
THE MEAN-FIELD LIMIT FOR HYBRID MODELS OF COLLECTIVE MOTIONS
WITH CHEMOTAXIS,
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Abstract. In this paper we study a general class of hybrid mathematical models of collective
motions of cells under the influence of chemical stimuli. The models are hybrid in the sense
that cells are discrete entities given by ODE, while the chemoattractant is considered as
a continuous signal which solves a diffusive equation. For this model we prove the mean-
field limit in the Wasserstein distance to a system given by the coupling of a Vlasov-type
equation with the chemoattractant equation. Our approach is not based on empirical
measures and we show the limit with explicit bounds, by proving also existence and
uniqueness for the limit system. In the monokinetic case we derive pressureless nonlocal
Euler-type model with chemotaxis.
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1. Introduction

A collective motion occurs when the behaviour of a group of individuals is dominated
by the mutual interaction between them. This behaviour arises in many different con-
texts both for non-living and living systems, as for instance nematic fluids, simple
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robots, bacteria colonies, flocks of birds, schools of fishes, human crowds, see for in-
stance [40]. In a nutshell, all microscopic mathematical models of collective motion are
based on one or more of the following elementary mechanisms: alignment, see [39], [7],
and references therein, separation and cohesion [11, 36]. Concerning alignment models
a popular one is represented by the Cucker-Smale model [7], which was originally pro-
posed to describe the dynamics in a flock of birds, but then it was extended to cover
more general phenomena, as for instance animal herding [10]. The hypothesis of the
Cucker-Smale model is that the force acting on every individual is a weighted average
of the differences of its velocity with those of the others, and this force decays when the
distance between the individuals increases. Some preliminary analytical results about
the time asymptotic behaviour of the model has been proven in [7, 22], and in the
following a lot of papers investigated the behaviour of this dynamical model in many
directions, see for instance [6] and [32] for a comprehensive list of references.

In recent years, there was a lot of interest about collective motion of cells driven by
chemical stimuli, see [37, 3, 2, 35, 28, 9, 34], and the reviews [24, 30]. Focusing on the
family of Cucker-Smale models, in [12] a model for the morphogenesis in the zebrafish
lateral line primordium was proposed, where a Cucker-Smale model was coupled with
other cell mechanisms (chemotaxis, attraction-repulsion, damping effects) to describe
the formation of neuromasts, see [16, 27] for the experimental basis of this model.
The description of the cell behaviour is hybrid: while particles are considered discrete
entities, endowed of a radius R describing their circular shape, the chemical signal ϕ is
supposed to be continuous and its time derivative is equal to a diffusion term, a source
term depending on the position of each particle, and a degradation term. A simplified
version of the model in [12] was proposed in [13] to allow a full analytical investigation.
This simplified model reads as follows:

ẋi = vi,

v̇i =
β

N

N∑
j=1

1(
1 +

‖xi−xj‖2

R2

)σ (vj − vi) + η∇xϕ(xi),

∂tϕ = D∆ϕ− κϕ+ f(x,X(t)),

(1)

Initial data are given by initial position and velocity for each particle:

X(0) = X0, V (0) = V0,

with X = (x1, . . . , xN), V = (v1, . . . , vN), and by the initial concentration of signal,
that it is assumed

ϕ(x, 0) := ϕ0 = 0.(2)

Here xi, vi are the position and velocity of the i-th cell and ϕ stands for a generic
chemical signal produced by the cells themselves and such that the cells are attracted
towards the direction where ∇xϕ is growing. For this simple model in [13] a full
analytical theory was developed in the two-dimensional case with a fixed but arbitrary
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number N of particles, and results of globally in time existence and uniqueness of
solutions were proved, as well as the time-asymptotic linear stability. Other analytical
results, for more general hybrid models, can be found in [31].

In this paper we aim to prove the mean-field limit of a general class of models
including (1) towards Vlasov type kinetic equations together with the hydrodynamic
mean-field limit of such models towards Euler type equations coupled with chemotaxis.
To our knowledge, both limits, and the related kinetic and Euler equations are new in
the literature.

Let us describe the class of particle systems we will handle in the present article.
Consider on R2dN 3 ((xi(t))i=1,...,N , (vi(t))i=1,...,N) := (X(t), V (t)) the following vector

field

(3)

{
ẋi(t) = vi
v̇i(t) = Fi(t,X(t), V (t))

i = 1, . . . , N, (X(0), V (0)) = (X in, V in) :

where

(4) Fi(t,X, V ) =
1

N

N∑
j=1

γ(vi − vj, xi − xj) + η∇xϕ
t(xi) + Fext(xi),

γ is the collective interaction function, Fext is an external force and ϕ satisfies the
equation

(5) ∂sϕ
s(x) = D∆xϕ− κϕ+ f(x,X(s)), s ∈ [0, t], ϕs=0 = ϕin

for some κ,D, η ≥ 0 and function f of the form

(6) f(x,X) =
1

N

N∑
j=1

χ(x− xi), χ ∈ C1
c (BR).

The function γ : Rd ×Rb → R×Rd is supposed to be Lipschitz continuous.
The case γ(y, w) = Φ(y)w. F = ϕ = 0, covers the standard case of Cucker-Smale

models.

For any t, N we define the mapping Φt
N = Φt by

(7)

{
Φt
N : R2dN −→ R2dN

Z in = (X in, V in) −→ Z(t) = (X(t), V (t)) solution of (3).

Note that Φt
N is not a flow.

We would like to derive a kinetic model corresponding to the system (3), that is
the one particle (non-linear) PDE satisfied by the first marginal of the push-froward1

Φt#ρin where ρin ∈ P(R2dN) and Φt
N is the mapping defined by (7).

1We recall that the pushforward of a measure µ by a measurable function Φ is Φ#µ defined by
∫
ϕd(Φ#µ) :=

∫
(ϕ◦f)dµ for every measurable

function f .
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The first difficulty is the fact that ρtN := Φt
N#ρinN does no satisfy a closed PDE,

except if

(8) ρinN = ρZ̄ =
1

N !

∑
σ∈σN

δσ(Z̄), Z̄ := (X̄, V̄ ) ∈ R2dN ,

where σN is the group of permutations in the N variables (x̄i, v̄i)i=1,...,N .
In this case ρtN := ρΦt(Z̄) satisfies

(9) ∂tρ
t
N + V · ∇Xρ

t
N =

N∑
i=1

∇vi ·Giρ
t
N

where

(10) Gi(t,X, V ) =
1

N

N∑
j=1

γ(vi − vj, xi − xj) + η∇xΨ
t(xi) + Fext(xi),

Ψ (and therefore Gi too) depends on the solution ρtN and satisfies the equation

(11) ∂tΨ
t(x) = D∆xΨ− κΨ + f(x, ρsN ;1), s ∈ [0, t],

with g given by

(12) f(x, ρsN ;1) =

∫
R2d

χ(x− y)ρsN ;1(y, ξ)dydξ

with, denoting Φt
N(Z̄) = (x̄1(t), . . . , x̄N(t), v̄1(t), . . . , v̄N(t)),

ρsN ;1(y, ξ) :=

∫
R2d(N−1)

ρtN(y, x2, . . . , xN , ξ, v2, . . . , vN)dx2 . . . dxNdv2 . . . dvN

=

∫
R2d(N−1)

ρΦt
N (Z̄)(y, x2, . . . , xN , ξ, v2, . . . , vN)dx2 . . . dxNdv2 . . . dvN (see Lemma 5.1 below)

= 1
N

N∑
i=1

δ(y − x̄i(t))δ(ξ − v̄i(t)) (see Lemma 5.1 below)

:= µΦt
N (Z̄)

In turn, this suggests that the (non local in time) Vlasov equation associated to the
particle system (3, 4, 5, 6) is

(13) ∂tρ
t + v · ∇xρ

t = ∇v(ν(t, x, v)ρt), ρ0 = ρin

where

(14) ν(t, x, v) = γ(x, v) ∗ ρt + η∇xψ
t(x) + Fext(x)

and ψ satisfies

(15) ∂sψ
s(z) = D∆zψ − κψs + g(z, ρs), ψ0 = ϕin.
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x-special/nautilus-clipboard copy file:///home/paulth/TThe kinetic equation asso-
ciated to Cucker-Smale systems, introduced in [23], has been derived in [22, 20] and,
for generalizations of type (3) with ϕ = 0 in [32], without chemotaxis interaction.
We refer to [20, 32] for a large bibliography on the subject.

2. The main result

Theorem 2.1. Let ρin be a compactly supported probability on R2dN , let Φt
N be the

mapping generated by the particles system (3, 4, 5, 6) as defined by (7), and let τ be the
function defined in (31).

Then, for any t ≥ 0,

W2

(
(Φt

N#(ρin)⊗N)N ;1, ρ
t
)2 ≤ τ(t)


N−

1
2 d = 1

N−
1
2 logN d = 2

N−
1
d d > 2

where ρt is the solution of the Vlasov equation (13, 14, 15) with initial condition ρin

provided by Theorem 9.1 below and W2 is the quadratic Wasserstein distance whose
definition is recalled in Definition 4.1.

Moreover, let us denote by ϕtZin the chemical density solution of (3, 4, 5, 6) with initial
data (Z in, ϕin) and by ψtρin the one solution of (13, 14, 15) with initial data (ρin, ϕin).

Then ∫
R2dN

‖∇ϕtZin −∇ψtρin‖2
∞(ρin)⊗N(dZin) ≤ τc(t)


N−

1
2 d = 1

N−
1
2 logN d = 2

N−
1
d d > 2

where τc = 5t2 Lip(∇χ)2(τ(t) + CeΓ(t))2 with Γ(t) given by (40) and C defined in The-
orem 5.2.

Finally, the function τ(t) depends only on t, Lip(γ),Lip(χ),Lip(∇χ), and the sup-
ports of Φt

N#(ρin and ρt, and satisfies the following estimate for all t ∈ R,

τ(t) ≤ ee
Ct

for some constant C,depending on Lip(γ),Lip(χ),Lip(∇χ) and |supp(ρin)|.

Corollary 2.2 (Hydrodynamic Euler limit).
x-special/nautilus-clipboard copy file:///home/paulth/T Let µin, uin, ϕin be such that

the Euler system
∂tµ

t +∇x(u
tµt) = 0

∂t(µ
tut) +∇(µt(ut)⊗2) = µt

∫
γ(· − y, ut(·)− ut(y))µt(y)dy +∇ψt + F

∂sψ
s(z) = D∆zψ − κψ + χ ∗ µs, s ∈ [0, t],

(µ0, u0, ψ0) = (µin, uin, ϕin) ∈ Hs, s > d
2 + 1.

2x-special/nautilus-clipboard copy file:///home/paulth/Tthrough this paper we define Lip(f) for f : Rn → Rm,m, n ∈ N, as Lip(f) :=

max
1≤i≤m

Lip(fi)
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has a unique solution µt, ut ∈ C([0, t];Hs) ∩ C1([0, T ];Hs−1), ψt ∈ C([0, t];Hs) ∩
C1([0, T ];Hs−2) ∩ L2(0, T ;Hs+1) and let

ρin = µin(x)δ(v − uin(x)).

Then, for any t ∈ [0, T ],

W2

(
(Φt

N#(ρin)⊗N)N ;1, µ
t(x)δ(v − ut(x))

)2 ≤ τ(t)


N−

1
2 d = 1

N−
1
2 logN d = 2

N−
1
d d > 2

Moreover,∫
RdN

‖∇ϕt(Xin,u⊗N (Xin)) −∇ψ
t
ρin‖2

∞(µin)⊗N(dX in) ≤ τc(t)


N−

1
2 d = 1

N−
1
2 logN d = 2

N−
1
d d > 2

.

. Let us describe the strategy of the proof of Theorem 2.1.
Clearly Theorem 2.1 links the dynamics of the particle system (3, 4, 5, 6) and the one

driven by the Vlasov system (13, 14, 15). As an intermediate step we will consider the
N -body Liouville type one defined by (9, 10, 11, 12).

We will proceed in several steps.

Step 1: we will show that the marginal (ρtN ;1) of the solution ρtN of (9, 10, 11, 12),
is close to the solution of a Vlasov type closed equation (13, 14, 15) derived below in
Wasserstein metric: this is the content of Proposition 6.1 in Section 6 below.

Step 2: we will show that the marginal (Φt
#ρ

in
N )N ;1 and (ρtN)N ;1 are close as N →∞

in the same Wasserstein topology: this result is precisely Proposition 5.3 in Section 5
below.

Step 3 [proof of Theorem 2.1] : we will use the triangular inequality for W2:

W2((Φ
t
N#(ρin)⊗N)N ;1, ρ

t) ≤ W2((Φ
t
N#(ρin)⊗N)N ;1, (ρ

t
N)N ;1) +W2((ρ

t
N)N ;1, ρ

t).

Theorem 2.1 will then be given by the estimate on W2((Φ
t
N#(ρin)⊗N)N ;1, (ρ

t
N)N ;1) given

by Proposition 5.3 and the one on W2((ρ
t
N)N ;1, ρ

t) given by Proposition 6.1.
The chemical density estimate is obtained by the triangle inequality

‖∇ϕtZin −∇ψtρin‖2
∞ ≤ 5(‖∇ϕtZin −∇ψtµZin‖2

∞ + ‖∇ψtµZin
−∇ψtρin‖2

∞)

where µZin := 1
N

N∑
l=1

δzinl (empirical measure). Both squares are estimated by Corollary

4.6, and W2((Φ
t
N#µZin, ρtµZin

)2 is estimated by the first estimate of the Theorem, while

W2(ρ
t
µZin

, (ρin)t)2 by the Dobrushin estimate in Theorem 9.1.

The estimate for τ(t) is proven at the end of Section 6 (see formula (32)). .
x-special/nautilus-clipboard copy file:///home/paulth/TThe proof of the Corollary

is straightforward. �
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Remark 2.3. As it is clear from the step 3 above, an alternative to the second statement
in Theorem 2.1 is the following.

‖∇ϕtZin −∇ψtρin‖2
∞ ≤ ‖∇ψtµZin

−∇ψtρin‖2
∞ + 5t2 Lip(∇χ)2τ(t))


N−

1
2 d = 1

N−
1
2 logN d = 2

N−
1
d d > 2

3. The three dynamics

Let us be more precise and fix the notations. We define the three following dynamics,
denoted by (P) for (Particles), (LV) for (Liouville-Vlasov) and (V) for (Vlasov).

(P )



ẋi = vi, v̇i = Fi(t,X(t), V (t)), (X(0), V (0)) = Z(0) = Z in ∈ R2dN

Fi(t, Y,W ) = 1
N

N∑
j=1

γ(wi − wj, yi − yj) + η∇zϕ
t(z)|z=yi + Fext(yi),

∂sϕ
s(z) = D∆zϕ− κϕ+ f(z,X(s)), s ∈ [0, t], , ϕ0 = ϕin

f(z,X) = 1
N

N∑
j=1

χ(z − xj).

(LV )



∂tρ
t
N + V · ∇Xρ

t
N =

N∑
i=1

∇vi ·Giρ
t
N , ρ

o
N = ρinN = (ρin)⊗N ∈ P(R2dN)

Gi(t, Y,W ) = 1
N

N∑
j=1

γ(wi − wj, yi − yj) + η∇zΨ
t(z)|z=yi + Fext(yi),

∂sΨ
s(z) = D∆zΨ− κΨ + g(z, ρsN ;1), s ∈ [0, t], Ψ0 = ϕin,

g(z, ρsN ;1) =
∫
R2d χ(z − x)ρsN ;1(x, v)dxdv

(V )


∂tρ

t + v · ∇xρ
t = ∇v(ν(t, x, v)ρt), ρ0 = ρin ∈ P(R2d)

ν(t, x, v) = γ(x, v) ∗ ρt + η∇xψ
t(x) + Fext(x),

∂sψ
s(z) = D∆zψ − κψ + g(z, ρs), ψ0 = ϕin.
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Note that (χ ∗ ρN ;1(t))(x) = (χ̃ ∗ ρ)(x, . . . , x), χ̃(X) = 1
N

N∑
j=1

χ(xj).

Let us recall the strategy of our approach: we believe that, in some Wasserstein
topology, with ρinN = (ρin)⊗N , (Φt

N#ρinN )N ;1 ∼ (ρtN)N ;1(t), Φt
N solution of (L), ρtN of (LV ) with ρ0

N = ρinN
ρinN = (ρin)⊗N

(ρtN)N ;1 ∼ ρt, ρt solution of (V ) with ρ0 = ρin,

so that, by triangle inequality,

(Φt
N#ρinN )N ;1 ∼ ρt

with,Φt
N solution of (L) and ρt solution of (V ) with ρ0 = (ρinN )N ;1.

4. Technical Preliminaries

In this section we establish or recall several results which will be intensively used in
the core of the proof of Theorem 2.1.

4.1. Wasserstein distances. Let us start this section by recalling the definition of
the second order Wasserstein distance W2 (see [41, 42]).

Definition 4.1 (quadratic Wasserstein distance). The Wasserstein distance of order
two between two probability measures µ, ν on Rm with finite second moments is defined
as

W2(µ, ν)2 = inf
γ∈Γ(µ,ν)

∫
Rm×Rm

|x− y|2γ(dx, dy)

where Γ(µ, ν) is the set of probability measures on Rm ×Rm whose marginals on the
two factors are µ and ν.

Likewise is the Wasserstein distance of order 1 W1 two between two probability
measures µ, ν on Rm with finite moments is defined by the follw=owing.

Definition 4.2.

W1(µ, ν) := sup{
∫
R2d

f(µ− ν)| f ∈ C∞(R2d), Lip(f) ≤ 1}.

Lemma 4.3.

• W1(µ, ν) ≤ W2(µ, ν),
• sup

Lip f≤1
|
∫
f(µ− ν) = W1(µ, ν),

• The convergence in the weak topology (i.e., in the duality with Cb(R
2d) of

sequences of probability measures with supports equibounded is equivalent to the
convergence with respect to the distance Wp, p = 1, 2 (in fact with respect to
Wasserstein of all orders),
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Proof. The first and second items are exactly formulas (7.1) and (7.3) in [41], The
third item is a straightforward consequence of [41, Theorem 7.12 (iii)], since the weak
convergence of equisupported sequences of measures implies the convergence of all of
their moments �

Finally, we will need below the following result.

Lemma 4.4. For any measures µ, ν ∈ P(R2dN) with finite second moments and any
area preserving mapping Φ : R2dN → R2dN ,

W2(Φ#µ,Φ#ν) ≤ Lip(Φ)W2(µ, ν),

where Lip(Φ) := max
1≤i≤N

Lip(Φi).

Moreover, for any N ∈ N,

W2(µ
⊗N , ν⊗N)2 ≤ NW2(µ, ν)2.

Proof. Let π an optimal coupling for µ and ν. Obviously (Φ⊗ Φ)#π is a coupling for
Φ#µ and Φ#ν.

Therefore,

W2(Φ#µ,Φ#ν)2 ≤
∫
R4dN

|z − z′|2(Φ⊗ Φ)#π(dz, dz′)

≤
∫
R4dN

|Φ(z)− Φ(z′)|2π(dz, dz′)

≤ Lip(Φ)2

∫
R4dN

|z − z′|2π(dz, dz′) = Lip(Φ)2W2(µ, ν)2

by optimality of π.
Moreover, π⊗N is obviously a coupling for µ⊗N and ν⊗N . Therefore

W2(µ
⊗N , ν⊗N) ≤

∫
R4dN

|Z − Z ′|2π⊗N(dZdZ ′)

=

∫
R4dN

N∑
i=1

|zi − z′i|2π⊗N(dZ, dZ ′)

= N

∫
R4d

|z − z′|2π(dz, dz′) = NW2(µ, ν)

by optimality of π again. �

4.2. The diffusion term. The three equations

(16)


∂sϕ

s(z) = D∆zϕ− κϕ+ f(z, Y (s)), ϕ0 = ϕin

∂sΨ
s(z) = D∆zΨ− κΨ + g(z, ρsN ;1), Ψ0 = ϕin

∂sψ
t(z) = D∆zψ − κψ + g(z, ρs), ψ0 = ϕin
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can be “solved” by (we denote I = (1, 1, 1)T )ϕt(z)
Ψt(z)
ψt(z)

 = e−κt
∫ t

0

e(t−s)D∆z

f(z,X(s))
g(z, ρsN ;1)
g(z, ρs)

 ds+ e−κtetD∆ϕinI(17)

= e−κt
∫ t

0

∫
Rd

e
− (z−z′)2

4D(t−s)

(4πD(t−s))
d
2

f(z′, X(s))
g(z′, ρsN ;1)
g(z′, ρs)

 dsdz′ + e−κtetD∆ϕin.I

Note that ∇z

ϕt(z)
Ψt(z)
ψt(z)

 is given by the same formula with χ replaced by ∇χ. There-

fore, if

χ =
d∏
l=1

χ[−al,al]

(χ[−al,al] the characteristic function on [−al, al]), one has

∇z

ϕt(z)
Ψt(z)
ψt(z)

 = e−κt
∫ t

0


(4πD(t− s))−d

2

N∑
j=1

(
e−

(z−xj+a)2

4D(t−s) − e−
(z−xj−a)2

4D(t−s)

)
e(t−s)D∆zρsN ;1(z + a)− e(t−s)D∆zρsN ;1(z − a)

e(t−s)D∆zρs(z + a)− e(t−s)D∆zρs(z − a)

 ds+ e−κtetD∆ϕinI.

The following lemma will be systematically used inthe forthcoming sections.

Lemma 4.5. Let ρ, ρ′ ∈ P(Rd) and µ ∈ Lip(Rd). Then, for all t ≥ 0,

‖(et∆µ) ∗ (ρ− ρ′)‖L∞(Rd) ≤ Lip(µ)Wp(ρ, ρ
′), p = 1, 2.

Proof. On has

|(et∆∇χ) ∗ (ρ− ρ′)(xi)| = |
∫

(z)(et∆∇χ)(xi − z)(ρ− ρ′)dz|

≤ Lip ((et∆∇χ)(xi − ·))W2(ρ, ρ
′)

≤ Lip (et∆∇χ)W2(ρ, ρ
′)

≤ Lip∇χW2(ρ, ρ
′)

since, by Lemma 4.3,

sup
Lip f≤1

∣∣∣∣∫ f(dµ− dν)

∣∣∣∣ = W1(µ, ν) ≤ W2(µ, ν),

and

|(et∆∇χ)(x)− (et∆∇χ)(y)| = |(et∆(∇χ(x− ·)− et∆(∇χ(y − ·))(0)|
≤ |∇χ(x)−∇χ(y)|.

�
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Corollary 4.6.

‖∇ϕt −∇ψt‖L∞(Rd) ≤ tLip(∇χ)W2((Φ
t
N#(ρin)⊗N)N :1, ρ

t).

4.3. Propagation of Wasserstein type estimates. In this paragraph, we establish
a result used later as a black box, concerning the propagation of estimates in Wasser-
stein topology under general transport equation including the several types used in this
paper.

Theorem 4.7. x-special/nautilus-clipboard copy file:///home/paulth/T Let us suppose
that the two equations

(18) ∂tρ
t
i + V · ∇X = ∇V . · (vi(t,X, V )ρti), ρ

0
i = (ρini )⊗N , ρini ∈ P(R2d), i = 1, 2.

have existence and uniqueness of solution in C0(R+,Pc(R2dN)).
Here vi(t,X, V ) might or might not depend on the solution ρsi for 0 ≤ s ≤ t, is

supposed to be invariant by permutations of the variables (xj, vj), j = 1, . . . , N , and is
Lipschitz continuous with respect to (X, V ) and satisfies the estimate

vi(t,X, V ) ≤ γ0‖V ‖, X, V ∈ R2dN , i = 1, 2.

Let moreover ρti, i = 1, 2, be two solutions of the equations (18) and let πtN be the
unique (measure) solution to the following linear transport equation

∂tπN + V · ∇XπN + Ξ · ∇Y πN = ∇V · (v1(t,X, V )πtN +∇Ξ · (v2(t, Y,Ξ)πtN)(19)

with πt=0
N = πopN optimal coupling between (ρin1 )⊗N and (ρin2 )⊗N .

Let us define, for i = 1, 2,

(ρti)N :1(x, v) :=

{ ∫
R2d(N−1) ρ

t(x, x2, . . . , xn; v, v2, . . . , vN)dx2 . . . dxNdv2 . . . dvN N > 1
ρti(x, v), N = 1.

Then, for all t ∈ R+,

W2((ρ
t
1)N :1, (ρ

t
2)N :1)

2 ≤ e
∫ t

0
L(s)dsW2(ρ

in
1 , ρ

in
2 )2

+ 2

∫ t

0

∫
R2dN

|v1(s,X, V )− v2(s,X, V )|2(ρin2 )⊗N(dX, dV )e
∫ t

s
l(u)duds

with

L(u) = 2 + 2 min
i=1,2

sup
(X,V )∈supp(ρui )

Lip(v1(u,X, V )) + Lip(v2(u,X, V ))

The proof on Theorem 4.7 is given in Appendix A.

5. From particles to Liouville-Vlasov

In this section we estimate W2((Φ
t
N#ρin)N ;1, (ρ

t
N)N :1), where Φt

N is generated by the
particle system (3, 4, 5, 6) and ρtN is the solution of the N -body Liouville type one
defined by (9, 10, 11, 12) with initial data ρin.
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By Theorem 4.7 we get easily that

W2((Φ
t
N#ρin)N ;1, (ρ

t
N)N :1)

≤ 4η
N∑
i=1

∫ t

0

∫
R2dN

|(∇ϕs(xi)−∇Ψs(xi))|2(Φt
N#(ρin)⊗N)(dX, dV )e

∫ t

s
l̄(u)duds

with

(20) L̄(u) = 2 + 2 min
ρ∈{Φt

N#(ρin)⊗N ,ρtN}
( sup

i,l=1,...,N
X,V,Y,Ξ∈supp(ρ)

Lip (γ)2
(xi−xl,vi−vl)) + 2η Lip(∇χ)2.

Therefore, we have to estimate

(21)

∫
R2dN

|(∇ϕt(xi)−∇Ψt(xi))|2(Φt
N#(ρin)⊗N)(X, V )dXdV.

We first remark that, in (16),

f(·, X) = χ ∗ µZ ,

where, for any Z = (z1, . . . , zN) ∈ R2dN , the empirical measure µZ is defined by

(22) µZ := 1
N

N∑
k=1

δzk

Therefore, by (17),

∇ϕt(·) = e−ηt
∫ t

0

e(t−s)∆∇χ ∗ µΦs(Z0(X.V ))ds

where Z0(X, V ) is defined by Φt(Z0(X, V ))) = (X, V ).
Note that such Z0(X.V ) exists for any (X, V ) appearing in the integral in (21) since

one integrates with respect to the measure (Φt
N#(ρin)⊗N)(dX, dV ) i.e. Z0(X.V ) ∈

supp((ρin)⊗N).
Now,∫

|(∇ϕt(xi)−∇Ψt(xi))|2(Φt
N#(ρin)⊗N)(X, V )dXdV

= e−2κt

∫
|
∫ t

0

(e(t−s)∆∇χ) ∗ (µΦs(Z0(X,V )) − (ρsN)N ;1)(xi)|2(Φt
N#(ρin)⊗N)(X, V )dXdV

So that, denoting

(23) Φt
N(X, V ) =: (xt1(V, V ), . . . , xtN(X, V ), vt1(X, V ), . . . , vtN(X, V ))
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i.e. xti(X, V ) being the xi-component of Φt(X, V ), one has, since Φt(Z0(X, V )) =
(X, V ),∫

|(∇ϕt(xi)−∇Ψt(xi))|2(Φt
N#(ρin)⊗N)(dX, dV )

= e−2κt

∫
|
∫ t

0

(
e(t−s)∆∇χ ∗ (µΦs(X,V ) − (ρsN)N ;1)

)
(xti(X, V ))|2(ρin)⊗N(dX, dV )

= e−2κt

∫
|
∫ t

0

(
e(t−s)∆∇χ ∗ (µΦs(X,V ) − (Φs#(ρin)⊗N)N ;1

e(t−s)∆ + (Φs#(ρin)⊗N)N ;1 − (ρsN)N ;1)
)

(xti(X, V ))|2(ρin)⊗N(dX, dV )

≤ 2e−2κt

∫ (
|
∫ t

0

(e(t−s)∆∇χ) ∗
(
µΦs(X,V ) − (Φs#(ρin)⊗N)N ;1

)
(xti(X, V ))|2(24)

+ |
∫ t

0

(e(t−s)∆∇χ) ∗ ((Φs#(ρin)⊗N)N ;1 − (ρsN)N ;1

)
(xti(X, V ))|2

)
(ρin)⊗N(dX, dV ).(25)

As before,

(e(t−s)∆∇χ) ∗ ((Φs#(ρin)⊗N)N ;1− (ρsN)N ;1

)
(xi) ≤ Lip∇χW2((Φ

s#(ρin)⊗N)N ;1, (ρ
s
N)N ;1),

which gives a second contribution to (21) out of the right hand-side of (25) given by:

2 Lip∇χ2e−2κt

∫ t

0

∫ t

0

W2((Φ
s#(ρin)⊗N)N ;1, (ρ

s
N)N ;1)W2((Φ

s′#(ρin)⊗N)N ;1, (ρ
s′

N)N ;1)dsds
′.

Lemma 5.1.

µZ =

(
1

N !

∑
σ∈ΣN

δσ(Z)

)
N :1

where ΣN is the group of permutations of N elements and

σ(Z) := (zσ(1), . . . , zσ(N)).

Proof. Let us recall that ΣN = {σ : {1, . . . , N} → {1, . . . , N}, σ one-to-one} so that
#ΣN = N !. We have∫

· · ·
∫
δσ(Z)dz2 . . . dzN =

∫
· · ·
∫
δσ(Z)

∏
l 6=σ(1)

dzl
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Therefore

(
1

N !

∑
σ∈ΣN

δσ(Z)

)
N :1

=
1

N !

N∑
l=1

∑
σ∈ΣN int
σ(l)=1

∫
· · ·
∫
δσ(Z)

∏
l 6=σ(1)

dzl

=
N∑
l=1

#ΣN−1

N !
δzl

=
N∑
l=1

(N − 1)!

N !
δzl = µZ .

�

x-special/nautilus-clipboard copy file:///home/paulth/TLooking now at the contri-
bution out of (24), we have, using successively (23), Lemma 5.1, the definition of
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marginals and the fact that
∑
σ∈ΣN

δσ(Φt
N (Z)) =

∑
σ∈ΣN

δΦt
N (σ(Z)) since the system (3) pre-

serves the indiscernability of the particles,

N∑
i=1

∫ ∣∣∣∣∫ t

0

(e(t−s)∆∇χ) ∗
(
µΦs(X,V ) − (Φs#(ρin)⊗N)N ;1

)
(xti(X, V ))ds

∣∣∣∣2 (ρin)⊗N(dX, dV )

=
N∑
i=1

∫ ∣∣∣∣∫ t

0

e(t−s)∆∇χ)(xti(X, V )− x′)
(
µΦs(X,V ) − (Φs#(ρin)⊗N)N ;1

)
(dx′, dv′)ds

∣∣∣∣2
×(ρin)⊗N(dZ)

=
N∑
i=1

∫ ∣∣∣∣∣
∫ t

0

e(t−s)∆∇χ)(xti(Z)− x′)
(
( 1
N !

∑
σ

δσ(Φt
N (Z))N :1 − (Φs#(ρin)⊗N)N ;1

)
(dx′, dv′)ds

∣∣∣∣∣
2

×(ρin)⊗N(dZ)

=
N∑
i=1

∫ ∣∣∣∣∣
∫ t

0

e(t−s)∆∇χ)(xti(Z)− x′)
(
( 1
N !

∑
σ

δΦt
N (σ(Z)))N :1 − (Φs#(ρin)⊗N)N ;1

)
(dx′, dv′)ds

∣∣∣∣∣
2

×(ρin)⊗N(dZ)

=
N∑
i=1

∫ ∣∣∣∣∣∣
∫ t

0

e(t−s)∆∇χ)(xti(Z)− x′)

(
Φt
N#( 1

N !

∑
σ

δσ(Z) − (ρin)⊗N)

)
N ;1

(dx′, dv′)ds

∣∣∣∣∣∣
2

×(ρin)⊗N(dZ)

≤
N∑
i=1

∫ ∣∣∣∣∣
∫ t

0

ds

∫
1

N
H(t− s,Φt(Z)− Z ′)

(
Φt
N#

(
1
N !

∑
σ

δσ(Z) − (ρin)⊗N

))
(dZ ′)

∣∣∣∣∣
2

×(ρin)⊗N(dZ)

≤
∫ ∣∣∣∣∣
∫ t

0

ds

∫
H(t− s,Φt(Z)− Z ′)

(
Φt
N#

(
1
N !

∑
σ

δσ(Z) − (ρin)⊗N

))
(dZ ′)

∣∣∣∣∣
2

(ρin)⊗N(dZ).

where (let us recall the notation Z = (x1, . . . , xN : v1, . . . , vN),

H(t− s, (X, V )) =
N∑
i=1

(e(t−s)∆∇χ)(xi)

so that

LipH(t− s, ·) := max
i=1,...,N

sup
X∈RdN

∂xiH(t− s,X) ≤ Lip∇χ.
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One has
N∑
i=1

∫ ∣∣∣∣∫ t

0

(e(t−s)∆∇χ) ∗
(
µΦs

N (X,V ) − (Φs
N#(ρin)⊗N)N ;1

)
(xti(X, V ))ds

∣∣∣∣2 (ρin)⊗N(dX, dV )

≤ Lip∇χ2t2
∫
|W2(Φ

s
N#

1

N !

∑
σ

δσZ ,Φ
s
N#(ρin)⊗N)|2(ρin)⊗N)(dZ).(26)

Applying Lemma 4.4 to (26) we get
N∑
i=1

∫ ∣∣∣∣∫ t

0

(e(t−s)∆∇χ) ∗
(
µΦs

N (X,V ) − (Φs
N#(ρin)⊗N)N ;1

)
(xti(X, V ))ds

∣∣∣∣2 (ρin)⊗N(dX, dV )

≤ Lip∇χ2 sup
s≤t

Lip(Φs
N)2t2

∫
|W2((µZ)⊗N , (ρin)⊗N)|2(ρin)⊗N(dZ)

≤ Lip∇χ2 sup
s≤t

Lip(Φs
N)2t2N

∫
|W2(µZ , ρ

in)|2(ρin)⊗N)(dZ)

≤ Lip∇χ2 sup
s≤t

Lip(Φs
N)2t2N

∫
R2d

(x2 + v2)ρin(dx, dv)C


N−

1
2 d = 1

N−
1
2 logN d = 2

N−
1
d d > 2

.

thanks to the following result by Fournier and Guillin:

Theorem 5.2 (Theorem 1 in [15]). Let µ satisfy∫
R2d

(x2 + v2)µ(dx, dv) := M2(µ) <∞.

and let µ(X,V ), (X, V ) ∈ R2dN , be the empirical measure defined by (22). Then∫
R2dN

W2(µ(X,V ), µ)2µ⊗N(dXdV ) ≤ Cd(N)M2(µ),

where

Cd(N) := C


N−

1
2 d = 1

N−
1
2 logN d = 2

N−
1
d d > 2

where C depends only on d.

Collecting the estimates on the right hand-sides of (24) and (25) we get

W2((Φ
t
N#(ρin)⊗N)N ;1, (ρ

t
N)N :1)

2

≤ D(t)Cd(N) + η Lip∇χ2

×
∫ t

0

e
∫ t

s
L̄(u)du−2κsds

∫ s

0

ds′
∫ s

0

ds′′

W2((Φ
s′

N#(ρin)⊗N)N ;1, (ρ
s′

N)N :1)W2((Φ
s′′

N#(ρin)⊗N)N ;1, (ρ
s′′

N )N :1).

with

D(t) = 2η Lip(∇χ)2M2(ρ
in)

∫ t

0

s2 sup
u≤s

Lip(Φu
N)2e

∫ t

s
L̄(u)duds.
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Hence, for any T ≥ 0, we have

sup
t≤T

W2((Φ
t
N#(ρin)⊗N)N ;1, (ρ

t
N)N :1)

2

≤ sup
t≤T

D(t)Cd(N) + η Lip∇χ2

×
∫ T

0

e
∫ T

s
L̄(u)du−2κs s2

2 sup
u≤s

W2((Φ
s
N#(ρin)⊗N)N ;1, (ρ

s
N)N :1)

2ds

≤ sup
t≤T

D(t)Cd(N) + η Lip∇χ2

×
∫ T

0

e
T sup

u≤T
L̄(u)

T 2

2 sup
u≤s

W2((Φ
s
N#(ρin)⊗N)N ;1, (ρ

s
N)N :1)

2ds.

By the Grönwall Lemma, we get immediately that

W2((Φ
t
N#(ρin)⊗N)N ;1, (ρ

t
N)N :1)

2 ≤ sup
s≤t

D(t)Cd(N)eη Lip∇χ2
∫ t

0
e
s sup
u≤s

L̄(u)
s2

2 ds

:= β(t)2Cd(N)(27)

and the final result of this section.

Proposition 5.3.

W2((Φ
t
N#ρin)N ;1, ρ

t)2 ≤ β(t)2Cd(N)

6. From Liouville-Vlasov to Vlasov

In this section we estimate W2((ρ
t
N)N :1, ρ

t), where ρtN is the solution of the N -body
Liouville type one defined by (9, 10, 11, 12) and ρt is the solution of the Vlasov system
(13, 14, 15), with initial data (ρin)⊗N and ρin.

By Theorem 4.7 we get easily that

W2((ρ
t
1)N :1, (ρ

t
2)N :1)

2 ≤ 4
N∑
i=1

∫ t

0

∫
R2dN

∣∣∣∣∣ 1

N

N∑
j=1

γ(xi − xj, vi − vj)− γ ∗ ρs(xi, vi)

∣∣∣∣∣
2

N∑
j=1

+ η2|(∇ψs(xi)−∇Ψs(xi))|2
)

(ρs)⊗N(dX, dV )e
∫ t

s
¯̄l(u)duds

with

(28) ¯̄L(u) = 2 + 2 min
ρ∈{ρtN ,(ρt)⊗N}

( sup
i,l=1,...,N

(X,V )Ξ∈supp(ρ)

Lip (γ)2
(xi−xl,vi−vl)) + 2η Lip(∇χ)2.
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The first term in the integral has been estimated in [32, Lemma 3.5, Section 3] and we
get ∫

R2dN

∣∣∣∣∣ 1

N

N∑
j=1

γ(xi − xj, vi − vj)− γ ∗ ρs(xi, vi)

∣∣∣∣∣
2

(ρs)⊗N(dX, dV )

≤ 4

N
sup

(x,v),(x′,v′)∈supp(ρt)
|γ(x− x′, v − v′)|2.

Therefore, we have to estimate

(29)

∫
R2dN

|(∇ψt(xi)−∇Ψt(xi))|2(ρt)⊗N)(dX, dV ).

We have

|∇Ψt(xi)−∇ψt(xi)|2

= e−2κt|
∫ t

0

(e(t−s)∆∇χ) ∗ ((ρs
′

N)N ;1 − ρs))(xi)|2

= e−2κt

∫ t

0

ds

∫ t

0

ds′((e(t−s)∆∇χ) ∗ ((ρs
′

N)N ;1 − ρs
′
)(xi)((e

(t−s′)∆∇χ) ∗ ((ρs
′

N)N ;1 − ρs
′
)(xi).

But, by Lemma 4.5,∣∣∣(e(t−s)∆∇χ) ∗ ((ρs
′

N)N ;1 − ρs
′
)(xi)

∣∣∣ ≤ Lip∇χW2((ρ
s′

N)N ;1, ρ
s′).

Therefore

|∇Ψt(xi)−∇ψt(xi)|2 ≤ Lip∇χ2e−2κt

∫ 1

0

∫ 1

0

W2((ρ
s
N)N ;1, ρ

s)W2((ρ
s′

N)N ;1, ρ
s′)dsds′,

and we get that the contribution given by (29) has the form

Lip∇χ2e−2κt

∫ t

0

∫ t

0

W2((ρ
s
N)N ;1, ρ

s)W2((ρ
s′

N)N ;1, ρ
s′)dsds′,

Therefore, we get

W2((ρ
t
N)N ;1, ρ

t)2 ≤ 4

N

∫ t

0

sup
(x,v),(x′,v′)∈supp(ρt)

|γ(x− x′, v − v′)|2e
∫ t

s
L(u)duds

+

∫ t

0

e
∫ t

s
L(u)du

∫ s

0

ds′
∫ s

0

ds′′W2((ρ
s′

N)N ;1, ρ
s′)W2(ρ

s′′

N )N ;1, ρ
s′′)ds

:=
C(t)

N
+ η Lip∇χ2

∫ t

0

e−2κse
∫ t

s
¯̄L(u)duds×∫ s

0

ds′
∫ s

0

ds′′W2((ρ
s′

N)N ;1, ρ
s′)W2(ρ

s′′

N )N ;1, ρ
s′′)

≤
sups≤tC(s)

N
eη Lip∇χ2

∫ t

0
e
s sup
u≤s

L̄(u)
s2

2 ds :=
α(t)2

N
(30)

by the same Grönwall type argument than in the proof of Proposition 5.3 in Section 5.
Wwe get the final result of this section.
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Proposition 6.1.

W2((ρ
t
N)N ;1, ρ

t)2 ≤ α(t)2

N
.

Out of α, β, defined in (27)-(30) we define

(31) τ(t) = α(t)2 + β(t)2.

.

Estimating τ(t).
By the same type of arguments than in the proof of [32, Corollary 2.6 ] one can easily

estimate τ(t) by using the estimates of Φt
N established in Proposition 8.2 and Theorem

8.3, on the support of ρtN given by Theorem 9.1 and the support of ρt in Theorem 9.1.
We omit the details here.
. . .
We get. for some time independent constant C, depending explicitly on and only on

Lip(γ,Lip(χ),Lip(∇χ) and |supp(ρin)|,

(32) τ(t) ≤ ee
Ct

.

7. Hydrodynamic limit

x-special/nautilus-clipboard copy file:///home/paulth/T The hydrodynamic limit of
Cucker-Smale models has provided up to now a large litterature, whose exhaustive
quotation is beyond the scope of the present paper. We refer to [6] and the large bibli-
ography therein. In [6], the corresponding Euler equation is derived for Cucker-Smale
systems with friction, using the empirical measures formalism and in a modulated
energy topology.

Our approach and results are different: we consider generalizations of frictionless
Cucker-Smale models, coupled to chemotaxis through a diffusive interaction, for large
numbers N of particles and we provide explicit rates of convergences in the quadratic
Wasserstein metric towards Euler type equations.

Our result happens to be a simple corollary of our main result Theorem 2.1 in the
case where ρin is monkinetic, i.e.

ρin(x, v) = µin(x)δ(v − uin(x))

thanks to the following result: the monokinetic form is preserved by the Valsov equation
(13) and the solution is furnished by the solution of a Euler type equation..
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Theorem 7.1. Let µt, ut, ψt solves the following system
∂tµ

t +∇x(u
tµt) = 0

∂t(µ
tut) +∇(µt(ut)⊗2) = µt

∫
γ(· − y, ut(·)− ut(y))µt(y)dy +∇ψt + F

∂sψ
s(z) = D∆zψ − κψ + χ ∗ µs, s ∈ [0, t],

(µ0, u0, ψ0) = (µin, uin, ψin) ∈ Hs, s > d
2 + 1.

where µt, ut ∈ C([0, t];Hs) ∩ C1([0, T ];Hs−1), ψt ∈ C([0, t];Hs) ∩ C1([0, T ];Hs−2) ∩
L2(0, T ;Hs+1) 3.

Then ρt(x, v) := µt(x)δ(v − ut(x)) solves the following system
∂tρ

t + v · ∇xρ
t = ∇v(ν(t, x, v)ρt),

ν(t, x, v) = γ(x, v) ∗ ρt + η∇xψ
t(x) + Fext(x),

∂sψ
s(z) = D∆zψ − κψ + g(z, ρs), ψ0 = ψin

ρ0(x, v) = µin(x)δ(v − uin(x)).

Proof. x-special/nautilus-clipboard copy file:///home/paulth/TWithout the chemical
density ψt, the derivation of (33) out of (4.5) is standard, see e.g. [6, Section 1.2]. The
addition of the term ηΨ is a straightforward generalization. �

8. Estimates on the solution of the particle system (3,4,5,6)

Global existence and uniqueness for the system (P ) has been proved when γ is exactly
the Cucker-Smale field in [12]. It is straightforward to adapt the proofs to the case of
a general γ satisfying the hypothesis of the present paper. This situation is anyway
fully included in [31, Theorem 6] and we have the following result.

Theorem 8.1. Let Lip(γ),Lip(∇χ <∞ and let Z in ∈ R2dN . Then, for any N ∈ N,the
Cauchy problem

(P )



ẋi = vi, v̇i = Fi(t,X(t), V (t)), (X(0), V (0)) = Z(0) = Z in ∈ R2dN

Fi(t, Y,W ) = 1
N

N∑
j=1

γ(wi − wj, yi − yj) + η∇zϕ
t(z)|z=yi + Fext(yi),

∂sϕ
s(z) = D∆zϕ− κϕ+ f(z,X(s)), s ∈ [0, t],

f(z,X) = 1
N

N∑
j=1

χ(z − xj).

has a unique global solution in C0(R,R2dN).

Estimates on the solution of (P ) can be easily obtained by the same kind of proof
that in [32, Appendix A]. We get the following result.

3x-special/nautilus-clipboard copy file:///home/paulth/TWe suppose this regularity because it is somehow standard for mixed hyperbolic-

parabolic systems (see [29, Theorem 2.9 p. 34 ], one certainly could low it down.
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Proposition 8.2. Let γ0 = Lip(γ) + Lip(∇χ. Then, for all t ∈ R, the solution of (P )
satisfies

|vi(t)| ≤ max
j=1,...,N

|vj(0)|e2γ0t, i = 1, . . . , N,

||x1(t)| − |xi(0)|| ≤ max
j=1,...,N

|vj(0)|e
2γ0t − 1

2γ0
, i = 1, . . . , N.

Finally, we will need the following estimate on the derivative of the flow generated
by the system (P ).

Theorem 8.3. Let zi(t) = xi(t), vi(t), i = 1, . . . , N be the solution of (P ) with initial
date zi(0) = zini . Then, for all T ∈ R,

sup
t≤T

∣∣∣∣∣∂zi(t)∂zinj

∣∣∣∣∣ ≤ e(γ1+γ2T )t, i, j = 1, . . . , N

with γ1 = Lip(γ), γ2 = Lip(∇χ).
In other words,

sup
t≤T
‖dΦt

N‖∞ ≤ e(γ1+γ2T )t.

Proof. One easily get that, for each i, j = 1, . . . , N ,∣∣∣∣∣∂t∂zi(t)∂zinj

∣∣∣∣∣ ≤ Lip(γ)
1

N

N∑
l=1

∣∣∣∣∣∂zl(t)∂zinj

∣∣∣∣∣+ η Lip(∇χ)
1

N

N∑
l=1

∫ t

0

∣∣∣∣∣∂zl(s)∂zinj

∣∣∣∣∣ ds
Therefore, since the right hand-side of the preceding equality doesn’t depend on i,∣∣∣∣∣∂t

N∑
i=1

∂zi(t)

∂zinj

∣∣∣∣∣ ≤ Lip(γ)
N∑
l=1

∣∣∣∣∣∂zl(t)∂zinj

∣∣∣∣∣+ η Lip(∇χ)

∫ t

0

N∑
l=1

∣∣∣∣∣∂zl(s)∂zinj

∣∣∣∣∣ ds
so that, since

N∑
i=1

∂zi(0)

∂zinj
=

N∑
i=1

∂zini
∂zinj

=
N∑
i=1

δi,j = 1,

∣∣∣∣∣
N∑
i=1

∂zi(t)

∂zinj
− 1

∣∣∣∣∣ ≤ Lip(γ)

∫ t

0

N∑
l=1

∣∣∣∣∣∂zl(u)

∂zinj

∣∣∣∣∣ du+ η Lip(∇χ)

∫ t

0

∫ u

0

N∑
l=1

∣∣∣∣∣∂zl(s)∂zinj

∣∣∣∣∣ dsdu
≤ (Lip(γ) + Tη Lip(∇χ))

∫ t

0

N∑
l=1

∣∣∣∣∣∂zl(u)

∂zinj

∣∣∣∣∣ du
and, by Grönwall Lemma,∣∣∣∣∣∂zi(t)∂zinj

∣∣∣∣∣ ≤
∣∣∣∣∣
N∑
i=1

∂zi(t)

∂zinj

∣∣∣∣∣ ≤ eγ1t+γ2Tt.

�
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9. Existence, uniqueness and Dobrushin stability for the Vlasov
system (13,14,15)

Theorem 9.1. Let Lip(γ),Lip(∇χ < ∞ and let νin ∈ Pc(R2d), the set of compactly
supported probability meausres. Then the Cauchy problem

(V )


∂tρ

t + v · ∇xρ
t = ∇v(ν(t, x, v)ρt), ρ0 = ρin

ν(t, x, v) = γ(x, v) ∗ ρt + η∇xψ
t(x) + Fext(x),

∂sψ
s(z) = D∆zψ − κψ + g(z, ρs), ψ0 = ϕin.

has a unique solution t→
(
ρt

ψt

)
in C0(R,Pc(R2d)×W 1,∞(Rd)).

Moreover, if ρin is supported in the ball B(0, R0) of R2d centered at the origin of
radius R0, ρt is supported in B(0, Rt) with

Rt = e(Lip(γ)+‖Fext‖L∞(Rd)+η Lip(χ))t (R0 + Lip(γ) + ‖Fext‖L∞(Rd) + η Lip(χ)
)
.

Finally, if ρt1, ρ
t
2 are the solutions of (V ) with initial conditions ρin1 , ρ

in
2 , then the

following Dobrushin type estimate holds true

W2(ρ
t
1, ρ

t
2)

2 ≤ 2eΓ(t)W2(ρ
in
1 , ρ

in
2 )2

where Γ(t) is given by (40).

Proof. The proof will follow closely the proof of Theorem 2.3 in [33, Appendix A]. The
main difference is that ν is not only non-local in space as in [33], it is also non-local in
time as ν(t, x, v) involves the whole history of the solution {ρs, 0 ≤ s ≤ t}. In fact

(33) ν(t, z) = v(t, (x, v), [ρin]≤t)

where [ρin]≤t : s ∈ [0, t]→ ρs solution of (V ) with initial data ρin.
We will first need the following Lemma

Lemma 9.2. For any T ≥ 0, there exist L′.M ′, K ′ <∞ such that, for any t, t1, t2 ≤ T ,
z, z′ ∈ R2d and any ρin, ρin1 , ρ

in
2 ∈ P(R2d),,

‖v(t, z, [ρin]≤t)− v(t, z′, [ρin]≤t)‖ ≤ L′‖z − z′‖,
‖ν(t, z)‖ ≤ M ′(1 + ‖z‖)

‖v(t1, z, [ρ
in
1 ]≤t1)− v(t2, z, [ρ

in
2 ]≤t2)‖ ≤ K ′ sup

s≤min(t1,t2)

W1(ρ
s
1, ρ

s
2) + η‖∇χ‖L∞|t1 − t2|.

where ρt1, ρ
t
2 are the solutions of (V ) with initial conditions ρin1 , ρ

in
2 .

Here W1 is the Wasserstein distance of order 1 defined whose definition is recalled
in Definition 4.2:

The proof is immediate with L′ = Lip(γ) + Lip(Fext) + Tη Lip(∇χ), M ′ = Lip(γ) +
‖Fext‖L∞(Rd) + η Lip(χ) + Lip(∇ϕin) and K ′ = Lip(γ) + η Lip(χ).

Let us fix T > 0. For k ∈ N we define τk = T2−k.
Let ρtk be defined by ρt=0

k = ρin and, for l = 0, . . . , 2k − 1, u ∈ [0, τk),
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(Vk)


∂uρ

lτk+u
k (x, v) + v · ∇xρ

lτk+u
k (x, v) = ∇v · νk(lτk, x, v)ρlτk+u

k (x, v)

νk(lτk, x, v) = γ(x, v) ∗ ρlτkk + η∇xψk(lτk, x) + Fext(x),

∂sψk(s, z) = D∆zψk − κψk + g(z, ρsk), 0 ≤ s ≤ lτk, ψ
0
k = ϕin.

with

(34) νk(t, z) = v(t, z, [ρin]≤tk )

where [ρin]≤tk : s ∈ [0, t] → ρsk solution of (Vk) with initial data ρin (note that v(·, ·, ·),
defined by (41), is independent of k).

Note that we have obviously the following corollary of Lemma 9.2.

Corollary 9.3. For any T ≥ 0, z, z′ ∈ R2d and k ∈ N, one has, with the same constant
L′.M ′, K ′ than in Lemma 9.2,

‖νk(t, z)− νk(t, z′)‖ ≤ L′‖z − z′‖,
‖νk(t, z)‖ ≤ M ′(1 + ‖z‖),

Moreover, if νk(t, z), ρ
t
k satisfies (Vk) with ρt=0

k = ρin and ν ′k(t, z), ρ
′t
k satisfies (Vk) with

ρt=0
k = ρ′in, then

‖νk(t, z)− ν ′k(t′, z)‖L∞(R;C0(R2d) ≤ K ′ sup
0≤s≤min(t,t′)

W1(ρk(s), ρ
′
k(s)) +K ′′|t− t′|.

We first show that the support of the sequence ρtk is equibounded.
One easily checks that,since ρin is compactly supported, so is ρtk for all k, t by con-

struction. So supp(ρtk) ⊂ B(0, Rt
k) for some Rk(t). One can estimate Rt

k as follows.

supp(ρlτkk ) ⊂ B(0, Rlτk
k ) ⇒ ‖νk(t, z)‖∞ = ‖v(t, z, [ρin]≤tk )‖∞ ≤M ′(1 +Rlτk

k )

⇒ supp(ρlτk+u
k ) ⊂ B(0, Rlτk

k + uM ′(1 +Rlτk
k )), u ∈ [0, τk]

⇒ supp(ρ
(l+1)τk
k ) ⊂ B(0, (1 + τk)R

lτk
k + τkM

′).

Therefore, one can choose Rlτk
k satisfying

Rlτk
k ≤ (1 +M ′τk)R

(l−1)τk
k + τkM

′

≤ (1 +M ′τk)
2R

(l−2)τk
k + τkM

′(1 + (1 +M ′τk))

≤ (1 +M ′τk)
lR0 +M ′(((1 +M ′τk)

l − 1)

≤ (1 +M ′T2−k)2kR0 +M ′((1 +M ′T2−k)2k − 1) ≤ eM
′T (M ′ +R0) := RT .

Here R0 is such that supp(ρ0
k := ρin) ⊂ B(0, R0)

.Hence the sequences (ρtk)k∈N are compactly supported in B(0, RT ) uniformly in k
for all t ∈ [0, T ]. Therefore there are tight for all t ∈ [0, T ]¿ By Prokhorov’s Theorem,
this is equivalent to the compactness of (ρtk)k∈N with respect to the weak topology of
probability measures (i.e., in the duality with Cb(R

2d), the space of bounded continuous
functions). Hence, up to extracting a subsequence that we will omit to mention, ρtk →
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ρt∗ weakly. By Lemma 4.3, this convergence is equivalent to the convergence with
respect to the distance W1, so that we just proved that

W1(ρ
t
k, ρ

t
∗)→ 0 as k →∞ for allt ∈ [0, T ].

By [33, Proposition A.1 2] and the first inequality in Lemma 9.2, we get that, for
l = 0, . . . , 2k − 1, s ∈ [0, τk),

W1(ρ
lτk
k , ρ

lτk+s
k ) ≤ sL′.

Hence, by the triangle inequality,

W1(ρ
t
k, ρ

t′

k ) ≤ L′|t− t′|,∀t, t′ ∈ R.

Therefore, since L′ and ρt=0
k don’ t depend on k, the sequence ρtk is equi-Lipschitz

continuous with respect to W1. This implies, by the triangular inequality again, that,
for all t, t′ ∈ [0, T ], k ∈ N,

W1(ρ
t
∗, ρ

t′

∗ ) ≤ W1(ρ
t
∗, ρ

t
k) +W1(ρ

t
k, ρ

t′

k ) +W1(ρ
t′

k , ρ
t′

∗ )

≤ L′|t− t′|+W1(ρ
t
∗, ρ

t
k) +W1(ρ

t′

k , ρ
t′

∗ )→ L′|t− t′| as k →∞.
Therefore ρt∗ is L′-Lipschitz and, in particular,

ρt∗ ∈ C0([0, T ],Pc(R2d)).

What is left is to prove that ρt∗ solves (V ) and that the solution of (V ) is unique.

To prove that ρt∗ is a solution of (V ), it suffices to prove that

(V )



∫ T
0

∫
R2d(∂tf + v · ∇xf −∇vf · v(t, z, ρ≤t∗ )ρt∗(dZ)dt = 0

v(t, (x, v), ρ≤t∗ ) = γ(x, v) ∗ ρt∗ + η∇xψ
t(x) + Fext(x),

∂sψ
s(z) = D∆zψ − κψ + g(z, ρs∗).

for each f ∈ C∞c ([0, T ]×R2d).
By construction, we have

2k−1∑
l=0

∫ (l+1)τk

lτk

∫
R2d

(∂uf(u, z) + v · ∇xf −∇vf · v(lτk, z, ρ
≤lτk
k )ρuk(dz)du = 0

for every k ∈ N.
The equation

(35)

∫ T

0

∫
R2d

(∂tf + v · ∇xf −∇vf · v(t, z, ρ≤t∗ )ρt∗(dZ)dt = 0

will be proven through the three following limts:

(36) lim
k→∞

∫ T

0

∫
R2d

(∂tf + v · ∇xf)(ρt∗ − ρtk)(dz)dt = 0
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(37) lim
k→∞

2k−1∑
l=0

∫ (l+1)τk

lτk

∫
R2d

∇vf ·
(
v(lτk, z, ρ

≤lτk
k )− v(u, z, ρ≤lτk∗ )

)
ρu∗(dz)du = 0

(38) lim
k→∞

2k−1∑
l=0

∫ (l+1)τk

lτk

∫
R2d

∇vf · v(lτk, z, ρ
≤lτk
∗ ) (ρuk − ρu∗) (dz)du = 0

To prove (36) and (38) we remark that, since f ∈ C∞c ([0, T ]×R2d) and by the Lipschitz
property of v(lτk, z, ρ

≤lτk
∗ ) we have, by the Kantorovich-Rubinstein- Theorem, that the

absolute value of the right hand side of (36) satisfies

| lim
k→∞

∫ T

0

∫
R2d

(∂tf + +v · ∇xf)(ρt∗ − ρtk)(dz)dt|

≤ lim
k→∞

T (Lip(∂tf) + Lip(v · ∇xf)) sup
t≤T

W1(ρ
t
k, ρ

t
∗) = 0,

and the abolute value of the right hand side of (38) satisfies

| lim
k→∞

2k−1∑
l=0

∫ (l+1)τk

lτk

∫
R2d

∇vf · v(lτk, z, ρ
≤lτk
∗ ) (ρuk − ρu∗) (dz)du|

≤ lim
k→∞

T Lip(∇f)|supp(f)|M ′ sup
t≤T

W1(ρ
t
k, ρ

t
∗) = 0,

Let us finally prove (37). By the third inequality in Lemma 9.2 and the L′-Lipschitz
continuity of ρk we get that, for each u ∈ [lτk, (l + 1)τk],∣∣∣v(lτk, z, ρ

≤lτk
k )− v(u, z, ρ≤lτk∗ )

∣∣∣ ≤ K ′ sup
0≤s≤lτk

W1(ρ
lτk
k , ρ

lτk
∗ ) +K ′′

T

2k

so that

lim
k→∞

∣∣∣∣∣2k−1∑
l=0

∫ (l+1)τk
lτk

∫
R2d∇vf ·

(
v(lτk, z, ρ

≤lτk
k )− v(u, z, ρ≤lτk∗ )

)
ρu∗(dz)du

∣∣∣∣∣
lim
k→∞

T‖∇f‖L∞(R2d)

(
sup

0≤t≤T
W1(ρ

t
k, ρ

t
∗) +K ′′ T

2k

)
= 0 .

The proof of the uniqueness of the solution of (V ) is the same as in [33, Section A.2].
We omit it here.

In order to prove the Dobrushin stability result, we take two initial conditions ρinl , l =
1.2.
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By Theorem 4.7, we have that

W2(ρ
t
1, ρ

t
2)

2

≤ e
∫ t

0
L(s)dsW2(ρ

in
1 , ρ

in
2 )2

+

∫ t

0

∫
R2dN

2||v(s, Z, [ρin1 ]≤s)− v(s, Z, [ρin2 ]≤s)|2(ρin2 )⊗N(dX, dV )e
∫ t

s
l(u)duds

≤ e
∫ t

0
L(s)dsW2(ρ

in
1 , ρ

in
1 )2 +

∫ t

0

2‖|v(s, Z, [ρin1 ]≤s)− v(s, Z, [ρin2 ]≤s)‖2
∞e

∫ t

s
l(u)duds

≤ e
∫ t

0
L(s)dsW2(ρ

in
1 , ρ

in
2 )2 + 2

∫ t

0

e
∫ t

s
l(u)du(K ′)2 sup

u≤s
W2(ρ

u
1 , ρ

u
2)2ds

by the third inequality in Lemma 9.2.
Here, by Theorem 4.7 and the first inequality in Lemma 9.2,

L(u) = 2 + 2 min
i=1,2

sup
(x,v)∈supp(ρui )

Lip(v1(u, x, v)) + Lip(v2(u, x, v))

= 2 + 2 min
l=1,2

( sup
i,l=1,...,N

(x,v)∈supp(ρul )

Lip (γ)2
(x,v)) + 2(L′)2(39)

where we denote by Lip(γ)(x,v) the Lipschitz constant of γ at the point (x, v).
Therefore, for any T ≥ 0,

sup
t≤T

W2(ρ
t
1, ρ

t
2)

2

≤ sup
t≤T

e
∫ t

0
L(s)dsW2(ρ

in
1 , ρ

in
2 )2 + 2 sup

t≤T

∫ t

0

e
∫ t

s
l(u)du(K ′)2 sup

u≤s
W2(ρ

u
1 , ρ

u
2)2ds

≤ e
∫ T

0
L(s)dsW2(ρ

in
1 , ρ

in
2 )2 + 2

∫ T

0

e
∫ T

s
l(u)du(K ′)2 sup

u≤s
W2(ρ

u
1 , ρ

u
2)2ds.

By the Grönwall Lemma, we get immediatly

W2(ρ
t
1, ρ

t
2)

2 ≤ eΓ(t)W2(ρ
in
1 , ρ

in
2 )2

with

(40) Γ(t) := t

(
sup
s≤t

L(s) + (K ′)2et sups≤t L(s)

)
Theorem 9.1 is proved. �

10. Existence and uniqueness for the Liouville-Vlasov system
(9,10,11,12)

Theorem 10.1. Let Lip(γ),Lip(∇χ < ∞ and let νin ∈ Pc(R2d), the set of compactly
supported probability meausres. Then, for every N ∈ N, the Cauchy problem
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(LV )



∂tρ
t
N + V · ∇Xρ

t
N =

N∑
i=1

∇vi ·Giρ
t
N , ρ

o
N = (ρin)⊗N

Gi(t, Y,W ) = 1
N

N∑
j=1

γ(wi − wj, yi − yj) + η∇zΨ
t(z)|z=yi + Fext(yi),

∂sΨ
s(z) = D∆zΨ− κΨ + g(z, ρsN ;1), s ∈ [0, t], Ψ0 = ϕin

g(z, ρsN ;1) =
∫
R2d χ(z − x)ρsN ;1(x, v)dxdv

has a unique solution t→
(
ρtN
Ψt

)
in C0(R,Pc(R2dN)×W 1,∞(Rd)).

Moreover, if (ρin)⊗N is supported in the ball B(0, R0) of R2dN centered at the origin
of radius R0, ρtN is supported in B(0, Rt) with

Rt = e(Lip(γ)+‖Fext‖L∞(Rd)+η Lip(χ))t (R0 + Lip(γ) + ‖Fext‖L∞(Rd) + η Lip(χ)
)
.

Proof. The proof of Theorem 10.1 is easily attainable by a straightforward modification
of the one of Theorem 9.1. Let su define the vector G with components Gi, i = 1, . . . , N .
This time, G has the form

(41) G(t, Z) = Γ(t, Z, ([(ρin)⊗N ]≤t)N ;1) ∈ RN

where [(ρin)⊗N ]≤t : s ∈ [0, t]→ ρs solution of (LV ) with initial data (ρin)⊗N .
One easily check that Lemme 9.2 still holds true for Γ with the same constants

L′,M ′, K ′.

Lemma 10.2. For any T ≥ 0, there exist L′.M ′, K ′ <∞ such that, for any t, t1, t2 ≤
T , z, z′ ∈ R2d and any ρin, ρin1 , ρ

in
2 ∈ P(R2d),,

‖Γ(t, Z, ([(ρin)⊗N ]≤t)N ;1)− Γ(t, Z ′, ([(ρin)⊗N ]≤t)N ;1)‖ ≤ L′‖Z − Z ′‖, 2

‖Γ(t, Z, ([(ρin)⊗N ]≤t)N ;1)‖ ≤ M ′(1 + ‖Z‖)
‖Γ(t, Z, ([(ρin1 )⊗N ]≤t)N ;1)− Γ(t, Z, ([(ρin2 )⊗N ]≤t)N ;1)‖ ≤ K ′ sup

s≤min(t1,t2)

W1(ρ
s
1N , ρ

s
2N)

+η‖∇χ‖L∞|t1 − t2|.

where ρt1N , ρ
t
2N are the solutions of (LV ) with initial conditions (ρin1 )⊗N , (ρin2 )⊗N .

Here W1 is the Wasserstein distance of order 1 defined in Definition 4.2.

For T > 0, k ∈ N we define τk = T2−k and, with a slight abuse of notation, ρtk by
ρt=0
k = (ρin)⊗N and, for l = 0, . . . , 2k − 1, u ∈ [0, τk) (remember Z := (X, V ) ∈ R2dN),
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(LVk)



∂uρ
lτk+u
k (Z) + V · ∇Xρ

lτk+u
k (Z) = ∇V · (Γk(t, Z, ([(ρin)×N ]

≤t)N :1

k )ρlτk+u
k (Z)

Γk
i (t, (Y,W ), ([(ρin)×N ]

≤t)N :1

k ) = 1
N

N∑
j=1

γ(wi − wj, yi − yj) + η∇zΨ
t(z)|z=yi + Fext(yi),

∂sΨ
s(z) = D∆zΨ− κΨ + g(z, (ρsk)N ;1), s ∈ [0, t],

where [ρin]≤tk : s ∈ [0, t]→ ρsk solution of (Vk) with initial data ρin.
As before, Γk satisfies the same estimates than Γ and we have the following result.

Corollary 10.3. For any T ≥ 0, k = 1, . . . , N , t, t1, t2 ≤ T , Z,Z ′ ∈ R2dN and
ρin, ρin1 , ρ

in
2 ∈ P(R2d),,

‖Γk(t, Z, ([(ρin)×N ]
≤t)N :1

k )− Γk(t, Z ′, ([(ρin)×N ]
≤t)N :1

k )‖ ≤ L′‖Z − Z ′‖, 2

‖Γk(t, Z, ([(ρin)×N ]
≤t)N :1

k )‖ ≤ M ′(1 + ‖Z‖)
‖Γk(t, Z, ([(ρin1 )×N ]

≤t)N :1

k )− Γk(t, Z, ([(ρin2 )×N ]
≤t)N :1

k )‖ ≤ K ′ sup
s≤min(t1,t2)

W1(ρ
s
1k, ρ

s
2k)

+η‖∇χ‖L∞|t1 − t2|.
where ρt1k, ρ

t
2k are the solutions of (LVk) with initial conditions (ρin1 )⊗N , (ρin2 )⊗N .

At this point, we remark that the part of the proof of Theorem 9.1 uses only the
content of Corollary 9.3. Since Corollary 10.3 holds true with the same constants
L′,M ′, K ′, we conclude that the end of the proof of Theorem 10.1 is te same, modulo
a straightforward adaptation, as the one of Theorem 9.1. �

Appendix A. Proof of Theorem 4.7

We will denoteX = (x1, . . . , xN), V = (v1, . . . , vN), Y = (y1, . . . , yN),Ξ = (ξ1, . . . , ξN),
all of them belonging to R2dN .

Let πin be an optimal coupling for ρin1 , ρ
in
2 .

Obviously πinN := (πin)⊗N is a coupling for (ρin1 )⊗N , (ρin2 )⊗N .
The following first Lemma is equivalent to [32, Lemma 3.1]. It consists in evolving

a πinN by the two dynamics of ρti, i = 1, 2. The proof is very similar to the one of [32,
Lemma 3.1], we omit it here.

Lemma A.1. Let πtN be the unique (measure) solution to (19).
Then, for all t ∈ R, πtN is a coupling between ρt1 and ρt2.

Proof. One easily check that the two marginal of πtN satisfy the two equations (18) when
πtN solves (19). Therefore, the Lemma holds true by unicity of these solutions. �

By a slight modification of the proof of [32, Lemma 3.2] we arrive easily to the
following.
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Lemma A.2. Let

DN(t) :=
1

N

∫
((X − Y )2 + (V − Ξ)2)dπtN .

Then

dDN

dt
≤ L(t)DN +

1

N

∫
]bR2dN

|v1(t,X, V )− v2(t,X, V )|2ρt1(dX, dV ).

where

L(t) = 2(1 + Lip(v1) + Lip(v2))

Proof. As already mentioned, the proof is very similar to the one of [32, Lemma 3.2].
Plugging into the definition of DN(t) the equation (19) satisfied by πtN , integrating by
part and 2U ·V ≤ U 2 +V 2,∀ U, V ∈ R2d (see the proof of [32, Lemma 3.2] for details),
we get

dDN

dt
≤ 1

N

∫
R4dN

(
2(|X − Y |2 + |V − Ξ|2) 1

N

N∑
j=1∫

+ |v1(t,X, V )− v2(t, Y,Ξ)|2
)
πtN(dX, dV, dY, dΞ)

≤ 2DN(t) +
2

N

∫
R4dN

|v1(t,X, V )− v1(t, Y,Ξ)|2πtN(dX, dV, dY, dΞ)

+
2

N

∫
R4dN

|v1(t,X, V )− v2(t,X, V )|2πtN(dX, dV, dY, dΞ)

≤ L(t)DN +
2

N

∫
]bR2dN

|v1(t,X, V )− v2(t,X, V )|2ρt1(dX, dV ).

�

Therefore, by Grönwall Lemma,

DN(t) ≤ e
∫ t

0
L(s)dsDN(0)

+

∫ t

0

∫
R2dN

|v1(s,X, V )− v2(s,X, V )|(ρin2 )⊗N(dX, dV )e
∫ t

s
l(u)duds(42)

We now remark that, since both πinN and v1,v2 are invariant by permutations of the
variables (xj, vj), j = 1, . . . , N , so is πtN for all t ∈ R. This implies that, in fact,

DN(t) =

∫
R2d

(|x− v|2 + |y − ξ|2)dπtN :1,

where πtN :1 is the measure on R2d×R2d defined, for every test function ϕ(x, v; y, ξ), by∫
R2dN×R2dN

ϕπN(dX, dV ; dY dΞ) =

∫
R2d×R2d

ϕ(x, v; y, ξ)πtN :1(dx, dv, ddy, dξ).



30 R. NATALINI AND T. PAUL

Moreover, straightforward computation (see [32, Lemma 3.4] shows that (πtN :i is a
coupling between (ρt1)N :1 and (ρt2)N :1. Consequently, one has

W2((ρ
t
1)N :1, (ρ

t
2)N :1) ≤

∫
R2d

(|x− v|2 + |y − ξ|2)dπtN :1 = DN(t)

and the conclusion follows by (42).
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[1] L. Ambrosio, N.Gigli, G. Savaré, Gradient Flows in Metric Spaces and in the Space of Probability Measures, Second Edition, Birlhäuser
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[39] T. Vicsek, A. Cziròk, E. Ben-Jacob, I. Cohen and O. Shochet, Novel Type of Phase Transition in a System of Self-Driven Particles, Phys

Rev Lett, 75 (1995), 1226–1229.
[40] T. Vicsek and A. Zafeiris, Collective motion, Physics Reports, 517 (2012), 71–140.

[41] C. Villani: Topics in Optimal Transportation, Amer. Math. Soc., Providence (RI), 2003.
[42] C. Villani: Optimal Transport. Old and New, Springer-Verlag, Berlin, Heidelberg, 2009.

(R.N) IAC, Via dei Taurini, 19, 00185 Roma RM Italy

Email address: roberto.natalini@cnr.it
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