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THE MEAN-FIELD LIMIT FOR HYBRID MODELS OF COLLECTIVE MOTIONS
WITH CHEMOTAXIS,

ROBERTO NATALINI AND THIERRY PAUL

Abstract. In this paper we study a general class of hybrid mathematical models of collective
motions of cells under the influence of chemical stimuli. The models are hybrid in the sense
that cells are discrete entities given by ODE, while the chemoattractant is considered as
a continuous signal which solves a diffusive equation. For this model we prove the mean-
field limit in the Wasserstein distance to a system given by the coupling of a Vlasov-type
equation with the chemoattractant equation. Our approach and results are not based
on empirical measures, but rather on marginals of large number of individuals densities,
and we show the limit with explicit bounds, by proving also existence and uniqueness for
the limit system. In the monokinetic case we derive new pressureless nonlocal Euler-type
model with chemotaxis.

Contents

1. Introduction 1
2. The main results 6
3. Technical Preliminaries 9
3.1. Wasserstein distances 9
3.2. The diffusion term 10
3.3. Propagation of Wasserstein type estimates 11
4. From particles to Liouville-Vlasov 11
5. From Liouville-Vlasov to Vlasov 15
Estimating τρin(t) 17
6. Hydrodynamic limit 17
7. Estimates on the solution of the particle system 18
8. Existence, uniqueness and Dobrushin stability for the Vlasov system 20
9. Existence, uniqueness and Dobrushin estimate for the Liouville-Vlasov

system 25
Appendix A. Proof of Theorem 3.6 27
References 31

1. Introduction

A collective motion occurs when the behaviour of a group of individuals is dominated
by the mutual interaction between them. This behaviour arises in many different con-
texts both for non-living and living systems, as for instance nematic fluids, simple
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2 R. NATALINI AND T. PAUL

robots, bacteria colonies, flocks of birds, schools of fishes, human crowds, see for in-
stance [42]. In a nutshell, all microscopic mathematical models of collective motion
are based on one or more of the following elementary mechanisms: alignment, see [41],
[7], and references therein, separation and cohesion [11, 38]. Concerning alignment
models, a popular one is represented by the Cucker-Smale model [7], which was orig-
inally proposed to describe the dynamics in flocks of birds, but then it was extended
to cover more general phenomena, as for instance animal herding [10]. The hypothesis
underlying to the Cucker-Smale model is that the force acting on every individual is a
weighted average of the differences of its velocity with those of the others, and this force
decays when the mutual distance between the individuals increases. Some preliminary
analytical results about the time asymptotic behaviour of the model has been proven
in [7, 23], and then a lot of papers investigated the behaviour of this dynamical model
in many directions, see for instance [6] and [33] for a comprehensive list of references.

In recent years, there was a lot of interest about collective motion of cells driven by
chemical stimuli, see [39, 3, 2, 37, 29, 9, 36], and the reviews [25, 31]. Focusing on the
family of Cucker-Smale models, in [12] a model for the morphogenesis in the zebrafish
lateral line primordium was proposed, where a Cucker-Smale model was coupled with
other cell mechanisms (chemotaxis, attraction-repulsion, damping effects) to describe
the formation of neuromasts, see [17, 28] for the experimental basis of this model.
The description of the cell behaviour is hybrid: while particles are considered discrete
entities, endowed with a radius R describing their circular shape, the chemical signal
ϕ is supposed to be continuous and its time derivative is equal to a diffusion term, a
source term depending on the position of each particle, and a degradation term. A
simplified version of the model in [12] was proposed in [13] to allow a full analytical
investigation. This simplified model reads as follows:

ẋi = vi,

v̇i =
β

N

N∑
j=1

1(
1 +

‖xi−xj‖2

R2

)σ (vj − vi) + η∇xϕ(xi),

∂tϕ = D∆ϕ− κϕ+ f(x,X(t)),

(1)

Initial data are given by initial position and velocity for each particle:

X(0) = X0, V (0) = V0,

with X = (x1, . . . , xN), V = (v1, . . . , vN), and by the initial concentration of signal,
that it is assumed

ϕ(x, 0) := ϕ0 = 0.(2)

Here xi, vi are the position and velocity of the i-th cell and ϕ stands for a generic
chemical signal produced by the cells themselves and such that the cells are attracted
towards the direction where ∇xϕ is growing. For this simple model in [13] a full
analytical theory was developed in the two-dimensional case with a fixed but arbitrary



THE MEAN-FIELD LIMIT FOR HYBRID MODELS 3

number N of particles, and results of globally in time existence and uniqueness of
solutions were proved, as well as the time-asymptotic linear stability. Other analytical
results, for more general hybrid models, can be found in [32].

In this paper we aim to prove the mean-field limit for a general class of models
including (1) towards Vlasov type kinetic equations, together with the hydrodynamic
mean-field limit of such models towards Euler type equations, coupled with chemotaxis.
To our knowledge, both limits, and the related kinetic and Euler equations, and a
fortiori their rigorous derivation, are new in the literature.

Let us describe the class of particle systems we will handle in the present article.
Consider on R2dN 3 ((xi(t))i=1,...,N , (vi(t))i=1,...,N) := (X(t), V (t)) the following vector

field

(3)

{
ẋi(t) = vi
v̇i(t) = Fi(t,X(t), V (t))

i = 1, . . . , N, (X(0), V (0)) = (X in, V in) :

where

(4) Fi(t,X, V ) =
1

N

N∑
j=1

γ(vi − vj, xi − xj) + η∇xϕ
t(xi) + Fext(xi),

γ is the collective interaction function, Fext is an external force and ϕ satisfies the
equation

(5) ∂sϕ
s(x) = D∆xϕ− κϕ+ f(x,X(s)), s ∈ [0, t], ϕs=0 = ϕin

for some κ,D, η ≥ 0 and function f of the form

(6) f(x,X) =
1

N

N∑
j=1

χ(x− xi), χ ∈ C1
c .

The function γ : Rd ×Rb → R×Rd is supposed to be Lipschitz continuous1.
The case γ(y, w) = ψ(y)w. F = ϕ = 0, ψ bounded Lipschitz, covers the standard

case of Cucker-Smale models.

For any fixed function ϕin and any t, N we define the mapping Φt
N = Φt by

(7)

{
Φt
N : R2dN −→ R2dN

Z in = (X in, V in) −→ Z(t) = (X(t), V (t)) solution of (3, 4, 5, 6).

Note that Φt
N is not a flow.

We would like to derive a kinetic model corresponding to system (3, 4, 5, 6), that is
the one particle (non-linear) PDE satisfied by the first marginal of the push-froward2

1through this paper we define Lip(f) for f : Rn → Rm,m, n ∈ N, as Lip(f) :=

√
m∑
i=1

(Lip(fi)2.

2We recall that the pushforward of a measure µ by a measurable function Φ is Φ#µ defined by
∫
ϕd(Φ#µ) :=

∫
(ϕ ◦ Φ)dµ for every test

function ϕ.
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Φt#ρin where ρin ∈ P(R2dN), the space of probability measures on R2dN and Φt
N is

the mapping defined by (7).

The first difficulty is the fact that ρtN := Φt
N#ρinN does not satisfy a closed PDE,

except if ρinN = ρZ̄ where

(8) ρZ̄ :=
1

N !

∑
Σ∈ΣN

δσ(Z̄), Z̄ := (X̄, V̄ ) ∈ R2dN .

Here ΣN is the group of permutations of N elements and

(9) σ(Z̄) = σ(X̄, V̄ ) := (x̄σ(1), . . . , x̄σ(N), v̄σ(1), . . . , v̄σ(N)).

In this case ρtN := ρΦt(Z̄) satisfies

(10) ∂tρ
t
N + V · ∇Xρ

t
N =

N∑
i=1

∇vi ·Giρ
t
N

where

(11) Gi(t,X, V ) =
1

N

N∑
j=1

γ(vi − vj, xi − xj) + η∇xΨ
t(xi) + Fext(xi),

Ψ (and therefore Gi too) depends on the solution ρtN and satisfies the equation

(12) ∂tΨ
t(x) = D∆xΨ− κΨ + f(x, ρsN ;1), s ∈ [0, t],

with g given by

(13) f(x, ρsN ;1) =

∫
R2d

χ(x− y)ρsN ;1(y, ξ)dydξ,

where, denoting Φt
N(Z̄) = (x̄1(t), . . . , x̄N(t), v̄1(t), . . . , v̄N(t)),

ρsN ;1(y, ξ)

:=

∫
R2d(N−1)

ρtN(y, x2, . . . , xN , ξ, v2, . . . , vN)dx2 . . . dxNdv2 . . . dvN

=

∫
R2d(N−1)

ρΦtN (Z̄)(y, x2, . . . , xN , ξ, v2, . . . , vN)dx2 . . . dxNdv2 . . . dvN (see Lemma 4.1 below)

= 1
N

N∑
i=1

δ(y − x̄i(t))δ(ξ − v̄i(t)) =: µΦtN (Z̄) (see Lemma 4.1 below).

In turn, this suggests that the (non local in time) Vlasov equation associated to the
particle system (3, 4, 5, 6) is

(14) ∂tρ
t + v · ∇xρ

t = ∇v(ν(t, x, v)ρt), ρ0 = ρin

where

(15) ν(t, x, v) = γ ∗ ρt(x, v) + η∇xψ
t(x) + Fext(x)

and ψs satisfies

(16) ∂sψ
s(x) = D∆xψ − κψs + g(x, ρs), ψ0 = ϕin.
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with

(17) g(x, ρs) =

∫
R2d

χ(x− y)ρs(y, ξ)dydξ.

The kinetic equation associated to Cucker-Smale systems, introduced in [24], has
been derived in [23, 21] and, for generalizations of type (3) with ϕ = 0 in [33], but, in
all these papers, without chemotaxis interaction. We refer to [21, 33] for a large
bibliography on the subject.

Let us finish this section by recalling the three following dynamics involved in this
paper, denoted by (P) for (Particles), (LV) for (Liouville-Vlasov) and (V) for (Vlasov)
and the strategy adopted in the proof of the main results:

(P )



ẋi = vi, v̇i = Fi(t,X(t), V (t)), (X(0), V (0)) = Z(0) = Z in ∈ R2dN

Fi(t,X, V ) = 1
N

N∑
j=1

γ(vi − vj, xi − xj) + η∇xϕ
t(x)i + Fext(xi),

∂sϕ
s(x) = D∆xϕ− κϕ+ f(x,X(s)), s ∈ [0, t], , ϕ0 = ϕin,

f(x,X) = 1
N

N∑
j=1

χ(x− xj);

(LV )



∂tρ
t
N + V · ∇Xρ

t
N =

N∑
i=1

∇vi ·Giρ
t
N , ρ

o
N = ρinN = (ρin)⊗N ∈ P(R2dN)

Gi(t,X, V ) = 1
N

N∑
j=1

γ(vi − vj, xi − xj) + η∇zΨ
t(xi) + Fext(xi),

∂sΨ
s(x) = D∆xΨ− κΨ + g(x, ρsN ;1), s ∈ [0, t], Ψ0 = ϕin,

g(x, ρsN ;1) = χ ∗ ρsN ;1(x);

(V )



∂tρ
t + v · ∇xρ

t = ∇v(ν(t, x, v)ρt), ρ0 = ρin ∈ P(R2d)

ν(t, x, v) = γ ∗ ρt(x, v) + η∇xψ
t(x) + Fext(x),

∂sψ
s(x) = D∆xψ − κψ + g(x, ρs), ψ0 = ϕin.

g(x, ρs) = χ ∗ ρs(x).
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Note that (χ ∗ ρN ;1(t))(x) = (χ̃ ∗ ρ)(x, . . . , x), χ̃(X) = 1
N

N∑
j=1

χ(xj).

The strategy of our approach can be summarized by the following estimates that we
will establish in some Wasserstein topology, (Φt

N#ρinN )N ;1 ∼ (ρtN)N ;1(t), Φt
N solution of (L), ρtN of (LV ) with ρ0

N = ρinN
ρinN = (ρin)⊗N

(ρtN)N ;1 ∼ ρt, ρt solution of (V ) with ρ0 = ρin,

so that, by triangle inequality,

(Φt
N#ρinN )N ;1 ∼ ρt

with,Φt
N solution of (L) and ρt solution of (V ) with ρ0 = (ρinN )N ;1.

2. The main results

Theorem 2.1. Let ρin be a compactly supported probability on R2dN , let Φt
N be the

mapping generated by the particles system (3, 4, 5, 6) as defined by (7), and let τρin be
the function defined in formula (41) below.

Then, for any t ≥ 0,

W2

(
(Φt

N#(ρin)⊗N)N ;1, ρ
t
)2 ≤ τρin(t)


N−

1
2 d = 1

N−
1
2 logN d = 2

N−
1
d d > 2

where ρt is the solution of the Vlasov equation (14, 15, 16, 17) with initial condition ρin

provided by Theorem 8.1 below and W2 is the quadratic Wasserstein distance whose
definition is recalled in Definition 3.1.

Moreover, let us denote by ϕtZin the chemical density solution of (3, 4, 5, 6) with initial
data (Z in, ϕin) and by ψtρin the one solution of (14, 15, 16, 17) with initial data (ρin, ϕin).

Then ∫
R2dN

‖∇ϕtZin −∇ψtρin‖2
∞(ρin)⊗N(dZin) ≤ τc(t)


N−

1
2 d = 1

N−
1
2 logN d = 2

N−
1
d d > 2

where τc is defined below by (21).
Finally, the functions τ(t), τc(t) depend only on t, Lip(γ),Lip(χ),Lip(∇χ), and the

supports of Φt
N#(ρin)⊗N and ρt, and satisfies the following estimate for all t ∈ R,

τρin(t) ≤ ee
Ct

, τc(t) ≤ ee
Cct

for some constants C,Cc,depending on Lip(γ),Lip(χ),Lip(∇χ) and |supp(ρin)|.
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Corollary 2.2 (Hydrodynamic Euler limit). Let µin, uin, ϕin be such that the non
local Euler system

∂tµ
t +∇(utµt) = 0

∂t(µ
tut) +∇(µt(ut)⊗2) = µt

∫
γ(· − y, ut(·)− ut(y))µt(y)dy + ηµt∇ψt + µtF

∂sψ
s = D∆ψ − κψ + χ ∗ µs, s ∈ [0, t],

(µ0, u0, ψ0) = (µin, uin, ϕin) ∈ Hs, s > d
2 + 1.

has a unique solution µt, ut ∈ C([0, t];Hs) ∩ C1([0, T ];Hs−1), ψt ∈ C([0, t];Hs) ∩
C1([0, T ];Hs−2) ∩ L2(0, T ;Hs+1) and let

ρin = µin(x)δ(v − uin(x)).

Then, for any t ∈ [0, T ],

W2

(
(Φt

N#(ρin)⊗N)N ;1, µ
t(x)δ(v − ut(x))

)2 ≤ τ(t)


N−

1
2 d = 1

N−
1
2 logN d = 2

N−
1
d d > 2

Moreover,∫
RdN

‖∇ϕt(Xin,u⊗N (Xin)) −∇ψ
t
ρin‖2

∞(µin)⊗N(dX in) ≤ τc(t)


N−

1
2 d = 1

N−
1
2 logN d = 2

N−
1
d d > 2

.

Proof of Theorem 2.1. Clearly Theorem 2.1 links the dynamics of the particle system
(3, 4, 5, 6) and the one driven by the Vlasov system (14, 15, 16, 17). As an intermediate
step we will consider the N -body Liouville type one defined by (10, 11, 12, 13).

We will proceed in several steps.

Step 1 [Section 4] : we will show that the marginal (Φt
N#(ρin)⊗N)N ;1 of the pushfor-

ward of the initial condition by the flow generated by the particle system (3, 4, 5, 6)
and the marginal (ρtN ;1) of the solution ρtN of (10, 11, 12, 13) are close as N →∞ in the

same Wasserstein topology through an estimate for W2((Φ
t
N#(ρin)⊗N)N ;1, (ρ

t
N)N ;1).

Step 2 [Section 5] we will show that the marginal (ρtN ;1) of the solution ρtN of
(10, 11, 12, 13), is close to the solution of a Vlasov type closed equation (14, 15, 16, 17)
derived below in Wasserstein metric by estimating W2((ρ

t
N)N ;1, ρ

t).

Step 3: [particle density] : we will use the triangular inequality for W2:

W2((Φ
t
N#(ρin)⊗N)N ;1, ρ

t) ≤ W2((Φ
t
N#(ρin)⊗N)N ;1, (ρ

t
N)N ;1) +W2((ρ

t
N)N ;1, ρ

t).

The first part of Theorem 2.1 is then given by the estimate given by Proposition
4.3 - namely W2((Φ

t
N#(ρin)⊗N)N ;1, (ρ

t
N)N ;1) ≤ βρin(t)

√
Cd(N) - and the one given by

Proposition 5.1 - namely W2((ρ
t
N)N ;1, ρ

t) ≤ αρin(t)
√
N

.
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Step 4: [chemical density] : the chemical density estimate is obtained through the
triangle inequality. We get

‖∇ϕtZin −∇ψtρin‖2
∞ ≤

(
‖∇ϕtZin −∇ψtµZin‖∞ + ‖∇ψtµZin −∇ψ

t
ρin‖∞

)2

≤ 2
(
‖∇ϕtZin −∇ψtµZin‖

2
∞ + ‖∇ψtµZin −∇ψ

t
ρin‖2

∞

)
,(18)

where µZin := 1
N

N∑
l=1

δzinl and ψtρin solves (10, 11, 12, 13) with initial condition (ρin)⊗N =

µ⊗NZin .
Both terms in the right hand-side of (18) are estimated by Corollary 3.5:

‖∇ϕtZin −∇ψtµZin‖
2
∞ ≤ t2 Lip(∇χ)2W2((Φ

t
N#(µZin)

⊗N)N :1, ρ
t
µZin

)2(19)

‖∇ψtµZin −∇ψ
t
ρin‖2

∞ ≤ t2 Lip(∇χ)2W2(ρ
t
µZin

, ρtρin)
2,(20)

where ρtµZin (resp. ρtρin) is the solution of the Vlasov equation with initial condition

µZin (resp. ρin).
W2((Φ

t
N#(µZin)

⊗N , ρtµZin)2 is estimated by the first estimate of Theorem 2.1 we just

proved in Step 3 - namely W2((Φ
t
N#µZin, ρ

t
µZin

)2 ≤ τµZin ,(t)

{
N− 1

2 d = 1

N− 1
2 logN d = 2

N− 1
d d > 2

-, while

W2(ρ
t
µZin

, ρtρin)
2 by the Dobrushin estimate in Theorem 8.1 -namely .W2(ρ

t
µZin

, ρtρin)
2 ≤

2eΓ(t)W2(µZin, ρ
in)2.

Therefore, by (18),(20) and (19),

‖∇ϕtZin −∇ψtρin‖2
∞ ≤ 2t2 Lip(∇χ)2

(
2eΓ(t)W2(µZin, ρ

in)2 + τµZin(t)

{
N− 1

2 d = 1

N− 1
2 logN d = 2

N− 1
d d > 2

)
and ∫

R2dN

‖∇ϕtZin −∇ψtρin‖2
∞(ρin)⊗N(dZin)

≤ 2t2 Lip(∇χ)2

(
2eΓ(t)CM2(ρ

in)

{
N− 1

2 d = 1

N− 1
2 logN d = 2

N− 1
d d > 2

+ τµZin(t)

{
N− 1

2 d = 1

N− 1
2 logN d = 2

N− 1
d d > 2

)
= 2t2 Lip(∇χ)2(2eΓ(t)CM2(ρ

in) + τµZin(t))

{
N− 1

2 d = 1

N− 1
2 logN d = 2

N− 1
d d > 2

≤ 2t2 Lip(∇χ)2(2eΓ(t)CM2(ρ
in) + τ̄ρin(t))

{
N− 1

2 d = 1

N− 1
2 logN d = 2

N− 1
d d > 2

=: τc(t)

{
N− 1

2 d = 1

N− 1
2 logN d = 2

N− 1
d d > 2

(21)

by (43) since one integrates in Z in on the support of (ρin)⊗N so that supp(µZin) ⊂
supp(ρin).

Step 5: [rate of convergence] : the estimate for τρin(t) is proven at the end of Section
5 (see formula (44)), the one for τc(t) follows by (21). �

Proof of Corollary 2.2. Corollary 2.2 is a rephrasing of Theorem 2.1 in the monokinetic
case, which is straightforward by using Theorem 6.1. �



THE MEAN-FIELD LIMIT FOR HYBRID MODELS 9

Remark 2.3. As it is clear from the step 3 above, an alternative to the second statement
in Theorem 2.1 is the following.

‖∇ϕtZin−∇ψtρin‖2
∞ ≤ 2t2 Lip(∇χ)2

2eΓ(t)W2(µZin, ρ
in)2 + τρin(t)


N−

1
2 d = 1

N−
1
2 logN d = 2

N−
1
d d > 2


for each Z in ∈ supp((ρin)⊗N).

3. Technical Preliminaries

In this section we establish or recall several results which will be intensively used in
the core of the proof of Theorem 2.1.

3.1. Wasserstein distances. Let us start this section by recalling the definition of
the first and second order Wasserstein distance W2 (see [43, 44]).

Definition 3.1 (quadratic Wasserstein distance). The Wasserstein distance of order
two between two probability measures µ, ν on Rm with finite second moments is defined
as

W2(µ, ν)2 = inf
γ∈Γ(µ,ν)

∫
Rm×Rm

|x− y|2γ(dx, dy)

where Γ(µ, ν) is the set of probability measures on Rm ×Rm whose marginals on the
two factors are µ and ν.

Likewise is the first order Wasserstein distance W1 between two probability measures
µ, ν on Rm with finite moments is defined by the following.

Definition 3.2.

W1(µ, ν) := sup{
∫
R2d

f(µ− ν)| f ∈ C∞(R2d), Lip(f) ≤ 1}.

Lemma 3.3.

(i) W1(µ, ν) ≤ W2(µ, ν),
(ii) sup

Lip f≤1
|
∫
f(µ− ν)| = W1(µ, ν) ≤ W2(µ, ν),

(iii) The convergence in the weak topology (i.e., in the duality with Cb(R
2d) of

sequences of probability measures with supports equibounded is equivalent to the
convergence with respect to the distance Wp, p = 1, 2 (in fact with respect to
Wasserstein of all orders),

Proof. The first and second items are exactly formulas (7.1) and (7.3) in [43], The
third item is a straightforward consequence of [43, Theorem 7.12 (iii)], since the weak
convergence of equisupported sequences of measures implies the convergence of all of
their moments �

Note that Lemma 3.3 implies that

(22) |
∫
f(µ− ν)| ≤ Lip fW1(µ, ν) ≤ Lip fW2(µ, ν)
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3.2. The diffusion term. The three equations (5), (12), (16), namely

(23)


∂sϕ

s(z) = D∆zϕ− κϕ+ f(z, Y (s)), ϕ0 = ϕin

∂sΨ
s(z) = D∆zΨ− κΨ + g(z, ρsN ;1), Ψ0 = ϕin

∂sψ
t(z) = D∆zψ − κψ + g(z, ρs), ψ0 = ϕin

can be solved, denoting I =

1
1
1

, by

ϕt(z)
Ψt(z)
ψt(z)

 = e−κt
∫ t

0

e(t−s)D∆z

f(z,X(s))
g(z, ρsN ;1)
g(z, ρs)

 ds+ e−κtetD∆ϕinI(24)

= e−κt
∫ t

0

∫
Rd

e
− (z−z′)2

4D(t−s)

(4πD(t−s))
d
2

f(z′, X(s))
g(z′, ρsN ;1)
g(z′, ρs)

 dsdz′ + e−κtetD∆ϕin.I

Note that ∇z

ϕt(z)
Ψt(z)
ψt(z)

 is given by the same formula after replacing χ by ∇χ in the

definitions of f and g.

The following lemma will be systematically used inthe forthcoming sections.

Lemma 3.4. Let ρ, ρ′ ∈ P(Rd) and µ ∈ Lip(Rd). Then, for all t ≥ 0,

‖(et∆µ) ∗ (ρ− ρ′)‖L∞(Rd) ≤ Lip(µ)Wp(ρ, ρ
′), p = 1, 2.

Proof. On has

|(et∆µ) ∗ (ρ− ρ′)(xi)| = |
∫

(et∆µ)(xi − z)(ρ− ρ′)dz|

≤ Lip ((et∆µ)(xi − ·))W2(ρ, ρ
′)

≤ Lip (et∆µ)W2(ρ, ρ
′)

≤ LipµW2(ρ, ρ
′)

since, by Lemma 3.3,

sup
Lip f≤1

∣∣∣∣∫ f(dµ− dν)

∣∣∣∣ = W1(µ, ν) ≤ W2(µ, ν),

and

|(et∆µ)(x)− (et∆µ)(y)| = |(et∆(µ(x− ·)− et∆(µ(y − ·))(0)|
≤ |µ(x)− µ(y)| ≤ Lip(µ)|x− y|.

�

Corollary 3.5. Let ϕt and σt solve (23). Then

‖∇ϕt −∇ψt‖L∞(Rd) ≤ tLip(∇χ)W2((Φ
t
N#(ρin)⊗N)N :1, ρ

t).
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3.3. Propagation of Wasserstein type estimates. In this paragraph, we establish
a result used later as a black box, concerning the propagation of estimates in Wasser-
stein topology under general transport equation including the several types used in this
paper.

Theorem 3.6. Let us define the set of compactly supported probability measure on
R2dN invariant by permutation:

Ppc (R2dN) := {ρ ∈ Pc(R2dN), ρ(σ(dZ)) = ρ(dZ), ∀σ ∈ ΣN}

where σ(Z) is defined in (9).
Let us suppose that the two equations

(25) ∂tρ
t
i + V · ∇Xρ

t
i = ∇V . · (vi([ρini ]≤t, X, V )ρti), ρ

0
i = ρini ∈ Ppc (R2dN), i = 1, 2,

have the property of existence and uniqueness of solutions in C0(R+,Ppc (R2dN)).
Here

(26) [ρini ]≤t : s ∈ [0, t]→ ρsi , i = 1, 2,

and vi([ρ
in
i ]≤t, X, V ) is supposed to be invariant by permutations of the variables (xj, vj),

j = 1, . . . , N , is Lipschitz continuous with respect to (X, V ) and satisfies the estimate

vi(ψ
≤t, X, V ) ≤ γ0‖V ‖, i = 1, 2

for some constant γ0 <∞, uniformly in X, V ∈ R2dN , ψ≤t : [0, t]→ Ppc (R2dN), t ∈ R.
Let us finally define, for i = 1, 2,

(ρti)N :1(x, v) :=

{ ∫
R2d(N−1) ρ

t(x, x2, . . . , xn; v, v2, . . . , vN)dx2 . . . dxNdv2 . . . dvN N > 1
ρti(x, v), N = 1.

Then, for all t ∈ R+, and all i = 1, 2,

W2((ρ
t
1)N :1, (ρ

t
2)N :1)

2 ≤ e
∫ t

0
L1(s)dsW2(ρ

in
1 , ρ

in
2 )2

+
2

N

∫ t

0

∫
R2dN

|v1([ρ
in
1 ]≤s, Y,Ξ)− v2([ρ

in
2 ]≤s, Y,Ξ)|2ρs2(dY, dΞ)e

∫ t
s
L1(u)duds

with

L1(t) = 2(1 + sup
(X,V )∈ supp(ρt1)

(Lip(v1(t,X, V ))(X,V ))
2).

The proof on Theorem 3.6 is given in Appendix A.

4. From particles to Liouville-Vlasov

In this section we estimate W2((Φ
t
N#ρin)N ;1, (ρ

t
N)N :1), where Φt

N defined by (7) is gen-
erated by the particle system (3, 4, 5, 6) and ρtN is the solution of the N -body Liouville
type one defined by (10, 11, 12, 13) with initial data ρin.

Applying Theorem 3.6 with
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(v1([(ρ
in)⊗N ]≤s, X, V ))i = Fi(t,X, V ) =

1

N

N∑
j=1

γ(vi − vj, xi − xj) + η∇xϕ
t(xi) + Fext(xi)

(v2([(ρ
in)⊗N ]≤s, X, V ))i = Gi(t,X, V ) =

1

N

N∑
j=1

γ(vi − vj, xi − xj) + η∇xΨ
t(xi) + Fext(xi)

we get easily that, since the initial conditions are the same,

W2((Φ
t
N#ρin)N ;1, (ρ

t
N)N :1)

2(27)

≤ 4η
1

N

N∑
i=1

∫ t

0

∫
R2dN

|∇ϕs(xi)−∇Ψs(xi)|2(Φs
N#(ρin)⊗N)(dX, dV )e

∫ t
s
L̄ρin(u)duds

with

(28) L̄ρin(u) = 2 + 2

 sup
i,l=1,...,N

(X,V )∈supp(ρtN )

Lip (γ)2
(xi−xl,vi−vl) + 2uη Lip(∇χ) + Lip(Fext)


2

.

Therefore, we have to estimate∫
R2dN

|∇ϕs(xi)−∇Ψs(xi)|2(Φs
N#(ρin)⊗N)(dX, dV )

=

∫
R2dN

|∇ϕs(xsi (X, V ))−∇Ψs(xsi (X, V ))|2(ρin)⊗N(dX, dV )(29)

where we have denoted

(30) Φt
N(X, V ) =: (xt1(X, V ), . . . , xtN(X, V ), vt1(X, V ), . . . , vtN(X, V ))

i.e. xti(X, V ) is the xi-component of Φt
N(X, V ),

We first remark that, in (23),

f(·, X) = χ ∗ µZ ,

where, for any Z = (z1, . . . , zN) ∈ R2dN , the empirical measure µZ is defined by

(31) µZ := 1
N

N∑
k=1

δzk

Therefore, by (24),

∇ϕs(xsi (X, V )) = e−ηs
∫ s

0

e(s−u)∆∇χ ∗ µΦu(X.V )(x
s
i (X, V ))du



THE MEAN-FIELD LIMIT FOR HYBRID MODELS 13

so that, denoting ∇l, l = 1, . . . , d, the d components of the vector ∇,∫
R2dN

|∇ϕs(xi)−∇Ψs(xi)|2(Φt
N#(ρin)⊗N)(dX, dV )(32)

= e−2κs

∫
R2dN

∣∣∣∣∫ s

0

e(s−u)∆∇χ ∗ (µΦu(X,V ) − (ρuN)N ;1)(x
s
i (X, V ))du

∣∣∣∣2 (ρin)⊗N(dX, dV ),

= e−2κs

∫
R2dN

d∑
l=1

∣∣∣∣∫ s

0

e(s−u)∆∇lχ ∗ (µΦu(X,V ) − (ρuN)N ;1)(x
s
i (X, V ))du

∣∣∣∣2 (ρin)⊗N(dX, dV ),

≤ e−2κs

∫
R2dN

d∑
l=1

∣∣∣∣∫ s

0

‖e(s−u)∆∇lχ ∗ (µΦu(X,V ) − (ρuN)N ;1)‖L∞(Rd)du

∣∣∣∣2 (ρin)⊗N(dX, dV ),

≤ e−2κs
d∑
l=1

Lip(∇lχ)2

∫
|
∫ s

0

W2(µΦu(X,V ), (ρ
u
N)N ;1)du|2(ρin)⊗N(dX, dV ),

= e−2κs Lip(∇χ)2

∫
|
∫ s

0

W2(µΦu(X,V ), (ρ
u
N)N ;1)du|2(ρin)⊗N(dX, dV ),

= e−2κs Lip(∇χ)2

∫
|
∫ s

0

W2((ρΦu(X,V ))N :1, (ρ
u
N)N ;1)du|2(ρin)⊗N(dX, dV ),

where we have used Lemma 3.4 for the second inequality and the following result for
the last equality.

Lemma 4.1. Let ρZ be defined by (8) and µZ by (31). Then

µZ = (ρZ)N :1.

Proof. Let us recall that ΣN = {σ : {1, . . . , N} → {1, . . . , N}, σ one-to-one} so that
#ΣN = N !. We have∫

· · ·
∫
δσ(Z)dz2 . . . dzN =

∫
· · ·
∫
δσ(Z)

∏
l 6=σ(1)

dzl

Therefore (
1

N !

∑
σ∈ΣN

δσ(Z)

)
N :1

=
1

N !

N∑
l=1

∑
σ∈ΣN int
σ(l)=1

∫
· · ·
∫
δσ(Z)

∏
l 6=σ(1)

dzl

=
N∑
l=1

#ΣN−1

N !
δzl =

N∑
l=1

(N − 1)!

N !
δzl = µZ .

�

By (10), ρsZ := ρΦs(Z) solves the N -body Liouville type one defined by (10, 11, 12, 13)
with initial data ρin := ρZ . Therefore, by the Dobrushin estimate in Theorem 9.1, one
has

(33) W2((ρΦu(X,V ))N :1, (ρ
u
N)N ;1) ≤ 2eΓN (u)W2((ρZ)N :1, ((ρ

in)⊗NN :1) = 2eΓN (u)W2(µZ , ρ
in),
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so that ∫
|(∇ϕs(xi)−∇Ψs(xi))|2(Φt

N#(ρin)⊗N)(dX, dV )

≤ 4e−2κs Lip(χ)2

(∫ s

0

eΓN (u)du

)2 ∫
W2(µZ , ρ

in)2(ρin)⊗N(dZ),

≤ 4e−2κs Lip(χ)2e
sup
u≤s

ΓN (u)
s2

∫
R2d

(x2 + v2)ρin(dx, dv)C


N−

1
2 d = 1

N−
1
2 logN d = 2

N−
1
d d > 2

,(34)

thanks to the following result by Fournier and Guillin:

Theorem 4.2 (Theorem 1 in [16]). Let ρ ∈ P(R2d) satisfy∫
R2d

(x2 + v2)ρ(dx, dv) := M2(ρ) <∞.

and let µ(X,V ), (X, V ) ∈ R2dN , be the empirical measure defined by (31). Then∫
R2dN

W2(µ(X,V ), ρ)2ρ⊗N(dXdV ) ≤ Cd(N)M2(ρ),

where

Cd(N) := C


N−

1
2 d = 1

N−
1
2 logN d = 2

N−
1
d d > 2

where C depends only on d.

Therefore, we get by (27) and (34) the final result of this section.

Proposition 4.3.

W2((Φ
t
N#ρin)N ;1, (ρ

t
N)N :1) ≤ βρin(t)

√
Cd(N)

with

(35) βρin(t)
2 = 16η2t2 Lip(∇χ)2e

t sup
s≤t

L̄ρin(s)
e

2 sup
s≤t

ΓN (s)
∫
R2d

(x2 + v2)ρin(dx, dv).

Remark 4.4. Let us define β̄ρin ≥ βρin by

(36) β̄ρin := 16η2t2 Lip(∇χ)2e
t sup
s≤t

L̄ρin(s)
e

2 sup
s≤t

ΓN (s)
sup

(x,v)∈ supp(ρin)

(x2 + v2).

By its definition (28), L̄ρin(t) is, for fixed t, an increasing function of supp(ρin) and,
by Remark 9.4, ΓN is independent of ρin. Therefore β̄ρin(t) is, for fixed t, an increasing
function of supp(ρin).
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5. From Liouville-Vlasov to Vlasov

In this section we estimate W2((ρ
t
N)N :1, ρ

t), where ρtN is the solution of the N -body
Liouville type one defined by (10, 11, 12, 13) and ρt is the solution of the Vlasov system
(14, 15, 16), with initial data (ρin)⊗N and ρin.

We first remark that (ρt)⊗N solves the equation

∂t(ρ
t)⊗N + V · ∇X(ρt)⊗N = ∇V . · (v2([(ρ

in)⊗N ]≤t, X, V )(ρt)⊗N),

with

v2([(ρ
in)⊗N ]≤t, ·, ·) := ν([ρin]≤t, ·, ·)⊗N .

Therefore, applying again Theorem 3.6 taking this time

(v1([(ρ
in)⊗N ]≤s, X, V ))i = Gi(t,X, V ) =

1

N

N∑
j=1

γ(vi − vj, xi − xj) + η∇xΨ
t(xi) + Fext(xi)

(v2([(ρ
in)⊗N ]≤s, X, V ))i = ν([ρin]≤t, xi, vi) = γ ∗ ρt(xi, vi) + η∇xψ

t(xi) + Fext(xi),

we get easily that

W2((ρ
t
1)N :1, (ρ

t
2)N :1)

2 ≤ 4
1

N

N∑
i=1

∫ t

0

∫
R2dN

∣∣∣∣∣ 1

N

N∑
j=1

γ(xi − xj, vi − vj)− γ ∗ ρs(xi, vi)

∣∣∣∣∣
2

N∑
j=1

+ η2|(∇ψs(xi)−∇Ψs(xi))|2
)

(ρs)⊗N(dX, dV )e
∫ t
s
L̄ρin(u)duds,

with the same factor L̄ρin as in Section 4, namely

(37) L̄ρin(u) = 2 + 2

 sup
i,l=1,...,N

(X,V )∈supp(ρtN )

Lip (γ)2
(xi−xl,vi−vl) + 2uη Lip(∇χ) + Lip(Fext)


2

.

The first term in the integral has been estimated in [33, Lemma 3.5, Section 3] and we
get ∫

R2dN

∣∣∣∣∣ 1

N

N∑
j=1

γ(xi − xj, vi − vj)− γ ∗ ρs(xi, vi)

∣∣∣∣∣
2

(ρs)⊗N(dX, dV )

≤ 4

N
sup

(x,v),(x′,v′)∈supp(ρt)
|γ(x− x′, v − v′)|2.

It remains to estimate

(38)

∫
R2dN

|(∇ψs(xi)−∇Ψs(xi))|2(ρt)⊗N(dX, dV ).
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We have

|∇Ψs(xi)−∇ψs(xi)|2

= e−2κs|
∫ s

0

(e(s−s′)∆∇χ) ∗ ((ρs
′

N)N ;1 − ρs
′
))(xi)ds

′|2

= e−2κs

∫ s

0

ds′
∫ s

0

ds”((e(s−s′)∆∇χ) ∗ ((ρs
′

N)N ;1 − ρs
′
)(xi)((e

(s−s”)∆∇χ) ∗ ((ρs”N )N ;1 − ρs”)(xi).

But, by Lemma 3.4,∣∣∣(e(t−s)∆∇χ) ∗ ((ρs
′

N)N ;1 − ρs
′
)(xi)

∣∣∣ ≤ Lip (∇χ)W2((ρ
s′

N)N ;1, ρ
s′).

Therefore

|∇Ψs(xi)−∇ψs(xi)|2 ≤ Lip (∇χ)2e−2κs

∫ s

0

∫ s

0

W2((ρ
s′

N)N ;1, ρ
s′)W2((ρ

s”
N )N ;1, ρ

s”)ds′ds”,

and we get

W2((ρ
t
N)N ;1, ρ

t)2 ≤ 4

N

∫ t

0

sup
(x,v),(x′,v′)∈supp(ρt)

|γ(x− x′, v − v′)|2e
∫ t
s
L̄ρin(u)duds

+

∫ t

0

e
∫ t
s
Lρin(u)du

∫ s

0

ds′
∫ s

0

ds′′W2((ρ
s′

N)N ;1, ρ
s′)W2

(
ρs
′′

N )N ;1, ρ
s′′
)
ds

:=
Cρin(t)

N
+ η Lip∇χ2

∫ t

0

e−2κse
∫ t
s
L̄ρin(u)duds×∫ s

0

ds′
∫ s

0

ds′′W2

(
(ρs

′

N)N ;1, ρ
s′
)
W2

(
(ρs

′′

N )N ;1, ρ
s′′
)

(39)

Let us define
f(t) = sup

0≤t′≤t
W2

(
(ρt

′

N)N ;1, ρ
t′
)2
.

We have, since by the definition (39), Cρin(t) is not decreasing,

f(t) ≤
Cρin(t)

N
+ η Lip∇χ2

∫ t

0

e−2κse
∫ t
s
L̄ρin(u)duds×∫ s

0

ds′
∫ s

0

ds′′W2

(
(ρs

′

N)N ;1, ρ
s′
)
W2

(
(ρs

′′

N )N ;1, ρ
s′′
)

≤
Cρin(t)

N
+ η Lip∇χ2

∫ t

0

e−2κse
∫ t
s
L̄ρin(u)dus2f(s)ds.

We conclude by the Grönwall Lemma,

W2((ρ
t
N)N ;1, ρ

t)2 ≤ f(t) ≤
Cρin(t)

N
eη Lip∇χ2

∫ t
0
e
s sup
u≤s

L̄
ρin

(u)
s2

2 ds :=
αρin(t)

2

N
,(40)

and get the final result of this section.

Proposition 5.1.

W2((ρ
t
N)N ;1, ρ

t) ≤
αρin(t)√

N
.
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Out of αρin, βρin, defined in (35)-(39) we define

(41) τρin(t) =
(
αρin(t) + βρin(t)

√
C
)2

,

where C is the constant appearing in Theorem 4.2.

One sees immediately that Cρin(t) defined by (39) is, for fixed t, an increasing function
of supp(ρin).Therefore so is αρin(t) as defined by (40) so that, if we define

(42) τ̄ρin(t) =
(
αρin(t) + β̄ρin(t)

√
C
)2

,

where C is the constant appearing in Theorem 4.2, we have

(43) supp(ρin1 ) ⊂ supp(ρin2 )⇒ τρin1 ≤ τ̄ρin1 ≤ τ̄ρin2 .

Estimating τρin(t).
By the same type of arguments than in the proof of [33, Corollary 2.6 ] one can

easily estimate τρin(t) by using the estimates of Φt
N established in Proposition 7.2 and

Theorem 7.3, on the support of ρtN given by Theorem 8.1 and the support of ρt in
Theorem 8.1. We omit the details here.

We get, for some time independent constant C depending explicitly on and only on
Lip(γ,Lip(χ),Lip(∇χ) and |supp(ρin)|,

(44) τρin(t) ≤ ee
Ct

.

6. Hydrodynamic limit

The hydrodynamic limit of Cucker-Smale models has provided up to now a large
litterature, whose exhaustive quotation is beyond the scope of the present paper. We
refer to [6] and the large bibliography therein. In [6], the corresponding Euler equa-
tion is derived for Cucker-Smale systems with friction, using the empirical measures
formalism and in a modulated energy topology.

Our approach and results are different: we consider generalizations of frictionless
Cucker-Smale models, coupled to chemotaxis through a diffusive interaction, for large
numbers N of particles and we provide explicit rates of convergences in the quadratic
Wasserstein metric towards Euler type equations.

Our result happens to be a simple corollary of our main result Theorem 2.1 in the
case where ρin is monkinetic, i.e.

ρin(x, v) = µin(x)δ(v − uin(x))

thanks to the following result: the monokinetic form is preserved by the Valsov equation
(14) and the solution is furnished by the solution of a Euler type equation.
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Theorem 6.1. Let µt, ut, ψt be a solution to the following system
∂tµ

t +∇(utµt) = 0
∂t(µ

tut) +∇(µt(ut)⊗2) = µt
∫
γ(· − y, ut(·)− ut(y))µt(y)dy + ηµt∇ψt + µtF

∂sψ
s = D∆ψ − κψ + χ ∗ µs, s ∈ [0, t],

(µ0, u0, ψ0) = (µin, uin, ψin) ∈ Hs, s > d
2 + 1.

where µt, ut ∈ C([0, t];Hs) ∩ C1([0, T ];Hs−1), ψt ∈ C([0, t];Hs) ∩ C1([0, T ];Hs−2) ∩
L2(0, T ;Hs+1) 3.

Then ρt(x, v) := µt(x)δ(v − ut(x)) solves the following system
∂tρ

t + v · ∇xρ
t = ∇v(ν(t, x, v)ρt),

ν(t, x, v) = γ(x, v) ∗ ρt + η∇xψ
t(x) + Fext(x),

∂sψ
s(z) = D∆zψ − κψ + g(z, ρs), ψ0 = ψin,

ρ0(x, v) = µin(x)δ(v − uin(x)).

Proof. When η = 0, the derivation of (45) out of (3.4) is standard, see e.g. [15] and [6,
Section 1.2]. The addition of the term η∇xψ

t is a straightforward generalization. �

Notice that the Euler system in Theorem 6.1 can be compared to the so-called Preziosi
model of vasculogenesis, where the nonlocal term in our Euler system is replaced by a
phenomenological pressure gradient local in the density, see [35].

7. Estimates on the solution of the particle system

Global existence and uniqueness for the system (P ) has been proved when γ is exactly
the Cucker-Smale field in [12]. It is straightforward to adapt the proofs to the case of
a general γ satisfying the hypothesis of the present paper. This situation is anyway
fully included in [32, Theorem 6] and we have the following result.

Theorem 7.1. Let Lip(γ),Lip(∇χ) < ∞ and let Z in ∈ R2dN . Then, for any N ∈
N,the Cauchy problem

(P )



ẋi = vi, v̇i = Fi(t,X(t), V (t)), (X(0), V (0)) = Z(0) = Z in ∈ R2dN

Fi(t, Y,W ) = 1
N

N∑
j=1

γ(wi − wj, yi − yj) + η∇zϕ
t(z)|z=yi + Fext(yi),

∂sϕ
s(z) = D∆zϕ− κϕ+ f(z,X(s)), s ∈ [0, t],

f(z,X) = 1
N

N∑
j=1

χ(z − xj).

has a unique global solution in C0(R,R2dN).

3We suppose this regularity because it is somehow standard for mixed hyperbolic-parabolic systems (see [30, Theorem 2.9 p. 34 ], one

certainly could low it down.
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Estimates on the solution of (P ) can be easily obtained by the same kind of proof
that in [33, Appendix A]. We get the following result.

Proposition 7.2. Let γ0 = Lip(γ)+Lip(∇χ). Then, for all t ∈ R, the solution of (P )
satisfies

|vi(t)| ≤ max
j=1,...,N

|vj(0)|e2γ0t, i = 1, . . . , N,

||x1(t)| − |xi(0)|| ≤ max
j=1,...,N

|vj(0)|e
2γ0t − 1

2γ0
, i = 1, . . . , N.

Finally, we will need the following estimate on the derivative of the flow generated
by the system (P ).

Theorem 7.3. Let zi(t) = xi(t), vi(t), i = 1, . . . , N be the solution of (P ) with initial
date zi(0) = zini . Then, for all T ∈ R,

sup
t≤T

∣∣∣∣∣∂zi(t)∂zinj

∣∣∣∣∣ ≤ e(γ1+γ2T )t, i, j = 1, . . . , N

with γ1 = Lip(γ), γ2 = Lip(∇χ).
In other words,

sup
t≤T
‖dΦt

N‖∞ ≤ e(γ1+γ2T )t.

Proof. One easily get that, for each i, j = 1, . . . , N ,∣∣∣∣∣∂t∂zi(t)∂zinj

∣∣∣∣∣ ≤ Lip(γ)
1

N

N∑
l=1

∣∣∣∣∣∂zl(t)∂zinj

∣∣∣∣∣+ η Lip(∇χ)
1

N

N∑
l=1

∫ t

0

∣∣∣∣∣∂zl(s)∂zinj

∣∣∣∣∣ ds
Therefore, since the right hand-side of the preceding equality doesn’t depend on i,∣∣∣∣∣∂t

N∑
i=1

∂zi(t)

∂zinj

∣∣∣∣∣ ≤ Lip(γ)
N∑
l=1

∣∣∣∣∣∂zl(t)∂zinj

∣∣∣∣∣+ η Lip(∇χ)

∫ t

0

N∑
l=1

∣∣∣∣∣∂zl(s)∂zinj

∣∣∣∣∣ ds
so that, since

N∑
i=1

∂zi(0)

∂zinj
=

N∑
i=1

∂zini
∂zinj

=
N∑
i=1

δi,j = 1,

∣∣∣∣∣
N∑
i=1

∂zi(t)

∂zinj
− 1

∣∣∣∣∣ ≤ Lip(γ)

∫ t

0

N∑
l=1

∣∣∣∣∣∂zl(u)

∂zinj

∣∣∣∣∣ du+ η Lip(∇χ)

∫ t

0

∫ u

0

N∑
l=1

∣∣∣∣∣∂zl(s)∂zinj

∣∣∣∣∣ dsdu
≤ (Lip(γ) + Tη Lip(∇χ))

∫ t

0

N∑
l=1

∣∣∣∣∣∂zl(u)

∂zinj

∣∣∣∣∣ du
and, by Grönwall Lemma,∣∣∣∣∣∂zi(t)∂zinj

∣∣∣∣∣ ≤
∣∣∣∣∣
N∑
i=1

∂zi(t)

∂zinj

∣∣∣∣∣ ≤ eγ1t+γ2Tt.
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�

8. Existence, uniqueness and Dobrushin stability for the Vlasov
system

In this section we study the Vlasov system (V ) and prove the properties that satisfy
its solution necessary for the proof of our main result.

Theorem 8.1. Let Lip(γ),Lip(∇χ) < ∞ and let νin ∈ Pc(R2d), the set of compactly
supported probability meausres. Then the Cauchy problem

(V )


∂tρ

t + v · ∇xρ
t = ∇v(ν(t, x, v)ρt), ρ0 = ρin

ν(t, x, v) = γ ∗ ρt(x, v) + η∇xψ
t(x) + Fext(x),

∂sψ
s(z) = D∆zψ − κψ + g(z, ρs), ψ0 = ϕin.

has a unique solution t→
(
ρt

ψt

)
in C0(R,Pc(R2d)×W 1,∞(Rd)).

Moreover, if ρin is supported in the ball B(0, R0) of R2d centered at the origin of
radius R0, ρt is supported in B(0, Rt) with

Rt = e(Lip(γ)+‖Fext‖L∞(Rd)+η Lip(χ))t (R0 + Lip(γ) + ‖Fext‖L∞(Rd) + η Lip(χ)
)
.

Finally, if ρt1, ρ
t
2 are the solutions of (V ) with initial conditions ρin1 , ρ

in
2 , then the

following Dobrushin type estimate holds true

W2(ρ
t
1, ρ

t
2)

2 ≤ 2eΓ(t)W2(ρ
in
1 , ρ

in
2 )2

where Γ(t) is given below by (54).

Proof. The proof of the existence of a solution will follow closely the strategy of the
proof of Theorem 2.3 in [34, Appendix A]. The main difference is that ν is not only
non-local in space as in [34], it is also non-local in time as ν([ρin]≤t, x, v) involves the
whole history of the solution {ρs, 0 ≤ s ≤ t}.

We will first need the following Lemma

Lemma 8.2. For any T ≥ 0, there exist L′.M ′, K ′ <∞ such that, for any t, t1, t2 ≤ T ,
z, z′ ∈ R2d and any ρin, ρin1 , ρ

in
2 ∈ P(R2d),,

‖v([ρin]≤t, z)− v([ρin]≤t, z′)‖ ≤ L′‖z − z′‖,
‖ν([ρin]≤t, z)‖ ≤ M ′(1 + ‖z‖)

‖v([ρin]≤t1, z, [ρin1 ]≤t1)− v([ρin2 ]≤t2, z)‖ ≤ K ′ sup
s≤min(t1,t2)

W1(ρ
s
1, ρ

s
2) + η‖∇χ‖L∞|t1 − t2|.

where ρt1, ρ
t
2 are the solutions of (V ) with initial conditions ρin1 , ρ

in
2 .

Here W1 is the Wasserstein distance of order 1 whose definition is recalled in Defi-
nition 3.2:
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The proof is immediate with L′ = Lip(γ) + Lip(Fext) + Tη Lip(∇χ), M ′ = Lip(γ) +
‖Fext‖L∞(Rd) + η Lip(χ) + Lip(∇ϕin) and K ′ = Lip(γ) + η Lip(χ).

Let us fix T > 0. For k ∈ N we define τk = T2−k.
Let ρtk be defined by ρt=0

k = ρin and, for l = 0, . . . , 2k − 1, u ∈ [0, τk),

(Vk)


∂uρ

lτk+u
k (x, v) + v · ∇xρ

lτk+u
k (x, v) = ∇v · νk(lτk, x, v)ρlτk+u

k (x, v)

νk(lτk, x, v) = γ(x, v) ∗ ρlτkk + η∇xψk(lτk, x) + Fext(x),

∂sψk(s, z) = D∆zψk − κψk + g(z, ρsk), 0 ≤ s ≤ lτk, ψ
0
k = ϕin.

with

(45) νk(t, z) = v([ρin]≤tk , z)

Note that we have obviously the following corollary of Lemma 8.2.

Corollary 8.3. For any T ≥ 0, z, z′ ∈ R2d and k ∈ N, one has, with the same constant
L′.M ′, K ′ than in Lemma 8.2,

‖νk(t, z)− νk(t, z′)‖ ≤ L′‖z − z′‖,
‖νk(t, z)‖ ≤ M ′(1 + ‖z‖),

Moreover, if νk(t, z), ρ
t
k satisfies (Vk) with ρt=0

k = ρin and ν ′k(t, z), ρ
′t
k satisfies (Vk) with

ρt=0
k = ρ′in, then

‖νk(t, z)− ν ′k(t′, z)‖L∞(R;C0(R2d) ≤ K ′ sup
0≤s≤min(t,t′)

W1(ρk(s), ρ
′
k(s)) +K ′′|t− t′|.

We first show that the support of the sequence ρtk is equibounded.
One easily checks that,since ρin is compactly supported, so is ρtk for all k, t by con-

struction. So supp(ρtk) ⊂ B(0, Rt
k) for some Rk(t). One can estimate Rt

k as follows.

supp(ρlτkk ) ⊂ B(0, Rlτk
k ) ⇒ ‖νk(t, z)‖∞ = ‖v([ρin]≤tk , z)‖∞ ≤M ′(1 +Rlτk

k )

⇒ supp(ρlτk+u
k ) ⊂ B(0, Rlτk

k + uM ′(1 +Rlτk
k )), u ∈ [0, τk]

⇒ supp(ρ
(l+1)τk
k ) ⊂ B(0, (1 + τk)R

lτk
k + τkM

′).

Therefore, one can choose Rlτk
k satisfying

Rlτk
k ≤ (1 +M ′τk)R

(l−1)τk
k + τkM

′

≤ (1 +M ′τk)
2R

(l−2)τk
k + τkM

′(1 + (1 +M ′τk))

≤ (1 +M ′τk)
lR0 +M ′(((1 +M ′τk)

l − 1)

≤ (1 +M ′T2−k)2kR0 +M ′((1 +M ′T2−k)2k − 1) ≤ eM
′T (M ′ +R0) := RT .

Here R0 is such that supp(ρ0
k := ρin) ⊂ B(0, R0).



22 R. NATALINI AND T. PAUL

Hence the sequences (ρtk)k∈N are compactly supported in B(0, RT ) uniformly in k for
all t ∈ [0, T ]. Therefore there are tight for all t ∈ [0, T ]. By Prokhorov’s Theorem,
this is equivalent to the compactness of (ρtk)k∈N with respect to the weak topology of
probability measures (i.e., in the duality with Cb(R

2d), the space of bounded continuous
functions). Hence, up to extracting a t-dependent subsequence, ρtk → ρt∗ weakly. By
Lemma 3.3, this convergence is equivalent to the convergence with respect to the
distance W1, so that we just proved that

(46) W1(ρ
t
k, ρ

t
∗)→ 0 as k →∞ for all t ∈ [0, T ].

By [34, Proposition A.1 2] and the first inequality in Lemma 8.2, we get that, for
l = 0, . . . , 2k − 1, s ∈ [0, τk),

W1(ρ
lτk
k , ρ

lτk+s
k ) ≤ sL′.

Hence, by the triangle inequality,

(47) W1(ρ
t
k, ρ

t′

k ) ≤ L′|t− t′|,∀t, t′ ∈ R.

Therefore, since L′ and ρt=0
k don’t depend on k, the sequence ρtk is equi-Lipschitz

continuous with respect to W1. This implies, by the triangular inequality again, that,
for all t, t′ ∈ [0, T ], k ∈ N,

W1(ρ
t
∗, ρ

t′

∗ ) ≤ W1(ρ
t
∗, ρ

t
k) +W1(ρ

t
k, ρ

t′

k ) +W1(ρ
t′

k , ρ
t′

∗ )

≤ L′|t− t′|+W1(ρ
t
∗, ρ

t
k) +W1(ρ

t′

k , ρ
t′

∗ )→ L′|t− t′| as k →∞.
Therefore ρt∗ is L′-Lipschitz and, in particular,

ρt∗ ∈ C0([0, T ],Pc(R2d)).

What is left is to prove that ρt∗ solves (V ) and that the solution of (V ) is unique.

In order to do so, we first need to prove that

(48) sup
t∈[0,T ]

W1(ρ
t
k, ρ

t
∗)→ 0 as k →∞.

Using the standard Ascoli-Arzelà approach, we take the sequence {qi, i = 1, . . . ,∞}
of all rationals in [0, T ] ordered by any fixed order.

From (46) we have that
W1(ρ

q1

k1
, ρq1
∗ )→ 0.

along a subsequence k1.
Take now a subsequence k2 of k1 such taht

W1(ρ
q2

k2
, ρq2
∗ )→ 0.

and iterate such as to obtain a sequence km such that

W1(ρ
ql
km
, ρql∗ )→ 0, for all l ≤ m.

In a standard way, we can extract a diagonal subsequence kk such that

W1(ρ
qk
kk
, ρqk∗ )→ 0.
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We prove now that, for all t ∈ [0, T ], the sequence of densities ρtkk is Cauchy in the
topology of C0([0, T ], (Pc,W1)), which implies (48).

We have that, for any q ∈ Q,

W1(ρ
t
kk
, ρtll) ≤ W1(ρ

t
kk
, ρqikk) +W1(ρ

q
kk
, ρqll) +W1(ρ

q
ll
, ρtll)

≤ 2L′|q − t|+W1(ρ
q
kk
, ρqll)

For any ε, taking q such that 2L′|q − t| ≤ ε/2 and k, l large enough such that
W1(ρ

q
kk
, ρqll) ≤ ε/2, we get MKu(ρtkk, ρ

t
ll
) ≤ ε.

We now return to proving that ρt∗ is a solution of (V ), it suffices to prove that

(V ∗)



∫ T
0

∫
R2d(∂tf + v · ∇xf −∇vf · v(t, z, ρ≤t∗ )ρt∗(dZ)dt = 0

v(t, (x, v), ρ≤t∗ ) = γ(x, v) ∗ ρt∗ + η∇xψ
t(x) + Fext(x),

∂sψ
s(z) = D∆zψ − κψ + g(z, ρs∗).

for each f ∈ C∞c ([0, T ]×R2d).
In (V ∗) we have used the notation ρ≤t = ρs|s≤t for any function t ∈ R→ ρt ∈ P(R2d).
By construction, we have

2k−1∑
l=0

∫ (l+1)τk

lτk

∫
R2d

(∂uf(u, z) + v · ∇xf −∇vf · νk(lτk, z, ρ≤lτkk )ρuk(dz)du = 0

for every k ∈ N.
The equation

(49)

∫ T

0

∫
R2d

(∂tf + v · ∇xf −∇vf · v(t, z, ρ≤t∗ )ρt∗(dZ)dt = 0

will be proven through the three following limts:

(50) lim
k→∞

∫ T

0

∫
R2d

(∂tf + v · ∇xf)(ρt∗ − ρtk)(dz)dt = 0

(51) lim
k→∞

2k−1∑
l=0

∫ (l+1)τk

lτk

∫
R2d

∇vf ·
(
v(lτk, z, ρ

≤lτk
k )− v(u, z, ρ≤lτk∗ )

)
ρu∗(dz)du = 0

(52) lim
k→∞

2k−1∑
l=0

∫ (l+1)τk

lτk

∫
R2d

∇vf · v(lτk, z, ρ
≤lτk
∗ ) (ρuk − ρu∗) (dz)du = 0

To prove (50) and (52) we remark that, since f ∈ C∞c ([0, T ]×R2d) and by the Lipschitz
property of v(lτk, z, ρ

≤lτk
∗ ) we have, by (22), that the absolute value of the right hand
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side of (50) satisfies, thanks to (48),

| lim
k→∞

∫ T

0

∫
R2d

(∂tf + +v · ∇xf)(ρt∗ − ρtk)(dz)dt|

≤ lim
k→∞

T (Lip(∂tf) + Lip(v · ∇xf)) sup
t≤T

W1(ρ
t
k, ρ

t
∗) = 0,

and the absolute value of the right hand side of (52) satisfies, thanks again to (48),

| lim
k→∞

2k−1∑
l=0

∫ (l+1)τk

lτk

∫
R2d

∇vf · v(lτk, z, ρ
≤lτk
∗ ) (ρuk − ρu∗) (dz)du|

≤ lim
k→∞

T Lip(∇f)|supp(f)|M ′ sup
t≤T

W1(ρ
t
k, ρ

t
∗) = 0,

Let us finally prove (51). By the third inequality in Lemma 8.2 and the L′-Lipschitz
continuity of ρk we get that, for each u ∈ [lτk, (l + 1)τk],∣∣∣v(lτk, z, ρ

≤lτk
k )− v(u, z, ρ≤lτk∗ )

∣∣∣ ≤ K ′ sup
0≤s≤lτk

W1(ρ
lτk
k , ρ

lτk
∗ ) +K ′′

T

2k

so that

lim
k→∞

∣∣∣∣∣2k−1∑
l=0

∫ (l+1)τk
lτk

∫
R2d∇vf ·

(
v(lτk, z, ρ

≤lτk
k )− v(u, z, ρ≤lτk∗ )

)
ρu∗(dz)du

∣∣∣∣∣
lim
k→∞

T‖∇f‖L∞(R2d)

(
sup

0≤t≤T
W1(ρ

t
k, ρ

t
∗) +K ′′ T

2k

)
= 0 .

The proof of the uniqueness of the solution of (V ) is obviously a consequence of the
Dobrushin stability result that we will prove now.

Take two initial conditions ρinl , l = 1.2. By Theorem 3.6, we have that

W2(ρ
t
1, ρ

t
2)

2

≤ e
∫ t

0
L1(s)dsW2(ρ

in
1 , ρ

in
2 )2

+

∫ t

0

∫
R2dN

2||v([ρin1 ]≤s, Z)− v([ρin2 ]≤s, Z)|2(ρt1)⊗N(dX, dV )e
∫ t
s
L1(u)duds

≤ e
∫ t

0
L1(s)dsW2(ρ

in
1 , ρ

in
1 )2 +

∫ t

0

2‖|v([ρin1 ]≤s, Z)− v([ρin2 ]≤s, Z)‖2
∞e

∫ t
s
L1(u)duds

≤ e
∫ t

0
L1(s)dsW2(ρ

in
1 , ρ

in
2 )2 + 2

∫ t

0

e
∫ t
s
L1(u)du(K ′)2 sup

u≤s
W2(ρ

u
1 , ρ

u
2)2ds

by the third inequality in Lemma 8.2.
Here, by Theorem 3.6,

L1(t) = 2(1 + sup
(X,V )∈ supp(ρt1)

(Lip(v([ρin1 ]≤t, X, V ))(X,V ))
2.

and by the first inequality in Lemma 8.2,

L1(t) = 2 + 2(L′)2.(53)
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Therefore, for any T ≥ 0,

sup
t≤T

W2(ρ
t
1, ρ

t
2)

2

≤ sup
t≤T

e
∫ t

0
L(s)dsW2(ρ

in
1 , ρ

in
2 )2 + 2 sup

t≤T

∫ t

0

e
∫ t
s
l(u)du(K ′)2 sup

u≤s
W2(ρ

u
1 , ρ

u
2)2ds

≤ e
∫ T

0
L(s)dsW2(ρ

in
1 , ρ

in
2 )2 + 2

∫ T

0

e
∫ T
s
l(u)du(K ′)2 sup

u≤s
W2(ρ

u
1 , ρ

u
2)2ds.

By the Grönwall Lemma, we get immediately

W2(ρ
t
1, ρ

t
2)

2 ≤ eΓ(t)W2(ρ
in
1 , ρ

in
2 )2

with

(54) Γ(t) := t
(

2 + 2(L′)2 + (2K ′)2e2t)(1+(L′)2)
)

Theorem 8.1 is proved. �

9. Existence, uniqueness and Dobrushin estimate for the
Liouville-Vlasov system

In this section we study the Liouville-Vlasov system (LV ) in the same spirit than in
the previous section devoted to the Vlasov system.

Theorem 9.1. Let Lip(γ),Lip(∇χ) < ∞ and let νin ∈ Pc(R2d), the set of compactly
supported probability meausres. Then, for every N ∈ N, the Cauchy problem

(LV )



∂tρ
t
N + V · ∇Xρ

t
N =

N∑
i=1

∇vi ·Giρ
t
N , ρ

o
N = ρinN

Gi(t, Y,W ) = 1
N

N∑
j=1

γ(wi − wj, yi − yj) + η∇zΨ
t(z)|z=yi + Fext(yi),

∂sΨ
s(z) = D∆zΨ− κΨ + g(z, ρsN ;1), s ∈ [0, t], Ψ0 = ϕin

g(z, ρsN ;1) =
∫
R2d χ(z − x)ρsN ;1(x, v)dxdv

has a unique solution t→
(
ρtN
Ψt

)
in C0(R,Pc(R2dN)×W 1,∞(Rd)).

Moreover, if ρinN is supported in the ball B(0, R0) of R2dN of radius R0, ρtN centered
at the origin is supported in B(0, Rt) with

Rt = e(Lip(γ)+‖Fext‖L∞(Rd)+η Lip(χ))t (R0 + Lip(γ) + ‖Fext‖L∞(Rd) + η Lip(χ)
)
.

Finally, if ρtN , τ
t
N are the solutions of (LV ) with initial conditions ρinN , τ

in
N invariant

by permutations in the sense that

ρinN ◦ σ = ρinN , τ
in
N ◦ σ = τ inN , ∀σ ∈ ΣN ,
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then the following Dobrushin type estimate holds true

W2((ρ
t
N)N :1, (τ

t
N)N :1)

2 ≤ 2eΓN (t)W2((ρ
in
N )N :1, (τN)N :1)

2

where ΓN(t) is given below by (57).

Proof. The proof of Theorem 9.1 is easily attainable by a straightforward modification
of the one of Theorem 8.1. Let us define the vector G with components Gi, i = 1, . . . , N .
This time, G has the form

(55) G(t, Z) = Γ(([(ρin)⊗N ]≤t)N ;1, Z) ∈ RN

where we recall that [(ρin)⊗N ]≤t : s ∈ [0, t] → ρs solution of (LV ) with initial data
(ρin)⊗N .

One easily check that Lemme 8.2 still holds true for Γ with the same constants
L′,M ′, K ′.

Lemma 9.2. For any T ≥ 0, there exist L′.M ′, K ′ <∞ such that, for any t, t1, t2 ≤ T ,
z, z′ ∈ R2d and any ρin, ρin1 , ρ

in
2 ∈ P(R2d),

‖Γ(([(ρin)⊗N ]≤t)N ;1, Z)− Γ(([(ρin)⊗N ]≤t)N ;1, Z
′)‖ ≤ L′‖Z − Z ′‖,

‖Γ(([(ρin)⊗N ]≤t)N ;1, Z)‖ ≤ M ′(1 + ‖Z‖)
‖Γ(([(ρin1 )⊗N ]≤t)N ;1, Z)− Γ(([(ρin2 )⊗N ]≤t)N ;1, Z)‖ ≤ K ′ sup

s≤min(t1,t2)

W1((ρ
s
1N)N :1, (ρ

s
2N)N :1)

+η‖∇χ‖L∞|t1 − t2|.

where ρt1N , ρ
t
2N are the solutions of (LV ) with initial conditions (ρin1 )⊗N , (ρin2 )⊗N .

Here W1 is the Wasserstein distance of order 1 defined in Definition 3.2.

For T > 0, k ∈ N we define τk = T2−k and, with a slight abuse of notation, ρtk by
ρt=0
k = (ρin)⊗N and, for l = 0, . . . , 2k − 1, u ∈ [0, τk) (remember Z := (X, V ) ∈ R2dN),

(LVk)



∂uρ
lτk+u
k (Z) + V · ∇Xρ

lτk+u
k (Z) = ∇V · (Γk(([(ρin)×N ]≤tk )N :1, Z)ρlτk+u

k (Z)

Γk
i (([(ρ

in)×N ]≤tk )N :1, (Y,W )) = 1
N

N∑
j=1

γ(wi − wj, yi − yj) + η∇zΨ
t(z)|z=yi + Fext(yi),

∂sΨ
s(z) = D∆zΨ− κΨ + g(z, (ρsk)N ;1), s ∈ [0, t],

where [ρin]≤tk : s ∈ [0, t]→ ρsk solution of (Vk) with initial data ρin.
As before, Γk satisfies the same estimates than Γ and we have the following result.
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Corollary 9.3. For any T ≥ 0, k = 1, . . . , N , t, t1, t2 ≤ T , Z,Z ′ ∈ R2dN and
ρin, ρin1 , ρ

in
2 ∈ P(R2d),,

‖Γk(([(ρin)×N ]≤tk )N :1, Z)− Γk(([(ρin)×N ]≤tk )N :1, Z
′)‖ ≤ L′‖Z − Z ′‖, 2

‖Γk(([(ρin)×N ]≤tk )N :1, Z)‖ ≤ M ′(1 + ‖Z‖)
‖Γk(([(ρin1 )×N ]≤tk )N :1, Z)− Γk(([(ρin2 )×N ]≤tk )N :1, Z)‖ ≤ K ′ sup

s≤min(t1,t2)

W1((ρ
s
1k)N :1, (ρ

s
2k)N :1)

+η‖∇χ‖L∞|t1 − t2|.
where ρt1k, ρ

t
2k are the solutions of (LVk) with initial conditions (ρin1 )⊗N , (ρin2 )⊗N .

At this point, we remark that the proof of the existence of the solution and the
estimate on the size of its support in Theorem 8.1 uses only the content of Corollary
8.3. Since Corollary 9.3 holds true with the same constants L′,M ′, K ′, we conclude
that the proof of existence and size of the support in Theorem 9.1 is exactly the same
Therefore we omit it.

Uniqueness of the solution of (LV ) is again a consequence of the Dobrushin stability
result for the system (LV ) whose proof is a straightforward adaptation as the one of
Theorem 8.1:

Take two initial conditions ρinlN , l = 1.2 for (LV ).
By Theorem 3.6, the same argument as at the end of the proof Theorem 8.1 and the

third inequality in Lemma 9.2 we get easily that

W2((ρ
t
N)N :1, (τ

t
N)N :1)

2 ≤ e
∫ t

0
LN (s)dsW2((ρ

in
N )N :1, (τ

in
N )N :1)

2

+

∫ t

0

e
∫ t
s
LN (u)du(K ′)2 sup

u≤s
W2((ρ

u
N)N :1, (τ

u
N)N :1)

2ds

with

L1(t) = 2 + 2(L′)2.(56)

By the Grönwall Lemma again we get

W2((ρ
t
N)N :1, (τ

t
N)N :1)

2 ≤ 2eΓN (t)W2((ρ
in
N )N :1, (τ

in
N )N :1)

2

with

(57) ΓN(t) := t
(

2 + 2(L′)2 + (2K ′)2e2t)(1+(L′)2)
)

and Theorem 9.1 is proved. �

Remark 9.4. ΓN is independent from the two initial data ρinN and τ inN .

Appendix A. Proof of Theorem 3.6

We will denoteX = (x1, . . . , xN), V = (v1, . . . , vN), Y = (y1, . . . , yN),Ξ = (ξ1, . . . , ξN),
all of them belonging to R2dN .

Let πin be an optimal coupling for ρin1 , ρ
in
2 . Obviously πinN := (πin)⊗N is a coupling

for (ρin1 )⊗N , (ρin2 )⊗N .
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Let moreover ρti, i = 1, 2, be two solutions of the equations (25) and let πtN be the
unique (measure) solution to the following linear transport equation

∂tπN + V · ∇XπN + Ξ · ∇Y πN = ∇V · (v1([ρ
in
1 ]≤t, X, V )πtN +∇Ξ · (v2([ρ

in
2 ]≤t, Y,Ξ)πtN)

with πt=0
N = πopN ∈ Ppc (R2dN)⊗2 optimal coupling between ρin1 and ρin2 invariant by

permutation in the sense that, for all σ ∈ ΣN ,

πinN (σ(dZ1), σ(dZ2)) = πinN .

The following first Lemma is equivalent to [33, Lemma 3.1]. It consists in evolving
πinN by the two dynamics of ρti, i = 1, 2. The proof is very similar to the one of [33,
Lemma 3.1].

Lemma A.1. For all t ∈ R, πtN is a coupling between ρt1 and ρt2.

Proof. One easily check that the two marginals of πtN satisfy the two equations (25).
Therefore, the Lemma holds true by unicity of these solutions. �

In order to shorten a bit the notations, we will use in the sequel the
following abuses of notation vi(t,X, V ) := vi([ρ

in
i ]≤t, X, V ) and vti = vi(t, ·, ·).

By a slight modification of the proof of [33, Lemma 3.2] we arrive easily to the
following.

Lemma A.2. Let

DN(t) :=
1

N

∫
((X − Y )2 + (V − Ξ)2)πtN(dXdV dY dΞ) .

Then

dDN

dt
≤ L1(t)DN +

1

N

∫
]bR2dN

|v1(t, Y,Ξ)− v2(t, Y,Ξ)|2ρt2(dY, dΞ)

and

dDN

dt
≤ L2(t)DN +

1

N

∫
]bR2dN

|v1(t,X, V )− v2(t,X, V )|2ρt1(dX, dV ),

where

L1(t) = 2(1 + sup
(X,V )∈ supp(ρt1)

(Lip(vt1)(X,V ))
2),

L2(t) = 2(1 + sup
(Y,Ξ)∈ supp(ρt2)

(Lip(vt2)(Y,Ξ))
2).

Proof. As already mentioned, the proof is very similar to the one of [33, Lemma 3.2].
Plugging into the definition of DN(t) the equation (58) satisfied by πtN , integrating by
part and using the fact that 2U · V ≤ U 2 + V 2,∀ U, V ∈ R2d (see the proof of [33,
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Lemma 3.2] for details), we get

dDN

dt
=

1

N

∫
((X − Y )2 + (V − Ξ)2)

dπtN
dt

(dXdV dY dΞ) .

≤ 1

N

∫
R4dN

(
2(|X − Y |2 + |V − Ξ|2) 1

N

N∑
j=1∫

+ |v1(t,X, V )− v2(t, Y,Ξ)|2
)
πtN(dX, dV, dY, dΞ)

≤ 2DN(t) +
2

N

∫
R4dN

|v1(t,X, V )− v1(t, Y,Ξ)|2πtN(dX, dV, dY, dΞ)

+
2

N

∫
R4dN

|v1(t, Y,Ξ)− v2(t, Y,Ξ)|2πtN(dX, dV, dY, dΞ)

≤ 2DN(t)

+
2

N
sup

(X,V,Y,Ξ)∈ supp(πtN )

(Lip(vt1)(X,V ))
2

∫
R4dN

(|X − Y |2 + |Y − Ξ|2)πtN(dX, dV, dY, dΞ)

+
2

N

∫
R4dN

|v1(t, Y,Ξ)− v2(t, Y,Ξ)|2πtN(dX, dV, dY, dΞ)

≤ L1(t)DN(t) +
2

N

∫
R2dN

|v1(t, Y.Ξ)− v2(t, Y,Ξ)|2ρt2(dY, dΞ).

We conclude by the fact that

sup
(X,V,Y,Ξ)∈supp(πtN )

(. . . ) ≤ sup
(X,V )∈ supp(ρt1)

(. . . )

≤ sup
(Y,Ξ)∈ supp(ρt2)

(. . . )

Indeed, (we write the argument in the case πtN is a density for sake of simplicity)

(X, V, Y,Ξ) ∈ supp(πtN) ⇒ πtN(X, V, Y,Ξ) > 0

⇒
∫
R2dN

πtN(X, V, dY, dΞ),

∫
R2dN

πtN(dX, dV, Y,Ξ) > 0

⇔ ρt1(X, V ), ρt2(Y,Ξ) > 0

⇔ (X, V ) ∈ supp(ρt1), (Y,Ξ) ∈ supp(ρt2).

The second inequality in Lemma A.2 is proved by exchanging ρin1 and ρin2 . �

Therefore, by Grönwall Lemma,

DN(t) ≤ e
∫ t

0
L1(s)dsDN(0)

+
2

N

∫ t

0

∫
R2dN

|v1(s, Y,Ξ)− v2(s, Y,Ξ)|ρs2(dY, dΞ)e
∫ t
s
l1(u)duds(58)

Thanks to the following lemma, we can always suppose that πinN is invariant by
permutation in the sense of Theorem 9.1.
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Lemma A.3. Let ρin1 (dZ1), ρ
in
2 (dZ2) be invariant by permutation in the sense of (9).

Then there exists an optimal coupling π of ρin1 , ρ
in
2 invariant by permutation in the sense

that, for all σ ∈ ΣN , π ◦ σ⊗2 = π, that is

π(σ(dZ1, σ(Z2)) = π(dZ1, dZ2), ∀σ ∈ ΣN .

Proof. Let πI(dZ1, dZ2) an optimal coupling of ρin1 , ρ
in
2 . It is straightforward to show

that, for all σ ∈ ΣN ,
πσ(dZ1, dZ2) := πI(σ(dZ1), σ(dZ2))

is also an optimal coupling of ρin1 , ρ
in
2 , since ρin1 , ρ

in
2 and the cost function is also invariant

by permutation:
|Z1 − Z2|2 = |σ(Z1)− σ(Z2)|, ∀σ ∈ ΣN .

Therefore

π(dZ1, dZ2) :=
1

N !

∑
σ∈ΣN

πσ

is an optimal coupling of ρin1 , ρ
in
2 , and is invaraint by permutation. �

We now remark that, since both πinN and v1,v2 are invariant by permutations of the
variables (xj, vj), j = 1, . . . , N , so is πtN for all t ∈ R. This implies that, in fact,

DN(t) =
1

N

∫
((X − Y )2 + (V − Ξ)2)πtN(dXdV dY dΞ) .

=
1

N

N∑
i=1

∫
((xi − yi)2 + (vi − ξi)2)πtN(dXdV dY dΞ) .

=

∫
((x1 − y1)

2 + (v1 − ξ1)
2)πtN(dXdV dY dΞ) .

=

∫
R2d

(|x− v|2 + |y − ξ|2)(πtN)1(dxdv),

where (πtN)1 is the measure on R2d ×R2d defined, for every test function ϕ(x, v; y, ξ),
by∫
R2dN×R2dN

ϕ(x1, v1, y1, ξ1)πN(dXdV dY dΞ) =

∫
R2d×R2d

ϕ(x, v, y, ξ)(πtN)1(dx, dv, dy, dξ).

Moreover, (πtN)1 is a coupling between (ρt1)N :1 and (ρt2)N :1. Indeed, for any test functions
ψ and ϕ, ∫

R2d×R2d

(ψ(x, v) + ϕ(y, ξ))(πtN)1(dx, dv, dy, dξ)

=

∫
R2dN×R2dN

(ψ(x1, v1) + ϕ(y1, ξ1))πN(dX, dV, dY, dΞ)

=

∫
R2dN

ψ(x1, v1)ρ
t
1(dX, dV ) +

∫
R2dN

ϕ(y1, ξ1)ρ
t
2(dY, dΞ)

=

∫
R2d

ψ(x, v)(ρt1)N,1(dx, dv) +

∫
R2d

ϕ(y, ξ))(ρt2)N,1(dy, dξ)
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Consequently, one has

W2((ρ
t
1)N :1, (ρ

t
2)N :1) := inf

π coupling (ρt1)N :1 and (ρt2)N :1

∫
(|x− v|2 + |y − ξ|2)π(dxdydvdξ)

≤
∫
R2d

(|x− v|2 + |y − ξ|2)(πtN)1(dxdydvdξ) = DN(t)

and the conclusion follows by (58).
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