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Abstract—In more and more application areas, we are witness-
ing the emergence of complex workflows that combine computing,
analytics and learning. They often require a hybrid execution
infrastructure with IoT devices interconnected to cloud/HPC
systems (aka Computing Continuum). Such workflows are subject
to complex constraints and requirements in terms of perfor-
mance, resource usage, energy consumption and financial costs.
This makes it challenging to optimize their configuration and
deployment.

We propose a methodology to support the optimization of real-
life applications on the Edge-to-Cloud Continuum. We implement
it as an extension of E2Clab, a previously proposed framework
supporting the complete experimental cycle across the Edge-to-
Cloud Continuum. Our approach relies on a rigorous analysis
of possible configurations in a controlled testbed environment
to understand their behaviour and related performance trade-
offs. We illustrate our methodology by optimizing Pl@ntNet,
a world-wide plant identification application. Our methodology
can be generalized to other applications in the Edge-to-Cloud
Continuum.

Index Terms—Reproducibility, Methodology, Computing Con-
tinuum, Optimization.

I. INTRODUCTION

The continuous increase of IoT devices and captured data
requires rethinking where to process data. Instead of the
traditional data center compute model, one main approach
used in big data is to leverage compute resources distributed
at multiple processing points in the system – from endpoint
devices at the edge of the network to data centers or HPC
systems at its core. This distributed infrastructure, referred
to as the Computing Continuum [1] (or Digital Continuum),
combines heterogeneous computing resources that generate
and process data across geographically distributed Edge, Fog,
and Cloud/HPC infrastructures.

Real-world applications deployed on such hybrid infrastruc-
ture (e.g., smart factory [2], autonomous vehicles [3], among
others) typically need to comply with many constraints related
to resource consumption (e.g., GPU, CPU, memory, storage
and bandwidth capacities), software components composing
the application and requirements such as QoS, security, and
privacy [4]. Furthermore, optimizing application workflows
on distributed and heterogeneous resources (i.e., minimizing
processing latency, energy consumption, financial costs, etc.)
is challenging. The parameter settings of the applications

and the underlying infrastructure result in a complex multi-
infrastructure configuration search space [5].

The intricacies of these configurations require, prior to
production-level deployment, analysis in a controlled testbed
environment in order to understand their performance trade-
offs (i.e., latency and energy consumption, throughput and
resource usage, cost and service availability, etc.) [6], [7].

Let us illustrate this problem with Pl@ntNet [8], a large-
scale participatory application for botanical data and AI-based
plant identification. Pl@ntNet’s main feature is a mobile app
that allows smartphone users to identify plants from photos
and share their observations (Figure 1). It has more than
10 million users all around the world and processes about
400K plant images per day. One main challenge faced by
Pl@ntNet engineers is to anticipate the necessary evolution of
the infrastructure to pass the upcoming spring peak (Figure 2)
and adapt the system configuration to some expected evolution
of application usage (e.g., an increase of its number of users).

There are simulation and emulation tools for the Cloud, Fog,
Edge, Fog-to-Cloud, Edge-to-Fog [9]–[12]. However, there is
no solution for large-scale deployment and evaluation of real-
life applications on testbeds that cover the entire Computing
Continuum as a whole and guide application optimization
(i.e., minimizing costs, latency, resource consumption, among
others) of the entire application workflow.

In this paper, we propose a methodology to support the
optimization of real-life applications on the Edge-to-Cloud
Continuum. This methodology is useful to help decide on ap-
plication configurations to optimize relevant metrics (e.g., per-
formance, resource usage, energy consumption, etc.) by means
of computationally tractable optimization techniques [13]. It
eases the configuration of the system components distributed
on Edge, Fog, and Cloud infrastructures as well as the decision
where to execute the application workflow components to
minimize communication costs and end-to-end latency.

We implemented this methodology as an extension of the
E2Clab [14] framework for automatic application deployment
and reproducible experimentation. This paper has the follow-
ing main contributions:

1) A methodology to optimize the performance of real-
life applications on the Computing Continuum, lever-



Fig. 1: The Pl@ntNet application.

aging computationally tractable optimization techniques
(Section III).

2) An implementation of this optimization methodology
as an extension of the E2Clab framework for repro-
ducible analysis of applications on the Edge-to-Cloud
continuum. For this purpose, we enhanced E2Clab with
an optimization layer. To the best of our knowledge,
this enhanced version of E2Clab is the first framework
to support the complete deployment and analysis cycle
of a complex workflow executed on the Computing
Continuum (Section III-D).

3) A large scale experimental validation of the proposed
approach with the Pl@ntNet application on 42 nodes
of the Grid’5000 testbed [15]. Our approach helps op-
timizing Pl@ntNet software configurations across the
continuum to minimize user response time (Section IV).

II. BACKGROUND

Application workflows that need to be deployed across
Edge-to-Cloud infrastructures usually have to configure their
software components while considering various infrastructure
constraints. For instance, in the Cloud, configurations can
include compute and storage configurations, the number of
topics in a data ingestion system, reserved memory in data
processing frameworks, the inter-cloud network latency, etc.
In the Fog, they can include the streaming window size
on gateways, the network latency and bandwidth between
Fog devices, among others. In the Edge we can refer to
device capabilities, the frequency of data emission, the power
consumption, among others. These environment settings and
configuration parameters are extremely vast and their combi-
nation of possibilities virtually unlimited. Hence, the process
of searching the ideal deployment and configuration of those
real-life applications is challenging given the search space
complexity: bad choices may result in increased financial
expenses during deployment and production phases, decreased
processing efficiency and poor user experience.

Fig. 2: Exponential growth of new users every spring (peaks
in May-June).

A. A real-life application: Pl@ntNet
Pl@ntNet is a participatory application and platform ded-

icated to the production of botanical data and plant identi-
fication. Currently, the data consists of +35K plant species
collected from more than 200 countries. As illustrated in Fig-
ure 1, using the Pl@ntNet mobile application, users (located
in the Edge) may identify plants from pictures taken by their
phones. Before sending these pictures, some preprocessing is
done to reduce the image size.

Then, the Pl@ntNet Identification Engine (located in the
Cloud), subject to analysis in this work, is responsible for
the automatic identification of species through Deep Learn-
ing. In a nutshell, the Identification Engine performs two
main activities: (1) Species prediction: refers to the feature
extraction and classification of user images; and (2) Similarity
Search: searches for the images of the botanical databases
that are the most similar to the user images. At the end of the
processing, the Identification Engine returns the ranked list of
most probable species with their respective, most similar plant
pictures, allowing interactive validation by the users.

The processing performance of the Identification Engine
strongly depends on the thread pool size configured to
process the various tasks involved during the identification
of users images. Table I presents the execution order of all
tasks, the thread pool they belong to, and in which hardware
they take place. Table II describes the role of each thread
pool and an example of configuration currently used in the
Pl@ntNet production servers. This configuration was defined
by Pl@ntNet engineers based on their best practical experience
with the Pl@ntNet system considering mainly the following:
(a) for thread pools using CPU: a machine with 40 CPU cores
available; and (b) for the GPU thread pool: the maximum
number of threads which fit in GPU memory.

The main performance metric for this application is the user
response time. A preliminary analysis [16] showed that to
achieve a 4 seconds response time (the maximum tolerated
by users) the thread pool and hardware configurations can
not serve more than 120 simultaneous requests (3.86±0.13),
as shown in Figure 3. In this context, meaningful questions
that arise are: Is there a better thread pool allocation that
minimizes the user response time? How many more users can
the system serve if we find a better thread pool configuration?



TABLE I: Identification processing steps.

Task Description Thread
pool Hardware

pre-process Decoding the query parame-
ters. HTTP CPU

wait-download Wait for an available download
thread.

HTTP,
Download CPU

download Download images. Download CPU

wait-extract Wait for an available extractor
thread.

HTTP,
Extract

CPU,
GPU

extract DNN inference of the image. Extract GPU

process
Process classification and sim-
ilarity search output at query
level.

HTTP CPU

wait-simsearch Wait for an available similarity
search thread.

HTTP,
Simsearch CPU

simsearch Search the most similar images
in our database. Simsearch CPU

post-process Check processed query results
and format the response. HTTP CPU

TABLE II: Thread pool configuration of Pl@ntNet Engine.

Thread pool Size
(# threads)

Description Hardware

HTTP 40 # simultaneous requests being
processed. CPU

Download 40 # simultaneous images being
downloaded. CPU

Extract 7 # simultaneous inferences in a
single GPU. GPU

Simsearch 40 # simultaneous similarity search. CPU

The answers to those questions and more analytical insights
will be presented in Section IV through the use of our
proposed methodology and its implementation in the E2Clab
framework.

Let us highlight that Pl@ntNet is representative of other
applications in the context of the Computing Continuum. As
illustrated in Figure 1, it consists of many geographically
distributed devices (over 10 million users) that collect and
send data (about 400K plant images per day), and perform
preprocessing at the Edge, followed by extensive processing
(e.g., species prediction, similarity search, etc.) in centralized
Cloud/HPC infrastructures.

B. Formalizing deployment optimization on the Edge-to-Cloud
Continuum

We describe our optimization problem by defining: the
optimization variables, the objective function, and the con-
straints (Equation 1).

min/max
x

fm(x), m = 1, 2, . . . ,M

subject to gj(x) ≤ 0, j = 1, 2, . . . , J Inequality constraints.

hk(x) = 0, k = 1, 2, . . . , K Equality constraints.

x
L
i ≤ xi ≤ x

U
i , i = 1, 2, . . . , I Bounds on variables.

(1)

Typically, Edge-to-Cloud deployment optimization prob-
lems aim at optimizing metrics [6], [17] related to: perfor-
mance (e.g., execution time, latency, and throughput), resource
usage (e.g., GPU, CPU, memory, storage, and network), en-
ergy consumption, financial costs, and quality attributes (e.g.,
reliability, security, and privacy). Therefore, regarding the
formulation of an optimization problem and its mathematical
representation in Equation 1, the optimization variables x
refer to the variables associated with the optimization problem

Fig. 3: Pl@ntNet Engine: user response time.

Fig. 4: Edge-to-Cloud Continuum optimization problems.

(e.g., storage capacity of Edge devices, or number of cores on
Fog nodes).

The objective function refers to the optimization objective,
such as minimizing or maximizing a given metric or set of
metrics (e.g., performance, energy consumption). The objec-
tive function maps the values of the optimization variables onto
real numbers and may be classified as single-objective (such
as minimizing Edge-to-Cloud processing latency) or multi-
objective (e.g., minimizing energy consumption of Fog nodes
and maximize throughput).

Finally, the constraints refer to requirements that a given
solution must satisfy. Constraints may refer to a specific
optimization variable (e.g., number of cores on Fog nodes
between 10 and 20) and the metrics to be optimized by the
objective function (e.g., the maximum response time must be
less than 3 seconds).

Figure 4 depicts some examples of optimization problems.
Left, one would like to answer the question: how to configure
the system components to minimize processing latency? To
reduce complexity, the optimization problem is divided into
three sub-problems each one with the objective of minimizing
the task processing time on the Edge, Fog, and Cloud infras-
tructures, under specific constraints. The right-hand example
aims at answering the question: where should the workflow
components be executed to minimize communication costs
and end-to-end latency? This translates into a single multi-
objective optimization problem (minimizing communication
costs and end-to-end latency), as opposed to the previous
example (several single-objective optimization problems).



Fig. 5: Our proposed optimization methodology.

In order to model and solve such optimization problems, one
may find multiple methods and packages in the literature. For
instance, packages and libraries such as Scikit-Optimize [18],
Scikit-Learn [19], Surrogate Modeling Toolbox (SMT) [20],
DeepHyper [21], etc., may be used to build surrogate models
and then use those model to explore the search space of the
optimization problem.

C. E2Clab: reproducible Edge-to-Cloud experiments

E2Clab [14] is a framework that implements a rigor-
ous methodology for designing experiments with real-world
workloads on the Edge-to-Cloud Computing Continuum. This
methodology, illustrated in Figure 6, provides guidelines to
move from real-world use cases to the design of relevant
testbed setups for experiments enabling researchers to under-
stand performance and to support the reproducibility of the
experiments.

E2Clab architecture is described in Figure 7. The idea is
that experiments can accurately reproduce relevant behaviors
of a given application workflow on representative settings of
the physical infrastructure underlying this application.

The key features provided by E2Clab are: (1) reproducible
experiments; (2) the mapping of applications parts executed
across the computing continuum with the physical testbed; (3)
the support for experiment variation and transparent scaling of
the scenario; (4) network emulation to define Edge-to-Cloud
communication constraints; and (5) experiment deployment,
monitoring and backup of results. E2Clab is open source and
is available at [22].

III. A METHODOLOGY FOR OPTIMIZING THE
PERFORMANCE OF APPLICATIONS ON THE

EDGE-TO-CLOUD CONTINUUM

Our optimization methodology supports reproducible par-
allel optimization of application workflows on large-scale
testbeds. It consists of three main phases illustrated in Figure 5.

A. Phase I: Initialization

This phase, depicted at the top of Figure 5, consists in
defining the optimization problem. The user must specify: the
optimization variables that compose the search space to be
explored (e.g., GPUs used for processing, Fog nodes in the
scenario, network bandwidth, etc.); the objective (e.g., mini-
mize end-to-end latency, maximize Fog gateway throughput,
etc.); and constraints (e.g. the upper and lower bounds of
optimization variables, budget, response time latency, etc.).

One may focus the optimization on: (1) specific parts of the
infrastructure (e.g., only on geographically distributed Edge
sites, or only on Fog-to-Cloud resources) by defining multiple,
per infrastructure, optimization problems, as presented in the
left side of Figure 4. This approach reduces the search space
complexity (in case of use cases with large search spaces) and
hence the computing time; (2) or the whole Edge-to-Cloud
infrastructure as a single optimization problem, as presented
in the right side of Figure 4.

B. Phase II: Evaluation

This phase aims at defining the mathematical methods and
optimization techniques used in the optimization cycle (pre-
sented in the middle of Figure 5) to explore the search space.
Such optimization cycle consists in: (1) parallel deployment
of the application workflow in a large-scale testbed; (2) their
simultaneous execution; (3) asynchronous model optimization;
and (4) reconfiguration of the application workflow for a new
evaluation.

This cycle continues until model convergence. Depending
on the run time characteristics of the application workflows,
their evaluations may be performed differently.

1) Long-time Running Applications: refer to experiments or
simulations for which the evaluation of a single point in the
search space requires a lot of time to complete (e.g., hours,
or even days). Furthermore, since application workflows in
the context of the Computing Continuum typically consist
of cross-infrastructure parameter configurations resulting in
a myriad of configuration possibilities, their optimization
problem presents a complex and large search space.

For those long-time running applications, a variety of
Bayesian Optimization [23] methods (e.g., surrogate models
as: Gaussian process (Kriging) [24], Decision Trees [25],
Random Forest [26], Gradient Boosting Regression Trees [27],
Support Vector Machine [28], Polynomial Regression [29],
among others) may be applied as candidates to explore the
search space. Their generation is described below.

Surrogate Model Building: this consists of three steps:
(a) a few sample points are generated, respecting the upper
and lower limits of each optimization variable that composes
the search space. Sampling methods such as Latin Hypercube
Sample [30] or Low Discrepancy Sample [31] may be applied;
(b) then, from the generated sample, parallel experiments (de-
ployment of application workflows) are run for each parameter
set; (c) lastly, the surrogate model is trained on the dataset
generated in the previous step.

Model Retraining & Application Optimization: once the
surrogate model is trained on the sample points previously



Fig. 6: Extended E2Clab experimental methodology.

generated, it is used to explore the optimization search space
by deciding the subsequent application configurations to be
evaluated in parallel. As soon as the evaluations finish, the
model is retrained and optimized asynchronously, then new
points are suggested to be evaluated.

2) Short-time Running Applications: refer to the case when
a few minutes are enough to evaluate a single point in
the search space. Such applications also follow the opti-
mization cycle previously presented. Besides, they may also
use surrogate models to explore the search space. However,
differently from Long-time Running Use Cases, they can use
other optimization techniques such as evolutionary algorithms
and swarm intelligence based algorithms (e.g., Genetic Al-
gorithm [32], Differential Evolution [33], Simulated Anneal-
ing [34], Particle Swarm Optimization [35], etc.).

C. Phase III: Finalization

For reproducibility purposes, this last phase illustrated at
the bottom of Figure 5 provides a summary of computa-
tions. Therefore, it provides: the definition of the optimization
problem (optimization variables, objective, and constraints);
the sample selection method; the surrogate models or search
algorithms with their hyperparameters used to explore the
search space of the optimization problem; and finally the best
application configuration found. Providing all this information
at the end of computations allows other researches to repro-
duce the research results.

D. Implementation as an extension of the E2Clab framework

To validate our optimization approach, we enhanced the
E2Clab framework for reproducible experimentation across
the Edge-to-Cloud Continuum. We extended [22] the E2Clab

Fig. 7: Extended E2Clab architecture.

framework [36] with support for the performance optimization
of application workflows. Figure 6 shows a holistic view of our
enhanced methodology containing the extensions highlighted
in dashed lines colored in red. As one may note, we have
added a new sub-process named Define Optimization (detailed
in Figure 5) inside the Define the Experimental Environment
process.

Figure 7 illustrates the E2Clab architecture. We designed
a new manager named Optimization Manager (which im-
plements the optimization approach in Figure 5). Its role is
to: interpret the user-defined optimization setup defined in
the optimizer conf configuration file and then automate the
optimization cycle (1. parallel deployment of the application
workflow in a large-scale testbed; 2. simultaneous application
workflow execution; 3. asynchronous model optimization; and
4. reconfiguration of the application workflow for a new
evaluation) in order to optimize the application workflow.
Laslty, the Optimization Manager provides a summary of
computations for reproducibility purposes.

The Optimization Manager takes advantage of Ray [37] to
run parallel application workflows on the Grid’5000 large-
scale testbed. Ray Tune [38] provides state of the art search
algorithms; manages model checkpoints and logging; and
methods for analyzing training.

User-defined optimization (i.e., how to setup an optimiza-
tion?): the Optimization Manager offers a class-based API that
allows researchers to setup and control the model training.
Users have to inherit the Optimization class and define in
the run() function (Listing 1 line 5) the optimization config-
uration through several state of the art single-objective and
multi-objective Bayesian Optimization search algorithms (e.g.,
from libraries such as Scikit-Optimize [18], Dragonfly [39],



1 from e2clab.optimizer import Optimization
2
3 class UserDefinedOptimization(Optimization):
4
5 def run(self):
6 algo = SkOptSearch(
7 optimizer=Optimizer(
8 base_estimator=’ET’,
9 n_initial_points=45,

10 initial_point_generator="lhs",
11 acq_func="gp_hedge"))
12 algo = ConcurrencyLimiter(algo,

max_concurrent=2)
13 scheduler = AsyncHyperBandScheduler()
14 objective = tune.run(
15 self.run_objective,
16 metric="user_resp_time",
17 mode="min",
18 name="plantnet_engine",
19 search_alg=algo,
20 scheduler=scheduler,
21 num_samples=10,
22 config={
23 "http": tune.randint(20, 60),
24 "download": tune.randint(20, 60),
25 "simsearch": tune.randint(20, 60),
26 "extrac": tune.randint(3, 9)})
27
28 def run_objective(self, _config):
29 # create an optimization directory
30 self.prepare()
31 # deploy the configs on the testbed
32 self.launch()
33 # backup the optimization computations
34 self.finalize()
35 # report the metric value to Ray Tune
36 tune.report(user_resp_time=user_resp_time)

Listing 1: Example of a user-defined optimization in E2Clab.

Ax [40], HEBO [41], among others). Next, users define in the
run objective() function (Listing 1 line 28) their optimization
logic, which runs in parallel to train the model. To do so, the
Optimization class provides the following three methods:

i) prepare(): for reproducibility of optimization evaluations,
it generates a dedicated optimization directory for each
model evaluation (Listing 1 line 30).

ii) launch(): deploys the application on a large-scale testbed
to perform a model evaluation (Listing 1 line 32). For
reproducibility, deployment-related information are cap-
tured, such as physical machines, network constraints, and
application configurations.

iii) finalize(): for reproducibility purposes, it stores the op-
timization computations for a given model evaluation in
the optimization directory created in the prepare() phase
(Listing 1 line 34). Saved information refers to interme-
diate models throughout training and points evaluated.

Listing 1 shows how one may define an optimization prob-
lem (e.g., Pl@ntNet problem in Eq. 2). A detailed example
may be found on the E2Clab documentation Web page [36].

IV. EXPERIMENTAL VALIDATION

In this section we illustrate our proposed optimization
methodology by showing how it can be used to analyze the
performance of the Pl@ntNet botanical application and to find
its thread pool configurations. The goal of our experiments is
to answer the following research questions:

1) What is the software configuration, for a given hardware
configuration, that minimizes the user response time?

2) How does the number of simultaneous users accessing
the system impact on the user response time?

3) How do the Extraction and Similarity Search thread
pool configurations impact the processing time and user
response time?

The experimental setup is defined as follows:
a) Scenario Configuration: the experiments are carried

out on 42 nodes of the Grid’5000 [15] testbed (clusters
chifflot, chiclet, chetemi, chifflet, and gros). Since the Pl@ntNet
Identification Engine requires GPU, it is deployed on the
chifflot machines (model Dell PowerEdge R740), which are
equipped with Nvidia Tesla V100-PCIE-32GB GPUs, In-
tel Xeon Gold 6126 (Skylake, 2.60GHz, 2 CPUs/node, 12
cores/CPU), 192GB of memory, 480GB SSD, and 25Gbps
Ethernet interface. The clients submitting requests to the
Pl@ntNet Identification Engine are deployed on the chiclet,
chetemi, chifflet, and gros clusters. The network connection is
configured with 10Gb.

b) Workloads: we defined three categories of workloads,
according to the number of simultaneous requests (i.e., 80,
120, and 140) submitted to the Pl@ntNet Identification Engine
during the whole experiment execution.

c) Configuration Parameters: Table II presents the param-
eters used to configure the thread pool size of the Pl@ntNet
Engine. As presented in Equation 2, these parameters refer to
the optimization variables of the optimization problem.

d) Performance Metrics: the metric of interest is the user
response time. In Equation 2, this metric is to be minimized
as the optimization objective. The user response time refers
to the average time that a user waits for the response to a
request. Besides this metric, we also analyze the identification
processing time, which refers to the average time to process
a user request. The identification processing is divided into
multiple tasks running in parallel, as described in Table I.

We compare and analyze the user response time and iden-
tification processing time with respect to two thread pool
configurations: baseline and preliminary optimum. The base-
line refers to the current Pl@ntNet configuration used in
the production servers. This configuration was defined by
Pl@ntNet engineers based on their best practical experience
with the Pl@ntNet system, as explained in Subsection II-A
and presented in Table II.

The preliminary optimum configuration is the one found
using our methodology. We named it preliminary since the
optimization problem may have multiple minima and one may
find other application configurations if a different technique is
used (e.g., Gaussian Process (Kriging) [24], Gradient Boosting
Regression Trees [27], among others). Besides, changes in the
hardware configuration (e.g., size of GPU memory, number of
CPU cores, among others) running the Pl@ntNet application
will require a new search for the thread pool sizes since their
configuration strongly depends on the hardware. In this case,
our optimization methodology should be applied again. In a
subsequent step, we further refine the preliminary optimum



Fig. 8: User response time: baseline vs preliminary.

using sensitivity analysis, to obtain what we call refined
optimum (see Section IV-C).

In order to obtain accurate measurements we run each
experiment (each thread pool configuration) 7 times and each
experiment has a duration of 23 minutes (1380 seconds).
Besides, during the execution of each experiment we collect
the metric values every 10 seconds. Therefore, the user re-
sponse time is presented with the mean and standard deviation
regarding 966 measurements (138 ∗ 7).

We highlight that, since through experiments we identified
variations between measurements, we decided to repeat each
configuration 6 times (7 experiments) to reduce the standard
deviation of measurements. Besides, we run each experiment
for 23 minutes with an interval of metric collection of 10
seconds to also minimize the standard deviation of the metrics
collected. Furthermore, thanks to the repeatability feature
provided in E2Clab, one may repeat those experiments easily
by issuing the following command: e2clab optimize –repeat 6
–duration 1380 path/to/backup/experiments/ path/to/artifacts/.

A. What is the software configuration that minimizes the user
response time?

The optimization problem to be solved can be stated as
follows:

Find (http, download, simsearch, extract), in order to

Minimize UserResponseT ime

Subject to 20 ≤ (http, download, simsearch) ≤ 60, Pool Size.

3 ≤ (extract) ≤ 9, Pool Size.
(2)

The function UserResponseTime is given by the parallel
execution of the Pl@ntNet workflow on the Grid’5000 testbed,
as described in Phase II of our methodology.

In order to define the search space dimensions we run ex-
periments to identify the maximum upper bounds of variables
that do not increase the user response time compared to the
baseline Pl@ntNet configuration. Therefore, the lower and
upper bounds of variables (see Equation 2) are ±50% of the
baseline configuration (recall Table II), respectively.

The workload uses 80 simultaneous requests to the
Pl@ntNet Identification engine. We highlight that this number
has to be bigger than the upper bound of the HTTP thread pool
size since the HTTP pool refers to the simultaneous requests
being processed.

TABLE III: Baseline vs preliminary optimum configurations.

Thread pool baseline preliminary
optimum

HTTP 40 54
Download 40 54
Extract 7 7
Simsearch 40 53
User response time 2.657 (±0.0914) 2.484 (±0.0912)

We leverage Bayesian Optimization since it is typically
used for global optimization of black-box functions that are
expensive to evaluate [42]. Extra Trees regressor is used
as surrogate model [18] to model our expensive function.
This surrogate model is improved by evaluating the User-
ResponseTime function at the next points. The goal is to
find the minimum of UserResponseTime function with as few
evaluations as possible. Listing 1 lines 6 to 11 detail the
search algorithm parameters. The minimization has converged
after 9 evaluations and the results are presented in Table III
(considering a workload of 80 simultaneous requests). As
one may note, the preliminary optimum configuration reduces
the user response time by 7% and can serve 35% more
simultaneous users (54 against 40, see the HTTP thread pool).

From the results, we highlight that thanks to our optimiza-
tion methodology implemented in E2Clab, one may easily
find an optimized application configuration. E2Clab abstracts
all the complexities to: define the whole optimization problem
(recall to Listing 1); deploy the application; run parallel evalu-
ations of the optimization in a large-scale testbed; and collect
all the experiments results. In the next subsections we enhance
our analysis in order to: (a) understand the performance of
both configurations for different workloads; and (b) better
understand the performance results and their correlation with
the resource usage.

B. How does the number of simultaneous users accessing the
system impact on the user response time?

In order to understand the impact of different workloads
on the user response time, we defined three workloads that
represent simultaneous requests submitted to the Pl@ntNet
system. The goal of these experiments is to compare the
performance gains of the preliminary optimum thread pool
configuration (found using our methodology) against the base-
line (current Pl@ntNet configuration). Lastly, we exploit the
maximum number of simultaneous requests that each config-
uration can handle considering the 3-4 seconds user response
time constraint.

As presented in Figure 8, we scale up the workloads as
follows: 80, 120, and 140 simultaneous requests. As one
may note, in Figure 8 the preliminary optimum configuration
outperforms the baseline for all workloads. We highlight
that, the difference between them varied as follows: 6.9%,
2.2%, and 6.7% for 80, 120, and 140 simultaneous requests,
respectively.

The main observation is that the preliminary optimum
configuration (found using our methodology) outperforms the
baseline thanks to a better thread pool allocation that allows



(a) user response time. (b) processing time.

(c) CPU usage. (d) GPU memory usage. (e) system memory usage.

(f) extract pool busy time. (g) simsearch pool busy time.

Fig. 9: Impact of extract thread variability.

the Pl@ntNet system to serve simultaneously 35% more
requests (54 against 40) with a smaller user response time
when compared to the baseline. We also highlight that, thanks
to the transparent scaling feature provided by E2Clab, one
may easily scale up the workloads to analyze their impact on
the application performance.

C. How do the Extraction and Similarity Search thread pool
configurations impact the processing and user response times?

Since the extraction and similarity search tasks are the most
time consuming compared to the remaining ones, we zoom our
analysis on them in an attempt to improve even more the thread
pool configuration and also to identify possible bottlenecks on
the Pl@ntNet identification engine. The experiment aims to
understand how variations in the preliminary optimum thread
pool configuration of the extraction and similarity search tasks
impact the user response time and the processing time of the
identification tasks.

We apply Sensitivity Analysis techniques to explore the im-
pact of such variations. From the existing Sensitivity Analysis
methods we decided to use One-at-a-time (OAT) [43]. OAT

is a simple and common approach that consists in varying a
single parameter at a time to identify the effect on the output.

In our case, the parameters are extract and simsearch thread
pool sizes. We vary the extract pool size in±2 from the current
size (7 threads), while the simsearch in ±3 (current size is
53 and for simplification, we do not present in Figure 10a
the times for 50 and 51 since they are bigger than 52).
These variations result in 10 new thread pool configurations
to be evaluated. Therefore, we take advantage of E2Clab
to automatically run them in a reproducible way, following
E2Clab’s methodology.

Figure 9 shows the impact of extraction threads on: (a)
the user response time and (b) the time to process each task.
Furthermore, we also analyze their impact on resource usage,
such as: (c) CPU usage (d) GPU memory, (e) system memory,
(f) extract pool busy time, and (g) simsearch pool busy time.

In Figure 9a, we observe that the preliminary optimum
configuration with 7 extract threads does not produce the
minimum user response time, since using 6 extract threads
reduces it by 8.5%. Decreasing to 5 threads or increasing it to
8 or 9 threads impacts negatively when compared to 6 threads.
The explanation for this behaviour is given next.



(a) user response time. (b) processing time.

(c) simsearch pool busy time. (d) extract pool busy time.

Fig. 10: Impact of similarity search thread variability.

TABLE IV: Comparison of the three Pl@ntNet configurations.

Thread pool baseline preliminary
optimum

refined
optimum

HTTP 40 54 54
Download 40 54 54
Extract 7 7 6
Simsearch 40 53 53
User response
time

2.657
(±0.0914)

2.484
(±0.0912)

2.476
(±0.0826)

Regarding the processing time (Figure 9b), as expected,
the wait-extract time reduces as we increase the number
of extract threads, while the simsearch task time increases.
This time increase in the simsearch task can be explained
by Figure 9c, since using 8 and 9 extract tasks results in a
CPU usage of 100% during the whole application execution,
so as those tasks compete for processing resources, allocating
more extract threads impacts negatively on the simsearch task
time. As for the remaining sizes, they varied between 85%
and 100%. This behaviour explains the results observed for
the user response time presented in Figure 9a. Furthermore,
differently from the wait-extract time, the extract task time
was not reduced when increasing the extract thread pool size.

By analyzing the impact on the GPU memory usage (Fig-
ure 9d), we observe that it increases as we allocate more
threads to the extract thread pool and it remains constant
during the application execution. The GPU utilization for all
thread pool sizes is between 35% and 60% most of the time,
while the GPU power draw is between 50 Watts and 80
Watts. As the GPU memory usage, the system memory usage
(Figure 9e) of the Docker container running the Pl@ntNet
Engine also increases with the extract thread pool size.

Lastly, the extract thread pool busy time (Figure 9f) is 100%
during the whole application execution for thread pool sizes

Fig. 11: User response time: baseline vs optimums.

of 5, 6, and 7, and between 80% and 100% for sizes of 8 and
9. This explains the higher and lower values, respectively, of
the wait-extract times observed in Figure 9b. For the similarity
search (Figure 9g), the thread pool busy time is between 80%
and 100% for a size of 8 and 9. For the 5, 6, and 7 thread pool
sizes it is 50%, 55%, and 60% busy in average, respectively.
This also explains the higher values of wait-simsearch for sizes
8 and 9 compared to 5, 6, and 7 in Figure 9b.

Following our analysis, Figure 10 shows the impact of the
thread pool size for similarity search on: (a) user response time
and (b) processing time. Besides, in Figure 10c and Figure 10d
we show the thread pool busy time for the similarity search
and extract thread pools, respectively.

In Figure 10a, as one may note, the preliminary optimum
configuration with 53 threads may be increased to 55 threads in
order to reduce by about 4% the user response time. Regarding
the processing time (Figure 10b), the simsearch task time
confirms what was observed with the user response time, that
is, adding more than 55 threads is not worth to decrease the
execution time of the simsearch task.



Figure 10c shows the correlation of the similarity search
pool busy time with the simsearch task time observed in
Figure 10b and explains its variation. Using 52 threads it is
busy between 90% and 100%, while for 53 to 55 it is below
60%, and increases to about 80% with 56 threads. The impact
of the similarity search thread pool variation on extract task
(Figure 10b) can be explained by Figure 10d. Lower times in
wait-extract for sizes 52 and 56 is due to a busy time between
90% and 100%. For sizes from 53 to 55, the busy time is
100%.

Since we observed a lower user response time after analyz-
ing the impact of variations of the extract and simsearch thread
pool configurations on the user response time, we exploit this
configuration (named refined optimum) with all the previously
defined workloads. As presented in Table IV and Figure 11,
we observed even better results for all workloads.

Let us note that for all workloads the refined optimum
presents the best results, outperforming both baseline and pre-
liminary optimum. Compared with the baseline, the difference
between configurations varied with the workloads as follows:
from 6.9% to 7.2%; from 2.2% to 6.3%; and from 6.7% to
9.8% for 80, 120, and 140 simultaneous requests, respectively.

In summary, the analysis presented in this section backed
by our optimisation methodology helped to understand how
variations in the thread pool configuration of the Pl@ntNet
engine impact on the processing times (user response time
and identification processing steps) by correlating them with
the resource usage. Furthermore, this analysis helps to improve
the performance of the application by supporting 35% more
simultaneous users (54 against 40) and presenting a smaller
user response time for different workloads (80, 120, and 140
simultaneous requests) and 30% less GPU memory utilization
(7GB against 10GB), when compared to the baseline.

Let us also highlight that, despite our evaluations focusing
on the Pl@ntNet as a use case, our methodology and its
implementation in E2Clab can be used to analyze other
applications in the context of the Edge-to-Cloud Computing
Continuum (more details in Section V-C).

V. DISCUSSION

The enhanced E2Clab exhibits a series of features that make
it a promising platform for future performance optimization
of applications on the Edge-to-Cloud Continuum through
reproducible experiments. We briefly discuss them here.

A. Reproducible application optimization

Our optimization methodology is aligned with the Open
Science [44] goal to make scientific research processes more
transparent and results more accessible. As presented in Sec-
tion III, it is implemented as an extension of the E2Clab
framework for reproducible experimentation across the Edge-
to-Cloud Continuum. It provides guidelines to systematically
define the whole optimization cycle, such as: (Phase-I) defines
the optimization problem and the application-related parame-
ters to optimize; (Phase-II) defines the sampling methods and
the optimization techniques and hyperparameters; and (Phase-
III) provides access to the optimization results.

The whole optimization cycle is defined through a configu-
ration file (Listing 1). This file was designed to be easy to use
and to understand, and it can be easily adapted to different
optimization problems (find out more in the documentation
Web page [36]). At the end of each optimization cycle,
E2Clab provides an archive of the generated data. Such
archive consists of data from Phases I and II, needed to allow
other researches to reproduce the research results. Regarding
this work, the access to the experimental artifacts; definition
of the experimental environment; and experimental results are
publicly available at [45].

B. Scalable and parallel application optimization on large-
scale testbeds

The proposed optimization methodology enables scalable
(on large-scale testbeds), parallel (through asynchronous
model training) and reproducible (by following a rigorous
experimental methodology) application optimization. This ap-
proach speeds up the search of application parameters thanks
to parallel and asynchronous application deployments on large-
scale testbeds which helps to significantly reduce the appli-
cation optimization time from days to hours compared to a
sequential optimization approach.

The parallel evaluation of the application configuration has
the potential to scale to hundreds of machines in a large-scale
testbed. Therefore, one may compute simultaneously 10, 20, or
even more (depending on the testbed limits and the hardware
requirements of the application) evaluations of the objective
function to speed-up the computations. We plan to explore this
potential in future work.

C. Optimizing other applications
Our approach is generic: the optimization of other ap-

plications may be achieved by describing the application
optimization problem in the optimization configuration file.
It allows one to define the optimization cycle and easily adapt
it to different optimization application-specific problems.

Furthermore, users may easily apply our methodology to
their applications thanks to the Services abstraction provided
by E2Clab. Services represent any system or a group of
systems that provide a specific functionality or action in the
scenario workflow. For instance, such services may refer to
Flink, Spark or Kafka clusters, among others.

In order to support their applications, users have to imple-
ment their User-Defined Services. For this purpose, E2Clab
provides a Service class in which users have to override a
deploy method to define the deployment logic of their services,
such as: the distribution of services to the physical machines;
and to install the required software to run these services. Next,
E2Clab’s Service class provides a method to register the user
services. Lastly, E2Clab managers will be able to deploy each
service on the testbed. Therefore, in the work described in this
paper, we had to implement the Pl@ntNet service.

VI. RELATED WORK

With the popularity of complex application workflows re-
quiring hybrid execution infrastructures, the holistic analy-
sis of such applications combining IoT Edge devices and



Cloud/HPC systems has been a very active field of research
in the last few years.

Existing solutions focus on the simulation and emula-
tion of parts of the Edge-to-Cloud infrastructure. Edge-
CloudSim [11] is an environment for performance evalua-
tion of Edge computing systems that provides simulation for
Edge-based scenarios. Users may run experiments considering
computational and networking resources. EmuFog [12] is
an extensible emulation framework for Fog-based scenarios
that allows the emulation of real applications and workloads.
However, they focus on the Edge and Fog layers separately,
not on the Edge-to-Cloud Continuum as a whole.

In [46], the authors proposed an approach for automated
deployment (using Kubernetes [47]) of Cloud applications
in the Edge-to-Cloud Continuum. This approach explores
methods for selection of the optimal infrastructure, satisfying
QoS requirements of Cloud applications. While, A3-E [48]
provides a unified model for managing the life cycle of contin-
uum applications (mobile, Edge, and Cloud resources). A3-E
focuses on the placement of computation along the continuum
based on the specific context and user requirements. However,
both works fail on providing configuration control of the
parameters of the application and of the underlying Edge-
to-Cloud infrastructure; it is widely known and demonstrated
that configuration strongly impacts performance. Thus, that
support is essential for performing reproducible experiments.

In contrast, our optimization methodology integrates repro-
ducibility by design, and its implementation within E2Clab
enables instrumentation of real-life applications on large-scale
testbeds across the entire Edge-to-Cloud Continuum.

VII. CONCLUSIONS

The optimization methodology proposed in this paper has
proven useful for understanding and improving the perfor-
mance of a real-life application used in production at large-
scale. Thanks to the extension presented in this work, E2Clab
becomes, to the best of our knowledge, the first framework
to support the complete deployment and analysis cycle of
application workflows executed on the Computing Continuum,
including deployment, configuration, monitoring, and gather-
ing of results, and now performance optimization.

We have validated our proposed optimization methodology
at large scale on 42 nodes of the Grid´5000 testbed. We
have shown how it can be used to analyze and optimize the
performance of the Pl@ntNet botanical application, used by
more than 10 million users in 180 countries.

The thread pool allocation found using our methodology
increases the number of simultaneous requests processed in
parallel by 35% compared to the baseline; it reduces user
response time for different workloads; and consumes 30% less
GPU memory. Despite our focus on Pl@ntNet, the methodol-
ogy can be generalized to other applications in the Edge-to-
Cloud Continuum.
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[8] A. Joly, P. Bonnet, H. Goëau, J. Barbe, S. Selmi, J. Champ, S. Dufour-
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