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ABSTRACT

A mesh refinement procedure designed for Digital Image Correlation analyses of cracked media
is proposed, based on the pixel color for an artificial case, and the crack opening displacement
field for two experimental cases. Although evidence that this procedure can improve every case if
tiny elements are sought, it is also shown that the size of matrices and consequently, the computa-
tional cost can be reduced while maintaining accuracy, especially for low surface crack densities
(e.g., single macrocrack).
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Pyramidal Adaptive Meshing for DIC Dealing with Cracks
1. Introduction

Many materials remain functional with cracks before complete failure. Not only predicting such damage to avoid
accidents but also its monitoring is a constant field of development. Since the introduction of Digital Image Correlation
(DIC) in the early 1980s [1, 2], it has seen many developments [3]. Among all applications of this technique [4, 5, 6],
the analysis of cracked bodies has received a lot of attention since the early days of DIC [7, 8]. In the field of fracture
mechanics, it was shown that stress intensity factors [8, 9], energy release rates [10], parameters of cohesive zone
models [11, 12, 13] could be determined via comparisons of measured displacements with simulations or available
closed-form solutions.

Some specialized numerical schemes were developed to capture the specific kinematics associated with the pres-
ence of cracks. For instance, integrated approaches [14] were introduced when using Williams’ kinematic series [15].
Since the introduction of FE-based DIC [16, 17, 18] and following on the development of the extended finite element
method [19], the same type of kinematic enrichment was considered in extended DIC (X-DIC) [20, 21]. It was later
generalized to 3D analyses of cracks monitored via computed microtomography [22, 23]. Another route is ‘a priori’
node splitting [24, 25, 26, 27]. In both approaches (i.e., X-DIC and node splitting), it was shown that gray level resid-
uals were very useful to adapt the level set function or the mesh to the crack path [28, 21, 23, 24, 26, 27] since they
are evaluated pixel-wise.

The design of the mesh is crucial for FE-based methods, e.g., numerical simulation or DIC, especially in the
presence of localized phenomena. The first FE-based DIC algorithms were pyramidal to enable for better convergence
of the minimization scheme [18, 28, 29]. Such h-refinement procedure has to be dealt with care since DIC analyses
are inverse problems, namely, the finer the discretization, the higher the measurement uncertainty [18, 30], yet the
interpolation error is lower [28]. Heterogeneous h-refinement is appealing when dealing with localized phenomena
such as strained bands [31] or cracks [32, 33] to better capture high strain gradients [34]. As before, one critical aspect
is related to the criterion for selecting elements to be refined. Several choices are possible, among them strains [32, 33]
and gray level residuals (GLR) [31, 32, 27].

Another route is given by p-refinement, which is generally easier to implement since it does not affect the mesh
connectivity. This procedure has already been used in DIC [35, 36], increasing the resolution without reducing the
element size. Such implementations can be self-adaptative [37, 38]. Kleinendorst et al. [39] implemented p-refined
DIC using Non Uniform Rational Basis Splines (NURBS).

Hereafter, the numerical procedures are first presented, i.e., DIC for the measurements, the Lagrange multipliers
in the DIC scheme to deal with the hanging nodes, and the proposed adaptive meshing procedure. Then, three cases
are shown to illustrate the Adaptative Meshing (AM) procedure. For the artificial case (#1.1 to #1.3), three images

were created to compare the gains of applying AM with different crack densities. Then two experiments are analyzed,
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Pyramidal Adaptive Meshing for DIC Dealing with Cracks

namely, a Wedge Splitting Test (WST, Case #2) dealing with a dominant crack, and curing and drying of an MgO
refractory castable (Case #3) leading to the formation of a crack network, where the effects of AM over the DIC results
are highlighted. For all cases, the locally refined meshes are compared with their analog uniform mesh (UM) with the

smallest element size.

2. Numerical procedures

2.1. Digital Image Correlation

DIC is a full-field measurement technique based on the optical flow, i.e., the gray level f of any pixel location x in
the reference configuration is equal to the gray level g in the deformed state image g at location X + u(x) instead of x.
The displacement field u is determined by minimizing the gray level residual <I>f over the selected domain Q

@2 = H'[f(x) - g(x + u(x)))* ()

Q
Searching for u pixel-wise is an ill-posed problem, and thus it is regularized by searching in a subspace made of trial
fields ¥,
u(x) = a p‘l‘p(x) 2)
p
where a, are nodal displacements gathered in the column vector {a}. The minimization of @f({a}) is carried out with

an iterative Gauss-Newton scheme that leads to linear systems
[H]{éa} = {h} 3)

where {6a} gathers the updates to the nodal displacement for the current iteration, and the other terms are the Hessian

matrix

Hy; = %:(‘I’i VX, -V )(x) @

and the residual vector
h; = Z[f (x) — g(x + a,¥,(x)IY; - V) (x) ©)
Q

where @, is the current estimate of the nodal displacement component a,,.

Depending on the choice of domain Q different correlation procedures are obtained. When Q reduces to a small
interrogation window, the previous setting corresponds to that of local DIC [5, 3]. Conversely, £ may cover the whole
region of interest (ROI). In that case case, global approaches are obtained [40]. Among many choices for kinematic
bases, finite element descriptions are very versatile [17, 18]. In the present case, three noded (T3) triangles were

considered (i.e., T3-DIC) [41]).
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Pyramidal Adaptive Meshing for DIC Dealing with Cracks

In the present studies, very fine meshes will be constructed. At one stage, the discretization will be too fine for
standard FE-based DIC to converge. It is however possible to supplement DIC with mechanical input, namely, via
mechanical regularization [42, 43] based upon the equilibrium gap method [44]. In linear elasticity, the discretized

equilibrium equations read
(Klfa} = {f}, (6)

where [K] is the stiffness matrix, and {f} the vector of nodal forces. If the displacement field u does not satisfy

equilibrium, force residuals {f,} arise
{f.} = [Kl{a} — {f} )

In the absence of body forces, the nodal forces of inner nodes must vanish, which makes the goal of the equilibrium

gap approach to minimize [44]
@2 = ||{f,}II* = {a}  [K]"[K]{a} ®)

where T is the transpose operator, and <I>r2n the summation of the L2-norm of all equilibrium gaps for inner nodes and
traction-free boundaries (i.e., Neumann nodes). For Dirichlet boundary nodes, the discrete Laplace-Beltrami operator
is considered instead [45]. In the present case, the previous regularization was applied to all nodes.

To simultaneously reduce the correlation residuals <I>3 and the equilibrium gap <I>,2n, the total cost function CI)I2
2 _ &2 &2
1+ 0,)®; =, + ©,P, ©)]

is minimized, where w,), is the weight that defines the scale associated with the equilibrium gap, (/I\)g and &)51 normalized
cost functions. The importance of normalization is to convert the residuals into dimensionless quantities [46, 45]. It
is carried out by considering a trial displacement field in the form of a plane wave v(x) = v, exp(ik - X), where vy, is
the amplitude and k the wave vector. The normalized cost functions become

2
5 o,

<, @;
¢ Pl ="M
" {V}TIK]T[K{v}

@ = HI o

s

The wavelength dependence of {v}T[K]T[K]{v} is of the fourth-order wrt. ||k||, and the quantity {(V}T[H]{v} is

independent of the wave number ||k||. The weight reads
@, = (K12, (1)

where Z,, is the so-called regularization length (for <I>,2n). Therefore, the weight put on the cost function is proportional
to 7, raised to the power 4. The value chosen for £, should be small enough to fit in small ROIs but large enough

to avoid divergence of the minimization scheme [46]. For this work, whose objective is to monitor cracks, the value
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Pyramidal Adaptive Meshing for DIC Dealing with Cracks
of Z,, needs to be as small as possible, otherwise displacement jumps in the crack path will be spread over adjacent
elements.

Instead of solving Systems (3), the new systems become

[H']{6a} = {h'} (12)

with
{v}T[H]{v} T

H']=[H]+0,——————[K]'[K 13

[H) = [H] + 0, e s KITIK] (13)
and

" _ _ {v}T[H]{v} Tipr i~

(W) = (h) - 0, e KUK @) (14)

The iterations are stopped when the L2-norm of the vector containing the root mean square (RMS) of the horizontal

and vertical displacement corrections was less than 1073 px.

2.2. Adaptive meshing
2.2.1. Refinement strategy
In the present work, the mesh size will be lowered within FE-based DIC procedures (i.e., heterogeneous h-refinement).

During a local h-refinement, some nodes located in the middle of an edge between two elements (e.g., one subdivided
and others not), have different numbers of connectivities. To illustrate this phenomenon, let us consider a structured
mesh with two triangular elements (Figure 1(a)). If each element is divided into four new elements of the same size,
there is no lack of connectivity at any node, as shown in Figure 1(b). However, if only the element 1-4-3 is subdivided
into four new ones, it will generate one hanging node (i.e., node 6 in Figure 1(c) is a hanging node in element 1-2-4),
which does not have the correct number of connectivities (see node 6 in Figure 1(b)). Nodes 5 and 7 in Figure 1(c)
are not hanging nodes because they are on the outer edges. For localized h-refinement, at least one node is created
on the edge that separates the subdivided domain and the intact one. The presence of hanging nodes makes the mesh

non-conformal, which can induce numerical artifacts.
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Pyramidal Adaptive Meshing for DIC Dealing with Cracks

1 1 21 1
5 S 95 S
5
3 43 43 43 4

(a) (b) © (d)
Figure 1: Examples of various localized h-refinements. (a) Original mesh. (b) Global h-refinement. (c) Local refinement

(non conformal mesh). (d) Local refinement with conformal mesh

A natural alternative to deal with hanging nodes is to divide the elements creating a new node at the centroid of a
parent element and connect it to the element vertices (Figure 1(d)). However, this approach generates slender elements
that may compromise the calculations. To overcome this drawback, Baldi and Bertolino [32] reconstructed the mesh
using the new nodes provided by local refinement. An alternative solution to remeshing strained regions (in the present
case cracks) is proposed herein, which uses Lagrange multipliers to link the displacement of hanging nodes based on
those of the adjacent (also called parent) nodes (nodes 1 and 4 in Figure 1) and the shape function of the considered
element.

If an element edge is divided at its middle point, the displacements of the hanging node is the average of the
displacement of its parent nodes. If the edges are not split in their middle, weights related to the distance from the
hanging node to each parent node should be considered and the shape functions. Such an approach can be easily
implemented in a DIC algorithm and does not require the DIC Hessian to be changed, because only an auxiliary
(Lagrange) matrix [L] is added. The [L] matrix is pre-multiplied by the ratio of Frobenius norms of [H'] and [L],
a, to avoid degrading the full system conditioning. Once all the desired constraints are accounted for, the augmented

Hessian [H?] becomes

(H°] = 5)

The vector of unknowns {#} now gathers all nodal displacements {a} and Lagrange multipliers {4}, and the augmented

residual vector {h?} reads
{(h)7 = ({h}7 {0} 7} (16)
resulting in the augmented system to solve as

[H?}{6p} = {h"} (17
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Pyramidal Adaptive Meshing for DIC Dealing with Cracks

In experimental cases, defining which elements need to be divided is not straightforward. There are several choices,
among them the maximum eigen strains [34, 32, 33] and the gray level residuals [28, 21, 24, 26, 31, 34, 27]. It is worth
noting that the eigen strains are computed as the average over each element. Conversely, the gray level residuals
px)=f(x)—gx+ D;"\PP(X)), where 1);" are the measured nodal displacements (i.e., at convergence of the DIC code),

are defined at the pixel scale. In both cases, a user-defined threshold will be needed.

2.2.2. Refinement Criterion
Since cracks are to be detected and quantified, it is proposed to introduce a refinement criterion explicitly accounting
for displacement jumps and their associated measurement uncertainty. In the presence of cracks, the mean strain tensor

in each element is expressed as [47]

€= |$e| /Qee(x)dx+ |$€| /re[[U(X)ﬂ X n(x) ds (18)

where [u] denotes the displacement jump, n the normal to the cracked surface I',, [X] the symmetrized tensorial product,
€ the strain tensor of the uncracked matrix, and s the curvilinear abscissa along the crack path. In the following, it

is assumed that the elastic strain levels are negligible with respect to the singular contribution provided by cracks.

Consequently, the mean strain tensor reduces to
— 1
€r [u(x)] X n(x) ds (19)
1.1 Jr,
The mean crack opening displacement m per element is defined as
M ®A=— /[[umnds 20)
el Jr,

where n denotes the mean crack normal. Further, it is assumed that the main opening contribution is associated with

the mode I regime

[u] = [u] m @21

such that n then corresponds to the eigen direction associated with the average maximum eigen strain ¢,. The latter is

then related to the mean crack opening displacement m by
IQeI €= |Fe| [[u]] (22)

It is worth noting that |Q,]/|T",| scales with the element size L, provided only one crack is present in each element.
This hypothesis is likely to be true for small element sizes. Consequently, the mean crack opening displacement is

approximated by

[u] = Le (23)
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Pyramidal Adaptive Meshing for DIC Dealing with Cracks

The mean crack opening displacement threshold [u*] will be set to classify elements as damaged (i.e., m > [u*]).
It is proposed to relate [u*] to its measurement uncertainty (i.e., typically 5 times or more its standard uncertainty
O'(M)). According to Equation (23), the uncertainty G(M) is related to the standard strain uncertainty o(e;) by

o([u])) = Lo(e). Further, the strain uncertainty o(e,) is dependent on the element size
o(e;) = AL® (24)

and characterizes the compromise to be carried out between the uncertainty and the discretization level (i.e., spatial
resolution). Typical values of the power a range between -1 and -2 (i.e., when the measurement uncertainties are
random and controlled by white Gaussian noise [48]). The constant A is dependent on the contrast in the picture and
the noise level [18]. The standard uncertainty o(e;) (and therefore U(M)) is obtained by performing an uncertainty

quantification prior to each analyzed test. Consequently, the threshold [u*] becomes
[u*](k) = KAL*! (25)

where k is a proportionality constant between the standard uncertainties. Thus, the threshold [u*] explicitly depends
on the discretization level. This observation means that the threshold [u*] has to be changed for each refinement
step to account for the reduction of element size (or equivalently to capture elements for which the crack opening
displacement is greater than [u*])). During the analysis the elements were divided by two and, consequently, the
threshold was multiplied by two in each refinement step.

By using Equation (23), a strain threshold e*(L) = [u*]J(L)/ L can also be defined. With the previous proposition,
it is concluded that €* is also length dependent. This proposition departs from the use of a unique strain threshold [31,
32, 33] when multiple refinement steps are to be performed. Both thresholds (i.e., €] and [w*]) introduced herein relate
to the measurement uncertainties of the associated quantities (i.e., €; and M). Throughout this work the discussion

will be focused on the use of [u*] and its dependence on the parameter k.

2.2.3. Refinement Steps

It is proposed to start off with a coarse mesh and to use the previous criterion to refine the ‘damaged’ elements
(ie., m > [u*](L)), which will better capture the kinematics and morphology of the crack locations while possibly
remaining with low computational cost. The complete procedure consists of the following steps:

1. perform a DIC analysis using a coarse uniform mesh (UM);

2. choose an image for crack evaluation based on the displacement jump ([u])) ;

SV

. list the damaged elements for this image pair and considered discretization;
4. execute one subdivision in the damaged elements (i.e., each selected element generates four new ones);

5. identify the hanging nodes and respective parent nodes;
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Pyramidal Adaptive Meshing for DIC Dealing with Cracks

6. construct the Lagrange matrix and perform DIC analyses for this image pair using the locally refined mesh;

7. repeat items 3 to 6 until the smallest elements achieve the size desired by the user;

8. perform a DIC analysis for all images using the optimized mesh.

This approach was implemented within the Correli 3.0 framework [49] and is described in the flowchart of Figure 2.
It is worth noting that, in the present implementation, the end of the adaptive procedure is a user decision, utilizing the
size of the smallest element after division as a stop criterion. The smallest element size may be guided by the highest
measured Mean Crack Opening Displacement (MCOD) using UMs. If even smaller elements were envisaged (i.e.,

down to one pixel size), damage could be used along with mechanical regularization [34].

Coarse
mesh DIC

Choose an
image pair

( Subdivide elements
with MCOD higher

k than threshold

Is the size
of smallest
elements enough?

Yes

Construct
Lagrange matrix

Construct
Lagrange matrix

DIC using'the same DIC usving all
image pair and image pairs
the refined mesh

Figure 2: Flowchart of the AM procedure applied to DIC, using MCOD as division criterion

3. Artificial Cases (#1.1 to #1.3)

This statement is specific to the artificial images .

The artificial images of 200 x 200 pixel definition shown in Figure 3 are analyzed to illustrate the benefits of the
adaptive meshing proposal. Such pictures may correspond to the gray level residuals at the end of a DIC run [28,
21, 23, 24, 26, 27]. In the present cases these images were built to demonstrate the method (i.e., the threshold for
binarization is known), the binary images remove the user-dependence to identify the cracked elements. To represent
practical situations, a single crack (Case #1.1, Figure 3(a)) is assumed with a sinuous front. An additional case consists

of a major macrocrack with some branches (Case #1.2, Figure 3(b)). Last, a crack network is considered (Case #1.3,
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Pyramidal Adaptive Meshing for DIC Dealing with Cracks

Figure 3(c)). The corresponding damaged areas (i.e., ratio of cracked pixels wrt. total number of pixels) is equal to 1,

3, and 15%, respectively.

(@) (®) ©
Figure 3: Artificial images analyzed herein. (a) Single crack (Case #1.1). (b) Major crack with branchings (Case #1.2).
(c) Crack network (Case #1.3)

These images are first binarized, in which one represents a cracked state, and zero otherwise. Then, starting from
the simple mesh shown in Figure 4(a), if any pixel that represents a crack is contained in an element, it is divided into
four smaller elements (see Figure 1(c)), and this procedure is iteratively repeated. The starting element is of the image
size, with a mean element size L, = 141 px, obtained as the square root of the element area (\/A_0)~ Hereafter, the
nomenclature L; will be used for the mean element size of iteration it for the reference case where all elements are
divided, with it=0 the initialization. It is worth noting that L;; is also related to the smallest element size in the AM
methodology proposed herein. Seven iterations were chosen for the smallest element to remain greater than 1 px (i.e.,
L,=1.1 px in the present case). Figure 4 shows the starting mesh along with the first two iterations of the reference

mesh, i.e., the case where all elements were subdivided.
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(@) (W) ©
Figure 4: Reference and first uniform meshes used in the artificial cases. (a) Starting mesh (L,=141 px). (b) First iteration

(L,=70 px). (c) Second iteration (L,=35 px)

After seven refinements, the resulting meshes for the three cases are shown in Figure 5. It is possible to see how 157
some elements remained undivided in undamaged regions, especially for the first and second cases (Figure 5(a-b)), 158

while very small elements were obtained in the cracked regions (L; = 1.1 px). 159

() (b) ©

Figure 5: Meshes for the three artificial cases after 7 refinements (Figure 3). (a) Case #1.1 (b) Case #1.2 (c) Case #1.3

In the case of the reference meshes where all elements were subdivided, the DIC Hessian matrix [H] was also 160
computed for comparison purposes. For three refined meshes, the augmented Hessians [H?] were assembled to also 161
consider the new constraints using Lagrange multipliers. The sizes of the Hessian matrices are shown in Table 1 for all 162

three cases. In virtually all cases, there is a clear benefit of the AM procedure, especially for very fine discretizations. 163
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Table 1

Pyramidal Adaptive Meshing for DIC Dealing with Cracks

Size of Hessian matrices as a function of smallest element sizes L, for the artificial cases

iteration | L, [px] | reference | Case #1.1 | Case #1.2 | Case #1.3
1 70 27 27 27 27
2 35 75 63 72 75
3 18 243 147 204 243
4 8.8 867 303 558 882
5 4.4 3,267 639 1,416 3,652
6 2.2 12,675 1,335 3,219 11,661
7 1.1 49,923 2,856 7,278 31,008

The relative gains in terms of size of the sparse matrices are reported in Table 2 when compared to uniformly refined

solution, calculated as one minus each Hessian size divided by its reference for a given iteration. There were negative

values in some iterations, only for the crack network (i.e., because more hanging nodes were created than edges that

had not to be split). The gains of this refinement methodology are inversely proportional to the crack density. In cases

with few cracks, it is interesting to have fewer elements where no localized phenomena are taking place, for a more

efficient calculation and no loss of accuracy. However, for very dense crack networks, this approach may even be worse

in some cases than a full mesh refinement (e.g., when L = 10 px). If very small elements are required (i.e., about the

pixel size), it is likely that this method allows for gains in most cases.

Table 2

Percent gains on size of the Hessian matrices in comparison to the reference case.

iteration | L, [px] | Case #1.1 | Case #1.2 | Case #1.3
1 70 0 0 0
2 35 16 4 0
3 18 40 16 0
4 8.8 65 36 -2
5 4.4 80 57 -9
6 2.2 89 75 8
7 1.1 94 85 38
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Pyramidal Adaptive Meshing for DIC Dealing with Cracks
4. Experimental Cases

4.1. Wedge Splitting Test (Case #2)

One experimental setup that allows for stable crack propagation is the so-called Wedge Splitting Test (WST) [50,
51]. Itis used hereafter to exemplify the benefits of the method proposed herein when not too many cracks are suspected
to occur. In the WST, a vertical force is transmitted to a pre-notched sample using a wedge and cylinders to prescribe
a horizontal (mode I) splitting load. DIC was used to analyze WST experiments via subset-based DIC [52, 53, 54, 55]
or using T3-DIC [56, 57] based on structured meshes. Further, Ref. [58] discussed how to calibrate a cohesive zone
model for such experiment, which required a mesh to be adapted in the crack propagation zone.

The studied material was a commercial castable refractory DD40, made by IBAR, that can be utilized in catalytic
cracking units of oil industries [59, 60, 61]. Wedge Splitting Tests (WSTs), which were performed along the guidelines
proposed in Ref. [62], were first analyzed via integrated DIC [56]. The specimen used in the test reported hereafter
was similar with the sole difference being the absence of lateral grooves to prescribe straight propagation. A paral-
lelepipedic sample of size 100 x 100 x 75 mm> was molded with a pre-notch to insert the loading parts. The reference
image and the initial mesh (in yellow) used in the procedure developed herein are shown in Figure 6(a). In the same
figure, the wedge, both cylinders, and blocks that were used to transmit the load horizontally, are also highlighted in
white dashed lines. A random pattern was created by spraying black and white paints to increase the image contrast.
In the present experiment, there was no groove to guide the crack so that a tortuous crack path may be observed with

possibly some bifurcations.
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cylinder
400 ‘ .
Experimental data
350+ o Analyzed images
b P * Image #30
> 300+
'g 250
o
— 200¢}
©
=
+ 150
S
100}
50+
0
0 1 2 3 4 5 6
Actuator displacement, mm
(a) (b

Figure 6: (a) Patterned specimen and coarse mesh in yellow (mean element size: ~ 64 px or 3 mm) used for preliminary
analyses. The loading parts are depicted in white dashed lines. The applied vertical force F;, and the horizontally
transmitted forces (Fy ~ 5.7 F,/) to the sample are shown as blue arrows. (b) Load displacement curve for the studied
WST down to 10% of the peak load. The red circles depict image acquisitions and the blue asterisk depicts the frame

used in the discussion.

A pre-load of 40 N was applied before starting the test, to adjust the loading parts (Figure 6(b)). The experiment
was controlled with a constant actuator velocity of 80 um/min and was stopped at 5 % of the maximum load. A 0.1 Hz
image acquisition rate was used (i.e., a total of 354 pictures was available). Only the odd images ranging from 5 to 257
(i.e., down to 10% of the peak load) were analyzed to avoid lengthy discussions on the last part of the WST, resulting
in a total of 126 images. The 30th analyzed frame (blue asterisk in Figure 6(b)) will be used throughout the discussion.

The DIC parameters used hereafter are reported in Table 3.

Table 3

DIC analysis parameters

DIC software Correli 3.0 [49]

Image filtering none

Shape functions linear (T3)

Matching criterion Regularized sum of squared differences
Interpolant cubic

Strain calculation derivative of shape functions
Regularization length | 20 px
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The five images acquired during the pre-loading step were used to compute the measurement uncertainties for

UMs. The temporal variances of the maximum eigen strain were computed in each element, and their root mean is

shown in Figure 7(a) as a function of the inverse element size L~!. The expected power law dependence described

by Equation (24) is observed with « = —1.66. This value is close but not equal to —2 (i.e., some other sources of

uncertainties occurred in this experimental configuration). The standard MCOD uncertainty is reported in Figure 7(b).

A similar agreement is observed in comparison to Equation (25). The black stars in Figure 7 refer to the uncertainties

computed for the optimal AM (k = 3), and the procedure to achieve this adapted mesh is described hereafter.
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Figure 7: Standard uncertainties of the maximum eigen strain (a) and MCOD (b) as functions of the inverse element size

L=! (UMs) for the initial images of the WST. The dashed lines depict power law fits according to Equations (24) and (25).

The black stars mark the uncertainties for the optimal AM with k =3

For each frame, the standard deviation of the gray level residuals (GLR) defined as

P(X) = f(x) — g(x + u(x))

(26)

was computed and normalized by the dynamic range of the reference picture (i.e., Af = maxgg(f) — mingg;(f)),

and the effect of the element size using UMs are shown in Figure 8. In the beginning of the test, the gray level

residuals were independent of the element size. Their overall level was related to acquisition noise, and the fluctuations

due to small lighting variations. As the crack initiated and propagated, the residuals became more dependent on

the element size (i.e., the larger the element size, the higher the residuals). This feature is explained by the lack of

degrees of freedom to properly describe the kinematics of the crack, which is improved by finer meshes. This effect

corresponds to interpolation errors [28]. Further, for small element sizes, the gain in discretization is less pronounced.

This phenomenon is due to the regularization scheme used herein, which dampens out sharp displacement gradients

over the area defined by the regularization length.
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Figure 8: Normalized standard deviation of the gray level residuals (GLR) fields in each frame (% of the dynamic range)

for UMs with different element sizes. The vertical dashed line depicts frame #30

GLR fields are shown in Figure 9 for the frame #30. The GLR field of 64 px UM was set as a reference and the GLR
fields of the other UMs were subtracted from it to highlight their differences. As expected, the crack is better accounted
for as the element size decreases. However, using a very fine mesh implies not only higher computational cost, but
also more difficult convergence of the analysis due to the reduced number of pixels inside each element. This issue can
be addressed via regularization strategies (e.g., mechanical regularization [63, 64] as used in this work). Last, let us
note that even with very fine meshes, there are still high gray level residuals in the cracked region, which were induced
by the hypothesis of continuous displacement fields since no node splitting strategy was used herein [24, 25, 26, 27].
One can notice gray level residuals almost spread over the entire ROI, which does not change with the element size.
The residuals are due to the acquisition noise and to fluctuations due to small lighting variations.

The mean crack opening displacement (MCOD) fields for frame #30 computed using different element sizes are
shown in Figure 10. MCOD fields were less affected by the acquisition noise in comparison to the grainy GLR fields,
pointing MCOD as a better metric for crack detection. Further, crack details (e.g., bifurcations) are better captured by
small element sizes. However, it is essential to stress that uniform meshes with small element sizes require a higher
computational cost. This fact motivates the use of meshes whose refinement is “MCOD-guided” as discussed hereafter.
The refinement from 64-px UM down to 8-px UM showed a visible benefit to describe the crack and its ramification.

However, the 4-px UM does not present significant improvements when compared to 8 px UM (even with a four times
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Figure 9: Normalized gray level residual field and differences for the frame #30 of the analysis using UMs with different

element sizes. For the sake of visualization the results from finer meshes were subtracted from the coarser mesh result (64

px). The color bar range was reduced to highlight the patterns in the field

larger Hessian, see Table 4). This observation is due to the regularization length utilized herein. Considering all the 228

previous points, the best compromise for the tested UMs is provided by the 8-px discretization. 229
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Figure 10: Mean crack opening displacement (MCOD) fields for the frame #30 of the analysis using UMs with different

element sizes (1 px = 48.5 pm)

The following analyses are devoted to adapted meshes. In Figure 11, the map of mesh sizes are reported at the end

of the adaption steps for 5 different levels of k (i.e., the ratio between the measurement uncertainty and the threshold

used to detect damaged elements). When the threshold is very high (i.e., k = 12, 6), only the zones surrounding the

main crack are refined. Conversely, when k is too low (e.g., kK = 1.5), the mesh is refined in areas that are not cracked.

From these first analyses, it is concluded that k = 3 leads to the best compromise.
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Figure 11: Element size field for different initial thresholds ([u*] = ka(M)) for the frame #30 of the WST case. (a) k = 12,
(b) k=6, (c) k=3,and (d) k=15

This observation is confirmed when analyzing the maps of MCOD reported in Figure 12. For the first two levels 235
(i.e., k = 12,6), the presence of secondary cracks is smeared over some coarse elements. Conversely, when k is too 236
small (i.e., k = 1.5), the additional refinement does not bring any new insights into the crack pattern. Again k = 3 is 237

a good compromise between capturing the details around the main crack and the related computational cost. 238
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Figure 12: MCOD fields for different initial thresholds ([u*] = ko-(M)) for the frame #30 of the WST case. (a) k = 12,
(b) k=6, (c) k=3,and (d) k=15

The acquisition noise in the GLR fields for the analyses using uniform meshes (Figure 9) is also observed when
using adaptive meshes (Figure 13). This result was expected because acquisition noise does not depend on the element
size. It is possible to depict the full developed crack, even on frame #30, when the crack has not developed that far
(see Figure 9), due to residuals caused by mesh refinement. This result makes the use of GLR field difficult to analyze
crack propagation when using the proposed adaptive mesh, and reinforces the use of MCOD fields for this application.
However, the residuals are concentrated around the cracked regions, and the localized refinement does not generate
fake cracks in the boundaries of domains with different element sizes (Figure 11). It is interesting to note that the crack
branches seen in the MCOD field are not visible in any of the GLR fields, thereby indicating that the corresponding

displacement levels remained very small (i.e., well below the pixel level).
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Figure 13: Gray level residual field for different initial thresholds ([u*] = ka(M)) for the frame # 30 of the WST case.
(a) k =12, and the difference between two cases to depict the GLR caused by the refinement (b) 12 -6, (c) 12 -3, and
(d) 12-15

The normalized standard deviation GLR for each frame of the different adapted meshes are shown in Figure 14
and compared to the uniform mesh (designated as UM in the sequel) results from Figure 8. The standard deviations of
the GLR at the beginning of the experiment are virtually identical, showing that all adapted meshes perform the same
way, which is a further indication that no crack initiated. For frames closer to the end of the experiment, where the
residuals due to crack openings are higher than those due to acquisition noise and lighting fluctuations, the AM with a
threshold k = 3 leads to GLR close to the UM 16 px discretization. The k = 1.5 AM results are close to the 8 px UM,

even with this AM containing varying element sizes (Figure 11(c-d)).
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Figure 14: Comparison of the standard deviation of normalized gray level residuals field for the different discretizations

(i-e., UM — solid lines, and AM — dash dotted lines). The vertical dashed black line marks frame #30

The previous observations mean that the same quality of results is achieved using less degrees of freedom (Table 4).
The smallest standard deviation (STD) of the GLR for the last frame was found for the 4-px UM (i.e., it is equal to
2.95%). Some 4 px elements are also present in AM for k ranging from 6 down to 1.5 (Figure 11). The STD of GLR
levels are close to those of the 8-px UM, mainly for the AM with k = 1.5. The size of the Hessians related to k < 3 are
6 and 4 times smaller than those of 4-px UM, respectively. This result indicates that the main source of GLR increase
is the lack of degrees of freedom in the cracked region. It demonstrates that a localized refinement can considerably
improve the description of cracks without huge increase in computational cost. Further, the computational cost is also
represented by the computation time (CT) for each analysis, which was obtained by summing the elapsed time during

system solving in each iteration. Both CT and average iteration per image analyzed are shown in Table 4.
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Table 4
Sizes of the Hessian matrices for uniform (UM) and adapted (AM) meshes, computation time, average iterations per image
pair, standard deviation of normalized gray level residuals for the series of 126 frames analyzed, and gain in AM Hessian

size in comparison to UM with the same smallest element size. The column Feature contains the average element size (L)

and number of 4-px elements in brackets for AMs

Average iteration #

Type Feature Hessian size | CT [s] per image pair STD of GLR [%] | Gain [%]

UM L =64 px 672 0.86 6 4.96 -

UM L =32 px 2,511 2.79 6 695 -

uMm L =16 px 9,360 115 6 3.37 -

uMm L =8 px 37,440 58 6 3.08 -

uMm L =4 px 149,760 445 .4 8 2.95 -
AM (k=12) | T=12px[2592] | 10,002 108 7 4.04 03
AM (k=6) | L =11 px [3,124] 13,230 131 6 3.52 o1
AM(k=3) | Z=10px [3,952] | 23,817 188.6 5 334 84
AM (k=1.5) | I =8 px [6,348] 37,668 | 3715 5 3.16 75

The AM with k = 3 is the best compromise between a fine discretization and a low computational cost since the
refinement is concentrated in the whole cracked region (Figure 11 and Table 4). Higher k values (i.e., k = 6,12) do
not refine enough the cracked region and do not contain 4-px elements that help to describe the crack path. Conversely,
when k = 1.5, spots where there is no crack are refined. In terms of MCOD maps, the AM with k = 3 leads to the same
type of resolution (Figure 12) as the 8-px UM (Figure 10) but with a smaller Hessian (see Table 4). Interestingly, even
if the conditioning of the system is degraded by the use of Lagrange multipliers, clearly visible in the CT of similar
Hessian sizes, the problem needed less iterations to converge due to the description of the crack region. Repeating
the uncertainty analyses using only the initial images and the AM with k = 3 led to standard uncertainties for the
maximum eigen strain equal to 7.5 x 107>, and for the MCOD to 5 x 10~2 um (see Figure 7).

One last question arises about subsequent crack propagation after frame #30 since the mesh does not account for
the fully propagated stage. Figure 15 summarizes the results after adapting the mesh for the very last frame using
k = 3. The element size distribution now has many 4 px elements concentrated along the crack path. Figure 15(b-c)
reports the MCOD maps using this new AM, for the 30-th and the last frames, respectively. The fine discretization in
the whole crack path leads to noisier MCODs in earlier frames in regions that are probably not cracked yet (i.e., below

the mid-height for frame #30, see Figures 10 and 12).
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Figure 15: Results using a mesh adapted for the last frame. (a) Element size map. MCOD fields for the 30-th (b) and

the last (c) frames

Figure 16 shows the GLR ratio between the first AM with k = 3 and the one defined with the last frame. Both
residuals have the same levels until frame #30, and from that point on their ratio rises up to 17% since the first mesh
did not account for crack propagation after this point. The AM at the end of the test shows noisier MCODs for earlier
frames but with lower GLR. Such observations call for gradual mesh adaptions throughout the frames. However, more
meshes (and consequently Hessian matrices) would need to be stored, and the benefits on the computational cost would

need to be tested in future works.
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Figure 16: Ratio between the GLR for the AM for frame #30-th and for the last one

4.2. Damage due to MgO hydration in refractory castable (Case #3)

Magnesia (MgO) is used in some refractory castable formulations [65]. MgO hydrates during curing and drying,
which may damage the material. In previous works, a climatic chamber was developed to evaluate such mechanism
using DIC [66]. A cubic specimen was kept in the climatic chamber at 50°C and 50% relative air humidity (Fig-
ure 17(a)). The acquired images were divided into two sets. First, 10 images with 10s interval among them were
acquired at the beginning of the experiment before crack initiation for uncertainty quantification. Second, 190 images
were acquired in intervals of 30 min starting just after the first set to evaluate damage. The procedure performed for

the first experimental case is replicated hereafter for a crack network. The reference image and frame #38 used for the
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adaptive meshing procedure are shown in Figure 17(b-c). 293

I
S

() (b) ©

Figure 17: Schematic drawing of the climatic chamber with the refractory castable cube in the center (a), adapted
from [66]. Reference image (b) and frame #38 (c) for the MgO hydration experiment. The image sizes are ~ 67 x 67 mm?

(= 1340 X 1340 px) and the ROI (yellow square) size is &~ 60 X 60 mm? (~ 1200 x 1200 px)

The maximum eigen strain (¢;) and MCOD uncertainties were calculated using the ten images acquired at the 294
beginning of the experiment, before crack initiation. The temporal variance of €; and MCOD were computed for each 295
element, and their root means are shown in Figure 18 as functions of the inverse element size L~!. The power a is now 296
equal to —1.47, which is smaller than the first experiment. It shows that uncertainty quantification should be performed 297
for each test as the thresholds e* and [u*] may vary from one experimental configuration to another one. The black 298

stars in Figure 18 refer to the uncertainties computed for the optimal AM (k = 1.5) 299
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Figure 18: Standard uncertainties of the maximum eigen strain (a) and MCOD (b) as functions of the inverse of the

element size L for the initial images of the curing and drying experiment. The dashed lines depict power law fits according

to Equations (24) and (25). The black stars mark the uncertainties for the optimal AM (k = 1.5)

Figure 19 shows the standard deviation of the GLR when normalized by the dynamic range of the reference picture.
The effect of the element size for a uniform mesh (UM) is first investigated. At the beginning of the test, the overall GLR
level is mainly related to acquisition noise. The fluctuations are also due to lighting variations and the environment of
the climatic chamber. They are more pronounced in this second experiment, as highlighted by the spikes. Corrections
to the gray level fluctuations were suggested for such cases [67]. However, the correction was not used herein to
evidence the increase in noise sensitivity with a decrease of the element size (i.e., increase in spike amplitudes for small
elements). Further, the GLR for each UM are very close until frame #25, for which cracks start t