 + Lip(γ) + F ext L ∞ (R d ) + η Lip(χ) .
Finally, if ρ t 1 , ρ t 2 are the solutions of (V ) with initial conditions ρ in 1 , ρ in 2 , then the following Dobrushin type estimate holds true

W 2 (ρ t 1 , ρ t 2 ) 2 ≤ 2e Γ(t) W 2 (ρ in 1 , ρ in 2 )
2 where Γ(t) is given below by (54).

Proof. The proof of the existence of a solution will follow closely the strategy of the proof of Theorem 2.3 in [34, Appendix A]. The main difference is that ν is not only non-local in space as in [START_REF] Piccoli | Control to flocking of the kinetic Cucker-Smale model[END_REF], it is also non-local in time as ν([ρ in ] ≤t , x, v) involves the whole history of the solution {ρ s , 0 ≤ s ≤ t}.

We will first need the following Lemma Lemma 8.2. For any T ≥ 0, there exist L .M , K < ∞ such that, for any t, t 1 , t 2 ≤ T , z, z ∈ R 2d and any

ρ in , ρ in 1 , ρ in 2 ∈ P(R 2d ),, v([ρ in ] ≤t , z) -v([ρ in ] ≤t , z ) ≤ L z -z , ν([ρ in ] ≤t , z) ≤ M (1 + z ) v([ρ in ] ≤t 1 , z, [ρ in 1 ] ≤t 1 ) -v([ρ in 2 ] ≤t 2 , z) ≤ K sup s≤min(t 1 ,t 2 ) W 1 (ρ s 1 , ρ s 2 ) + η ∇χ L ∞ |t 1 -t 2 |.
where ρ t 1 , ρ t 2 are the solutions of (V ) with initial conditions ρ in 1 , ρ in 2 . Here W 1 is the Wasserstein distance of order 1 whose definition is recalled in Definition 3.2:

The proof is immediate with L = Lip(γ) + Lip(F ext ) + T η Lip(∇χ), M = Lip(γ) + F ext L ∞ (R d ) + η Lip(χ) + Lip(∇ϕ in ) and K = Lip(γ) + η Lip(χ).

Let us fix T > 0. For k ∈ N we define τ k = T 2 -k . Let ρ t k be defined by ρ t=0 k = ρ in and, for l = 0, . . . ,

2 k -1, u ∈ [0, τ k ), (V k )            ∂ u ρ lτ k +u k (x, v) + v • ∇ x ρ lτ k +u k (x, v) = ∇ v • ν k (lτ k , x, v)ρ lτ k +u k (x, v) ν k (lτ k , x, v) = γ(x, v) * ρ lτ k k + η∇ x ψ k (lτ k , x) + F ext (x), ∂ s ψ k (s, z) = D∆ z ψ k -κψ k + g(z, ρ s k ), 0 ≤ s ≤ lτ k , ψ 0 k = ϕ in . with (45) ν k (t, z) = v([ρ in ] ≤t k , z
) Note that we have obviously the following corollary of Lemma 8.2.

Corollary 8.3. For any T ≥ 0, z, z ∈ R 2d and k ∈ N, one has, with the same constant L .M , K than in Lemma 8.2,

ν k (t, z) -ν k (t, z ) ≤ L z -z , ν k (t, z) ≤ M (1 + z ), Moreover, if ν k (t, z), ρ t k satisfies (V k ) with ρ t=0 k = ρ in and ν k (t, z), ρ t k satisfies (V k ) with ρ t=0 k = ρ in , then ν k (t, z) -ν k (t , z) L ∞ (R;C 0 (R 2d ) ≤ K sup 0≤s≤min(t,t ) W 1 (ρ k (s), ρ k (s)) + K |t -t |.
We first show that the support of the sequence ρ t k is equibounded. One easily checks that,since ρ in is compactly supported, so is ρ t k for all k, t by construction. So supp(ρ t k ) ⊂ B(0, R t k ) for some R k (t). One can estimate R t k as follows.

supp(ρ lτ k k ) ⊂ B(0, R lτ k k ) ⇒ ν k (t, z) ∞ = v([ρ in ] ≤t k , z) ∞ ≤ M (1 + R lτ k k ) ⇒ supp(ρ lτ k +u k ) ⊂ B(0, R lτ k k + uM (1 + R lτ k k )), u ∈ [0, τ k ] ⇒ supp(ρ (l+1)τ k k ) ⊂ B(0, (1 + τ k )R lτ k k + τ k M ). Therefore, one can choose R lτ k k satisfying R lτ k k ≤ (1 + M τ k )R (l-1)τ k k + τ k M ≤ (1 + M τ k ) 2 R (l-2)τ k k + τ k M (1 + (1 + M τ k )) ≤ (1 + M τ k ) l R 0 + M (((1 + M τ k ) l -1) ≤ (1 + M T 2 -k ) 2 k R 0 + M ((1 + M T 2 -k ) 2 k -1) ≤ e M T (M + R 0 ) := R T .
Here R 0 is such that supp(ρ 0 k := ρ in ) ⊂ B(0, R 0 ).

We prove now that, for all t ∈ [0, T ], the sequence of densities ρ t k k is Cauchy in the topology of C 0 ([0, T ], (P c , W 1 )), which implies (48).

We have that, for any q ∈ Q,

W 1 (ρ t k k , ρ t l l ) ≤ W 1 (ρ t k k , ρ q i k k ) + W 1 (ρ q k k , ρ q l l ) + W 1 (ρ q l l , ρ t l l ) ≤ 2L |q -t| + W 1 (ρ q
k k , ρ q l l ) For any , taking q such that 2L |q -t| ≤ /2 and k, l large enough such that W 1 (ρ q k k , ρ q l l ) ≤ /2, we get M Ku(ρ t k k , ρ t l l ) ≤ .

We now return to proving that ρ t * is a solution of (V ), it suffices to prove that

(V * )            T 0 R 2d (∂ t f + v • ∇ x f -∇ v f • v(t, z, ρ ≤t * )ρ t * (dZ)dt = 0 v(t, (x, v), ρ ≤t * ) = γ(x, v) * ρ t * + η∇ x ψ t (x) + F ext (x), ∂ s ψ s (z) = D∆ z ψ -κψ + g(z, ρ s * ). for each f ∈ C ∞ c ([0, T ] × R 2d
). In (V * ) we have used the notation ρ ≤t = ρ s | s≤t for any function t ∈ R → ρ t ∈ P(R 2d ). By construction, we have

2 k -1 l=0 (l+1)τ k lτ k R 2d (∂ u f (u, z) + v • ∇ x f -∇ v f • ν k (lτ k , z, ρ ≤lτ k k )ρ u k (dz)du = 0 for every k ∈ N. The equation (49) T 0 R 2d (∂ t f + v • ∇ x f -∇ v f • v(t, z, ρ ≤t * )ρ t * (dZ)dt = 0
will be proven through the three following limts:

(50) lim k→∞ T 0 R 2d (∂ t f + v • ∇ x f )(ρ t * -ρ t k )(dz)dt = 0 (51) lim k→∞ 2 k -1 l=0 (l+1)τ k lτ k R 2d ∇ v f • v(lτ k , z, ρ ≤lτ k k ) -v(u, z, ρ ≤lτ k * ) ρ u * (dz)du = 0 (52) lim k→∞ 2 k -1 l=0 (l+1)τ k lτ k R 2d ∇ v f • v(lτ k , z, ρ ≤lτ k * ) (ρ u k -ρ u * ) (dz)du = 0
To prove (50) and (52) we remark that, since f ∈ C ∞ c ([0, T ]×R 2d ) and by the Lipschitz property of v(lτ k , z, ρ ≤lτ k side of (50) satisfies, thanks to (48),

| lim k→∞ T 0 R 2d (∂ t f + +v • ∇ x f )(ρ t * -ρ t k )(dz)dt| ≤ lim k→∞ T (Lip(∂ t f ) + Lip(v • ∇ x f )) sup t≤T W 1 (ρ t k , ρ t * ) = 0,
and the absolute value of the right hand side of (52) satisfies, thanks again to (48),

| lim k→∞ 2 k -1 l=0 (l+1)τ k lτ k R 2d ∇ v f • v(lτ k , z, ρ ≤lτ k * ) (ρ u k -ρ u * ) (dz)du| ≤ lim k→∞ T Lip(∇f )|supp(f )|M sup t≤T W 1 (ρ t k , ρ t * ) = 0,
Let us finally prove (51). By the third inequality in Lemma 8.2 and the L -Lipschitz continuity of ρ k we get that, for each u ∈

[lτ k , (l + 1)τ k ], v(lτ k , z, ρ ≤lτ k k ) -v(u, z, ρ ≤lτ k * ) ≤ K sup 0≤s≤lτ k W 1 (ρ lτ k k , ρ lτ k * ) + K T 2 k so that lim k→∞ 2 k -1 l=0 (l+1)τ k lτ k R 2d ∇ v f • v(lτ k , z, ρ ≤lτ k k ) -v(u, z, ρ ≤lτ k * ) ρ u * (dz)du lim k→∞ T ∇f L ∞ (R 2d ) sup 0≤t≤T W 1 (ρ t k , ρ t * ) + K T 2 k = 0 .
The proof of the uniqueness of the solution of (V ) is obviously a consequence of the Dobrushin stability result that we will prove now.

Take two initial conditions ρ in l , l = 1.2. By Theorem 3.6, we have that

W 2 (ρ t 1 , ρ t 2 ) 2 ≤ e t 0 L 1 (s)ds W 2 (ρ in 1 , ρ in 2 ) 2 + t 0 R 2dN 2||v([ρ in 1 ] ≤s , Z) -v([ρ in 2 ] ≤s , Z)| 2 (ρ t 1 ) ⊗N (dX, dV )e t s L 1 (u)du ds ≤ e t 0 L 1 (s)ds W 2 (ρ in 1 , ρ in 1 ) 2 + t 0 2 |v([ρ in 1 ] ≤s , Z) -v([ρ in 2 ] ≤s , Z) 2 ∞ e t s L 1 (u)du ds ≤ e t 0 L 1 (s)ds W 2 (ρ in 1 , ρ in 2 ) 2 + 2 t 0 e t s L 1 (u)du (K ) 2 sup u≤s W 2 (ρ u 1 , ρ u 2 ) 2 ds
by the third inequality in Lemma 8.2.

Here, by Theorem 3.6,

L 1 (t) = 2(1 + sup (X,V )∈ supp(ρ t 1 ) (Lip(v([ρ in 1 ] ≤t , X, V )) (X,V ) ) 2 .
and by the first inequality in Lemma 8.2,

L 1 (t) = 2 + 2(L ) 2 . (53) Therefore, for any T ≥ 0, sup t≤T W 2 (ρ t 1 , ρ t 2 ) 2 ≤ sup t≤T e t 0 L(s)ds W 2 (ρ in 1 , ρ in 2 ) 2 + 2 sup t≤T t 0 e t s l(u)du (K ) 2 sup u≤s W 2 (ρ u 1 , ρ u 2 ) 2 ds ≤ e T 0 L(s)ds W 2 (ρ in 1 , ρ in 2 ) 2 + 2 T 0 e T s l(u)du (K ) 2 sup u≤s W 2 (ρ u 1 , ρ u 2 ) 2 ds.
By the Grönwall Lemma, we get immediately

W 2 (ρ t 1 , ρ t 2 ) 2 ≤ e Γ(t) W 2 (ρ in 1 , ρ in 2 ) 2 with (54) Γ(t) := t 2 + 2(L ) 2 + (2K ) 2 e 2t)(1+(L ) 2 )
Theorem 8.1 is proved. 9. Existence, uniqueness and Dobrushin estimate for the Liouville-Vlasov system In this section we study the Liouville-Vlasov system (LV ) in the same spirit than in the previous section devoted to the Vlasov system. Theorem 9.1. Let Lip(γ), Lip(∇χ) < ∞ and let ν in ∈ P c (R 2d ), the set of compactly supported probability meausres. Then, for every N ∈ N, the Cauchy problem

(LV )                            ∂ t ρ t N + V • ∇ X ρ t N = N i=1 ∇ v i • G i ρ t N , ρ o N = ρ in N G i (t, Y, W ) = 1 N N j=1 γ(w i -w j , y i -y j ) + η∇ z Ψ t (z)| z=y i + F ext (y i ), ∂ s Ψ s (z) = D∆ z Ψ -κΨ + g(z, ρ s N ;1 ), s ∈ [0, t], Ψ 0 = ϕ in g(z, ρ s N ;1 ) = R 2d χ(z -x)ρ s N ;1 (x, v)dxdv has a unique solution t → ρ t N Ψ t in C 0 (R, P c (R 2dN ) × W 1,∞ (R d )). Moreover, if ρ in
N is supported in the ball B(0, R 0 ) of R 2dN of radius R 0 , ρ t N centered at the origin is supported in B(0, R t ) with R t = e (Lip(γ)+ F ext L ∞ (R d ) +η Lip(χ))t R 0 + Lip(γ) + F ext L ∞ (R d ) + η Lip(χ) .

Finally, if ρ t N , τ t N are the solutions of (LV ) with initial conditions ρ in N , τ in N invariant by permutations in the sense that where ρ t 1N , ρ t 2N are the solutions of (LV ) with initial conditions (ρ in 1 ) ⊗N , (ρ in 2 ) ⊗N . Here W 1 is the Wasserstein distance of order 1 defined in Definition 3.2.

ρ in N • σ = ρ in N , τ in N • σ = τ in N ,
For T > 0, k ∈ N we define τ k = T 2 -k and, with a slight abuse of notation, ρ t k by ρ t=0 k = (ρ in ) ⊗N and, for l = 0, . . . , 2 k -1, u ∈ [0, τ k ) (remember Z := (X, V ) ∈ R 2dN ),

(LV k )                    ∂ u ρ lτ k +u k (Z) + V • ∇ X ρ lτ k +u k (Z) = ∇ V • (Γ k (([(ρ in ) ×N ] ≤t k ) N :1 , Z)ρ lτ k +u k (Z) Γ k i (([(ρ in ) ×N ] ≤t k ) N :1 , (Y, W )) = 1 N N j=1
γ(w i -w j , y i -y j ) + η∇ z Ψ t (z)| z=y i + F ext (y i ), ∂ s Ψ s (z) = D∆ z Ψ -κΨ + g(z, (ρ s k ) N ;1 ), s ∈ [0, t],

where [ρ in ] ≤t k : s ∈ [0, t] → ρ s k solution of (V k ) with initial data ρ in . As before, Γ k satisfies the same estimates than Γ and we have the following result. Lemma 3.2] for details), we get (. . . )

dD N dt = 1 N ((X -Y ) 2 + (V -Ξ)
Indeed, (we write the argument in the case π t N is a density for sake of simplicity) (X, V, Y, Ξ) ∈ supp(π t N ) ⇒ π t N (X, V, Y, Ξ) > 0 ⇒ R 2dN π t N (X, V, dY, dΞ), Thanks to the following lemma, we can always suppose that π in N is invariant by permutation in the sense of Theorem 9.1.

R 2dN π t N (dX, dV, Y, Ξ) > 0 ⇔ ρ t 1 (X, V ), ρ t 2 (Y, Ξ) > 0 ⇔ (X, V ) ∈ supp(ρ t

  t N #(ρ in ) ⊗N and ρ t , and satisfies the following estimate for all t ∈ R, τ ρ in (t) ≤ e e Ct , τ c (t) ≤ e e Cct for some constants C, C c ,depending on Lip(γ), Lip(χ), Lip(∇χ) and |supp(ρ in )|. Corollary 2.2 (Hydrodynamic Euler limit). Let µ in , u in , ϕ in be such that the non local Euler system 

  dv).

	Remark 4.4. Let us define βρ in ≥ β ρ in by		
	(36)	βρ in := 16η 2 t 2 Lip(∇χ) 2 e	t sup s≤t	Lρ in (s)	e	2 sup

s≤t Γ N (s)

  ∀σ ∈ Σ N , then the following Dobrushin type estimate holds trueW 2 ((ρ t N ) N :1 , (τ t N ) N :1 ) 2 ≤ 2e Γ N (t) W 2 ((ρ in N ) N :1 , (τ N ) N :1 ) 2where Γ N (t) is given below by (57).Proof. The proof of Theorem 9.1 is easily attainable by a straightforward modification of the one of Theorem 8.1. Let us define the vector G with components G i , i = 1, . . . , N . This time, G has the form(55) G(t, Z) = Γ(([(ρ in ) ⊗N ] ≤t ) N ;1 , Z) ∈ R Nwhere we recall that [(ρ in ) ⊗N ] ≤t : s ∈ [0, t] → ρ s solution of (LV ) with initial data (ρ in ) ⊗N . One easily check that Lemme 8.2 still holds true for Γ with the same constants L , M , K . Lemma 9.2. For any T ≥ 0, there exist L .M , K < ∞ such that, for any t, t 1 , t 2 ≤ T , z, z ∈ R 2d and any ρ in , ρ in 1 , ρ in 2 ∈ P(R 2d ),

Γ(([(ρ

in ) ⊗N ] ≤t ) N ;1 , Z) -Γ(([(ρ in ) ⊗N ] ≤t ) N ;1 , Z ) ≤ L Z -Z , Γ(([(ρ in ) ⊗N ] ≤t ) N ;1 , Z) ≤ M (1 + Z ) Γ(([(ρ in 1 ) ⊗N ] ≤t ) N ;1 , Z) -Γ(([(ρ in 2 ) ⊗N ] ≤t ) N ;1 , Z) ≤ K sup s≤min(t 1 ,t 2 ) W 1 ((ρ s 1N ) N :1 , (ρ s 2N ) N :1 ) +η ∇χ L ∞ |t 1 -t 2 |.

  (t, X, V ) -v 2 (t, Y, Ξ)| 2 π t N (dX, dV, dY, dΞ) ≤ 2D N (t) + 2 N R 4dN |v 1 (t, X, V ) -v 1 (t, Y, Ξ)| 2 π t N (dX, dV, dY, dΞ) + 2 N R 4dN |v 1 (t, Y, Ξ) -v 2 (t, Y, Ξ)| 2 π t N (dX, dV, dY, dΞ) ≤ 2D N (t) Y | 2 + |Y -Ξ| 2 )π t N (dX, dV, dY, dΞ) + 2 N R 4dN |v 1 (t, Y, Ξ) -v 2 (t, Y, Ξ)| 2 π t N (dX, dV, dY, dΞ) ≤ L 1 (t)D N (t) + 2 N R 2dN |v 1 (t, Y.Ξ) -v 2 (t, Y, Ξ)| 2 ρ t 2 (dY, dΞ).

				2 )	dπ t N dt	(dXdV dY dΞ) .
	≤	1 N R 4dN	2(|X -Y | 2 + |V -Ξ| 2 )	1 N	N j=1
	+ |v 1 + 2 N (X,V,Y,Ξ)∈ supp(π t sup N ) (Lip(v t 1 ) (X,V ) ) 2 (|X -We conclude by the fact that R 4dN
			sup	(. . . ) ≤	sup	(. . . )
			(X,V,Y,Ξ)∈supp(π t N )		(X,V )∈ supp(ρ t 1 )
						≤	sup
						(Y,Ξ)∈ supp(ρ t 2 )

  [START_REF] Ambrosio | Gradient Flows in Metric Spaces and in the Space of Probability Measures[END_REF] ), (Y, Ξ) ∈ supp(ρ t 2 ). The second inequality in Lemma A.2 is proved by exchanging ρ in 1 and ρ in 2 . Therefore, by Grönwall Lemma,

	D N (t) ≤ e	t 0 L 1 (s)ds D N (0)
	+	2 N	0	t	R 2dN

|v 1 (s, Y, Ξ) -v 2 (s, Y, Ξ)|ρ s 2 (dY, dΞ)e t s l 1 (u)du ds (58)
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Hence the sequences (ρ t k ) k∈N are compactly supported in B(0, R T ) uniformly in k for all t ∈ [0, T ]. Therefore there are tight for all t ∈ [0, T ]. By Prokhorov's Theorem, this is equivalent to the compactness of (ρ t k ) k∈N with respect to the weak topology of probability measures (i.e., in the duality with C b (R 2d ), the space of bounded continuous functions). Hence, up to extracting a t-dependent subsequence, ρ t k → ρ t * weakly. By Lemma 3.3, this convergence is equivalent to the convergence with respect to the distance W 1 , so that we just proved that (46) W 1 (ρ t k , ρ t * ) → 0 as k → ∞ for all t ∈ [0, T ].

By [34, Proposition A. 1 2] and the first inequality in Lemma 8.2, we get that, for l = 0, . . . ,

Therefore, since L and ρ t=0 k don't depend on k, the sequence ρ t k is equi-Lipschitz continuous with respect to W 1 . This implies, by the triangular inequality again, that, for all t, t ∈

. What is left is to prove that ρ t * solves (V ) and that the solution of (V ) is unique.

In order to do so, we first need to prove that (48) sup

Using the standard Ascoli-Arzelà approach, we take the sequence {q i , i = 1, . . . , ∞} of all rationals in [0, T ] ordered by any fixed order.

From (46) we have that

Take now a subsequence k 2 of k 1 such taht W 1 (ρ q 2 k 2 , ρ q 2 * ) → 0. and iterate such as to obtain a sequence k m such that W 1 (ρ q l k m , ρ q l * ) → 0, for all l ≤ m. In a standard way, we can extract a diagonal subsequence k k such that

where ρ t 1k , ρ t 2k are the solutions of (LV k ) with initial conditions (ρ in 1 ) ⊗N , (ρ in 2 ) ⊗N . At this point, we remark that the proof of the existence of the solution and the estimate on the size of its support in Theorem 8.1 uses only the content of Corollary 8.3. Since Corollary 9.3 holds true with the same constants L , M , K , we conclude that the proof of existence and size of the support in Theorem 9.1 is exactly the same Therefore we omit it.

Uniqueness of the solution of (LV ) is again a consequence of the Dobrushin stability result for the system (LV ) whose proof is a straightforward adaptation as the one of Theorem 8.1:

Take two initial conditions ρ in lN , l = 1.2 for (LV ). By Theorem 3.6, the same argument as at the end of the proof Theorem 8.1 and the third inequality in Lemma 9.2 we get easily that

By the Grönwall Lemma again we get

and Theorem 9.1 is proved.

Remark 9.4. Γ N is independent from the two initial data ρ in N and τ in N .

Appendix A. Proof of Theorem 3.6 We will denote X = (x 1 , . . . , x N ), V = (v 1 , . . . , v N ), Y = (y 1 , . . . , y N ), Ξ = (ξ 1 , . . . , ξ N ), all of them belonging to R 2dN .

Let π in be an optimal coupling for ρ in 1 , ρ in 2 . Obviously π in N := (π in ) ⊗N is a coupling for (ρ in 1 ) ⊗N , (ρ in 2 ) ⊗N .

Let moreover ρ t i , i = 1, 2, be two solutions of the equations ( 25) and let π t N be the unique (measure) solution to the following linear transport equation

optimal coupling between ρ in 1 and ρ in 2 invariant by permutation in the sense that, for all σ ∈ Σ N ,

The following first Lemma is equivalent to [START_REF] Natalini | On The Mean Field limit for Cucker-Smale models[END_REF]Lemma 3.1]. It consists in evolving π in N by the two dynamics of ρ t i , i = 1, 2. The proof is very similar to the one of [33, Lemma 3.1].

Lemma A.1. For all t ∈ R, π t N is a coupling between ρ t 1 and ρ t 2 .

Proof. One easily check that the two marginals of π t N satisfy the two equations [START_REF] Hatzikirou | Collective guidance of collective cell migration[END_REF]. Therefore, the Lemma holds true by unicity of these solutions.

In order to shorten a bit the notations, we will use in the sequel the following abuses of notation v i (t, X, V

By a slight modification of the proof of [START_REF] Natalini | On The Mean Field limit for Cucker-Smale models[END_REF]Lemma 3.2] we arrive easily to the following.

where

Proof. As already mentioned, the proof is very similar to the one of [START_REF] Natalini | On The Mean Field limit for Cucker-Smale models[END_REF]Lemma 3.2].

Plugging into the definition of D N (t) the equation (58) satisfied by π t N , integrating by part and using the fact that 2U

) be invariant by permutation in the sense of (9). Then there exists an optimal coupling π of ρ in 1 , ρ in 2 invariant by permutation in the sense that, for all σ ∈ Σ N , π • σ ⊗2 = π, that is π(σ(dZ 1 , σ(Z 2 )) = π(dZ 1 , dZ 2 ), ∀σ ∈ Σ N .

Proof. Let π I (dZ 1 , dZ 2 ) an optimal coupling of ρ in 1 , ρ in 2 . It is straightforward to show that, for all σ ∈ Σ N , π σ (dZ 1 , dZ 2 ) := π I (σ(dZ 1 ), σ(dZ 2 )) is also an optimal coupling of ρ in 1 , ρ in 2 , since ρ in 1 , ρ in 2 and the cost function is also invariant by permutation:

is an optimal coupling of ρ in 1 , ρ in 2 , and is invaraint by permutation. We now remark that, since both π in N and v 1 , v 2 are invariant by permutations of the variables (x j , v j ), j = 1, . . . , N , so is π t N for all t ∈ R. This implies that, in fact,

where (π t N ) 1 is the measure on R 2d × R 2d defined, for every test function ϕ(x, v; y, ξ), by

Moreover, (π t N ) 1 is a coupling between (ρ t 1 ) N :1 and (ρ t 2 ) N :1 . Indeed, for any test functions ψ and ϕ,