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A mesh refinement procedure designed for Digital Image Correlation analyses of cracked media 10
is proposed, based on the pixel color for an artificial case, and the crack opening displacement 11
field for two experimental cases. Although evidence that this procedure can improve every case if 12
tiny elements are sought, it is also shown that the size of matrices and consequently, the computa- 13
tional cost can be reduced while maintaining accuracy, especially for low surface crack densities 14
(e.g., single macrocrack). 15
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1. Introduction 17

Many materials remain functional with cracks before complete failure. Not only predicting such damage to avoid 18

accidents but also its monitoring is a constant field of development. Since the introduction of Digital Image Correlation 19

(DIC) in the early 1980s [1, 2], it has seen many developments [3]. Among all applications of this technique [4, 5, 6], 20

the analysis of cracked bodies has received a lot of attention since the early days of DIC [7, 8]. In the field of fracture 21

mechanics, it was shown that stress intensity factors [8, 9], energy release rates [10], parameters of cohesive zone 22

models [11, 12, 13] could be determined via comparisons of measured displacements with simulations or available 23

closed-form solutions. 24

Some specialized numerical schemes were developed to capture the specific kinematics associated with the pres- 25

ence of cracks. For instance, integrated approaches [14] were introduced when using Williams’ kinematic series [15]. 26

Since the introduction of FE-based DIC [16, 17, 18] and following on the development of the extended finite element 27

method [19], the same type of kinematic enrichment was considered in extended DIC (X-DIC) [20, 21]. It was later 28

generalized to 3D analyses of cracks monitored via computed microtomography [22, 23]. Another route is ‘a priori’ 29

node splitting [24, 25, 26, 27]. In both approaches (i.e., X-DIC and node splitting), it was shown that gray level resid- 30

uals were very useful to adapt the level set function or the mesh to the crack path [28, 21, 23, 24, 26, 27] since they 31

are evaluated pixel-wise. 32

The design of the mesh is crucial for FE-based methods, e.g., numerical simulation or DIC, especially in the 33

presence of localized phenomena. The first FE-based DIC algorithms were pyramidal to enable for better convergence 34

of the minimization scheme [18, 28, 29]. Such h-refinement procedure has to be dealt with care since DIC analyses 35

are inverse problems, namely, the finer the discretization, the higher the measurement uncertainty [18, 30], yet the 36

interpolation error is lower [28]. Heterogeneous h-refinement is appealing when dealing with localized phenomena 37

such as strained bands [31] or cracks [32, 33] to better capture high strain gradients [34]. As before, one critical aspect 38

is related to the criterion for selecting elements to be refined. Several choices are possible, among them strains [32, 33] 39

and gray level residuals (GLR) [31, 32, 27]. 40

Another route is given by p-refinement, which is generally easier to implement since it does not affect the mesh 41

connectivity. This procedure has already been used in DIC [35, 36], increasing the resolution without reducing the 42

element size. Such implementations can be self-adaptative [37, 38]. Kleinendorst et al. [39] implemented p-refined 43

DIC using Non Uniform Rational Basis Splines (NURBS). 44

Hereafter, the numerical procedures are first presented, i.e., DIC for the measurements, the Lagrange multipliers 45

in the DIC scheme to deal with the hanging nodes, and the proposed adaptive meshing procedure. Then, three cases 46

are shown to illustrate the Adaptative Meshing (AM) procedure. For the artificial case (#1.1 to #1.3), three images 47

were created to compare the gains of applying AM with different crack densities. Then two experiments are analyzed, 48
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namely, a Wedge Splitting Test (WST, Case #2) dealing with a dominant crack, and curing and drying of an MgO 49

refractory castable (Case #3) leading to the formation of a crack network, where the effects of AM over the DIC results 50

are highlighted. For all cases, the locally refined meshes are compared with their analog uniform mesh (UM) with the 51

smallest element size. 52

2. Numerical procedures 53

2.1. Digital Image Correlation 54

DIC is a full-field measurement technique based on the optical flow, i.e., the gray level f of any pixel location x in
the reference configuration is equal to the gray level g in the deformed state image g at location x + u(x) instead of x.
The displacement field u is determined by minimizing the gray level residual Φ2c over the selected domain Ω

Φ2c =
∑

Ω
[f (x) − g(x + u(x))]2 (1)

Searching for u pixel-wise is an ill-posed problem, and thus it is regularized by searching in a subspace made of trial
fields Ψk

u(x) =
∑

p
ap	p(x) (2)

where ap are nodal displacements gathered in the column vector {a}. The minimization ofΦ2c ({a}) is carried out with
an iterative Gauss-Newton scheme that leads to linear systems

[H]{�a} = {h} (3)

where {�a} gathers the updates to the nodal displacement for the current iteration, and the other terms are the Hessian
matrix

Hij =
∑

Ω
(	i ⋅∇∇∇f )(x)(	j ⋅∇∇∇f )(x) (4)

and the residual vector

ℎi =
∑

Ω
[f (x) − g(x + ãp	p(x))](	i ⋅∇∇∇f )(x) (5)

where ãp is the current estimate of the nodal displacement component ap. 55

Depending on the choice of domain Ω different correlation procedures are obtained. When Ω reduces to a small 56

interrogation window, the previous setting corresponds to that of local DIC [5, 3]. Conversely, Ωmay cover the whole 57

region of interest (ROI). In that case case, global approaches are obtained [40]. Among many choices for kinematic 58

bases, finite element descriptions are very versatile [17, 18]. In the present case, three noded (T3) triangles were 59

considered (i.e., T3-DIC) [41]). 60
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In the present studies, very fine meshes will be constructed. At one stage, the discretization will be too fine for
standard FE-based DIC to converge. It is however possible to supplement DIC with mechanical input, namely, via
mechanical regularization [42, 43] based upon the equilibrium gap method [44]. In linear elasticity, the discretized
equilibrium equations read

[K]{a} = {f}, (6)

where [K] is the stiffness matrix, and {f} the vector of nodal forces. If the displacement field u does not satisfy
equilibrium, force residuals {fr} arise

{fr} = [K]{a} − {f} (7)

In the absence of body forces, the nodal forces of inner nodes must vanish, which makes the goal of the equilibrium
gap approach to minimize [44]

Φ2m = ‖{fr}‖2 = {a}⊤[K]⊤[K]{a} (8)

where ⊤ is the transpose operator, and Φ2m the summation of the L2-norm of all equilibrium gaps for inner nodes and 61

traction-free boundaries (i.e., Neumann nodes). For Dirichlet boundary nodes, the discrete Laplace-Beltrami operator 62

is considered instead [45]. In the present case, the previous regularization was applied to all nodes. 63

To simultaneously reduce the correlation residuals Φ2c and the equilibrium gap Φ2m, the total cost function Φ2t

(1 + !m)Φ2t = Φ̂
2
c + !mΦ̂

2
m (9)

is minimized, where!m is the weight that defines the scale associated with the equilibrium gap, Φ̂2c and Φ̂2m normalized
cost functions. The importance of normalization is to convert the residuals into dimensionless quantities [46, 45]. It
is carried out by considering a trial displacement field in the form of a plane wave v(x) = v0 exp(ik ⋅ x), where v0 is
the amplitude and k the wave vector. The normalized cost functions become

Φ̂2c =
Φ2c

{v}⊤[H]{v}
, Φ̂2m =

�2m
{v}⊤[K]⊤[K]{v}

. (10)

The wavelength dependence of {v}⊤[K]⊤[K]{v} is of the fourth-order wrt. ‖k‖, and the quantity {v}⊤[H]{v} is
independent of the wave number ‖k‖. The weight reads

!m = (‖k‖lm)4 (11)

where lm is the so-called regularization length (forΦ2m). Therefore, the weight put on the cost function is proportional 64

to lm raised to the power 4. The value chosen for lm should be small enough to fit in small ROIs but large enough 65

to avoid divergence of the minimization scheme [46]. For this work, whose objective is to monitor cracks, the value 66
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of lm needs to be as small as possible, otherwise displacement jumps in the crack path will be spread over adjacent 67

elements. 68

Instead of solving Systems (3), the new systems become

[Ht]{�a} = {ht} (12)

with

[Ht] = [H] + !m
{v}⊤[H]{v}

{v}⊤[K]⊤[K]{v}
[K]⊤[K] (13)

and

{ht} = {h} − !m
{v}⊤[H]{v}

{v}⊤[K]⊤[K]{v}
[K]⊤[K]{ã} (14)

The iterations are stopped when the L2-norm of the vector containing the root mean square (RMS) of the horizontal 69

and vertical displacement corrections was less than 10−3 px. 70

2.2. Adaptive meshing 71

2.2.1. Refinement strategy 72

In the present work, themesh sizewill be loweredwithin FE-basedDIC procedures (i.e., heterogeneous h-refinement). 73
During a local h-refinement, some nodes located in the middle of an edge between two elements (e.g., one subdivided 74

and others not), have different numbers of connectivities. To illustrate this phenomenon, let us consider a structured 75

mesh with two triangular elements (Figure 1(a)). If each element is divided into four new elements of the same size, 76

there is no lack of connectivity at any node, as shown in Figure 1(b). However, if only the element 1-4-3 is subdivided 77

into four new ones, it will generate one hanging node (i.e., node 6 in Figure 1(c) is a hanging node in element 1-2-4), 78

which does not have the correct number of connectivities (see node 6 in Figure 1(b)). Nodes 5 and 7 in Figure 1(c) 79

are not hanging nodes because they are on the outer edges. For localized h-refinement, at least one node is created 80

on the edge that separates the subdivided domain and the intact one. The presence of hanging nodes makes the mesh 81

non-conformal, which can induce numerical artifacts. 82
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Figure 1: Examples of various localized h-refinements. (a) Original mesh. (b) Global h-refinement. (c) Local refinement

(non conformal mesh). (d) Local refinement with conformal mesh

A natural alternative to deal with hanging nodes is to divide the elements creating a new node at the centroid of a 83

parent element and connect it to the element vertices (Figure 1(d)). However, this approach generates slender elements 84

that may compromise the calculations. To overcome this drawback, Baldi and Bertolino [32] reconstructed the mesh 85

using the new nodes provided by local refinement. An alternative solution to remeshing strained regions (in the present 86

case cracks) is proposed herein, which uses Lagrange multipliers to link the displacement of hanging nodes based on 87

those of the adjacent (also called parent) nodes (nodes 1 and 4 in Figure 1) and the shape function of the considered 88

element. 89

If an element edge is divided at its middle point, the displacements of the hanging node is the average of the
displacement of its parent nodes. If the edges are not split in their middle, weights related to the distance from the
hanging node to each parent node should be considered and the shape functions. Such an approach can be easily
implemented in a DIC algorithm and does not require the DIC Hessian to be changed, because only an auxiliary
(Lagrange) matrix [L] is added. The [L] matrix is pre-multiplied by the ratio of Frobenius norms of [Ht] and [L],
�, to avoid degrading the full system conditioning. Once all the desired constraints are accounted for, the augmented
Hessian [Ha] becomes

[Ha] =
⎡

⎢

⎢

⎣

[Ht] �[L]⊤

�[L] [0]

⎤

⎥

⎥

⎦

(15)

The vector of unknowns {���} now gathers all nodal displacements {a} andLagrangemultipliers {���}, and the augmented
residual vector {ha} reads

{ha}⊤ = {{ht}⊤ {0}⊤} (16)

resulting in the augmented system to solve as

[Ha]{����} = {ha} (17)
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In experimental cases, defining which elements need to be divided is not straightforward. There are several choices, 90

among them the maximum eigen strains [34, 32, 33] and the gray level residuals [28, 21, 24, 26, 31, 34, 27]. It is worth 91

noting that the eigen strains are computed as the average over each element. Conversely, the gray level residuals 92

�(x) = f (x) − g(x+ �mp	p(x)), where �mp are the measured nodal displacements (i.e., at convergence of the DIC code), 93

are defined at the pixel scale. In both cases, a user-defined threshold will be needed. 94

2.2.2. Refinement Criterion 95

Since cracks are to be detected and quantified, it is proposed to introduce a refinement criterion explicitly accounting 96

for displacement jumps and their associated measurement uncertainty. In the presence of cracks, the mean strain tensor 97

in each element is expressed as [47] 98

��� = 1
|Ωe| ∫Ωe

���(x)dx + 1
|Ωe| ∫Γe

Ju(x)K⊠ n(x) ds (18)

where JuK denotes the displacement jump, n the normal to the cracked surface Γe,⊠ the symmetrized tensorial product, 99

��� the strain tensor of the uncracked matrix, and s the curvilinear abscissa along the crack path. In the following, it 100

is assumed that the elastic strain levels are negligible with respect to the singular contribution provided by cracks. 101

Consequently, the mean strain tensor reduces to 102

��� ≈ 1
|Ωe| ∫Γe

Ju(x)K⊠ n(x) ds (19)

The mean crack opening displacement JuK per element is defined as 103

JuK⊠ n = 1
|Γe| ∫Γe

JuK⊠ n ds (20)

where n denotes the mean crack normal. Further, it is assumed that the main opening contribution is associated with 104

the mode I regime 105

JuK = JuK n (21)

such that n then corresponds to the eigen direction associated with the average maximum eigen strain �1. The latter is 106

then related to the mean crack opening displacement JuK by 107

|Ωe| �1 = |Γe| JuK (22)

It is worth noting that |Ωe|∕|Γe| scales with the element size L, provided only one crack is present in each element. 108

This hypothesis is likely to be true for small element sizes. Consequently, the mean crack opening displacement is 109

approximated by 110

JuK = L �1 (23)
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The mean crack opening displacement threshold Ju∗K will be set to classify elements as damaged (i.e., JuK ≥ Ju∗K).
It is proposed to relate Ju∗K to its measurement uncertainty (i.e., typically 5 times or more its standard uncertainty
�(JuK)). According to Equation (23), the uncertainty �(JuK) is related to the standard strain uncertainty �(�1) by
�(JuK) = L�(�1). Further, the strain uncertainty �(�1) is dependent on the element size

�(�1) = AL� (24)

and characterizes the compromise to be carried out between the uncertainty and the discretization level (i.e., spatial
resolution). Typical values of the power � range between -1 and -2 (i.e., when the measurement uncertainties are
random and controlled by white Gaussian noise [48]). The constant A is dependent on the contrast in the picture and
the noise level [18]. The standard uncertainty �(�1) (and therefore �(JuK)) is obtained by performing an uncertainty
quantification prior to each analyzed test. Consequently, the threshold Ju∗K becomes

Ju∗K(k) = kAL�+1 (25)

where k is a proportionality constant between the standard uncertainties. Thus, the threshold Ju∗K explicitly depends 111

on the discretization level. This observation means that the threshold Ju∗K has to be changed for each refinement 112

step to account for the reduction of element size (or equivalently to capture elements for which the crack opening 113

displacement is greater than Ju∗K). During the analysis the elements were divided by two and, consequently, the 114

threshold was multiplied by two in each refinement step. 115

By using Equation (23), a strain threshold �∗(L) = Ju∗K(L)∕L can also be defined. With the previous proposition, 116

it is concluded that �∗ is also length dependent. This proposition departs from the use of a unique strain threshold [31, 117

32, 33] when multiple refinement steps are to be performed. Both thresholds (i.e., �∗1 and Ju∗K) introduced herein relate 118

to the measurement uncertainties of the associated quantities (i.e., �1 and JuK). Throughout this work the discussion 119

will be focused on the use of Ju∗K and its dependence on the parameter k. 120

2.2.3. Refinement Steps 121

It is proposed to start off with a coarse mesh and to use the previous criterion to refine the ‘damaged’ elements 122

(i.e., JuK ≥ Ju∗K(L)), which will better capture the kinematics and morphology of the crack locations while possibly 123

remaining with low computational cost. The complete procedure consists of the following steps: 124

1. perform a DIC analysis using a coarse uniform mesh (UM); 125

2. choose an image for crack evaluation based on the displacement jump (JuK) ; 126

3. list the damaged elements for this image pair and considered discretization; 127

4. execute one subdivision in the damaged elements (i.e., each selected element generates four new ones); 128

5. identify the hanging nodes and respective parent nodes; 129
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6. construct the Lagrange matrix and perform DIC analyses for this image pair using the locally refined mesh; 130

7. repeat items 3 to 6 until the smallest elements achieve the size desired by the user; 131

8. perform a DIC analysis for all images using the optimized mesh. 132

This approach was implemented within the Correli 3.0 framework [49] and is described in the flowchart of Figure 2. 133

It is worth noting that, in the present implementation, the end of the adaptive procedure is a user decision, utilizing the 134

size of the smallest element after division as a stop criterion. The smallest element size may be guided by the highest 135

measured Mean Crack Opening Displacement (MCOD) using UMs. If even smaller elements were envisaged (i.e., 136

down to one pixel size), damage could be used along with mechanical regularization [34]. 137

Coarse 
mesh DIC

Subdivide elements 
with MCOD higher

than threshold

Construct
Lagrange matrix

DIC using the same
image pair and

the refined mesh

Is the size 
of smallest 

elements enough? 

DIC using all 
image pairs

Choose an 
image pair

No Yes

Construct
Lagrange matrix

Figure 2: Flowchart of the AM procedure applied to DIC, using MCOD as division criterion

3. Artificial Cases (#1.1 to #1.3) 138

This statement is specific to the artificial images . 139

The artificial images of 200 × 200 pixel definition shown in Figure 3 are analyzed to illustrate the benefits of the 140

adaptive meshing proposal. Such pictures may correspond to the gray level residuals at the end of a DIC run [28, 141

21, 23, 24, 26, 27]. In the present cases these images were built to demonstrate the method (i.e., the threshold for 142

binarization is known), the binary images remove the user-dependence to identify the cracked elements. To represent 143

practical situations, a single crack (Case #1.1, Figure 3(a)) is assumed with a sinuous front. An additional case consists 144

of a major macrocrack with some branches (Case #1.2, Figure 3(b)). Last, a crack network is considered (Case #1.3, 145
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Figure 3(c)). The corresponding damaged areas (i.e., ratio of cracked pixels wrt. total number of pixels) is equal to 1, 146

3, and 15%, respectively. 147

(a) (b) (c)

Figure 3: Artificial images analyzed herein. (a) Single crack (Case #1.1). (b) Major crack with branchings (Case #1.2).

(c) Crack network (Case #1.3)

These images are first binarized, in which one represents a cracked state, and zero otherwise. Then, starting from 148

the simple mesh shown in Figure 4(a), if any pixel that represents a crack is contained in an element, it is divided into 149

four smaller elements (see Figure 1(c)), and this procedure is iteratively repeated. The starting element is of the image 150

size, with a mean element size L0 = 141 px, obtained as the square root of the element area (√A0). Hereafter, the 151

nomenclature Lit will be used for the mean element size of iteration it for the reference case where all elements are 152

divided, with it=0 the initialization. It is worth noting that Lit is also related to the smallest element size in the AM 153

methodology proposed herein. Seven iterations were chosen for the smallest element to remain greater than 1 px (i.e., 154

L7=1.1 px in the present case). Figure 4 shows the starting mesh along with the first two iterations of the reference 155

mesh, i.e., the case where all elements were subdivided. 156
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(a) (b) (c)

Figure 4: Reference and first uniform meshes used in the artificial cases. (a) Starting mesh (L0=141 px). (b) First iteration

(L1=70 px). (c) Second iteration (L2=35 px)

After seven refinements, the resulting meshes for the three cases are shown in Figure 5. It is possible to see how 157

some elements remained undivided in undamaged regions, especially for the first and second cases (Figure 5(a-b)), 158

while very small elements were obtained in the cracked regions (L7 ≈ 1.1 px). 159

(a) (b) (c)

Figure 5: Meshes for the three artificial cases after 7 refinements (Figure 3). (a) Case #1.1 (b) Case #1.2 (c) Case #1.3

In the case of the reference meshes where all elements were subdivided, the DIC Hessian matrix [H] was also 160

computed for comparison purposes. For three refined meshes, the augmented Hessians [Ha] were assembled to also 161

consider the new constraints using Lagrange multipliers. The sizes of the Hessian matrices are shown in Table 1 for all 162

three cases. In virtually all cases, there is a clear benefit of the AM procedure, especially for very fine discretizations. 163
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Table 1

Size of Hessian matrices as a function of smallest element sizes Lit for the artificial cases

iteration Lit [px] reference Case #1.1 Case #1.2 Case #1.3

1 70 27 27 27 27

2 35 75 63 72 75

3 18 243 147 204 243

4 8.8 867 303 558 882

5 4.4 3,267 639 1,416 3,552

6 2.2 12,675 1,335 3,219 11,661

7 1.1 49,923 2,856 7,278 31,008

The relative gains in terms of size of the sparse matrices are reported in Table 2 when compared to uniformly refined 164

solution, calculated as one minus each Hessian size divided by its reference for a given iteration. There were negative 165

values in some iterations, only for the crack network (i.e., because more hanging nodes were created than edges that 166

had not to be split). The gains of this refinement methodology are inversely proportional to the crack density. In cases 167

with few cracks, it is interesting to have fewer elements where no localized phenomena are taking place, for a more 168

efficient calculation and no loss of accuracy. However, for very dense crack networks, this approach may even be worse 169

in some cases than a full mesh refinement (e.g., when L ≈ 10 px). If very small elements are required (i.e., about the 170

pixel size), it is likely that this method allows for gains in most cases. 171

Table 2

Percent gains on size of the Hessian matrices in comparison to the reference case.

iteration Lit [px] Case #1.1 Case #1.2 Case #1.3

1 70 0 0 0

2 35 16 4 0

3 18 40 16 0

4 8.8 65 36 -2

5 4.4 80 57 -9

6 2.2 89 75 8

7 1.1 94 85 38
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4. Experimental Cases 172

4.1. Wedge Splitting Test (Case #2) 173

One experimental setup that allows for stable crack propagation is the so-called Wedge Splitting Test (WST) [50, 174

51]. It is used hereafter to exemplify the benefits of themethod proposed herein when not toomany cracks are suspected 175

to occur. In the WST, a vertical force is transmitted to a pre-notched sample using a wedge and cylinders to prescribe 176

a horizontal (mode I) splitting load. DIC was used to analyze WST experiments via subset-based DIC [52, 53, 54, 55] 177

or using T3-DIC [56, 57] based on structured meshes. Further, Ref. [58] discussed how to calibrate a cohesive zone 178

model for such experiment, which required a mesh to be adapted in the crack propagation zone. 179

The studied material was a commercial castable refractory DD40, made by IBAR, that can be utilized in catalytic 180

cracking units of oil industries [59, 60, 61]. Wedge Splitting Tests (WSTs), which were performed along the guidelines 181

proposed in Ref. [62], were first analyzed via integrated DIC [56]. The specimen used in the test reported hereafter 182

was similar with the sole difference being the absence of lateral grooves to prescribe straight propagation. A paral- 183

lelepipedic sample of size 100× 100× 75mm3 was molded with a pre-notch to insert the loading parts. The reference 184

image and the initial mesh (in yellow) used in the procedure developed herein are shown in Figure 6(a). In the same 185

figure, the wedge, both cylinders, and blocks that were used to transmit the load horizontally, are also highlighted in 186

white dashed lines. A random pattern was created by spraying black and white paints to increase the image contrast. 187

In the present experiment, there was no groove to guide the crack so that a tortuous crack path may be observed with 188

possibly some bifurcations. 189
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Figure 6: (a) Patterned specimen and coarse mesh in yellow (mean element size: ≈ 64 px or 3 mm) used for preliminary

analyses. The loading parts are depicted in white dashed lines. The applied vertical force FV and the horizontally

transmitted forces (FH ≈ 5.7 FV ) to the sample are shown as blue arrows. (b) Load displacement curve for the studied

WST down to 10% of the peak load. The red circles depict image acquisitions and the blue asterisk depicts the frame

used in the discussion.

A pre-load of 40 N was applied before starting the test, to adjust the loading parts (Figure 6(b)). The experiment 190

was controlled with a constant actuator velocity of 80 µm/min and was stopped at 5 % of the maximum load. A 0.1 Hz 191

image acquisition rate was used (i.e., a total of 354 pictures was available). Only the odd images ranging from 5 to 257 192

(i.e., down to 10% of the peak load) were analyzed to avoid lengthy discussions on the last part of the WST, resulting 193

in a total of 126 images. The 30th analyzed frame (blue asterisk in Figure 6(b)) will be used throughout the discussion. 194

The DIC parameters used hereafter are reported in Table 3. 195

Table 3

DIC analysis parameters

DIC software Correli 3.0 [49]

Image filtering none

Shape functions linear (T3)

Matching criterion Regularized sum of squared differences

Interpolant cubic

Strain calculation derivative of shape functions

Regularization length 20 px
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The five images acquired during the pre-loading step were used to compute the measurement uncertainties for 196

UMs. The temporal variances of the maximum eigen strain were computed in each element, and their root mean is 197

shown in Figure 7(a) as a function of the inverse element size L−1. The expected power law dependence described 198

by Equation (24) is observed with � = −1.66. This value is close but not equal to −2 (i.e., some other sources of 199

uncertainties occurred in this experimental configuration). The standard MCOD uncertainty is reported in Figure 7(b). 200

A similar agreement is observed in comparison to Equation (25). The black stars in Figure 7 refer to the uncertainties 201

computed for the optimal AM (k = 3), and the procedure to achieve this adapted mesh is described hereafter. 202

1/64 1/32 1/16 1/8 1/4

Element size-1 [px-1]

10
-5

10
-4

10
-3

10
-2

S
ta

n
d

a
rd

 
1
 u

n
c
e

rt
a

in
ty

 [
-]

(a)

1/64 1/32 1/16 1/8 1/4

Element size-1 [px-1]

10-2

10-1

100

S
ta

n
d

a
rd

 M
C

O
D

 u
n

c
e

rt
a

in
ty

 [
µ

m
]

(b)

Figure 7: Standard uncertainties of the maximum eigen strain (a) and MCOD (b) as functions of the inverse element size

L−1 (UMs) for the initial images of the WST. The dashed lines depict power law fits according to Equations (24) and (25).
The black stars mark the uncertainties for the optimal AM with k = 3

For each frame, the standard deviation of the gray level residuals (GLR) defined as

�c(x) = f (x) − g(x + u(x)) (26)

was computed and normalized by the dynamic range of the reference picture (i.e., Δf = maxROI(f ) − minROI(f )), 203

and the effect of the element size using UMs are shown in Figure 8. In the beginning of the test, the gray level 204

residuals were independent of the element size. Their overall level was related to acquisition noise, and the fluctuations 205

due to small lighting variations. As the crack initiated and propagated, the residuals became more dependent on 206

the element size (i.e., the larger the element size, the higher the residuals). This feature is explained by the lack of 207

degrees of freedom to properly describe the kinematics of the crack, which is improved by finer meshes. This effect 208

corresponds to interpolation errors [28]. Further, for small element sizes, the gain in discretization is less pronounced. 209

This phenomenon is due to the regularization scheme used herein, which dampens out sharp displacement gradients 210

over the area defined by the regularization length. 211
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Figure 8: Normalized standard deviation of the gray level residuals (GLR) fields in each frame (% of the dynamic range)

for UMs with different element sizes. The vertical dashed line depicts frame #30

GLR fields are shown in Figure 9 for the frame #30. The GLR field of 64 px UMwas set as a reference and the GLR 212

fields of the other UMs were subtracted from it to highlight their differences. As expected, the crack is better accounted 213

for as the element size decreases. However, using a very fine mesh implies not only higher computational cost, but 214

also more difficult convergence of the analysis due to the reduced number of pixels inside each element. This issue can 215

be addressed via regularization strategies (e.g., mechanical regularization [63, 64] as used in this work). Last, let us 216

note that even with very fine meshes, there are still high gray level residuals in the cracked region, which were induced 217

by the hypothesis of continuous displacement fields since no node splitting strategy was used herein [24, 25, 26, 27]. 218

One can notice gray level residuals almost spread over the entire ROI, which does not change with the element size. 219

The residuals are due to the acquisition noise and to fluctuations due to small lighting variations. 220

The mean crack opening displacement (MCOD) fields for frame #30 computed using different element sizes are 221

shown in Figure 10. MCOD fields were less affected by the acquisition noise in comparison to the grainy GLR fields, 222

pointing MCOD as a better metric for crack detection. Further, crack details (e.g., bifurcations) are better captured by 223

small element sizes. However, it is essential to stress that uniform meshes with small element sizes require a higher 224

computational cost. This fact motivates the use of meshes whose refinement is “MCOD-guided” as discussed hereafter. 225

The refinement from 64-px UM down to 8-px UM showed a visible benefit to describe the crack and its ramification. 226

However, the 4-px UM does not present significant improvements when compared to 8 px UM (even with a four times 227
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Figure 9: Normalized gray level residual field and differences for the frame #30 of the analysis using UMs with different

element sizes. For the sake of visualization the results from finer meshes were subtracted from the coarser mesh result (64

px). The color bar range was reduced to highlight the patterns in the field

larger Hessian, see Table 4). This observation is due to the regularization length utilized herein. Considering all the 228

previous points, the best compromise for the tested UMs is provided by the 8-px discretization. 229
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Figure 10: Mean crack opening displacement (MCOD) fields for the frame #30 of the analysis using UMs with different

element sizes (1 px ≡ 48.5 µm)

The following analyses are devoted to adapted meshes. In Figure 11, the map of mesh sizes are reported at the end 230

of the adaption steps for 5 different levels of k (i.e., the ratio between the measurement uncertainty and the threshold 231

used to detect damaged elements). When the threshold is very high (i.e., k = 12, 6), only the zones surrounding the 232

main crack are refined. Conversely, when k is too low (e.g., k = 1.5), the mesh is refined in areas that are not cracked. 233

From these first analyses, it is concluded that k = 3 leads to the best compromise. 234
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Figure 11: Element size field for different initial thresholds (Ju∗K = k�(JuK)) for the frame #30 of the WST case. (a) k = 12,

(b) k = 6, (c) k = 3, and (d) k = 1.5

This observation is confirmed when analyzing the maps of MCOD reported in Figure 12. For the first two levels 235

(i.e., k = 12, 6), the presence of secondary cracks is smeared over some coarse elements. Conversely, when k is too 236

small (i.e., k = 1.5), the additional refinement does not bring any new insights into the crack pattern. Again k = 3 is 237

a good compromise between capturing the details around the main crack and the related computational cost. 238
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(a) (b)

(c) (d)

Figure 12: MCOD fields for different initial thresholds (Ju∗K = k�(JuK)) for the frame #30 of the WST case. (a) k = 12,

(b) k = 6, (c) k = 3, and (d) k = 1.5

The acquisition noise in the GLR fields for the analyses using uniform meshes (Figure 9) is also observed when 239

using adaptive meshes (Figure 13). This result was expected because acquisition noise does not depend on the element 240

size. It is possible to depict the full developed crack, even on frame #30, when the crack has not developed that far 241

(see Figure 9), due to residuals caused by mesh refinement. This result makes the use of GLR field difficult to analyze 242

crack propagation when using the proposed adaptive mesh, and reinforces the use of MCOD fields for this application. 243

However, the residuals are concentrated around the cracked regions, and the localized refinement does not generate 244

fake cracks in the boundaries of domains with different element sizes (Figure 11). It is interesting to note that the crack 245

branches seen in the MCOD field are not visible in any of the GLR fields, thereby indicating that the corresponding 246

displacement levels remained very small (i.e., well below the pixel level). 247
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(a) (b)

(c) (d)

Figure 13: Gray level residual field for different initial thresholds (Ju∗K = k�(JuK)) for the frame # 30 of the WST case.

(a) k = 12, and the difference between two cases to depict the GLR caused by the refinement (b) 12 − 6, (c) 12 − 3, and

(d) 12 − 1.5

The normalized standard deviation GLR for each frame of the different adapted meshes are shown in Figure 14 248

and compared to the uniform mesh (designated as UM in the sequel) results from Figure 8. The standard deviations of 249

the GLR at the beginning of the experiment are virtually identical, showing that all adapted meshes perform the same 250

way, which is a further indication that no crack initiated. For frames closer to the end of the experiment, where the 251

residuals due to crack openings are higher than those due to acquisition noise and lighting fluctuations, the AM with a 252

threshold k = 3 leads to GLR close to the UM 16 px discretization. The k = 1.5 AM results are close to the 8 px UM, 253

even with this AM containing varying element sizes (Figure 11(c-d)). 254

V. F. Sciuti et al.: Preprint submitted to Elsevier Page 21 of 40



Pyramidal Adaptive Meshing for DIC Dealing with Cracks

0 20 40 60 80 100 120 140

Frame #

1

1.5

2

2.5

3

3.5

4

4.5

5

N
o
rm

a
liz

e
d
 G

L
R

 [
%

]

UM 64 px

UM 32 px

UM 16 px

UM 8 px

UM 4 px

AM k = 12

AM k = 6

AM k = 3

AM k = 1.5

Figure 14: Comparison of the standard deviation of normalized gray level residuals field for the different discretizations

(i.e., UM – solid lines, and AM – dash dotted lines). The vertical dashed black line marks frame #30

The previous observations mean that the same quality of results is achieved using less degrees of freedom (Table 4). 255

The smallest standard deviation (STD) of the GLR for the last frame was found for the 4-px UM (i.e., it is equal to 256

2.95%). Some 4 px elements are also present in AM for k ranging from 6 down to 1.5 (Figure 11). The STD of GLR 257

levels are close to those of the 8-px UM, mainly for the AMwith k = 1.5. The size of the Hessians related to k ≤ 3 are 258

6 and 4 times smaller than those of 4-px UM, respectively. This result indicates that the main source of GLR increase 259

is the lack of degrees of freedom in the cracked region. It demonstrates that a localized refinement can considerably 260

improve the description of cracks without huge increase in computational cost. Further, the computational cost is also 261

represented by the computation time (CT) for each analysis, which was obtained by summing the elapsed time during 262

system solving in each iteration. Both CT and average iteration per image analyzed are shown in Table 4. 263
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Table 4

Sizes of the Hessian matrices for uniform (UM) and adapted (AM) meshes, computation time, average iterations per image

pair, standard deviation of normalized gray level residuals for the series of 126 frames analyzed, and gain in AM Hessian

size in comparison to UM with the same smallest element size. The column Feature contains the average element size (L)

and number of 4-px elements in brackets for AMs

Type Feature Hessian size CT [s]
Average iteration #

per image pair STD of GLR [%] Gain [%]

UM L = 64 px 672 0.86 6 4.96 -

UM L = 32 px 2,511 2.79 6 695 -

UM L = 16 px 9,360 11.5 6 3.37 -

UM L = 8 px 37,440 58 6 3.08 -

UM L = 4 px 149,760 445.4 8 2.95 -

AM (k = 12) L = 12 px [2,592] 10,002 108 7 4.04 93

AM (k = 6) L = 11 px [3,124] 13,230 131 6 3.52 91

AM ( k = 3 ) L = 10 px [3,952] 23,817 188.6 5 3.34 84

AM (k = 1.5) L = 8 px [6,348] 37,668 371.5 5 3.16 75

The AM with k = 3 is the best compromise between a fine discretization and a low computational cost since the 264

refinement is concentrated in the whole cracked region (Figure 11 and Table 4). Higher k values (i.e., k = 6, 12) do 265

not refine enough the cracked region and do not contain 4-px elements that help to describe the crack path. Conversely, 266

when k = 1.5, spots where there is no crack are refined. In terms of MCODmaps, the AMwith k = 3 leads to the same 267

type of resolution (Figure 12) as the 8-px UM (Figure 10) but with a smaller Hessian (see Table 4). Interestingly, even 268

if the conditioning of the system is degraded by the use of Lagrange multipliers, clearly visible in the CT of similar 269

Hessian sizes, the problem needed less iterations to converge due to the description of the crack region. Repeating 270

the uncertainty analyses using only the initial images and the AM with k = 3 led to standard uncertainties for the 271

maximum eigen strain equal to 7.5 × 10−5, and for the MCOD to 5 × 10−2 µm (see Figure 7). 272

One last question arises about subsequent crack propagation after frame #30 since the mesh does not account for 273

the fully propagated stage. Figure 15 summarizes the results after adapting the mesh for the very last frame using 274

k = 3. The element size distribution now has many 4 px elements concentrated along the crack path. Figure 15(b-c) 275

reports the MCOD maps using this new AM, for the 30-th and the last frames, respectively. The fine discretization in 276

the whole crack path leads to noisier MCODs in earlier frames in regions that are probably not cracked yet (i.e., below 277

the mid-height for frame #30, see Figures 10 and 12). 278
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Figure 15: Results using a mesh adapted for the last frame. (a) Element size map. MCOD fields for the 30-th (b) and

the last (c) frames

Figure 16 shows the GLR ratio between the first AM with k = 3 and the one defined with the last frame. Both 279

residuals have the same levels until frame #30, and from that point on their ratio rises up to 17% since the first mesh 280

did not account for crack propagation after this point. The AM at the end of the test shows noisier MCODs for earlier 281

frames but with lower GLR. Such observations call for gradual mesh adaptions throughout the frames. However, more 282

meshes (and consequently Hessian matrices) would need to be stored, and the benefits on the computational cost would 283

need to be tested in future works. 284
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Figure 16: Ratio between the GLR for the AM for frame #30-th and for the last one

4.2. Damage due to MgO hydration in refractory castable (Case #3) 285

Magnesia (MgO) is used in some refractory castable formulations [65]. MgO hydrates during curing and drying, 286

which may damage the material. In previous works, a climatic chamber was developed to evaluate such mechanism 287

using DIC [66]. A cubic specimen was kept in the climatic chamber at 50°C and 50% relative air humidity (Fig- 288

ure 17(a)). The acquired images were divided into two sets. First, 10 images with 10s interval among them were 289

acquired at the beginning of the experiment before crack initiation for uncertainty quantification. Second, 190 images 290

were acquired in intervals of 30 min starting just after the first set to evaluate damage. The procedure performed for 291

the first experimental case is replicated hereafter for a crack network. The reference image and frame #38 used for the 292
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adaptive meshing procedure are shown in Figure 17(b-c). 293

50°C 50%

(a) (b) (c)

Figure 17: Schematic drawing of the climatic chamber with the refractory castable cube in the center (a), adapted

from [66]. Reference image (b) and frame #38 (c) for the MgO hydration experiment. The image sizes are ≈ 67×67 mm2

(≈ 1340 × 1340 px) and the ROI (yellow square) size is ≈ 60 × 60 mm2 (≈ 1200 × 1200 px)

The maximum eigen strain (�1) and MCOD uncertainties were calculated using the ten images acquired at the 294

beginning of the experiment, before crack initiation. The temporal variance of �1 and MCOD were computed for each 295

element, and their root means are shown in Figure 18 as functions of the inverse element sizeL−1. The power � is now 296

equal to−1.47, which is smaller than the first experiment. It shows that uncertainty quantification should be performed 297

for each test as the thresholds �∗ and Ju∗K may vary from one experimental configuration to another one. The black 298

stars in Figure 18 refer to the uncertainties computed for the optimal AM (k = 1.5) 299
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Figure 18: Standard uncertainties of the maximum eigen strain (a) and MCOD (b) as functions of the inverse of the

element size L for the initial images of the curing and drying experiment. The dashed lines depict power law fits according

to Equations (24) and (25). The black stars mark the uncertainties for the optimal AM (k = 1.5)

Figure 19 shows the standard deviation of the GLRwhen normalized by the dynamic range of the reference picture. 300

The effect of the element size for a uniformmesh (UM) is first investigated. At the beginning of the test, the overall GLR 301

level is mainly related to acquisition noise. The fluctuations are also due to lighting variations and the environment of 302

the climatic chamber. They are more pronounced in this second experiment, as highlighted by the spikes. Corrections 303

to the gray level fluctuations were suggested for such cases [67]. However, the correction was not used herein to 304

evidence the increase in noise sensitivity with a decrease of the element size (i.e., increase in spike amplitudes for small 305

elements). Further, the GLR for each UM are very close until frame #25, for which cracks start to show measurable 306

MCOD. For the following frames, the GLR curves are distinguishable. It is caused by the lack of degrees of freedom 307

(DOFs) to describe the crack network with coarse discretizations. This contribution to the GLR is less pronounced as 308

the element size decreases (and the number of DOFs increase). 309
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Figure 19: Normalized standard deviation of the gray level residuals (GLR) in each frame (as % of the dynamic range) for

uniform meshes with different element sizes. The vertical dashed line depicts frame #38

The GLR fields for frame #38 are shown in Figure 20. The field for the 64-px UM was set as a reference and 310

the GLR fields of the other UMs were subtracted from it to highlight their differences as in Case #2 (see Figure 9). 311

Acquisition noise in the undamaged parts is identical for all UMs, and the different meshes sizes affect the regions 312

around the cracks as expected from Case #2 results. The GLR caused by the crack network are thinner for UMs with 313

8- or 4-px elements. However, the 4-px UM was very sensitive to lighting changes (Figure 19), which hindered cracks 314

to be properly detected and quantified. Such observation makes the 8-px mesh a better choice. 315
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Figure 20: Normalized gray level residual fields for frame #38 using UMs with different element sizes. For the sake of

visualization the results from finer meshes were subtracted from the coarser mesh result (64 px). The color bar range was

reduced to highlight the patterns in the fields

The corresponding MCOD fields are shown in Figure 21 for different UMs. The MCOD fields are less sensitive 316

to the acquisition noise than the GLR fields. The 63 and 32-px meshes yield very coarse crack patterns, and it is 317

difficult to identify a crack network from these results. For smaller element sizes (from 16 down to 4-px meshes), it is 318

easier to distinguish regions with high MCOD levels (i.e., cracks) and other ones with very low values (i.e., clusters 319

of aggregates). Further, the MCOD provided by the 4-px mesh showed smaller values, which indicates an effect of 320

mechanical regularization. 321
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Figure 21: Mean crack opening displacement (MCOD) fields for frame #38 when UMs with different element sizes are

used (1 px ≡ 50 µm)

Figure 22 shows the map of element sizes for four different values of k. For k = 12 and 6, the localized refinements 322

are not very effective, and the AMs are similar to the UMs (Figure 22(a-b)). However, it is possible to depict clusters 323

of same size as the elements (i.e., 16 px and 32 px) for k = 3 and 1.5 (Figure 22(c-d)). The case k = 1.5 leads to the 324

best crack network description with 8 px elements for the cracks and clusters of bigger sizes. It is worth noting that 325

in the present case a very small level of k was needed to properly capture all the fine details associated with a crack 326

network. 327
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(a) (b)

(c) (d)

Figure 22: Element size field for different initial thresholds (Ju∗K = k�(JuK)) for frame #38 of the MgO hydration case.

(a) k = 12, (b) k = 6, (c) k = 3, and (d) k = 1.5

The resultant MCOD fields for the different AMs are shown in Figure 23 for frame #38. The fields for k = 1.5 328

AM (Figure 23(d)) and 8-px UM (Figure 21) are very similar. The crack network is “blurred” with an increase of k, 329

and follows a similar trend as augmenting the element size. This similarity also indicates that k = 1.5 leads to the best 330

AM for Case #3. 331
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(a) (b)

(c) (d)

Figure 23: MCOD fields for picture #38 and different initial thresholds (Ju∗K = k�(JuK)) of the MgO hydration case.

(a) k = 12, (b) k = 6, (c) k = 3, and (d) k = 1.5

The corresponding GLR fields are shown in Figure 24 for the studied thresholds k. The acquisition noise remains 332

present in all cases since it is not dependent on the element size. Similarly to the previous results, the crack pattern is 333

more visible in the GLR maps of higher thresholds due to interpolation errors related to fewer DOFs. 334
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(a) (b)

(c) (d)

Figure 24: Gray level residual field for different initial thresholds (Ju∗K = k�(JuK)) for the frame # 38 of the WST case.

(a) k = 12, and difference between two of them to depict the GLR caused by the refinement (b) 12 − 6, (c) 12 − 3, and

(d) 12 − 1.5

The normalized standard deviation of GLR comparing UMs and AMs is shown in Figure 25 for the whole exper- 335

iment. As before, the smallest residuals are observed for the 4 px UM, and AM with k = 3 and 1.5, which are close 336

to 16 px and 8 px UMs, respectively. The similarity of the curves before frame #38 further evidences that no (or very 337

little) cracks propagated until this point. From frame #38 onward, higher residuals are related to higher gray levels 338

induced by the newly created cracks, and consequently the normalized GLR follows the amount of DOFs to allow for 339

such complex kinematics associated with the crack network to be captured. An additional contribution is given by the 340

fact that mesh adaption was not performed again. 341
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Figure 25: Standard deviation of GLR for the different discretizations (i.e., UM: solid lines, and AM: dash dotted lines).

The vertical dashed line marks frame #38

The Hessian size for each case shown in Figure 25 is reported in Table 5 along with the normalized GLR for the 342

last frame, as well as the computation time (CT), and the average iteration number. As pointed out for the numerical 343

example, the benefits of using AMs are inversely proportional to the crack density. Further, the local refinement of 344

AMs did not reduce the average iteration number in Case #3 as was noted in Case #2. The main benefit comes from 345

using the AM with k = 1.5, with similar GLR and Hessian size to the 8 px UM but containing few 4 px elements. The 346

uncertainty analyses using only the initial images and AM with k = 1.5 led to standard uncertainties for the maximum 347

eigen strain and MCOD equal to 2 × 10−4 and 0.9 µm, respectively (see Figure 18). 348
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Table 5

Sizes of the Hessian matrices for uniform (UM) and adapted (AM) meshes, computation time, average iterations per image

pair, standard deviation of normalized gray level residuals for the series of 200 frames analyzed , and gain in AM Hessian

size in comparison to UM with the same smallest element size. The column Feature contains the average element size (L)

and number of 4-px elements in brackets for AMs

Type Feature Hessian size CT [s]
Average iteration #

per image pair STD of GLR [%] Gain [%]

UM L = 64 px 588 0.9 4.6 3.85 -

UM L = 32 px 2,028 5.18 4.7 3.10 -

UM L = 16 px 7,500 15.3 4.8 2.58 -

UM L = 8 px 30,000 64.6 5.0 2.26 -

UM L = 4 px 120,000 1677 23.5 2.11 -

AM (k = 12) L = 34 px [0] 3,078 12.72 4.6 3.34 59

AM (k = 6) L = 21 px [0] 7,803 34 4.6 2.83 74

AM (k = 3) L = 14 px [0] 16,845 87.6 4.7 2.53 44

AM (k = 1.5) L = 10 px [312] 31,422 356.6 4.7 2.29 74

As in the previous case, one last point of interest arises from the frame used for mesh adaption. Figure 26 shows 349

the results of an AM with k = 1.5 for the very last frame of the test. The crack path is finely described with very small 350

elements (Figure 26(a)), with considerablymore 4-px elements than for the 38-th frame (Figure 22). The corresponding 351

MCOD fields are compared in Figure 26(b-c). A similar trend (to the WST case) of noisier results for the earlier frame, 352

and a cleaner description for the last frame. The fluctuations seen for frame #38 are due the fine discretization related 353

to crack openings and not its initiation. Although the crack network was already visible in earlier frames, its openings 354

were very small. 355
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Figure 26: Results using a mesh adapted for the last frame. (a) Element size map. MCOD fields for the 38-th (b) and

the last (c) frames
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Last, the ratio between GLR for the AM for the 38-th frame and the last picture is shown in Figure 27. For earlier 356

frames, a coarser discretization (provided by the 38-th frame) was slightly better, and as cracks subsequently opened, 357

the second mesh provided little gain. This observation is further evidence that the crack network was already formed 358

in early frames, which is different from the WST case in which propagation occurred during the whole experiment. 359
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Figure 27: Ratio between the GLR for the AM for frame #38-th and for the last one

5. Conclusion 360

A procedure to locally refine meshes for Digital Image Correlation (DIC) analyses was proposed. It is referred 361

to as adaptive meshing as it is guided by auxiliary fields, i.e., gray level residuals (artificial case) or maximum eigen 362

strain (experimental cases). At each refinement iteration, the selected elements were divided into four new ones by 363

splitting the edges into two new ones, which created hanging nodes (i.e., nodes with a lack of connectivity). Lagrange 364

multipliers reconnected these nodes to the mesh, ensuring that the displacement of each hanging node be the mean of its 365

parent nodes. This methodology was developed to improve the meshing process for DIC analyses of cracked materials 366

with efficient computational cost, and with at least similar accuracy compared to fine uniform meshes. Although 367

the discussion mainly focused on cracks, other auxiliary fields related to localized phenomena (e.g., phase transition, 368

plasticity) could be used. 369

The artificial test case illustrated the relationship between the number of cracks and the gain in applying AM 370

procedures. The refinement criterion was based on the gray levels at the pixel scale. It was demonstrated that the gains 371

of AMwere inversely proportional to the surface crack density (i.e., higher for single crack analysis and decayed as the 372

number and crack extensions increased). In other words, the studied phenomenon (i.e., cracks) passed from localized 373

to diffuse states. 374

In the investigated experimental cases, AM was first applied to a Wedge Splitting Test (WST), since a low crack 375

density was expected and highlighted the benefits of the proposed procedure. Five different Uniform Meshes (UMs) 376

(i.e., structured meshes with uniform element size) were tested and then compared to the AM procedure. It was 377
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demonstrated that AMs reducedmemory storage by decreasing the DICHessian size while keeping similar descriptions 378

of the crack kinematics. 379

The second experimental case was devoted to crack network formation due to the hydration of an MgO castable, 380

with a considerably higher crack density. This case was also related to higher uncertainty levels since the experiment 381

was performed inside a climatic chamber with additional artifacts (i.e., glass windows and humidity/temperature of 382

the environment). Even in this challenging case, the AM procedure showed benefits for reducing the memory load 383

with a smaller Hessian matrix. An additional benefit for this case was that the map for the element size after adapting 384

the mesh already showed the overall crack network. Even if the artificial example pointed out that the benefits would 385

be smaller for high crack densities, the experimental cases proved that it was indeed more efficient for smaller crack 386

densities but it could also be efficient for dense crack networks when a very fine description was sought. 387

The criterion to divide the elements was based on the standard uncertainty of the Mean Crack Opening Displace- 388

ment (MCOD) per element. This metric was estimated by analyzing the initial frames of each experiment, where no 389

crack initiation was expected, and using uniform meshes with the same element sizes as those that will make part of 390

the adapted meshes. It was shown that the uncertainties were different for both experiments (because of differences in 391

experimental environment), which further validated the choice of uncertainty quantifications. The final threshold was 392

proportional to the MCOD uncertainty to only account for cracks (i.e., a multiplicative factor k > 1 was considered). 393

Different values of k were chosen for the two investigated cases, which indicates that k may depend on the surface 394

crack density. Additional investigation are needed to confirm such observation. 395

Although the numerical test case underscored that the methodology would be best suited for single cracks, it was 396

not straightforward for the experimental cases. Even though both cases benefited from an adapted mesh, the crack 397

network had one additional advantage since crack initiations showed the full crack path from early frames on, meaning 398

that the mesh could be adapted for different frames with similar results. For the WST, with one macrocrack and few 399

branches, the crack path changed throughout the experiment and further studies should be conducted to find a suitable 400

temporal mesh adaptation strategy to describe gradual crack propagation (e.g., using developing meshes, damaging 401

elements in the cracked region or using node splitting techniques). 402

Last, the AM procedure has a high potential of reducing the computational cost of Digital Volume Correlation 403

analysis, where data are usually considerably bigger than DIC, especially for cases with localized phenomena. Imple- 404

menting a refinement termination based on the gray level residuals, and also, real-time applications of this procedure 405

during the DIC analyses of many images, are other future improvements of this new methodology. 406
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