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Optimal Control Allocation for the Parallel Interconnection of Buck
Converters

Jérémie Kreiss1,∗, Marc Bodson2, Romain Delpoux3, Jean-Yves Gauthier3, Jean-François Trégouët3,
Xuefang Lin-Shi3

Abstract

This paper presents a control algorithm for the parallel interconnection of heterogeneous power convert-
ers. A single resistive load is assumed to be fed by an arbitrary number of buck converters via a common
DC bus. The approach is based on control allocation theory and a constrained quadratic optimization
algorithm. The strategy achieves a fast voltage response with an optimal current distribution among the
converters, while taking into account the current limits, the dynamic response, and the efficiency of the
individual converters. An interesting by-product of the approach is the ability to put converters in and
out of service through trivial adjustments of the code. The benefits of the approach are assessed through
simulations and an experimental evaluation.

Keywords: Control allocation, quadratic optimization, constraints management, robust control,
parallel interconnection of power converters

1. Introduction

Recent applications such as microgrids (see
[1, 2, 3] for example) or low-voltage/high-current
power supplies are composed of several power con-
verters connected to a single load. This structure
benefits from several advantages as a consequence
of the distribution of the load current on multiple
converters. Thereby, it is possible to improve the
reliability [4], increase the ease of repair, improve
the thermal management [5], reduce the output
ripple by interleaving phases of the pulse-width
modulation (PWM) [6], and increase the system
efficiency [7].

The main control objective on such systems is
to regulate the output voltage. This objective
sets the steady-state value of the total current,
while the current distribution between the con-
verters remains free, even though the converters
are coupled through the output voltage dynam-
ics. One of the most widespread strategies for
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the determination of the current distribution is
the so-called droop-control method. Although its
implementation is straightforward, this approach
deals with current distribution and voltage regu-
lation as competing objectives. If priority is given
to voltage regulation, the current distribution is
deteriorated and vice versa. As a result, an op-
timal current distribution can only be obtained
by allowing a static error on the output voltage
(see [8]). A recent extension of such method for
a DC microgrid and with a distributed architec-
ture [2] still presents this static error for the out-
put voltage.

Instead of compromising between voltage regu-
lation and current distribution, the so-called bal-
anced current sharing method gives priority to
the voltage regulation and ensures an effective
control of the output voltage. To this end, this
well-known strategy imposes that every converter
shares the same fraction of the total current (see
[5, 6, 9, 10] for instance). If this strategy seems to
be justified when the converters are identical, it
is not expected to be optimal when the convert-
ers have different characteristics (in particular, in
terms of rate of response and efficiency). More-
over, strategies used for balanced current sharing
such as the master-slave or democratic architec-
ture expose the system to a single point-of-failure
risk [9, 11]. Finally, deriving conditions for closed-
loop stability in this framework is not straightfor-
ward, as highlighted by [12] where a detailed anal-
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ysis of parallel interconnection of buck converters
is provided.

Both droop-control and balanced current shar-
ing methods consider voltage regulation and cur-
rent distribution as competing objectives. How-
ever, the fact that current distribution remains
free when the voltage value is set is an intrinsic
property of the studied system. Then, it is possi-
ble to consider the two objectives as complemen-
tary and not competing ones. Consequently, it is
possible to satisfy them simultaneously.

Recently, [7, 12, 13, 14] propose control meth-
ods for the parallel interconnection of buck con-
verters that achieve simultaneously the two con-
trol objectives, i.e. the voltage regulation and the
current distribution. Those results are based on
the observation that the interconnection of multi-
ple converters in parallel to a single load belongs
to the class of over-actuated systems [15, 16].

Controlling over-actuated systems becomes
challenging when constraints and optimization
criteria are considered. Control allocation theory
is an appealing solution for over-actuated systems
(see [15, 16] for instance) and has recently been
used for power electronics applications (see i.e.
[17]). For the parallel interconnection of buck con-
verters, this solution takes into account the dis-
tinct converter characteristics when distributing
the total current. The resulting methods design
the controller in two steps: (i) an external con-
troller is designed to ensure the regulation of the
output (or voltage in our case) using a global con-
trol variable or pseudo-effector, and (ii) a control
allocation algorithm distributes the desired effort
(or load current in our case) among the actua-
tors, considering the constraints and other opti-
mization criteria [15].

Several methods can be found in the control
allocation literature and can be classified as fol-
lows: (i) the static approach for which the ef-
fort distribution is optimal instantly and at each
time instant [15, 16], (ii) the dynamic approach
where the effort distribution is only optimal for
the steady state [18] and (iii) the geometric ap-
proach which separates the current distribution
management from the total current generation by
changes of coordinates [19, 20].

Typically, for the static approach, actuators are
assumed to be fast enough to consider them as
static devices in the design of the external loop
([15, 21, 16] to cite a few). However, [16, 22]
extend this approach to take dynamical actua-
tors into account, with an open-loop inversion
approach where robustness is considered [16]
and using model predictive control for [22], where
state and input constraints are taken into account.

For the dynamic approach, dynamical actua-

tors can be taken into account (see [23, 24] and
also [7] for the case of parallel interconnection of
converters) in a way that the total effort distribu-
tion converges slowly to the optimal value. Even
though [23] deals with input constraints, incorpo-
rating state constraints is still an open problem.

The geometric approach has been applied to the
parallel interconnection of buck converters in [12],
extended in the Hamiltonian framework in [14],
and combined with an input constraints manage-
ment in [25]. Note that (i) the exact knowledge of
parameters is required to perform the change of
coordinates and (ii) dealing with state constraints
is still an open problem.

For the studied system, since dealing with cur-
rent constraints is essential for the system safety,
the most relevant method for this paper is the
static one. Furthermore, it provides an optimal-
ity of the current distribution not only for the
steady state but also for transients.

As a new contribution regarding the control al-
location theory, the strategy of this work opti-
mizes the current distribution for all time by ex-
ploiting the specific actuator dynamics. Rate sat-
urations are taken into account as suggested in
[22, 26]. Stability proofs are also provided in this
paper, considering constraints and uncertainties.

The main contribution of this paper is to pro-
pose a new method, based on the static approach
of control allocation, to control multiple heteroge-
neous buck converters connected in parallel. Most
of the existing methods are not able to deal freely
with the current distribution, and consequently,
performance is restricted. Furthermore, stability
of the existing controllers is rather involved. Pa-
pers [7, 12, 25] provide stability conditions with a
free management of current distribution, but the
current limits are not taken into account. With
respect to those methods, the one presented in
this paper: (i) ensures a fast response while maxi-
mizing efficiency by a free distribution of currents,
including transients unlike previous methods (ii)
guarantees stability under certain conditions with
consideration to load uncertainty, converter dy-
namics, and input and current limits, and (iii)
facilitates the predictable connection and discon-
nection of converters in real-time to accommodate
large load variations or for maintenance.

The paper is structured as follows. In Sec-
tion II, the problem is formalized with suitable
assumptions. In Section III, basics of the con-
trol allocation theory are presented as well as an
overview of the controller structure used in the
paper. Section IV provides control design related
to the current loop. In Section V, regulation of
the output voltage is performed for an unknown
resistive load. Finally, Section VI gives simula-
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tion results, Section VII compares the resulting
control law with existing ones, and experimental
results are presented in Section VIII.

Terminology and Notation. In the sequel, the
terms converters and actuators will be used in-
differently, such as load and plant. The first ter-
minology comes from the electrical power com-
munity, whereas the second from the control al-
location literature. The notation xj refers to the
j-th element of vector x, with 1 being the index of
the first element. The symbol Im stands for the
identity matrix of size m×m. The null matrix of
size m× n is denoted by 0m×n. The vector (col-
umn matrix) of size m for which every entry is
1 (respectively 0) is denoted by 1m (respectively
0m). The operator “diag” creates a diagonal ma-
trix from entries of its (vector) argument. In op-
timization problems, variables with a hat such as
î constitute the optimization variables.

2. Problem statement

This paper is about controlling the electrical
circuit shown in Figure 1, which corresponds to
the parallel interconnection of m heterogeneous
buck converters sharing a single capacitor C and
a common resistive load R. The load is assumed
to belong to some interval L ⊂ R>0. R is un-
known, as happens in most practical cases, and
is assumed to be constant, although the control
algorithm will compensate for slow variations or
stepwise changes. The converters are controlled
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Figure 1: Electrical schematic of m buck converters.

via PWM signals where dj refers to the duty cycle
of the j-th converter. Index j belongs to the set
J := {1, . . . ,m}. The DC bus voltage is denoted
v and the current in the j-th inductor, labelled
Lj , is denoted ij . The equivalent voltage sources
of the converters have magnitudes Ej . Signals are
sampled in the digital controller at a rate Ts and

each output signal is converted by a zero-order
hold.

Throughout this paper, it is assumed that (i)
the switching period TPWM is sufficiently small for
the dynamics to be approximated by an average
model, (ii) for each converter, the second switch
is controlled in opposition with the first one, and
(iii) electrical components and switches are ideals,
i.e., parasitic elements (resistances, losses) can be
neglected.

Considering the previous assumptions and us-
ing Kirchoff’s laws, the dynamics of the circuit
represented in Figure 1 are

∀ j ∈ J , Lj
dij
dt

= −v + Ejdj , (1a)

C
dv

dt
= σ − v

R
, (1b)

where
σ :=

∑
j∈J

ij = 1ᵀ
mi, (2)

refers to the total current. Eq. (1a) describes
the dynamics of the inductor current produced by
each converter, whereas (1b) describes the output
voltage dynamics.

One way to consider the parallel interconnec-
tion of buck converters is to view each converter
as an actuator, with the sum of the actuator out-
puts applied to a single-input single-output plant,
or load. Eq. (1a) corresponds to the actuators
model (Pa), whereas (P) constitutes the plant
(1b). This decomposition (actuators/plant) is de-
picted on Figure 2.

Pσ vPa
...

d1

dm i

Figure 2: Actuators/plant decomposition.

The main control objective is to regulate the
load voltage v to a reference value vr. The previ-
ous decomposition (actuators/plant) shows that
this voltage only depends on the total current
σ. The way this current is distributed between
the converters remains to be determined, and it
is possible to choose the best distribution in or-
der to satisfy the constraints and achieve a sec-
ondary objective. In this paper, the secondary
objective is the minimization of converter losses.
In [7], it was shown that the cost function associ-
ated with converter losses could be approximated
by a quadratic function

J(i) :=

m∑
j=1

(
r1,ji

2
j + r2,jij

)
, (3)
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where ∀j ∈ J , r1,j ∈ R≥0 and r2,j ∈ R≥0 are
coefficients depending on the converter and can be
determined experimentally. Note that the larger
r1,j or r2,j are, the less efficient the j-th converter
is.

The problem addressed in this paper is to reg-
ulate the output voltage to the reference value vr
while minimizing the converter losses expressed
by the cost function J . During the whole tra-
jectory, input and state constraints must also be
taken into account. One can express this problem
as follows.

Problem 1. Design a load-robust state-feedback
control law (i, v) 7→ d such that the closed-loop
system admits a stable equilibrium for which v =
vr holds, J(i) is minimum and constraints 0 ≤
dj ≤ 1, i−j ≤ ij ≤ i

+
j , j ∈ J are satisfied.

In the sequel, the controller design is carried
out in discrete-time in order to get closer to the
real application where a discrete-time controller
is connected to the system.

3. Control allocation perspective

Control allocation methods consist in separat-
ing the control of the plant P from the distri-
bution of effort among the actuators. The overall
control scheme is represented in Figure 3 (see [15])
where:

1

Cv A Ca Pa P
vr σ r

∈ R
i r
∈ R

m

d
∈ R

m

σ
∈ R v

i ∈ Rm

Figure 3: Schematic of the overall controller

• Cv is designed to control the output of the
plant, or load voltage v in our case to its ref-
erence value vr, by providing a global effort
reference σr;

• A takes the total effort reference σr as an in-
put and delivers suitable current references
ir to the actuators such that (i) the total
current σ tracks σr and (ii) the converter
losses are minimized according to (3);

• if needed, an internal controller Ca may be
implemented to accelerate/stabilize the re-
sponse of the actuators and delivers the
duty cycle d by a internal feedback of cur-
rents i.

Following control allocation concepts [21], the
control problem 1 is tackled in two parts:

Problem 2. Design a load-robust state-feedback
control law (i, v) 7→ d such that, for all R ∈ L

• a total current reference σr ensures the sta-
ble voltage tracking of a reference vr,

• the total current reference is distributed to
satisfy a criterion

i ∈ argmin
î∈Rm

σr −∑
j∈J

îj

2

+ εJ (̂i)

subject to ∀j ∈ J ,


i−j ≤ îj ≤ i

+
j ,

0 ≤ dj ≤ 1,

(1a).

(4)
with ε ∈ R≥0, and where i−j , i+j are the min-
imum and maximum currents that converter
j is capable of delivering.

Note that the scalar ε has to be chosen suffi-
ciently small in order to give priority to the first
term. Indeed, the primary objective is to regu-
late the voltage v and is related to tracking by
the total current σ of the total current reference
σr (first term). When this first term is close to
zero, the optimization will maximize efficiency as
a secondary objective.

In the following sections, the designs of Ca, A
and Cv are presented. The controller Ca is de-
signed to stabilize the actuators and make their
response as fast as possible while considering in-
put constraints 4. Indeed, in our case, the goal
is to stabilize the actuator dynamics which con-
sist of integrators (1a). Then, an optimization
algorithm is presented to solve (4) in the alloca-
tor block A. Finally, the controller Cv is designed
such that, without knowing the load value, the
steady-state response satisfies v∗ = vr.

4. Current Control

Let Ts be the sampling period of the controller.
For the sequel, the following assumption holds.

Assumption 1. The output voltage v is constant
over the period Ts.

Indeed, because the output capacitor slows the
voltage dynamics with respect to the currents,
this is a realistic assumption. The approxima-
tion will be needed later for the incorporation of
constraints.

4. Note that, in the case of static actuators, the inter-
nal controller Ca is not required because Pa reduces to an
algebraic relationship.
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4.1. Primary control Ca
The discrete-time model for the converter dy-

namics is obtained from (1a) 5

Pa,j : ij [k + 1] = ij [k] +
Ej
Lj
Tsdj [k]− Ts

Lj
v[k].

(5)
Note that (5) is not stable (the converters be-

have as integrators). The internal controller Ca,j
aims to stabilize each converter while ensuring the
convergence to a reference value ir,j such as in
Figure 4. The concatenation of the internal con-
trollers Ca,j , j ∈ J forms the block Ca of Figure 3.

Ca,j Pa,j
+

−
ir,j

εj dj ij

v v

Figure 4: Primary controller.

To reach the reference value ir,j as rapidly as
possible, a deadbeat controller is proposed. Ref-
erence values ir,j are updated at the period Ts.
Hence, the objective for Ca,j is to make ij reach
exactly the reference value in one period Ts. The
design problem of Ca,j consists in finding:

Ca,j : ir,j [k] 7→ dj [k] s.t.

 ij [k + 1] = ir,j [k],
(5),
0 ≤ dj [k] ≤ 1.

(6)
Obviously, by assigning the value of dj [k] at 1

(respectively 0), the maximum attainable value
ij [k + 1] (respectively the minimum one) is ob-
tained from an initial current ij [k]. Since assump-
tion 1 holds, those limits are given by

∆i+j := ij [k + 1]− ij [k] =
Ts
Lj

(Ej − v[k]), (7a)

∆i−j := ij [k + 1]− ij [k] = −Ts
Lj
v[k], (7b)

where (7a) and (7b) are deduced from (5) by set-
ting dj = 1 and 0, respectively.

The controller for the actuator, or primary con-
troller, is designed as specified in the following
lemma.

5. The discrete-time model of a continuous LTI model
ẋ = Ax + Bu is obtained by computing x[(k + 1)Ts] =

eATsx[kTs] +

∫ (k+1)Ts

kTs

eATs((k+1)Ts−τ)Bu(τ)dτ with a

constant input because of the zero-order hold.

Lemma 1. Let the current control Ca,j be

dj [k] =
Lj
EjTs

εj [k] +
1

Ej
v[k] (8)

where εj [k] := ir,j [k]− ij [k].
The closed-loop transfer function of Figure 4 is

such that the state ij reaches the reference value
ir,j in one sampling period Ts.

Proof. By using (8) with (5), one can obtain

ij [k + 1] = ij [k] + εj [k] +
Ts
Lj
v[k]− Ts

Lj
v[k].

Since εj [k] := ir,j [k]− ij [k], it follows that

ij [k + 1] = ir,j [k],

which means that the state reaches the reference
in one sampling period Ts.

4.2. Allocator A
4.2.1. Principle

The aim of the allocator block (see Figure 3) is
to distribute the total current reference σr among
the available converters in such a way that: (i) ev-
ery current reference is achievable for the primary
controller Ca in one step and (ii) the cost function
(3) is minimized. The problem to solve is (4) at
the period Ts, with the solution providing the ref-
erence currents for the individual converters. In
other words, for k ∈ N, ir,1...
ir,m

 [k] ∈ argmin
î∈Rm

σr[k]−
m∑
j=1

îj

2

+ εJ (̂i)

subject to ∀j ∈ J ,

 i−j ≤ îj ≤ i
+
j ,

0 ≤ dj [k] ≤ 1,
(5).

(9)
From the previous subsection and, in particu-

lar, from (7), constraints on duty cycles dj are
transferred to the currents, which are the deci-
sion variables of problem (9). This change makes
it possible to gather the constraints via the fol-
lowing relationship ∀j ∈ J ,

max
(
i−j ,∆i

−
j + ij [k]

)
≤ îj ≤ min

(
i+j ,∆i

+
j + ij [k]

)
where ∆i−j and ,∆i+j are given by (7).

Algorithms can be found in the literature to
solve quadratic problems with inequality con-
straints (see [27, Chapter 8], [28], [29], [30]). To
apply these methods, J is rewritten as

J(i) =

m∑
j=1

r1,j

(
ij +

r2,j

2r1,j

)2

−
m∑
j=1

r2
2,j

4r1,j
.
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Since

m∑
j=1

r2
2,j

4r1,j
is scalar, the minimum of J is

reached for the same current values as the stan-
dard quadratic function (by setting their deriva-
tives to zero)

J̃(i) :=

m∑
j=1

r1,j

(
ij +

r2,j

2r1,j

)2

= ‖Wr(i− ip)‖22

where

Wr := diag



√
r1,1

...√
r1,m


, and ip := −


r2,1

(2r1,1)
...

r2,m

(2r1,m)

.
Furthermore, rewriting σ as in (2), problem (9) is
transformed into the equivalent problem ir,1...
ir,m

 [k] ∈ argmin
î

∥∥∥∥[ 1ᵀ
m√
εWr

]
î−
[
σr[k]√
εWrip

]∥∥∥∥2

2

s.t. ∀j ∈ J ,max
(
i−j ,∆i

−
j + ij [k]

)
≤ îj

≤ min
(
i+j ,∆i

+
j + ij [k]

)
.

(10)
This equivalent problem can be solved using the
active set methods presented in [31] and applied
to control allocation in [27, Section 8.1]. An
active set method solves a sequence of equality-
constrained problems.

The first step of the sequence consists in solv-
ing the optimization problem without any con-
straints. If the given solution is achievable, i.e.
the constraints are not violated, the solution is
obtained and the algorithm stops. In the other
case, a second step is necessary: the variables out-
side the constraints are set to the corresponding
limits as equality constraints (corresponding to
the working set W that specifies which actuators
are saturated) and the algorithm solves the opti-
mization problem on the remaining variables by
disregarding the constraints. If the solution is still
not feasible, the step is performed again, until a
feasible solution is obtained. If the solution is fea-
sible, the algorithm moves to the third step: some
of the inequalities are now removed (one by one)
to determine if the optimization can be improved
with fewer variables at their limits. Note that this
third step is only required if the previous step set
at least two equality constraints at a time. The
experiments of this paper use a Matlab toolbox
available on-line in [32]. For the initialization of
the algorithm, i0 was chosen to be the zero vector
at the first iteration, and the solution at the pre-
vious time step otherwise. The working set was
initialized at W = 0m.
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Figure 5: Simulation time evolution with respect to the
number of converters.

4.2.2. Speed of convergence

In order to provide information about the possi-
ble implementation of this algorithm in real-time,
the following simulations are given.

Environment. The following tests have been
performed on a Lenovo Yoga 710 having an Intel
Core i7 processor and a RAM of 8GB. The algo-
rithm is implemented on MATLAB/SIMULINK
2018a using a matlab-function block.

Test. The simulation concerns the estimation of
the mean time over a whole simulation for the
computation of the algorithm. The simulation
time is Tf = 60s, and the algorithm is com-
puted for the following three sampling times :
(i) Ts = 2 × 10−5s, (ii) Ts = 5 × 10−5s and
Ts = 1 × 10−4s. For those three cases and for a
number of converters growing from 2 to 8, the to-
tal simulation time of the controller is measured.
Results are given on Figure 5. For a simulation
time of Tf =60s, the computation time have to
be less than 60s to use the algorithm in real time.
This limit is depicted by the purple line. For the
sampling time Ts = 10−4s that will be used for
the experiments, we see on this figure that it is
possible to use more than 8 converters.

5. Voltage control Cv

The voltage controller aims to regulate the out-
put voltage v to its reference value vr by specify-
ing the total current reference σr (see Figure 3).

5.1. Internal loop behaviour

This subsection focuses on the characteristics
of the internal loop, namely constraints and dy-
namic behavior, in order to take them into ac-
count when designing the voltage controller.
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5.1.1. Internal loop constraints

The constraints of the allocator A are consid-
ered in two steps:
• the magnitude constraints, coming from the

limits on the converter currents, specify that

σmin :=

m∑
j=1

i−j ≤ σr[k] ≤
m∑
j=1

i+j =: σmax;

(11)
• the rate constraints, coming from duty cy-

cle limits and converted into current limits
assuming the deadbeat controller of Section
4, specify that (using (7))

σ−(v) ≤ σr[k]− σr[k − 1]︸ ︷︷ ︸
=:∆σr[k]

≤ σ+(v), (12)

where

σ+(v) :=

m∑
j=1

Ts
Lj

(Ej − v[k]) and

σ−(v) := −
m∑
j=1

Ts
Lj
v[k].

By defining σc as the constrained reference
value of the total current (see Figure 6), the con-
straints management provided by the allocator
can be seen as a saturation block, such as on Fig-
ure 6.

Remark 1 (Rate constraints). In the litera-
ture, sufficient conditions are given for the anti-
windup problem with constant magnitude and rate
constraints for discrete-time systems (see [33]).
However, this problem is much more difficult
when those constraints are state-dependent. This
case applies here, since rate variations depend on
the voltage v (see (12)). Giving a complete an-
swer to this problem is out of the scope of this
paper. Accordingly, the anti-windup scheme used
here takes into account magnitude constraints
only, even though the control allocator considers
both the magnitude and rate constraints.

5.1.2. Internal loop dynamics

Consider the internal dynamics (Ca and Pa) at
the sampling period Ts defined in section 4. The
deadbeat controller presented in subsection 4.1
ensures that each current evolves linearly as a
function of time. As a result, knowing that the
total current σ is the sum of the currents ij , the

allocator ensures that
∑
j

ir,j(kTs) corresponds to

σc(kTs). Furthermore, since σ needs a time Ts to
reach its reference value, the recurrence relation-
ship between σ and σc is

σ[(k + 1)Ts] = σc[kTs].

P vCv
σrvr

z−1
σc σσmax

σmin

+

−

Figure 6: Outer voltage control loop.

Therefore,

σ(t) = σ(kTs)+
σc(kTs)− σ(kTs)

Ts
(t− kTs) (13)

holds.
Considering σ as a virtual (not constant) input

for the voltage dynamics, from (1b), the discrete-
time model is given by

v[(k + 1)Ts] = e−
Ts
RC v[kTs]+

1

C

∫ (k+1)Ts

kTs

e−
1

RC ((k+1)Ts−τ)σ(τ)dτ.

With (13), one can obtain through integration by
parts the discrete-time model at the period Ts
described on Figure 6 with dynamics[

v
σ

]
[k + 1] = A(R)

[
v
σ

]
[k] +B(R)σc[k] (14)

where

A(R) :=

e− Ts
RC R

(
RC

Ts
− e−

Ts
RC

(
1 +

RC

Ts

))
0 0

,
B(R) :=

R− R2C

Ts

(
1− e−

Ts
RC

)
1

 ,
together with (11) and where σc is the saturated
input. The first row of the model corresponds to
the time discretization of (1b) at the sampling
period Ts with (13), whereas the second row cor-
responds to the delay introduced by the internal
loop (the converter with its internal controller),
as depicted on Figure 6.

5.2. Controller for the unsaturated system

First, a controller Cv is designed without tak-
ing saturations into account. Integral action is
included in Cv in order to cope with errors com-
ing from the internal controller and to compen-
sate for load disturbances. Afterwards, a scheme
is designed to prevent windup when the limits are
reached.

The aim of this subsection is to design a con-
troller for the voltage dynamics (14) which en-
sures the stability of the equilibrium point vr for
all R ∈ L := [R−, R+] where R− ∈ R>0 and

7



R+ ∈ R>0 correspond respectively to the lower
and upper values that R can take. As a first step,
saturation of the signal σr is disregarded, so that
σc = σr.

The load-robust state-feedback control law with
an output integrator is given by

Cv :

{
ξ[k + 1] = ξ[k] + vr − v[k]
σr[k] = kξξ[k] + kp (vr − v[k]) + kσσ[k],

(15)
where kp ∈ R, kξ ∈ R and kσ ∈ R are the propor-
tional, integral and derivative gains of the control
law, respectively. The model (14) with (15) cor-
responds to the following extended modelṽσ̃
ξ̃

 [k+1] =

Ae(R) +Be(R)

−kpkσ
kξ

ᵀ
︸ ︷︷ ︸

ABF (R):=Ae(R)+Be(R)K

ṽσ̃
ξ̃

 [k].

(16)
with

Ae(R) :=

[
A(R) 02×1[
−1 0

]
1

]
, Be(R) :=

[
B(R)

0

]
and

ṽ = v − vr, σ̃ = σ − vr
R

and ξ̃ = ξ − 1− kσ
Rkξ

vr.

The extended state matrices Ae(R) and Be(R)
depend on the unknown parameter, namely the
load R. However, since R belongs to the compact
set L and since the elements of Ae(R) and Be(R)
are continuous with respect to R, one can always
find a convex hull in which [Ae(R), Be(R)] belong.
In other words, for all R ∈ L

[Ae(R), Be(R)] ∈ H := co
{

[Ai, Bi]i∈{1,...,nv}
}

where nv corresponds to the number of convex
hull vertices. A possible choice of convex hull for
our application is given in Appendix A.

Once H is computed, the following proposition
shows that solving LMIs for the convex hull ver-
tices ensures stability for the closed-loop system
(16) for all R ∈ L.

Proposition 1. If there exists a positive definite
matrix W = W ᵀ ∈ R3×3 and Y ∈ R1×3 such that[

−W AiW +BiY
(AiW +BiY )ᵀ −W

]
≺ 0 (17)

holds for all the vertices [Ai, Bi] of the convex hull
H, then the feedback gains satisfying[

−kp kσ kξ
]

= YW−1

ensure that the fixed point

(v, σ, ξ) = (vr,
vr
R
,

1− kσ
Rkξ

vr)

P vCv σr

vr
z−1

σc

σσmax

σmin

−
+

kaw

+

−

Figure 7: Anti-windup action.

is an exponentially stable equilibrium state of (16)
for all R ∈ L.

The proof is given in Appendix B.

Note that this proposition gives a sufficient con-
dition. It is possible that some control gains which
do not respect the LMI condition can still ensure
stability of the equilibrium for all R ∈ L.

5.3. Anti-windup design

The presence of magnitude constraints on the
input signal not only reduces achievable perfor-
mance, but could also destabilize the closed-loop
system. One way to deal with this issue is to add
an anti-windup scheme such as the one shown in
Figure 7 (see [34]). The basic idea underlying this
design is to introduce control modifications when
a saturation is activated in order to recover, as
much as possible, the performance achieved by
the unsaturated system. Note that static and dy-
namic anti-windup methods exist but, for the sake
of simplicity, we focus here on a static anti-windup
approach. The controller (15) is modified as fol-
lows{
ξ[k + 1] = ξ[k] + vr − v[k] + kaw (σc[k]− σr[k])
σr[k] = kξξ[k] + kp (vr − v[k]) + kσσ[k],

From Figure 6 and Proposition 1, the following
equalities hold at the equilibrium and in the un-
saturated condition

σr = σc = σ =
vr
R
.

As a result, let us define

σ̃r[k] = σr[k]− vr
R

and σ̃c[k] = σc[k]− vr
R
,

which is such that the closed-loop dynamics (16)
becomeṽσ̃
ξ̃

[k+1]=ABF (R)

ṽσ̃
ξ̃

[k]+

 0
0
kaw

(σ̃c[k]−σ̃r[k]) .

(18)
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Expressing the constraints on the modified con-
trol value σ̃r leads to the following relationship

σ̃min(R) := σmin −
vr
R
≤ σ̃r[k] ≤

σmax −
vr
R

=: σ̃max(R).

Note that the problem under consideration is
such that σ̃min(R) 6= −σ̃max(R). However, the
anti-windup design problem is usually tackled in
the literature for symmetric saturations. Stabil-
ity conditions with asymmetric constraints can
be obtained by reducing the achievable interval
to the largest symmetric interval contained in
[σ̃min(R), σ̃max(R)], though doing so reduces the
achievable performance.

Given vr, denote by σ̃0 the bound of
the largest symmetric saturations contained in
[σ̃min(R), σ̃max(R)] for all R ∈ L, i.e.

σ̃0 = min
(
−σmin +

vr
R+

, σmax −
vr
R−

)
In the sequel, σ̃r[k] is restricted to lie within the
interval [−σ̃0, σ̃0]. From [35], if there exist a sym-
metric positive definite matrix Ω ∈ R3×3, a ma-
trix Γ ∈ R1×3, a scalar Z ∈ R and S ∈ R>0

satisfying the inequalityΩ −Γᵀ −Ω(Ai +BiK)ᵀ

2S SBᵀ
i + ZᵀBᵀ

aw

∗ Ω

� 0

[
Ω ΩKᵀ − Γ

KΩ− Γ (σ̃0)
2

]
� 0,

(19)

with

Baw :=
[
0 0 1

]ᵀ
and K =

[
−kp kσ kξ

]
for all [Ai, Bi], i ∈ {1, . . . , nv} corresponding to
the vertices of the convex hull H, then the gain

kaw =
Z

S
ensures that the ellipsoid Υ(P ) ={

ζ ∈ R3×3; ζᵀPζ ≤ 1
}

, with P = Ω−1, is a region
of exponential stability for the closed-loop system
(18). The proof is based on summing the LMIs
for i ∈ {1, . . . , nv} and on Schur complements in
order to remove products of variables. The sec-
ond inequality of (19) ensures that the dead-zone
implies that the sector condition is verified. It
can be proved using another Schur complement.
The proof is detailed in [35, Theorem 1]. More in-
formation about the estimated basin of attraction
are given in [36].

The maximization of the estimated basin of at-
traction in the direction of the integral state ξ

is chosen in order to optimize the choice of anti-
windup gain kaw. The result is achieved by solving
the optimization problem

min
Ω,Γ,Z,S,β

−β

subject to (19) and

[
1 βνᵀ

βν Ω

]
� 0

(20)

where ν :=
[
0 0 1

]ᵀ
corresponds to the direc-

tion of the integral state.

6. Simulations

6.1. Simulation setup

Two simulations are given where only the cur-
rent limits are different in order to highlight their
management to prioritize the voltage regulation.
A system with six identical converters (i.e. m =
6) is considered with the following parameters:
• (Ej)j∈{1,...,6} = 24 V;
• (Lj)j∈{1,...,6} = 2 mH.

Furthermore, the capacitor is set to C = 2 mF,
the resistive load is R = 2 Ω, the sampling period
Ts = 10−4 s, the simulation period Tsim = 10−5 s
and the simulation time tf = 24 ms.

For the first simulation, current limits are set
to
• (i−j )j∈{1,...,6} = 0 A;

• (i+j )j∈{1,...,6} = 12 A;
whereas they are set to
• (i−j )j∈{1,...,6} = 0 A;

• (i+j )j∈{1,...,6} = 3 A;
for the second simulation.

Primary controller:

According to Section 4, the duty cycles are
given by the following relations for all j ∈ J :

dj [k] =
10

12
(ir,j [k]− ij [k]) +

1

24
v[k]

Allocator:

Problem (10) is implemented with ε = 10−6.
The script wlsq alloc.m of the toolbox given in
[32] computes the solution of this optimization
problem at each time.

Voltage controller:

Following the approach of section 5, the control
gains are

kp = −4, kσ = 1 and kξ = 0.05

whereas the anti-windup gain was given the value
of kaw = 6.8.
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Figure 8: Voltage v with its reference, total current σ and
currents ik, when (i+j )j∈{1,...,6} = 12 A holds.

6.2. Environment

The control objectives are the following: (i)
regulate the output voltage v to the reference
vr = 12 V and (ii) impose an optimal current
distribution through the branches with respect to
the cost function J . For the simulations, J is not
the expression of converters losses but an example
chosen to highlight the convergence of the control
algorithm to the optimal strategy. The parame-
ters are defined as follows:

• r1,j(t)j∈{1,...,6} =

{
j, t ∈ [0; tf/2) s
1, t ∈ [tf/2; tf ] s

;

• (r2,j)j∈{1,...,6} = 0.1.
As a result, for the first half of the simulations, the
desired current distribution is to carry more cur-
rent in the first converters than in the last one.
This is due to the fact that r1,j is larger when
j grows, meaning that priority is given to the
first converters to carry the power. Conversely,
for the second half of the simulation, the con-
verters should share the same fraction of the to-
tal current, which is the expected behaviour since
both r1,j and r2,j are identical for every converter.
Thereby, those simulations highlight the conver-
gence of the control law to the minimum value of
J .

6.3. Results

Figures 8 and 9 show the output voltage, the
total current and the currents in every converter
when the upper current limits are set to 12 A
and to 3 A, respectively. In the first half of
the simulation, Figures 8 and 9 show that as long
it is possible, the first converters are prioritized
to feed the load, whereas the distribution is uni-
form in the second half, as expected. Even dur-
ing the first transient, Figure 8 indicates that the
current distribution is optimal with respect to J .
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Figure 9: Voltage v with its reference, total current σ and
currents ik, when (i+j )j∈{1,...,6} = 3 A holds.

This is not the case when the current constraints
come into play, as in Figure 9. However, it is
important to note that this current distribution
is not optimal anymore in order to respect the
voltage tracking imposed by Cv. Indeed, the total
current σ and the voltage v of Figure 9 have ex-
actly the same trajectories as on Figure 8, when
(i+j )j∈{1,...,6} = 12 A, while respecting the current
constraints.

Furthermore, for the whole simulation time, the
output voltage v is properly regulated at the ref-
erence value vr = 12 V. Observe that, at t = tf/2
when the current distribution objective changes,
the total current and voltage values are left un-
changed.

Those observations clearly highlight that the
secondary objective (current distribution) is
achieved while always giving priority to the fore-
most objective: voltage regulation.

7. Comparison with [12, 25]

7.1. Simulation setup

A system with two identical converters (i.e.
m = 2) is considered with the parameters given
in Table 1.

7.2. Control law of [12, 25]

The control law of [12] is robust to load un-
certainties but does not take input constraints
into account. Conversely, the control law of [25]
is not robust to load uncertainties but considers
input constraints. To be fair, we provide here
a load robust control law with input constraints
management, putting each control law together

10



Table 1: Comparison bench parameters

Table 1-A: converters parameters

Parameters j = 1 j = 2
Ej (V) 24 24
Lj (mH) 2 20
r1,j 1 2
r2,j 0 0

i−j (A) 0 0

i+j (A) 8 8

Table 1-B: other parameters

Parameters Values

Capacitor C 5 mF
Lower resistive bound R− 1 Ω
Upper resistive bound R+ 3 Ω

Sampling period Ts 100 µs
Simulation period Tsim 10 µs

Sampling time tf 24 ms

and adding an anti-windup scheme. The result-
ing control law is expressed by

ż = vr − v + kaw(µ− µs)
µ = kiz + kp(vr − v) + kdσ

µs =

 0, µ < 0
µ, 0 ≤ µ ≤ 1
1, µ > 1

λ = v − kδ
(
r1,2 − r1,1

r1,1 + r1,2
σ − δ

)

λs =


λ(µs), λ < λ(µs)

λ, λ(µs) ≤ λ ≤ λ(µs)

λ(µs), λ > λ(µs)

d1 =
L2 − L1

L2

λs
2E1

+
L1 + L2

L2
µs

d2 =
L1 − L2

L1

λs
2E1

+
L1 + L2

L1
µs

where

λ(µ) = max

(
−mE2

L2
+ E1

L1 + L2

L1L2
µ,

−E1
L1 + L2

L1L2
µ

)

λ(µ) = min

(
m
E1

L1
− E1

L1 + L2

L1L2
µ,

E1
L1 + L2

L1L2
µ

)
and ki = −16.34, kp = −0.062, kd =
−0.072, kaw = 5.97 and kδ = −8.89. For more de-
tails about this control law, the interested reader
is referred to [12, 25].
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Figure 10: Simulation for the control law of [12, 25].

7.3. Proposed control law

Primary controller:

According to Section 4, the duty cycle com-
mands are given by (8).

Allocator:

Problem (10) is implemented with ε = 10−6.
The script wlsq alloc.m of the toolbox given in
[32] computes the solution of this optimization
problem at each time instant.

Voltage controller:

Following the approach of section 5, the control
gains are

kp = −4, kσ = 1 and kξ = 0.05

whereas the anti-windup gain was given the value
of kaw = 1.44.

7.4. Environment

The control objectives are: (i) to regulate the
output voltage v to the reference vr = 12 V
and (ii) to impose an optimal current distribu-
tion through the branches with respect to the cost
function J . As in section 6, for this comparison,
J is not the expression of converter losses but an
academic example designed to highlight the con-
vergence of the control algorithm to the optimal
value. Its parameters are given in Table 1.

7.5. Results

Figures 10 and 11 depict trajectories of the out-
put voltage, the total current, the currents in ev-
ery converter and the duty cycles for the control
law of [12, 25] and the control law of this paper,
respectively.
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Figure 11: Simulation for the proposed control law.

About Figure 10

Note that gains of the control law of [12, 25]
have been carefully chosen in order that (i) v con-
verges as fast as possible to its reference value
with a negligible overshoot and (ii) currents do
not exceed 8A for the simulation environment.
About (i), i.e. convergence speed, let us stress
that the duty cycle of the second converter is set
to one during the transient so that the current of
the second converter cannot grow faster. For the
first converter, applying a larger duty cycle at the
very beginning will necessarily drive i1 to exceed
8A in the transient. Thus, with this linear control
law, it is not possible to accelerate the response
fo the first converter while respecting the current
constraint.

About Figure 11

Because the proposed control law is able to
properly limit the current value, the speed of con-
vergence of v can be substantially increased. In-
deed, Figure 11 shows that d1 is set to one as
long as i1 is smaller than its limit. So, i1 cannot
reach 8A faster than on Figure 11. Simultane-
ously, d2 is set to 1 for all the transient, so that
i2 cannot grow faster. As a result, it does not
seem possible for v to converge faster to its refer-
ence than as shown on Figure 11. Note that the
anti-windup structure ensures a negligible voltage
overshoot by rapidly decreasing i1 to 0. This sim-
ulation also highlights that the lower limit of i1 is
respected.

To conclude, the trajectory of v shows that it
reaches its reference around 0.0125s in Figure 10
and around 0.0075s in Figure 11. Thus, the pro-
posed control law is faster than the one of [12, 25].
Furthermore, both current and input constraints
are respected in the proposed control law, whereas
it is not the case for the one of [12, 25]. Indeed, if

DC sources

Transistors

Controller hardware

DC electronic load

Capacitor

Inductors

Current sensors

Figure 12: Experimental setup

the comparison environment changes (by setting
vr = 16V for instance), the current constraint for
the method of [12, 25] will be violated whereas it
will be satisfied in the case of the proposed control
law.

8. Experiments

8.1. Experimental setup

Experiments were performed to demonstrate
the effectiveness of the proposed approach. The
experimental setup is shown on Figure 12 and is
composed of 2 buck converters (m = 2) with dif-
ferent inductors connected to a single variable re-
sistive load with a parallel capacitor. The induc-
tors are such that L1 < L2. From (1a), it is clear
that the first converter reacts faster than the sec-
ond one (L1 is smaller that L2), but the latter has
a higher efficiency. Indeed, for the same PWM pe-
riod, the larger the inductor is, the less ripple it
induces, so that its conduction losses are smaller.

The following observation is of major interest
for the application and to understand the experi-
ments. When none of the constraints are reached,
the control algorithm tries to obtain the desire
current distribution, i.e. the one that minimizes
the losses and favors the slow converter. Dur-
ing transients, this slow converter is not able to
provide the power sufficiently fast because of the
constraints. By the optimal management of the
constraints, the fast converter will automatically
provide the desired power during transients. This
feature allows one to use at the same time the
efficiency of the second converter (for the steady
state) and the capability of the first one (for the
transient). Thereby, we obtain a fast device with
a good efficiency. The expected result is that the
second converter will be favored to deliver the
output current in steady-state, but the first con-
verter will be used to deliver the transient current
needed to rapidly bring the output voltage to the
reference.
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The controller hardware is a dSPACE Micro-
LabBox. The control objectives are to: (i) reg-
ulate the output voltage v to the reference vr =
12 V and (ii) impose an optimal current distribu-
tion through the branches with respect to the cost
function J , reflecting the power losses. Load vari-
ations are commanded by a programmable DC
electronic load BK Precision 8600 series with a
maximum power of 150 W and controlled by the
dSPACE board. The bench parameters are listed
in Table 2.

Table 2: Experimental bench parameters

Table 2-A: converters parameters

Parameters j = 1 j = 2
Ej (V) 24 24
Lj (mH) 0.4 4.13
r1,j 4 1
r2,j 0.1 0.1

i−j (A) 0 0

i+j (A) 10 12

Table 2-B: other parameters

Parameters Values

Switching period TPWM 20 µs
Sampling period Ts 200 µs

Capacitor C 22 mF
Lower resistive bound R− 1 Ω
Upper resistive bound R+ 12 Ω

Because r1,1 > r1,2, the second converter is
more efficient up to some current level depend-
ing on the quadratic term. The lower efficiency
of the first converter is due to the fact that the
ripple conduction losses are bigger for a smaller
inductor.

Primary controller

According to Section 4, the duty cycle com-
mands are given by the following equations[

d1

d2

]
[k] =

[
1/E1

1/E2

]
v[k]+

1

Ts

[
L1/E1 0

0 L2/E2

] [
ir,1[k]− i1[k]
ir,2[k]− i2[k]

]
.

The value of L1/E1 was experimentally deter-
mined to fit the real behavior of inductor L1 which
is not well-known.

Allocator

Problem (10) is implemented with ε = 10−6.
The script wlsq alloc.m of the toolbox given in
[32] computes the solution of this optimization
problem in real-time.

Voltage controller

Following the approach of Section 5, the con-
troller gains are

kp = 4, kσ = 0.8 and kξ = 0.4

whereas the anti-windup gain was given the value
of kaw = 3. The chosen controller gains solve
Proposition 1. The anti-windup gain was chosen
experimentally because (19) needed to be relaxed
to improve closed-loop behavior. Furthermore,
for the experiment, the constraint σ̃r ∈ [−σ̃0, σ̃0]
was relaxed to σ̃r ∈ [σ̃min(R), σ̃max(R)] in order
to optimize the system performance, even though
the theoretical stability guarantees were lost. The
chosen anti-windup gain is about ten times larger
than the one given by the theory. Note that the
one given is probably not the optimal value that
satisfy (19).

8.2. Experiments

Two experiments are performed. The first one
aims to demonstrate the controller performance in
the transient and steady state regimes. The sec-
ond experiment shows that this approach makes
it possible to easily switch off a converter in order
to unplug it while still supplying the load with
the other converter.

8.2.1. Experiment 1

Starting from zero initial conditions, the exper-
iment is divided in three parts.

1. t ∈ [0, 0.05) s: the resistive load is set to
R = 1 Ω.

2. t ∈ [0.05, 0.1) s: the load suddenly switches
to R = 12 Ω.

3. t ∈ [0.1, 0.15] s: the load changes back to
the value R = 1 Ω.

The controller aims to have the output voltage
reach vr as fast as possible at the start of the
experiment, and to maintain this voltage after-
wards. This experiment gives the responses for
the system start and for step decrease and in-
crease of the load value.

8.2.2. Experiment 2

At the beginning, the system is operating with
a load value R = 6 Ω and with the optimal cur-
rent distribution with respect to J . At t = 5 ms,
the first row in the cost function in the optimiza-
tion problem (10) is replaced by i2 − σr so that
i1 is driven to zero. As a matter of fact, this
modification implies that all the power required
by the load is fed by the second converter. The
current i1 is now free to reach its preferred value

13



0 0.05 0.1 0.15
0

5

10

0 0.05 0.1 0.15
0

20

40

Figure 13: Voltage v and total current σ with their refer-
ences.

ip = −[0.0125, 0.05]ᵀ. However ip is negative
and the lower limit imin,1 = 0 A. Consequently,
i1 is automatically brought to zero. This simple
change in the algorithm makes it possible to un-
plug the first converter.

8.3. Results

8.3.1. Experiment 1

Figure 13 shows the output voltage, the total
current reference and the total current. The blue
line of the upper sub-plot corresponds to the volt-
age response whereas the red dashed line is the
voltage reference value vr. The blue line of the
lower sub-plot shows the total current σ. The
total current reference σr corresponds to the red
dashed curve.

Due to the saturation management of the allo-
cator, the total current is saturated to σmax = 22
A at the beginning. The anti-windup component
prevents the voltage response from exceeding its
limit. At t = 0.05 s, the voltage rises slightly due
to the drop in load value, but the compensator
rapidly returns the voltage to its reference value.
At t = 0.01 s, the opposite situation occurs.

Figure 14 shows the currents, the current refer-
ences and the duty cycles of each converter. The
blue and red lines of the upper sub-plot show the
currents i1 and i2, whereas the yellow and pur-
ple dashed curves represent the current references.
On the lower sub-plot, the blue curve corresponds
to the duty cycle d1 and the red one to d2.

It is worth mentioning that the current refer-
ences given by the allocator can always be at-
tained by the current controller (the slopes of
the currents match the slopes of the references)
and the current limits are respected. Consistent
with the cost function, the current distribution in
steady state is such that the second converter is
favored. Yet, the first converter is used during the
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Figure 14: Currents ik and duty cycles dk with current
references

transient, due to the priority given to tracking of
the voltage reference.

With regard to the duty cycles, there is a visible
difference between d1 and d2, due to the difference
between the two inductor values. The duty cycle
needs to vary more widely in the case of a larger
inductor to regulate the current. The ripple on
the current is also larger.

Figure 15 shows the first 20 ms of the upper
sub-plot of Figure 14. This figure highlights the
fact that the controller takes advantage of the het-
erogeneity of the converters. The allocator uses
the first converter which is faster to more rapidly
reach the voltage reference. Note the one-step de-
lay between the reference and the measured value.
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Figure 15: Currents ik with their references during the
first transient.

8.3.2. Experiment 2

Figure 16 shows the voltage, total current and
currents responses for experiment 2. The blue line
of the upper sub-plot shows the voltage response
whereas the orange dashed line corresponds to its
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reference. On the lower sub-plot, the blue line
shows the total current and the orange and yellow
lines are respectively the responses of i1 and i2.
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Figure 16: Voltage, currents and total current when
switching off converter 1.

Observe that i1 is driven to zero at t = 0.005
s. As a result, converter 1 can be taken out of
service with minimal disturbance to the system.
The current i2 increases automatically to satisfy
the power demand from the load. Aside from the
benefit of control allocation in terms of optimized
operation, the method also makes it possible to
engage and disengage converters through trivial
adjustments of the parameters of the algorithm.

9. Conclusions

An optimal control allocation strategy was pro-
posed for the parallel interconnection of heteroge-
neous buck converters. In this manner, the reg-
ulation of the load voltage and the optimal dis-
tribution of the load current is achieved by sep-
arate components of the control algorithm. Con-
verter dynamics and limits are taken into account.
Dead-beat controllers are used for the current
loops, which makes it possible to include the duty
cycle constraints in the control allocator. The al-
locator computes current references via an active
set quadratic optimization method. These refer-
ences allow tracking of the total current reference
while ensuring the feasibility of the commands
and the optimization of efficiency as a secondary
objective. The voltage controller is designed to
regulate the voltage to its reference value, while
taking into account the fact that load is unknown
but lies within a known interval.

Experimental results validate the controller de-
sign and highlights the benefits of the proposed
method, resulting in tight voltage control de-
spite load variations and efficiency optimization in
steady state. The second experiment shows that

this type of controller can be used with minimal
modifications to engage or disengage converters
while supplying the load continuously. The latter
is an interesting property for microgrids, related
to the well known plug&play behaviour.

A possible topic of further research is the in-
tegration of other types of converters (such as
boost converters) in the parallel interconnection.
Non-linearities would be induced in the model and
make the problem challenging. Furthermore, for
the other control methods, recent results focus on
distributed architecture (see [2, 37] concerning the
droop-control method and [10] for current shar-
ing). The extension of the control strategy of this
paper to a distributed architecture is an appealing
perspective.

Appendix A. Choice of the convex hull

To build the convex hull, polytopes that in-
clude each element of Ae(R) and Be(R) for every
R ∈ L =

[
R−, R+

]
are designed. Consider both

elements

a11:R 7→ e−
Ts
RC , b1 : R 7→ R− R2C

Ts

(
1− e−

Ts
RC

)
and a12 : R 7→ R

(
RC

Ts
− e−

Ts
RC

(
1 +

RC

Ts

))
.

One needs to verify that the elements are
monotonous functions of R. a11 clearly is, but
some analysis is required for a12 and b1. Differen-
tiating the expressions

da12

dR
=

2RC

Ts

(
1− e−

Ts
RC

)
− e−

Ts
RC

(
2 +

Ts
RC

)

and
db1
dR

= 1 + e−
Ts
RC +

2RC

Ts

(
e−

Ts
RC − 1

)
.

In practice, u := Ts/(RC) is close to 0. Then,
the Taylor series expansion of previous expres-
sions with respect to u gives

da12

dR
=
u2

3
+ o

(
u2
)

and
db1
dR

=
u2

6
+ o

(
u2
)

As a result, a11, a12 and b1 are monotonous func-
tions of u if Ts is sufficiently small 6. Hence poly-
topes with only three vertices are sufficient to en-
capsulate those elements. The following principle
of polytopes construction is shown on Figure A.17
for a11. Two of the three vertices correspond to

6. Note that, for the experimental setup, u is such that,
for all values of R ∈ L, da12/dR and db1/dR are greater
than 0.
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Figure A.17: Polytope construction for a11

the value of a11(R), a12(R) and b1(R) for the
bounds of L, namely R− and R+

s0
1 := a11(R−) , s1

1 := a11(R+),

s0
2 := a12(R−) , s1

2 := a12(R+),

s0
3 := b1(R−) and s1

3 := b1(R+).

To find the third vertex, take the value of R for
which the tangents of a11 and a12 in R− and in R+

intersect. The tangent of a function f : x 7→ f(x)
at point x∗ is

Tf,x∗ : x 7→ f(x∗) +
df

dx
(x∗) (x− x∗) .

The solutions R̂1, R̂2 and R̂3 of the following re-
lationships

Ta11,R−(R̂1) = Ta11,R+(R̂1),

Ta12,R−(R̂2) = Ta12,R+(R̂2),

Tb1,R−(R̂3) = Tb1,R+(R̂3),

lead to the expression of the third vertex

s2
1 := Ta11,R−(R̂1), s2

2 := Ta12,R−(R̂2), s2
3 = Tb1,R−(R̂3).

As a result, every combination of matrix A(R)
and B(R) with the vertices leads to the following
twenty-seven pairs of matrices

[Ai, Bi] :=

 sj1 sl2 0
0 0 0
−1 0 1

 ,
sn31

0


where i = 3 (3j + l) + n with (j, l, n) ∈ {1, 2, 3}3.
The convex hull H becomes

H = co
{

[Ai, Bi]i∈{1,...,27}
}
.

Appendix B. Proof of Proposition 1

Knowing that the fixed point satisfies x[k+1] =
x[k], (14) and (15) imply that

v = vr, σ =
vr
R

and ξ =
1− kσ
Rkξ

vr.

If there exists a positive definite matrix W =
W ᵀ ∈ R3×3 and Y ∈ R1×3 such that (17) holds

for all i ∈ {1, . . . , nv}, then by Schur complement
and a pre/post-multiplication (see [38]), with P =
W−1 and K = W−1Y , one finds that

(Ae(R) +Be(R)K)ᵀP (Ae(R) +Be(R)K)−P ≺ 0

holds. From [39], the corresponding system (14)
is then exponentially stable.
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