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Surface energy is a key quantity that controls many physical properties of materials, yet deter-
mining its value at the nanoscale remains challenging. By using N -body interatomic potentials and
performing analytical calculations, we develop a robust approach to determine the surface energy
of metallic nanoparticles as a function of particle size and temperature. A strong increase in the
surface energy is obtained when the size of the nanoparticle decreases, both in the solid and liquid
states. However, we show how the use of the classical spherical approximation to characterise the
surface area of a nanoparticle leads to an almost constant surface energy with size as usually done
to characterize the thermodynamic and kinetic properties of NPs in many works. We then propose
a correction of the spherical approximation that is particularly useful for small size nanoparticles to
improve the different models developed in the literature so far.

Surface energy (γ) is an important descriptor of metal-
lic nanoparticles (NPs) as it drives, among others, their
nucleation-growth mechanism, 3D morphology, reactiv-
ity in various environments, surface segregation,... [1].
To characterize these wide range of phenomena, the
main theories developed in the literature are derived
from models that involve surface energies of infinite sys-
tems [2]. In other words, γ is basically assumed to
be size-independent. With this assumption, it is then
possible to remarkably predict the equilibrium shape of
free and supported crystallites based respectively on the
Wulff and Wulff-Kaishew relations at the nanoscale [3–5].
Other examples illustrating the success of such a choice
include understanding Ostwald’s ripening during particle
synthesis or annealing [6, 7] and the reactivity of differ-
ent metal facets to gas environments in catalytic pro-
cesses [8]. From a fundamental point of view, this is very
surprising because it is well-known, both experimentally
and theoretically, that many properties (thermodynamic,
optical, mechanical, . . . ) of nanomaterials are strongly
different from their bulk counterparts [9–14].

Despite the agreement of the different models employ-
ing the surface energy of the infinite system with the
experimental observations, there is no direct evidence
that the surface energy in case of NPs is indeed size-
independent. This is a very complicated issue to be ad-
dressed since there is not any clear and straightforward
answer to it at present. Experimentally, no systematic
studies on measurement of surface energy as a function
of size are presented due to the extreme difficulty to mea-
sure absolute surface energy of very small NPs [15, 16].
Theoretically, the existing literature contains many con-
flicting and contradictory results concerning the variation
of the surface energy of metallic NPs with size. Actually,
a simple dimensional argument is often put forward in
case of solid NPs [17, 18]. According to this hypothe-

sis, γ decreases with increasing size as the contribution
of the different surface sites (vertices, edges), which are
preponderant for small sizes, decreases at the expense
of the facets. Although many studies agree with this
trend [19, 20], other suggest an opposite tendency [21–
23]. Indeed, the dimensional argument is not that simple
since γ is commonly defined as an excess energy with re-
spect to a reference energy normalised to a surface area
related to the NP. All the discrepancies are mainly due
to the difficulty to correctly define the reference state to
characterize the excess energy resulting from the pres-
ence of a surface and in particular the definition of the
considered surface area [24]. In any scenario, it can be
noted that there is no direct evidence that the surface
energy remains constant with the size.

In this letter, we investigate the surface energy of solid
and liquid Cu NPs as a function of particle size with
the aim to provide a robust γ calculation applicable to
characterize the thermodynamic and kinetic properties
of NPs through experimental or theoretical data. We fo-
cus on cuboctahedral NPs where an analytical study is
possible, which is an asset of incomparable richness to
the understanding of the numerical results. With our
approach, the correlation between the effective area con-
sidered for γ calculation and its dependence on size is
clearly demonstrated. ical potential with the size of the
NP making its use perfectly universal and adapted to
characterize the thermodynamic and kinetic properties
of NPs.

We perform calculations at the atomic level for Cu
NPs by using a specific N -body interatomic potential
derived from the second moment approximation of the
tight-binding scheme (TB-SMA) [25–27]. More details of
the TB model can de found in Sec. I of the Supplemen-
tal Material. Our TB framework gives direct access to
the total energy of each atom. This possibility to easily
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analyze local energy distributions will be decisive in the
following. The atomic interaction model is implemented
in a Monte Carlo (MC) code in the canonical ensem-
ble, based on the Metropolis algorithm, which allows to
relax the structures at finite temperatures [28]. We con-
sider cuboctahedral solid NP bounded by six squares and
eight equilateral triangles which structure is constructed
on the face-centered cubic (fcc) lattice, leading to the
presence of outer facets of {100} and {111} orientations,
respectively. From this structure, it is possible to define
analytically all the sites for a given cluster size with k
shells [18]. Indeed, this cluster contains 12 vertices (v),
24(k-1) atoms in edges (e), 6(k-1)2 and 4(k-2)(k-1) atoms
on {100} and {111} facets (f), respectively. Moreover,
the total number of atoms N(k), the surface S(k) and
the volume V (k) are given by the following equations :

N(k) =
10

3
k3 + 5k2 +

11

3
k + 1 (1)

S(k) = 2(3 +
√

3)(kd)2 (2)

V (k) =
5
√

2

3
(kd)3 (3)

where d corresponds to the equilibrium distance between
first neighbors. To characterize the evolution of surface
energy of solid and liquid states, calculations are done at
two temperatures (T= 5 and 1500 K). Numerically, the
so-called surface energy [29, 30] resulting from the cre-
ation of a surface is defined as an excess internal energy
(Eexc) normalised to a given surface area, A:

γ(R) =
Eexc

A
, (4)

where Eexc = ENP (R) − Eref . ENP (R) is the total
energy of the NP of radius R where necessarily R and the
number of k shells are linked. Lastly, Eref is a reference
energy to be defined. The calculation of ENP (R) is not
an issue since it is a straightforward output of the MC
simulations. On the contrary, Eref and A are not well
defined quantities. Typically the reference energy is
commonly chosen as the energy of the bulk fcc in the
solid state [31–33]. Regarding the surface area, its choice
is not unique [24] and can strongly affect the results. To
overcome this problem, we first consider the case of solid
particles and then extend our approach to liquid systems.

We apply two complementary approaches to get an
insightful analysis of our results. The first is to calcu-
late the surface energy from MC simulations according
to Eq. 4 where ENP (R) is obtained after relaxation at
5 K. The second one consists of developing an analyti-
cal model by assuming that all excess energy is ascribed
to the surface sites [17, 18]. This is made possible be-
cause all surface sites are perfectly identified. In both
approaches, it is quite natural to consider A as the ex-
act surface S(k) of the cuboctahedral shape (see Eq. 12).

Furthermore, the identification of local energies within
the NP turns out to be very precious to tackle the chal-
lenge of correctly defining Eref . More precisely, by an-
alyzing the energy profile along the radius of the NPs,
we can clearly identify two populations, i.e. the core and
surface atoms (see Sec. II of the Supplemental Mate-
rial). Consequently, Eref is simply the average energy
of atoms identified in core position. In case of solid NP,
Eref is equal to -3.50 eV/at which is exactly the total
energy per atom of a face centered cubic bulk Cu in our
TB model. This result confirms that defining Eref from
the bulk system, as done in many works, is completely
justified.
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FIG. 1. Calculated surface energies for cuboctahedron Cu
NPs as a function of size based on an (a) exact surface S(k)
and (b) a spherical (sa) approximation as well as corrected
spherical approximation (csa). Both figures present analytical
and MC results.

At this stage, all the quantities required to determine
γ(R) from MC simulations according to Eq. 4 are known.
The calculated surface energies for the cuboctahedral Cu
NP as a function of size are shown in Fig 1a. It can be
seen that the surface energy decreases with particle size.
More precisely, there is a significant variation for small
particles (<20 Å), from 1.92 to 1.22 J/m2. For larger
particles, the decrease of γ with the size becomes negligi-
ble to reach a constant value around 1.20 J/m2. We now
consider an analytical model where the determination of
γ(k) is simply reduced to the following equation :

γcubo(k) =

∑
i niγi
A

, (5)

where γi represents the local excess energy for each sur-
face sites i (i = v, e, f) defined as Ei−Eref and ni being
the number of sites of type i. In this approach, it is
assumed that the excess energy is located only on the
surface sites. As seen in Sec. II of the Supplemental
Material, also subsurface atoms have still a slightly dif-
ferent energy than in bulk. We consider that they do
not play a decisive role and that they can be neglected
in γ calculations. In a first step, A is considered as the
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exact surface S(k) of the cuboctahedral NP (see Eq. 12),
the related surface energy is noted γexactcubo (k). Meanwhile,
the local energies of all sites (Ei) are calculated from our
TB-potential for clusters of various sizes (see Sec. III of
the Supplemental Material). The resulting values of γi
are presented in Table I. From γexactcubo (k), the analytically

γv γe γ100 γ111 2γe − γ100 − γ111 2γe − 3
2
γ100 − 4

3
γ111

Cu 0.94 0.62 0.43 0.37 0.44 0.09

Ag 0.60 0.38 0.28 0.22 0.26 0.05

Au 0.56 0.36 0.29 0.21 0.22 0.005

TABLE I. Local excess energy for each surface site and crucial
quantities that are involved in the calculation of γexact

cubo (k) and
γsa
cubo(k). Values are given in eV for all noble metals.

calculated surface energy for the cuboctahedral Cu NPs
as a function of size is shown in Fig. 1a. Similarly to re-
sults obtained from MC simulations, the surface energy
decreases strongly with size. Moreover, results from the
analytical model are in good agreement with the com-
plete MC calculations, the small difference observed be-
ing due to the the subsurface contributions. To go deeper
and analyse this tendency, the first-order Taylor expan-
sion of γexatcubo(k) turns out to be very precious (see details
in Sec. IV of the Supplemental Material) :

γexactcubo (k) ≈ γexact∞ +
6 [2γe − γ100 − γ111]

kd2(3 +
√

3)
(6)

γexact∞ =
3γ100 + 2γ111

d2(3 +
√

3)
,

where γexact∞ corresponds to the plateau observed in Fig. 1
for large NPs (i.e. for k → ∞ in Eq. 14). In addition,
the second term is necessarily positive according to the
γi hierarchy discussed above. As seen in Table I, this
argument is valid for all noble metals. Consequently,
the heterogeneity of the surface with different types of
site explains the decrease in γ(R), as already argued in
previous works with a simple dimensional argument [17,
18].

On a purely theoretical point of view, it is quite natural
to consider the true surface of the cuboctahedron S(k)
as done so far. Experimentally, it is however not always
possible to identify the exact shape of the NP (i.e. icosa-
hedron, decahedron, cuboctaedron,...) and even less to
determine the exact surface area of the observed NPs. In
practice, a spherical approximation of the different NPs
to be analysed is made. Typical examples from Transmis-
sion Electron Microscope (TEM) images are presented in
Fig. 2a where a radius R can be assigned to each NPs in
solid states (see Sec. V of the Supplemental Material
for experimental details). Within this spherical approx-
imation, determining A of a solid NP from MC simula-
tions is also non-trivial. Actually, the effective surface is

FIG. 2. Spherical approximation to determine the effective
surface area from TEM images of Cu NPs in (a) solid (facetted
NPs at 573 K) and (b) liquid states (non-facetted NPs with
a spherical shape at 1073 K). On the right : comparison of
the sphere of radius R obtained from the atomic density (ρ∞)
with configurations from MC simulations for different sizes
and states of NPs containing 55 atoms, 561 atoms and 2869
atoms. For the liquid cases, it is obvious that a snapshot
is not so representative of the situation since the particle is
strongly deformed during the simulation.

equal to 4πR2. To address the arising difficulty in MC
simulations, R is determined from the atomic density,
ρ∞ =

√
2/d3, (see Sec. VI of the Supplemental Material)

using the following relation : R3(k) = 3N(k)/4πρ∞. To
highlight the relevance of such a choice, Fig. 2a shows the
sphere obtained from ρ∞ on snapshots of MC simulations
from solid NPs, whose surface area is noted Ssa(k). The
comparison with the determination of the radius of the
NPs from TEM images is clearly relevant. From Eq. 4, it
is now possible to calculate the dependency with the size
of the surface energy within the spherical approximation
from MC simulations. As seen in Fig. 1b, the conclusion
differs significantly from the exact calculation. Indeed,
almost no variation is observed and γ remains rather con-
stant around 1.23 J/m2. Consequently, the surface en-
ergy using the spherical approximation does not depend
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on the size of the system. In fact, the apparent discrep-
ancy between the two approaches can be attributed to
the different ways to calculate the surface area. Once the
gap between both approaches becomes negligible, then an
equivalent behaviour can be observed where the surface
energy varies only slightly (see Fig. 3). Obviously, this
happens for sufficiently large particles where the spher-
ical approximation is all the more adapted. To better
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FIG. 3. Relative difference between the surface area calcu-
lated according to the spherical approximation and the exact
one of the cuboctahedron as a function of size.

understand these differences with the strong decrease ob-
served for γexactcubo (k), a first-order Taylor expansion of γ(k)
within the spherical approximation (sa), noted γsacubo(k),
is done leading to (see Sec. VII of the Supplemental Ma-
terial):

γsacubo(k) ≈ γsa∞ +
6 [2γe − (3/2)γ100 − (4/3)γ111]

kd2(25π)1/3
(7)

γsa∞ =
3γ100 + 2γ111
d2(25π)1/3

As seen in Fig 1b, we confirm an almost constant vari-
ation of γ(k) around 1.20 J/m2. Such observation is in
agreement with MC simulations where the discrepancy in
the plateau is mainly due to the assumption of consider-
ing only surface sites in the analytical approach. Unfortu-
nately, the variation of γ with size is not straightforward
contrary to the exact calculation discussed previously.
Indeed, nothing can be concluded about the importance
of the predominant term in the numerator of Eq 17. In
the particular case of Cu, it is close to zero explaining
the stability of γ with size. To generalise this result,
the estimation of the numerator has been extended to
other noble metals (Ag and Au) confirming this trend
(see Table I). Within the spherical approximation, our
analytical calculations therefore suggest that the surface

energy does not vary with the size and is equal to γsa∞
(i.e. for k →∞ in Eq. 17).

In the following, we analyse the error made in the
spherical approximation where two strong assumptions
were established. The first one was to determine R(k)
from the atomic density where all the atoms constitut-
ing the NP contribute equally. However, as seen in Sec.
VI of the Supplemental Material, ρ∞ is correctly repro-
duced (at least to first order) when only considering that
the surface atoms, Nsurf (k), contribute half compared
to the core atoms. In the definition of R(k), this is
equivalent to consider that the total number of atoms
is N(k) − Nsurf (k)/2. In this corrected spherical ap-
proximation (csa), the surface area becomes Scsa(k) =
Ssa(1 − 1/k). By applying this new surface formulation
to the MC simulations, a significant variation of the sur-
face energy with the size of the NPs is found. The result
(corrected MC) presented in the Fig. 1b shows a decrease
for NPs smaller than 20 Å to reach a plateau in the order
of 1.20 J/m2. As seen in Fig. 1b, the same trend is ob-
served for the analytical model, γcsacubo(k), where Scsa(k)
is considered. In other words, by using this simple sur-
face area correction to the spherical approximation, it is
possible to restore the energy dependence obtained with
an exact description of the surface area. The second as-
sumption comes from the morphology, i.e. sphere rather
than cuboctahedron. Actually, the following relationship
γcsacubo(k) ≈ 1.10γexactcubo (k) can be established (see Sec. VII
of the Supplemental Material). Thereby, the only dif-
ference between the exact calculation and the corrected
spherical approximation ones results in a morphological
factor due to the difference between a sphere and a cuboc-
tahedron. To conclude, the spherical approximation is
very appropriate for large sizes (with a constant form
factor) but must be corrected for small sizes by a factor
modifying the radius of the NP, which itself depends on
the size and takes into account the specific contribution
of the surface atoms.

Let us now consider liquid NPs by applying the ap-
proach developed for solid NPs to determine Eref and A
in Eq. 4. For the reference energy, it is simply a question
of calculating the average energy of a bulk system at 1500
K (see Sec. II of the Supplemental Material). To deter-
mine the surface area, one can no longer rely on an exact
calculation. Moreover, the corrected spherical approx-
imation allows a precise determination of this area by
assuming that the number of surface atoms is very close
to that in the solid state. Meanwhile, the usual spheri-
cal approximation is subject to the same disadvantage as
in the solid state, i.e. an overestimation of the volume
(and therefore of the radius) of the NP at small sizes,
which is even greater the smaller the size is. Figure 4a
shows that the variation of the surface energy with the
size of the NP in the liquid state is very similar to that
observed in the solid state. Thus the calculation with the
usual spherical approximation shows a constant surface
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energy close to 1.15 J/m2 , whereas the corrected spher-
ical approximation gives a strong increase of γ when the
size decreases, a variation slightly higher than that ob-
served in the solid state. This significant variation may
seem very surprising if we refer to the solid state where
the weight of highly energetic sites (edges and vertices)
decreases in favour of that of the facets when the size
increases. However, vertices, edges and facets no longer
exist in the liquid state and it is tempting to think that
the surface energy distribution is relatively homogeneous.
To address this issue, we determined the local energies
in terms of spatial distribution in the liquid state. As
seen in Fig. 4b, we show the local energies for two NP
sizes (561 and 5083 atoms). The particles do adopt a
quasi-spherical shape without the presence of facets and
edges in agreement with TEM observations (see Fig. 2a).
Nevertheless, the energy analysis shows a strong surface
heterogeneity. There is a difference of about 0.8 eV be-
tween the most energetic and the least energetic surface
atoms, compared to a difference of about 0.6 eV in the
solid state between vertices and facets {111}. This un-
expected presence in the liquid state of highly energetic
surface atoms whose weight decreases with increasing size
(cf. Fig. 4b) is at the origin of the strong variation of γ
with size, as in the solid state. The determination of the
statistics of these sites as a function of size and temper-
ature remains to be done. As proposed in case of solid
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FIG. 4. (a) Calculated surface energies for liquid Cu NPs
as a function of size within a spherical approximation and
corrected spherical approximation. (b) Analysis of the local
energies on surface of liquid NPs containing 561 and 5083
atoms. Energies are in eV.

NPs, this result therefore suggests that a heterogeneous
surface necessarily tends to a variation in the value of γ.

Based on both numerical simulations and analytical
developments, this study explains the origin of the dis-
agreements regarding the evolution of the surface energy
with the size of the NPs [19–24]. A strong dependence is

obtained when the exact surface of the NP is considered,
which is possible for simple forms. In contrast, using
the classical spherical approximation, we obtain a sur-
face energy that is almost independent of the size of the
NP. If we correct the classical spherical approximation by
taking into account the specific contribution of the sur-
face atoms, we obtain a very good agreement with the
exact calculation within one morphological factor. This
result is particularly useful for dealing with liquid NPs,
for which the exact surface area can hardly be calculated.
How then can we explain the success of thermodynamic
or kinetic approaches that use the classical spherical ap-
proximation and that reproduce well the experimental
data, while neglecting the variation of γ with size [3–8]?
The answer is that they rely on the expression of the
chemical potential which involves the product γA and
where the excess energy of the NP is considered to be
localised at the surface (and does not contain core con-
tributions as for the icosahedron). In these approaches,
it is therefore essential to respect the consistency of the
calculations of γ and A. This product can be evaluated
either by considering the exact value of the surface area
A and the exact variation of γ with size, or by considering
the value of A given by the classical spherical approxima-
tion and the value of γ consistent with this calculation
of A, namely a constant value equal to that of a semi-
infinite bulk. In this latter case, even if the variations of γ
and A are not exact, the product is correct explaining the
success of thermodynamic or kinetic approaches based on
the classical spherical approximation. This work there-
fore represents a significant achievement on an essential
but difficult to define physical property at the nanoscale
while proposing simple approaches to improve the ther-
modynamic and kinetic models developed so far in the
future.
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tion,” J. Phys. (Paris) 31, 1055 (1970).

[28] D Frenkel and B. Smith,
Understanding Molecular Simulation (Academic Press:
London, 2002).

[29] S.W. Ip and J.M. Toguri, “The equivalency of surface
tension , surface energy and surface free energy,” Journal
of Materials Science 29, 688–692 (1994).

[30] P. Müller and A. Saúl, “Elastic effects on surface
physics,” Surf. Sci. Rep. 54, 157 – 258 (2004).

[31] S. Ali, V. S. Myasnichenko, and E. C. Neyts, “Size-
dependent strain and surface energies of gold nanoclus-
ters,” Phys. Chem. Chem. Phys. 18, 792–800 (2016).

[32] Y. Wei and S. Chen, “Size-dependent surface energy den-
sity of spherical face-centered-cubic metallic nanoparti-
cles,” J. Nanosci. Nanotechnol. 15, 9457–9463 (2015).

[33] D. Holec, P. Dumitraschkewitz, D. Vollath, and F. D.
Fischer, “Surface energy of Au nanoparticles depending
on their size and shape,” Nanomaterials 10, 484 (2020).

http://dx.doi.org/https://doi.org/10.1524/zkri.1901.34.1.449
http://dx.doi.org/ https://doi.org/10.1016/j.progsurf.2005.09.004
http://dx.doi.org/ 10.1103/PhysRevLett.105.255901
http://dx.doi.org/ 10.1103/PhysRevLett.105.255901
http://dx.doi.org/ 10.1021/acsnano.5b07377
http://dx.doi.org/ 10.1021/acsnano.5b07377
http://dx.doi.org/ 10.1021/acsnano.8b08530
http://dx.doi.org/ 10.1103/PhysRevA.13.2287
http://dx.doi.org/ 10.1103/PhysRevA.13.2287
http://dx.doi.org/10.1038/nmat2574
http://dx.doi.org/ 10.1103/PhysRevLett.103.205701
http://dx.doi.org/ 10.1103/PhysRevLett.103.205701
http://dx.doi.org/10.1103/PhysRevLett.115.205502
http://dx.doi.org/10.1103/PhysRevLett.115.205502
https://doi.org/10.1007/s41061-016-0060-0
https://doi.org/10.1007/s41061-016-0060-0
http://dx.doi.org/10.1088/0022-3727/47/1/013001
http://dx.doi.org/10.1088/0022-3727/47/1/013001
http://dx.doi.org/10.1103/PhysRevLett.91.106102
http://dx.doi.org/10.1103/PhysRevLett.120.025901
http://dx.doi.org/10.1103/PhysRevLett.120.025901
http://dx.doi.org/ https://doi.org/10.1016/0039-6028(84)90703-9
http://dx.doi.org/ https://doi.org/10.1016/0039-6028(84)90703-9
http://dx.doi.org/10.1021/j100170a009
http://dx.doi.org/10.1021/j100170a009
http://dx.doi.org/10.1002/crat.2170230921
http://dx.doi.org/10.1002/crat.2170230921
http://dx.doi.org/https://doi.org/10.1103/PhysRevB.75.235436
http://dx.doi.org/10.1039/c0cp02102d
http://dx.doi.org/10.1039/c0cp02102d
http://dx.doi.org/10.1016/j.susc.2015.01.016
http://dx.doi.org/10.1016/j.susc.2015.01.016
http://dx.doi.org/ 10.1016/j.tsf.2017.08.051
http://dx.doi.org/ 10.1016/j.tsf.2017.08.051
http://dx.doi.org/ 10.1039/c8cp02346h
http://dx.doi.org/ 10.1039/c8cp02346h
http://dx.doi.org/DOI: 10.1080/01418618908205062
http://dx.doi.org/DOI: 10.1080/01418618908205062
http://dx.doi.org/10.1103/PhysRevB.78.075413
http://dx.doi.org/10.1103/PhysRevB.78.075413
http://dx.doi.org/ https://doi.org/10.1051/jphys:019700031011-120105500
http://dx.doi.org/ 10.1007/BF00445980
http://dx.doi.org/ 10.1007/BF00445980
http://dx.doi.org/ https://doi.org/10.1016/j.surfrep.2004.05.001
http://dx.doi.org/10.1039/c5cp06153a
http://dx.doi.org/10.1166/jnn.2015.10494
http://dx.doi.org/ 10.3390/nano10030484


7

SUPPLEMENTARY MATERIAL OF : IS THERE
REALLY A SIZE EFFECT ON THE SURFACE

ENERGY OF NANOPARTICLES ?

Sec. I. Methodology

Within the tight-binding (TB) framework [1, 2], the
total energy of an atom n is splitted in two parts, a band
structure term that describes the formation of an en-
ergy band when atoms are put together and a repulsive
term that empirically accounts for the ionic and elec-
tronic repulsions : En

tot = En
band + En

rep. The total en-
ergy of the system containing N atoms, Etot, then writes

Etot =
∑

n=1,N

En
tot. The band energy, En

band is given by :

En
band = −

√∑
m6=n

ξ2 exp
[
−2q(

rnm
r0
− 1)

]
(8)

and the repulsive contribution, En
rep, is chosen to have a

pairwise Born-Mayer form :

En
rep =

∑
m6=n

A exp
[
−p(rnm

r0
− 1)

]
(9)

with rnm the distance between atoms at sites n and m
and r0 corresponds to the equilibrium distance between
first neighbors in the pure metal. ξ is the effective
hopping integral between atoms. The parameters (ξ,
A, q and p) used in this study are fitted to reproduce
several bulk physical properties. More details concerning
the fitting procedure can be found in our previous
works dealing with the structural and thermodynamic
properties of metallic nanoparticles [3, 4]. This atomic
interaction model is implemented in a Monte Carlo (MC)
code in the canonical ensemble, based on the Metropolis
algorithm, which allows to relax the structures at finite
temperature [5]. In the canonical ensemble, MC trials
correspond to random displacements. The average quan-
tities are calculated over 106 MC macrosteps, a similar
number of macrosteps being used to reach equilibrium.
A MC macrostep corresponds to N propositions of
random atomic displacement, N being the total number
of atoms of the cluster. Such approach is perfectly
adapted to deal with large systems and to reproduce the
main energetic properties of transition and noble metals.

Sec. II. Energy profiles along the radius of
solid and liquid NPs

In Figure S1, we present the energy profiles along the
radius of the different nanoparticles (147, 923 and 5083
atoms) in solid and liquid states. Such an analysis is
made possible by the calculation of local energies derived
directly from the TB model. Interestingly, we can clearly
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FIG. S1. Energy profiles along the radius of NPs containing
147, 923 and 5083 atoms (from top to bottom). Left : solid
NPs (T=5 K) and right : liquid NPs (T=1500 K). The grey
and blue areas represent the core and surface atoms, respec-
tively.

identify two populations, i.e. core (grey area) and surface
atoms (blue area). In case of solid NPs, the first corre-
sponds to the core atoms which have energies around
-3.50 eV/atom. The second population corresponds to
surface atoms which are less stable and have energies
reaching -2.60 eV/atom. The discontinuous aspect of the
curve is mainly due to the layer structure of solid NP giv-
ing rise to this type of profile. For liquid NPs, the energy
profiles along the particle are obviously more continuous.
Here again, two populations of atoms are observed. The
slice views shown in Figure S2 for solid and liquid NPs
provide a direct insight into the distribution within the
nanoparticle and confirms the presence of two popula-
tions where the excess energy is located at the surface.

Consequently, Eref is simply the average energy of
atoms identified in core position whatever the state
of the NPs. In principle, it would be relevant to
determine a different core energy for all sizes of NP.
However, as the variation is very small (less than 10
meV/atom between Cu147 and Cu5083), we choose
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FIG. S2. Slice views showing the presence of core and surface
populations for NPs containing 923 atoms in (a) solid and
(b) liquid states. In case of solid NP, the contribution of
subsurface atoms can be identified. Energies are in eV.

to determine Eref from the largest NP where the
plateau corresponding to the core atoms is more clearly
defined. In case of solid NP, Eref is equal to -3.50
eV/at for solid NP which is exactly the total energy of
a face-centered cubic bulk Cu in our TB model. In case
of liquid NPs, Eref is equal to -3.18 eV/at and corre-
sponds to an infinite system in the liquid state at 1500 K.

Sec. III. Analysis of the local energies in solid
nanoparticles

As an example, we plot the histogram of local ener-
gies for Cu NPs with total number of atoms, N = 147,
923 and 5083 atoms. Different populations of atoms can
be identified (Fig S3a). The energies lie between -3.6
and -3.4 eV/atom are due to the bulk atoms which have
12 neighbors. The second population corresponds to the
surface atoms which energies are below -3.2 eV/atom. As
expected, the contribution of surface atoms decreases as
the cluster size increases from Cu147 to Cu5083. More-
over, a local analysis presented in Fig. S3b provides a
spatial representation of the different surface sites with
the following hierarchy : E{111} < E{100} < Ee < Ev.
This result is not surprising since it is directly related
to the coordination number (Zi) of each site. The larger
Zi is, the higher the cohesion energy is. Finally, it is
particularly interesting to note that local energies are in-
dependent on the size and remain constant whatever the
nanoparticle under consideration.

Sec. IV. Calculation of surface energy from
the exact definition of the surface area: γexactcubo (k)

A cuboctahedral NP with k shells contains 12 vertices
(v), 24(k-1) atoms in edges (e), 6(k-1)2 and 4(k-2)(k-1)
atoms on {100} and {111} facets (f), respectively. The
total number of atoms N(k), the volume V (k) and the

923
147

5083 200

400

600

Number of 
Cu atoms

Cu
Cu
Cu

(a) (b)
-2.50

-3.20

FIG. S3. (a) Analysis of the local energies in a histogram
form for Cu solid NPs containing 147, 923 and 5083 atoms
at 5K. For the sake of clarity, the values for the number of
atoms in case of the NP147 have been increased by a factor
of 10. (b) Analysis of the local energies on surface sites of
solid Cu923 NP where different populations can be identified
according to the following hierarchy : Ef < Ee < Ev. Note
that the distinction between the different facets ({111} and
{100}) is not visible at this scale. Energies are in eV/at.

surface S(k) are given by the following equations :

N(k) =
10

3
k3 + 5k2 +

11

3
k + 1 (10)

V (k) =
5
√

2

3
(kd)3 (11)

S(k) = 2(3 +
√

3)(kd)2 (12)

In this section, we detail the analytical calculation of the
surface energy which is written as follows:

γcubo(k) =

∑
i niγi
A

, (13)

γi represents the local excess energy for each surface site
i (i = v, e, f) defined as Ei − Eref . As for the surface
area A, different approaches are possible. Here, A is con-
sidered as the exact surface S(k) of the cuboctahedral
nanoparticle. According to Eq. 13 and precise identifica-
tion of surface sites, the surface energy is given by :

γexactcubo (k) =
12γv + 24(k − 1)γe

2k2d2(3 +
√

3)

+
6(k − 1)2γ100 + 4(k − 2)(k − 1)γ111

2k2d2(3 +
√

3)

From this we get :

γexactcubo (k) =
3γ100 + 2γ111

d2(3 +
√

3)
+

1

d2(3 +
√

3)

×
[

6

k
(2γe − γ100 − γ111) +

6γv − 12γe + 3γ100 + 4γ111
k2

]
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By limiting to the first-order Taylor approximation of
γexactcubo (k), we obtain :

γexactcubo ≈ γexact∞ +
6 [2γe − γ100 − γ111]

kd2(3 +
√

3)

γexact∞ =
3γ100 + 2γ111

d2(3 +
√

3)

Sec. V. Synthesis and TEM observations of solid
and liquid NPs

The temperature serie of Transmission Electron Mi-
croscopy (TEM) images of the Cu NPs was acquired
using a JEOL JEM-ARM200F spherical aberration cor-
rected electron microscope equipped with a cold field
emission gun operated at 80 kV here and a ultrafast
Gatan OneView camera. For in situ TEM heating, we
used a slightly modified version of the Atmosphere TEM
environmental gas cell from Protochips Inc. with high
temperature heating capabilities up to 1273 K [6].

The Cu NPs were synthesized by alternated pulsed
laser deposition (PLD) technique in a high vacuum
chamber at 10−5 Pa according to an experimental pro-
cedure detailed in [7]. The NPs was carried out directly
on the 50-nm thick electron transparent silicon nitride
membrane of the small heating E-chip that composes
the Protochips gas cell. The nominal thickness of metal
deposited was fixed at 2 nm and the SiN substrate was
held at 723 K during metal deposition in order to obtain
NPs with diameter below 10 nm. TEM observations
were performed in vacuum with the SiN membrane of
the larger E-chip of the gas cell removed.

Sec. VI. Calculation of the atomic density, ρ

In this section, we present the different approaches
to calculate the atomic density for NPs, an important
quantity which is taken into account in the γ calculation.

• Infinite system

In case of bulk, there is no particular difficulty since it
can be straightforward determined from a face-centered
cubic structure of lattice parameter a containing four
atoms per cell. As a result, the atomic density of a bulk
system is given by the following equation :

ρ∞ =

√
2

d3
, (14)

where d corresponds to the equilibrium distance between
first neighbors in pure metals. Knowing that the lattice
parameter of Cu is equal to 3.62 Å, we obtain ρ ' 0.084
atom/Å3. In case of simulations at 1500 K, thermal
expansion is taken into account leading to ρ ' 0.076
atom/Å3. While this calculation seems trivial for an

infinite volume, it has been ignored when using the
spherical approximation in nanoparticles in literature.

• Nanoparticle

Atomic density from the total number of
atoms N(k)

In case of a cuboctahedron NP, the number of atoms
N(k) and the volume V (k) are known exactly. If we
do not distinguish between core and surface sites and if
we apply the following relation ρ(k) = N(k)/V (k), the
atomic density is simply given by :

ρ(k) =
10k3 + 15k2 + 11k + 3

5
√

2(kd)3

By limiting to the first-order Taylor expansion of ρ(k),
we obtain :

ρ(k) ≈ ρ∞
(

1 +
3

2k

)
The fact that the atomic density of the NP is different

from that of the bulk system before any relaxation
clearly shows that the formula ρ(k) = N(k)/V (k) should
be corrected by differentiating the contribution of each
type of site.

Atomic density by distinguishing between
surface and bulk atoms

Let us consider Neff (k) the number of atoms in the
NP where surface atoms Nsurf (k), counting for half, are
removed : Neff (k) = N(k)−Nsurf (k)/2 where :

Nsurf (k) = 6(k − 1) + 4(k − 2)(k − 1) + 24(k − 1) + 12

By limiting to the second-order Taylor expansion of
ρ(k) = Neff (k)/V (k), we obtain :

ρ(k) ≈ ρ∞
(

1 +
11

10k2

)
(15)

In this case, the atomic density is equal to that of the
bulk system at the first order.

This simple calculation on the cuboctahedron shows
that it is essential to specifically take into account the
contribution of the surface atoms to correctly obtain the
atomic density of a nanoparticle. This is particularly
useful and crucial when using the spherical approxima-
tion for NPs to calculate γ.

Sec. VII. Calculation of surface energy from
the spherical approximation of the surface:
γsacubo(k) and γcsacubo(k)
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Spherical approximation

To determine the radius of a NP in the classical spher-
ical approximation (sa), we use the relation N = ρV con-
sidering ρ∞ the density of the infinite system and N(k)
the total number of atoms of the NP, without discrimi-
nating the contribution of core and surface atoms. As a
result,

Rsa(k) =

(
3d3N(k)

4π
√

2

)1/3

Knowing N(k), the surface area within the spherical ap-
proximation is noted Ssa and can be expressed as :

Ssa(k) = 4πd2
(

3

4π
√

2

)2/3

×
[
1 +

k

3
(10k2 + 15k + 11)

]2/3
(16)

From Rsa(k) and Ssa(k):

γsacubo(k) =

(
1− 1

k
+

31

60
k2
)
×
(

1

25π

)2/3

×
[
(3γ100 + 2γ111) +

6

k
(2γe − γ100 − γ111)

+
6γv − 12γe + 3γ100 − 4γ111

k2
]

By limiting to the first-order Taylor expansion of
γsacubo(k), we obtain :

γsacubo(k) ≈ γsa∞ +
6 [2γe − (3/2)γ100 − (4/3)γ111]

kd2(25π)1/3

γsa∞ =
3γ100 + 2γ111
d2(25π)1/3

,

It can be noted that in a simple manner the following
relationship can be obtained :

γsa∞ ≈ 1.10γexact∞

Corrected spherical approximation

To correct the classical spherical approximation, we
now distinguish between the contribution of core and sur-
face atoms using Neff (k). A second-order Taylor expan-
sion of Neff (k) leads to :

Neff (k) ≈ N(k)

(
1− 3

2k
+

9

4k2

)
Using this relation, we get :

Rcsa(k) ≈
[

3

4πρ∞
N(k)

(
1− 3

2k
+

9

4k2

)]1/3
Scsa(k) ≈ 4π

[
3

4πρ∞
N(k)

(
1− 3

2k
+

9

4k2

)]2/3
(17)

From the definition of Ssa(k) (Eq. 16), Scsa(k) can be
written :

Scsa(k) ≈ Ssa(k)

(
1− 3

2k
+

9

4k2

)2/3

,

leading to the following relationship between Scsa(k) and
Ssa(k) by limiting to the first-order Taylor expansion :

Scsa(k) ≈ Ssa(k)

(
1− 1

k

)
. (18)

As seen in this equation, the corrected spherical approx-
imation thus leads to a decrease in surface area relative
to that of the spherical approximation.

In the following, we note γcsacubo(k) the surface energy
obtained from the corrected spherical approximation.
Considering previous equations, we simply get :

γcsacubo(k) ≈ γsacubo(k)

(
1 +

1

k

)
. (19)

Moreover, from the initial definition of γsacubo(k) and by
limiting Eq. 19 to the first-order Taylor expansion of
γcsacubo(k), we obtain :

γcsacubo(k) =
1

d2(25π)(1/3)

[
3γ100 + 2γ111 +

6

k
(2γe − γ100 − γ111)

]
≈ 1.10

(
γexact∞ +

6(2γe − γ100 − γ111)

kd2(3 +
√

3)

)
≈ 1.10γexactcubo (k) (20)

The corrected spherical approximation is in very
good agreement with the exact calculation with
a constant form factor coming from the relation:
Scsa(k) = (1/1.10)S(k). Note that the value of 1.10
depends on the metal element.

Calculations of the radius for solid and
liquid nanoparticles

Depending on its degree of accuracy, the spherical ap-
proximation gives rise to two calculations of radii in case
of solid NPs, namely Rsa and Rcsa. As seen in Table II,
the difference is most significant for small NPs.

N 55 147 309 561 923 2869 5083 6525 10179 17885 24739

Rsa 5.3 7.4 9.5 11.6 13.7 20.1 24.3 26.4 30.7 37.0 41.3

Rcsa 3.8 6.1 8.3 10.4 12.6 19.0 23.2 25.3 29.6 35.9 40.2

TABLE II. For each NP containing N atoms, R is obtained
within the spherical approximation and corrected spherical
approximation in solid state. Values are given in Å.
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