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TOPOLOGY OF 1-PARAMETER DEFORMATIONS OF

NON-ISOLATED REAL SINGULARITIES

NICOLAS DUTERTRE AND JUAN ANTONIO MOYA PÉREZ

Abstract. Let f : (Rn, 0) → (R, 0) be an analytic function germ with non

isolated singularities and let F : (R1+n, 0)→ (R, 0) be a 1-parameter deforma-

tion of f . Let f−1
t (0) ∩ Bnε , 0 < |t| � ε, be the “generalized” Milnor fibre of

the deformation F . Under some conditions on F , we give a topological degree
formula for the Euler characteristic of this fibre. This generalizes a result of

Fukui.

1. Introduction

Let f : (Rn, 0) → (R, 0) be an analytic function germ with an isolated critical
point at 0. The Khimshiashvili formula (see [8]) states that

χ(f−1(δ) ∩Bnε ) = 1− sign(−δ)n deg0∇f,
where 0 < |δ| � ε � 1, Bnε is the closed ball of radius ε centered at 0, ∇f is the

gradient of f and deg0∇f is the topological degree of the mapping ∇f
|∇f | : Sn−1

ε →
Sn−1. If F : (Rn+1, 0) → (R, 0) is a 1-parameter deformation of f and the map
H = (F, ∂F∂x1

, · · · , ∂F∂xn
) has an isolated zero at the origin, Fukui [7] (see also [4])

proves that
χ(f−1

t (0) ∩Bnε ) = 1− deg0∇f,
if n is even and

χ(f−1
t (0) ∩Bnε ) = 1− deg0∇F − sign(t) deg0H,

if n is odd.
As a corollary of the Khimshiashvili formula, by a result of Arnol’d [1] and Wall

[13] we have that

χ({f ≤ 0} ∩ Sn−1
ε ) = 1− deg0∇f,

χ({f ≥ 0} ∩ Sn−1
ε ) = 1 + (−1)n−1 deg0∇f,

and
χ({f = 0} ∩ Sn−1

ε ) = 2− 2 deg0∇f,
if n is even.

Szafraniec [11] generalized the results of Arnol’d and Wall to the case of a func-
tion germ f with non-isolated singularities and in [12] he improved this result for a

2010 Mathematics Subject Classification. 32B05, 58K05, 58K65.
Key words and phrases. Topological degree, Euler characteristic, Real Milnor fibres.
The first author is partially supported by the ANR project LISA 17-CE400023-01l.

The second author is partially supported by MICINN Grant PGC2018–094889–B–I00 and by
GVA Grant AICO/2019/024.

1



2 Nicolas Dutertre and Juan Antonio Moya Pérez

weighted homogeneous polynomial f : Rn → R, constructing polynomials g1 and g2

with algebraically isolated critical point at the origin, which makes the topological
degree of their gradient vector fields computable by the Eisenbud-Levine formula.
We note that similar results were also obtained in the homogeneous case by Bruce
in [2].

In [5] Lemma 2.5, the first author proves a new relation between the topology
of the positive (resp. negative) real Milnor fibre of an analytic function germ
f : (Rn, 0)→ (R, 0) and the topology of the link of the set {f ≤ 0} (resp. {f ≥ 0}).
Using Szafraniec’s results, he deduces a generalization of the Khimshiashvili formula
for non-isolated singularities. Namely he proves that if 0 < δ � ε, then

χ(f−1(−δ) ∩Bnε ) = 1− (−1)n deg0∇g−,
and

χ(f−1(δ) ∩Bnε ) = 1− (−1)n deg0∇g+,

with g− = −f − ωd, g+ = f − ωd, ω(x) = x2
1 + · · · + x2

n and d is an integer big
enough. Moreover, if f : Rn → R is weighted homogeneous with ∇f(0) = 0, then

χ(f−1(−1)) = 1− (−1)n deg0∇g2,

and
χ(f−1(1)) = 1− (−1)n deg0∇g1,

where g1 and g2 are the above polynomials constructed by Szafraniec.
In this paper we adapt the methods developed by Szafraniec in [11, 12] and by the

first author in [5] to establish a generalization of the Fukui formula for non-isolated
singularities. We consider an analytic function germ f : (Rn, 0)→ (R, 0) with non
isolated singularities and a 1-parameter deformation F : (R1+n, 0) → (R, 0) of f ,
F (t, x) = ft(x). We set X = F−1(0), ΣF = ∇F−1((0, 0)) and we assume that
ΣF ⊂ {t = 0}.

Let ω : (Rn, 0) → (R, 0) be an analytic function germ such that ω(0) = 0 and
ω(x) > 0 if x 6= 0. We assume |t| > ω on ΓXω,t where

ΓXω,t =
{

(t, x) ∈ X | t 6= 0, rank (e0,∇F (t, x),∇ω(x)) = 2
}
,

and e0 = (1, 0, . . . , 0) in R1+n. In Corollary 2.11 we show that if n is even then

χ
(
f−1
t (0) ∩Bnε

)
= 1− deg0∇g,

for 0 < t� ε, where

g(x) = G(0, x) and G(t, x) = F (t+ ω(x), x).

A similar formula holds for f−1
−t (0) ∩Bnε (see Corollary 2.12).

In order to obtain a formula in the case n odd, we assume that F has an isolated
critical point at (0, 0). Under this assumption, we show in Corollary 2.18 that

χ
(
f−1
t (0) ∩Bnε

)
= 1− deg0∇F − deg0H,

where
H(t, x) =

(
F (t, x),W1(t, x), . . . ,Wn(t, x)

)
,

and for i ∈ {1, . . . , n}

Wi(t, x) =
∂F

∂t
(t, x)

∂ω

∂xi
(x) +

∂F

∂xi
(t, x).

A similar formula holds for f−1
−t (0) ∩ Bnε (see Corollary 2.19). All these formulas

generalize the Fukui formula [7].
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Then we explain how to construct a function germ ω that satisfies the condition
of collinearity in the general case and in the special case of weighted homogeneous
polynomials, having generalizations for the results of Szafraniec [11], [12], Bruce [2]
and the first author [5].

The paper is organized as follows. In the second section we prove the main results
(Corollaries 2.11, 2.12, 2.18 and 2.19) and, as applications, in Section 3 we present
the construction for ω in the general and in the weighted homogeneous cases.

2. The general situation

Let f : (Rn, 0)→ (R, 0) be an analytic function germ with arbitrary critical set
Σf . Let F : (R1+n, 0) → (R, 0) be an analytic function germ such that F (0, x) =
f(x). It is a 1-parameter deformation of f .

We use the notation ft(x) = F (t, x) and we call f−1
t (0) ∩ Bnε , 0 < |t| � ε, the

“generalized” Milnor fibre of the deformation F .
We set X = F−1(0), ΣF = {(t, x) | ∇F (t, x) = 0} and make the hypothesis that

ΣF ⊂ {t = 0}.

Lemma 2.1. For t 6= 0, f−1
t (0) is smooth near the origin.

Proof. We have the following equivalences:

x ∈ f−1
δ (0)⇔ F (δ, x) = 0⇔ (δ, x) ∈ X ∩ {t = δ}.

So f−1
δ (0) is diffeomorphic to X ∩ {t = δ}. But X ∩ {t = δ} = (X \ ΣF ) ∩ {t = δ}

and by the Curve Selection Lemma, {t = δ} intersects X \ ΣF transversally. �

Hence the deformation ft of f is actually a smoothing of f .
Let ω : (Rn, 0)→ (R, 0) be analytic such that ω(0) = 0 and ω(x) > 0 for x 6= 0.

Definition 2.2. We set

ΓXω,t =
{

(t, x) ∈ X | t 6= 0, rank (e0,∇F (t, x),∇ω(x)) = 2
}
,

where e0 = (1, 0, . . . , 0) in R1+n.

Remark 2.3. If (t, x) ∈ X and t 6= 0 then rank(e0,∇F (t, x)) = 2 and so

ΓXω,t =
{

(t, x) ∈ X | t 6= 0, rank (e0,∇F (t, x),∇ω(x)) = rank (e0,∇F (t, x))
}
.

We make the following assumption:

(A) : |t| > ω on ΓXω,t.

Let φ : R1+n → R1+n be the diffeomorphism defined by φ(t, x) = (t + ω(x), x).
Let G : (R1+n, 0)→ (R, 0) be defined by G(t, x) = F (φ(t, x)), let Y = G−1(0) and
let ΣG = {(t, x) | ∇G(t, x) = 0}. Then φ(Y ) = X and φ−1(X) = Y . We note that
∂G
∂t (t, x) = ∂F

∂t (t+ ω(x), x) and that for i ∈ {1, . . . , n},

∂G

∂xi
(t, x) =

∂F

∂t
(t+ ω(x), x)

∂ω

∂xi
(x) +

∂F

∂xi
(t+ ω(x), x).

Let us study first the restriction of t to Y .

Lemma 2.4. We have {t = 0} ∩ ΣG ⊂ {(0, 0)}.
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Proof. Let us study the critical points of G. A point (t0, x) belongs to ΣG if and
only if ∂F

∂t (t0 + ω(x), x) = 0 and for i = 1, . . . , n,

∂F

∂t
(t0 + ω(x), x)

∂ω

∂xi
(x) +

∂F

∂xi
(t0 + ω(x), x) = 0.

This implies that (t0 + ω(x), x) ∈ ΣF and so that t0 + ω(x) = 0. Therefore ΣG ⊂
{t+ ω = 0}. This implies that {t = 0} ∩ ΣG ⊂ {(0, 0)}. �

Hence the intersection {t = 0} ∩
(
Y \ {(0, 0)}

)
is included in Y \ ΣG. Moreover

this intersection is tranverse as explained in the following lemma.

Lemma 2.5. The hyperplane {t = 0} intersects Y \ {(0, 0)} transversally.

Proof. Let (0, x), with x 6= 0, be a critical point of t|Y \{0}. We have ∇G(0, x) 6= 0
and rank(e0,∇G(0, x)) = 1. The point φ(0, x) = (ω(x), x) belongs to X \ΣF since
(0, x) ∈ Y \ ΣG. We have

∂G

∂t
(0, x) =

∂F

∂t
(ω(x), x),

and
∂G

∂xi
(0, x) =

∂F

∂t
(ω(x), x)

∂ω

∂xi
(x) +

∂F

∂xi
(ω(x), x).

Since (0, x) is a critical point of t|Y \{0},
∂G
∂xi

(0, x) = 0 for i ∈ {1, . . . , n} and
∂G
∂t (0, x) 6= 0. Hence ∂F

∂t (ω(x), x) 6= 0 and we have

∇ω(x) = −∇xF (ω(x), x)
∂F
∂t (ω(x), x)

.

Since x 6= 0, ω(x) 6= 0 and so (ω(x), x) belongs to ΓXω,t. This is not possible because

|t| > ω(x) on ΓXω,t by Assumption (A). �

For any subanalytic set Z ⊂ R1+n, we denote by Lk(Z) the link of Z at (0, 0).

Lemma 2.6. We have

χ
(
Lk(X ∩ {t ≤ 0})

)
= χ

(
Lk(Y ∩ {t ≤ 0})

)
.

Proof. We note that the function (t, x) 7→ t2 +ω is a non-negative analytic function
which vanishes only at (0, 0). Therefore, for any closed subanalytic set Z ⊂ R1+n

such that (0, 0) ∈ Z, Lk(Z) is homeomorphic to Z ∩ {t2 + ω = ε} for 0 < ε � 1.
This is explained for example in [3] in the semi-algebraic case, but the arguments
also work in the subanalytic case. Hence the set Lk(Y ∩ {t ≤ 0}) is homeomorphic
to Y ∩{t2+ω = ε2}∩{t ≤ 0} and Lk(X∩{t ≤ 0}) is homeomorphic to X∩{t2+ω =
ε2} ∩ {t ≤ 0} where 0 < ε� 1. Now

(t0, x) ∈ Lk(Y ∩ {t ≤ 0})⇔

 (t0, x) ∈ Y
t20 + ω(x) = ε2

t0 ≤ 0
.

Recall that φ : R1+n → R1+n is the diffeomorphism (t0, x) 7→ (u, x) = (t0+ω(x), x).
Then

(u, x) = φ(t0, x) ∈ φ (Lk(Y ∩ {t ≤ 0}))⇔

 (t0, x) ∈ Y
(u− ω(x))2 + ω(x) = ε2

u− ω(x) ≤ 0
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⇔

 (u, x) ∈ X
(u− ω(x))2 + ω(x) = ε2

u ≤ ω(x)
.

Since the function (u, x) 7→ (u− ω(x))2 + ω is analytic, non-negative and vanishes
only at (0, 0), we can conclude that Lk(Y ∩{t ≤ 0}) is homeomorphic to Lk(X∩{t ≤
ω(x)}). Now

(t0, x) ∈ Lk(X ∩ {t ≤ ω(x)})⇔

 (t0, x) ∈ X
t20 + ω(x) = ε2

t0 ≤ ε2 − t20
⇔

 (t0, x) ∈ X
t20 + ω(x) = ε2

t0 + t20 ≤ ε2
.

Similarly

(t0, x) ∈ Lk(X ∩ {t ≤ 0})⇔

 (t0, x) ∈ X
t20 + ω(x) = ε2

t0 ≤ 0
.

But, since |t0| < ε and ε is small, we have that 1 + t0 ≥ 0 and so

(t0, x) ∈ Lk(X ∩ {t ≤ 0})⇔

 (t0, x) ∈ X
t20 + ω(x) = ε2

t20 + t0 ≤ 0
.

Let p be a critical point of t2 + t restricted to X ∩ {t2 + ω = ε2}, and such that
(t2 + t)(p) > 0. Then p belongs to ΓXω,t and so t(p) > ω(p) and (t + t2)(p) >

ω(p) + t2(p) = ε2. Therefore the function t2 + t restricted to X ∩ {t2 +ω = ε2} has
no critical point on the set {0 < t2 + t ≤ ε2}. So the set X ∩ {t2 + ω = ε2} ∩ {t ≤
0} is a deformation retract of X ∩ {t2 + ω = ε2} ∩ {t ≤ ω}. This implies that
χ(Lk(Y ∩ {t ≤ 0})) = χ(Lk(X ∩ {t ≤ 0})). �

Lemma 2.7. Let 0 < δ � ε� 1. We have:

χ
(
X∩Bn+1

ε ∩{t = −δ}
)
−χ
(
X∩Snε ∩{t = −δ}

)
= χ

(
Lk(X)

)
−χ
(
Lk(X∩{t ≥ 0})

)
,

χ
(
X ∩Bn+1

ε ∩ {t = δ}
)
− χ

(
X ∩ Snε ∩ {t = δ}

)
= χ

(
Lk(X)

)
− χ

(
Lk(X ∩ {t ≤ 0})

)
.

Proof. If X ∩{t = −δ}∩Bn+1
ε is empty for 0 < δ � ε� 1, which means that t ≥ 0

on X ∩Bn+1
ε , then the result is trivial for Lk(X) = Lk(X ∩ {t ≥ 0}).

Let us treat the case when X ∩ {t = −δ} ⊂ ˚Bn+1
ε , i.e. X ∩ {t = −δ} ∩ Snε is

empty for 0 < δ � ε � 1. Let C be a connected component of X \ {0}. Then
C∩{t = −δ}∩Snε is empty for δ ∈]0, δε[ for some δε > 0. By conic structure, C∩Snε
is connected and so by continuity, either t ≥ 0 on C ∩ Snε or t < 0 on C ∩ Snε .

Let γ : [0, ν[→ C be an analytic arc such that γ(0) = 0. Then there exists ε1 > 0
such that either t < 0 on γ(]0, ν[) ∩Bn+1

ε1 , either t = 0 on γ(]0, ν[) ∩Bn+1
ε1 or t > 0

on γ(]0, ν[)∩Bn+1
ε1 . By the above observation, and taking a smaller ε1 if necessary,

we conclude that either t < 0 on C ∩ Bn+1
ε1 or t ≥ 0 on C ∩ Bn+1

ε1 . Let C+ (resp.
C−) be the set of connected components of X \ {0} on which t ≥ 0 (resp. t < 0).
Then χ({t ≥ 0} ∩X ∩ Snε ) =

∑
C∈C+ χ(C ∩ Snε ) and

χ(X ∩ {t = −δ} ∩Bn+1
ε ) =

∑
C∈C−

χ(C ∩ Snε ),

for if C ∈ C− then the function −t is strictly positive on C and C ∩ Snε and
C ∩ {t = −δ} are homeomorphic, as explained in Lemma 2.6. We conclude with
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the remark that ∑
C∈C−

χ(C ∩ Snε ) = χ(Lk(X))−
∑
C∈C+

χ(C ∩ Snε ).

Now let us assume that X ∩ {t = −δ} ∩ Snε is not empty for 0 < δ � ε � 1.
Since ΣF ⊂ {t = 0}, we can use the deformation argument due to Milnor [10] and
get that X ∩ {t = −δ} ∩ Bn+1

ε is homeomorphic to X ∩ {t ≤ −δ} ∩ Snε . Then we
use the fact that

χ
(
Lk(X)

)
= χ

(
X ∩ Snε

)
= χ

(
{t ≤ −δ} ∩X ∩ Snε

)
+χ
(
{t ≥ −δ} ∩X ∩ Snε

)
− χ

(
{t = −δ} ∩X ∩ Snε

)
.

But the inclusion {t ≥ 0}∩X ∩Snε ⊂ {t ≥ −δ}∩X ∩Snε is a homotopy equivalence,
and so χ

(
{t ≥ −δ} ∩X ∩ Snε

)
= χ

(
Lk(X ∩ {t ≥ 0}

)
. �

A similar result is true for Y , but only for positive values of t.

Lemma 2.8. Let 0 < δ � ε� 1. We have:

χ
(
Y ∩Bn+1

ε ∩ {t = δ}
)
− χ

(
Y ∩ Snε ∩ {t = δ}

)
= χ

(
Lk(Y )

)
− χ

(
Lk(Y ∩ {t ≤ 0})

)
.

Proof. We remark that ΣG ⊂ {t ≤ 0} since, as explained in Lemma 2.4, ΣG is
included in {t+ ω = 0}. By a Curve Selection Lemma argument, this implies that
the fibre {t = δ}∩Y is smooth in a neighborhood of the origin for 0 < δ � ε. Then
the proof is the same as in the previous lemma. �

Corollary 2.9. Let 0 < δ � ε� 1. We have

χ
(
{t = δ} ∩X ∩Bn+1

ε

)
− χ

(
{t = δ} ∩X ∩ Snε

)
= χ

(
{t = δ} ∩ Y ∩Bn+1

ε

)
− χ

(
{t = δ} ∩ Y ∩ Snε

)
.

Proof. We know that X = φ(Y ) so X and Y are homeomorphic. By the conic
structure, Lk(X) and Lk(Y ) are homeomorphic. The result is just a consequence
of Lemmas 2.6, 2.7 and 2.8. �

Let g : (Rn, 0)→ (R, 0) be the analytic function germ defined by g(x) = G(0, x).
We note that G is a 1-parameter deformation of g.

Lemma 2.10. The function g has an isolated critical point at the origin and g−1
t (0)

is smooth near the origin for 0 < t� ε.

Proof. If x 6= 0 is a critical point of g then for i ∈ {1, . . . , n}, ∂G
∂xi

(0, x) = 0.

Moreover since {t = 0} ∩ ΣG ⊂ {(0, 0)} by Lemma 2.4, ∂G
∂t (0, x) 6= 0. Therefore

(0, x) is a critical point of t|Y \{(0,0)}. This is not possible for {t = 0} intersects
Y \ {(0, 0)} transversally by Lemma 2.5. This means that g has an isolated critical
point at 0.

We have explained in Lemma 2.8 that the fibre {t = δ} ∩ Y is smooth in a
neighborhhod of (0, 0) for 0 < δ � 1. But this fibre is diffeomorphic to g−1

δ (0). �

Applying Corollary 2.9, we obtain

Corollary 2.11. Let 0 < t� ε� 1. We have

χ
(
f−1
t (0) ∩Bnε

)
= χ

(
g−1
t (0) ∩Bnε

)
.

Moreover if n is even, χ
(
f−1
t (0) ∩Bnε

)
= 1− deg0∇g.
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Proof. We apply Corollary 2.9 and we use the fact that if (M,∂M) is a compact
manifold with boundary then χ(∂M) = 0 if the manifold is even-dimensional and
χ(∂M) = 2χ(M) if it is odd-dimensional.

If n is even, we use the Arnold-Wall formula [1, 13] to get that

1− deg0∇g =
1

2
χ
(
Lk({g = 0})

)
=

1

2
χ
(
g−1
t (0) ∩ Sn−1

ε

)
= χ

(
g−1
t (0) ∩Bnε

)
.

�

In order to get the corresponding result for f−1
−t (0) ∩ Bnε , we apply the same

procedure to the functions G′(t, x) = F (t−ω(x), x), g′(x) = G′(0, x) and to the set
Y ′ = G′−1((0, 0)). We find that ∇g′ has an isolated zero at the origin. Furthermore
applying the method of Lemma 2.6, we get that

χ
(
Lk({t ≥ 0} ∩X)

)
= χ

(
Lk({t ≥ 0} ∩ Y ′)

)
.

Corollary 2.12. Let 0 < t� ε� 1. We have

χ
(
f−1
−t (0) ∩Bnε

)
= χ

(
g′
−1
−t (0) ∩Bnε

)
.

Moreover if n is even, χ
(
f−1
−t (0) ∩Bnε

)
= 1− deg0∇g′.

This method only gives a topological degree formula when n is even. In order
to get a topological degree formula when n is odd, we need to impose a stronger
condition on ΣF .

From now on we make the hypothesis that ΣF ⊂ {0}, i.e. F has an isolated
critical point at the origin.

Let

ΣXt =

{
(t, x) ∈ X | ∂F

∂xi
(t, x) = 0, i = 1, . . . , n

}
.

The set ΣXt is the set of critical points of t|X , and so ΣXt ⊂ X ∩ {t = 0} by the
Curve Selection Lemma.

Lemma 2.13. The set Σf is diffeomorphic to ΣXt .

Proof. We see that (t, x) ∈ ΣXt if and only if t = 0 and ∂F
∂xi

(0, x) = 0 for i ∈
{1, . . . , n}, that is if and only if t = 0 and x ∈ Σf . Therefore ΣXt = ψ(Σf ) where ψ
is the diffeomorphism

Rn → R1+n ∩ {t = 0}
x 7→ (0, x).

�

We recall that G : (R1+n, 0)→ (R, 0) is defined by G(t, x) = F (t+ ω(x), x) and
that Y = G−1(0).

Lemma 2.14. The function G has an isolated critical point at (0, 0).

Proof. Since (∇F )−1((0, 0)) ⊂ {(0, 0)} and G(t, x) = F (t + ω(x), x), we find that
(∇G)−1((0, 0)) ⊂ {(0, 0)} using the relations between the partial derivatives of G
and F . �

Lemma 2.15. We have deg0∇F = deg0∇G.
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Proof. We have ∇G(t, x) = A(t, x)∇F (φ(t, x)) where

A(t, x) =


1 0 · · · 0

∂ω
∂x1

(x) 1 · · · 0
...

...
. . .

...
∂ω
∂xn

(x) 0 · · · 1

 .

�

Let H̃ : (R1+n, 0)→ (R1+n, 0) be defined by H̃ = (G, ∂G∂x1
, . . . , ∂G∂xn

).

Corollary 2.16. We have H̃−1((0, 0)) = {(0, 0)}.

Proof. Since by Lemma 2.14 G has an isolated critical point at the origin, the
mapping H̃ has an isolated zero if and only if the function t|Y has an isolated
critical point at the origin. But (0, x) is a critical point of t|Y if and only if x is a
critical point of g. �

We note that t|Y has an isolated critical point at the origin, whereas t|X can
have an arbitrary set of critical points.

Let us consider the map H :

H : (R1+n, 0)→ (R1+n, 0), (t, x) 7→ (F (t, x),W1(t, x), . . . ,Wn(t, x)),

where for each i ∈ {1, . . . , n},

Wi(t, x) =
∂F

∂t
(t, x)

∂ω

∂xi
(x) +

∂F

∂xi
(t, x).

Lemma 2.17. We have H−1((0, 0)) = {(0, 0)} and deg0H̃ = deg0H.

Proof. We have H̃(t, x) = H(φ(t, x)) where we recall that φ(t, x) = (t + ω(x), x).
So we get the result, for φ preserves orientation. �

Now we can give the topological degree formulas for χ
(
f−1
t (0) ∩Bnε

)
.

Corollary 2.18. Let 0 < t� ε. If n is even then

χ
(
f−1
t (0) ∩Bnε

)
= 1− deg0∇g,

and if n is odd then

χ
(
f−1
t (0) ∩Bnε

)
= 1− deg0∇F − deg0H.

Proof. By Corollary 2.11, we know that

χ
(
f−1
t (0) ∩Bnε

)
= χ

(
g−1
t (0) ∩Bnε

)
.

If n is even, we have already explained that χ
(
g−1
t (0) ∩ Bnε

)
= 1 − deg0∇g in the

same corollary. In the case n odd, the Fukui formula [7, 4] states that :

χ
(
g−1
t (0) ∩Bnε

)
= 1− deg0∇G− deg0H̃.

We use Lemmas 2.15 and 2.17 to conclude. �

To get the corresponding formulas for f−1
−t (0)∩Bnε , we apply the same procedure

to the function G′(t, x) = F (t − ω(x), x). We define H ′ by H ′ = (F,W ′1, . . . ,W
′
n)

where for each i ∈ {1, . . . , n},

W ′i (t, x) = −∂F
∂t

(t, x)
∂ω

∂xi
(x) +

∂F

∂xi
(t, x).
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We find that H ′, ∇G′ have an isolated zero at the origin and that deg0∇G′ =
deg0∇F .

Corollary 2.19. Let 0 < t� ε. If n is even then

χ
(
f−1
−t (0) ∩Bnε

)
= 1− deg0∇g′,

and if n is odd then

χ
(
f−1
−t (0) ∩Bnε

)
= 1− deg0∇F − deg0H

′.

3. Applications

In this section, we give some results on the existence of the function ω and we
give some explicit examples.

3.1. General case. We keep the notations of the previous section.

Lemma 3.1. There exists d ∈ N such that |t| > ωd on ΓXω,t \ {ω = 0} close to the
origin.

Proof. We adapt to our situation the method developped in [11]. Recall that

ΓXω,t =
{

(t, x) ∈ X | t 6= 0, rank (e0,∇F (t, x),∇ω(x)) = 2
}
.

Let Σ be the following closed analytic set:

Σ = {(t, x; r, y) ∈ X × R× R | ω(x) = r, all ∆i,j(t, x) = 0, t = y} ,
where for (i, j) ∈ {1, . . . , n}2,

∆i,j(t, x) =

∣∣∣∣∣ ∂F
∂xi

(t, x) ∂F
∂xj

(t, x)
∂ω
∂xi

(x) ∂ω
∂xj

(x)

∣∣∣∣∣ .
Let π : X×R×R→ R×R be the natural projection. The mapping π|Σ : Σ→ π(Σ)
is proper, and so π(Σ) is closed and semi-analytic (see [9], p.127). Let us set

Y1 = R× {0} and Y2 = π(Σ) \ Y1. The set Y2 is semi-analytic. If r > 0 then

π(Σ) ∩ {r} × R = {r} × {critical values of t|X∩ω−1(r)},
and π(Σ) ∩ {r} × R is a discrete set of points, since the set of critical values of
an analytic function is discrete. Hence Y2 has dimension less than or equal to 1
in a neighborhood of 0. So 0 is isolated in Y1 ∩ Y2. By the  Lojasiewicz inequality
[9], there are positive constants C,α such that |y| ≥ Crα for (r, y) ∈ Y2 sufficiently
close to the origin. If d ∈ N is such that d > α, then Crα > rd if r > 0 is sufficiently
small. Therefore |y| > rd for (r, y) ∈ Y2 sufficiently close to the origin.

If (t, x) belongs to ΓXω,t then (t, x, ω(x), t) belongs to Σ and (ω, t) lies in π(Σ).

Hence, if t 6= 0 then |t| > ω(x)d for (t, x) ∈ ΓXω,t sufficiently close to the origin. �

Corollary 3.2. We have |t| > ω(x)d on ΓXωd,t.

Proof. We have ∇ωd = dωd−1∇ω so

ΓXωd,t ∩ {ω 6= 0} = ΓXω,t ∩ {ω 6= 0}.

We conclude remarking that the inequality is trivial if ωd = 0. �

Therefore we can apply our method to the functions G(t, x) = F (t + ωd(x), x)
and G′(t, x) = F (t − ωd(x), x). This generalizes the results of Szafraniec [11] and
the first author [5].
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3.2. Weighted homogeneous case. Let f : Rn → R be a weighted homoge-
neous polynomial and let F : R1+n → R be a 1-parameter weighted homogeneous
deformation of f such that ΣF ⊂ {t = 0}.

We assume that F is of type (d; d0, d1, . . . , dn) where d ≥ 2. Since F (0, x) = f(x)
then f is of type (d; d1, . . . , dn). Let p be the smallest positive integer such that
2p > d and each di, with 1 ≤ i ≤ n, divides p. Let ai = p/di and let ω(x) =
x
2a1
1

2a1
+ . . .+

x2an
n

2an
. We denote λ · (t, x) = (λd0t, λd1x1, . . . , λ

dnxn).

Lemma 3.3. We have |t| > ω on ΓXω,t.

Proof. We adapt to our situation the method developped in [12]. Recall that

ΓXω,t = {(t, x) ∈ X | t 6= 0, rank(e0,∇F (t, x),∇ω(x)) = 2} .

Let

Σ =
{

(t, x; r, y) ∈ X × R× R | ω(x) = r2p, all ∆i,j(t, x) = 0, t = y
}
,

where for (i, j) ∈ {1, . . . , n}2,

∆i,j(t, x) =

∣∣∣∣∣ ∂F
∂xi

(t, x) ∂F
∂xj

(t, x)
∂ω
∂xi

(x) ∂ω
∂xj

(x)

∣∣∣∣∣ .
Let π : X × R× R→ R× R be the natural projection. If r > 0 then

π(Σ) ∩ {r} × R = {r} × {critical values of t|X∩ω−1(r2p)},

and π(Σ)∩ {r}×R is a finite set of points, since a polynomial function has a finite
number of critical values.

Let ((t, x), r, y) ∈ Σ and let λ ∈ R. We have ω(λ · x) = λ2pω(x) = (λr)2p,

∆i,j(λ · (t, x)) = λ2p+d−di−dj∆i,j((t, x)),

and F (λ · (t, x)) = λdF (t, x). So if ((t, x), r, y) ∈ Σ then (λ · (t, x), λr, λd0y) ∈ Σ
too. Hence π(Σ) is a finite union of curves and if (r, y) ∈ π(Σ) and λ ∈ R then
(λr, λd0y) ∈ π(Σ).

Because 2p > d ≥ d0 then |y| > r2p for every point (r, y) ∈ π(Σ) with y 6= 0,

sufficiently close to 0. Then if (t, x) ∈ ΓXω,t is close to (0, 0) then ((t, x), ω(x)
1
2p , t) ∈

Σ and |t| = |y| > r2p = ω(x). �

Therefore we can apply our method to the functions G(t, x) = F (t + ω(x), x)
and G′(t, x) = F (t − ω(x), x). In [2, 12], the topological degrees appearing in the
formulas can be expressed as signatures, because the mappings have algebraically
isolated zeros. In the sequel, we will see that this is also the case here under the
assumption that the complexification of F has an isolated critical point at (0, 0).

We use the following notation: for any real analytic map h : Rm → Rp, we
denote by hC : Cm → Cp its complexification.

Let L be the following constructible set:

L =
{
x ∈ Cn \ {0} | ∇fC(x) 6= 0 and all mi,j(x) = 0

}
,

where for (i, j) ∈ {1, . . . , n}2,

mi,j(x) =

∣∣∣∣∣
∂fC
∂xi

(x) ∂fC
∂xj

(x)
∂ωC
∂xi

(x) ∂ωC
∂xj

(x)

∣∣∣∣∣ .
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Let C = {x ∈ Cn | ∇ωC(x)+∇fC(x) = 0}. It is proved in [12] that C is an algebraic
compact subset of Cn, hence it is a finite set of points.

Lemma 3.4. A point x belongs to L if and only if there exist z ∈ C \ {0} and
λ ∈ C∗ such that x = λ · z.

Proof. If z ∈ C \ {0} then ∇ωC(z) 6= 0 and so ∇fC(z) 6= 0. Since ∂ωC
∂xi

(λ · z) =

λ2p−di ∂ωC
∂xi

(z) and ∂fC
∂xi

(λ · z) = λd−di ∂fC∂xi
(z), it is clear that λ · z belongs to L for

λ 6= 0.
Reciprocally if x ∈ L then there is α 6= 0 such that α∇ωC(x)+∇fC(x) = 0. This

implies that λ · x belongs to C \ {0} where λ2p−d = α. �

Lemma 3.5. If FC has an isolated critical point at the origin, then gC and GC have
an isolated critical point at the origin and HC has an isolated zero at the origin.

Proof. Let x be a critical point of gC. For i ∈ {1, . . . , n}, we have

∂FC

∂t
(0, x)

∂ωC

∂xi
(x) +

∂FC

∂xi
(0, x) = 0.

If ∂FC
∂t (0, x) = 0 then (0, x) is a critical point of FC and x = 0. If ∂FC

∂t (0, x) 6= 0 and

∇ωC(x) = 0 then x = 0. If ∂FC
∂t (0, x) 6= 0 and ∇ωC(x) 6= 0 then ∇fC(x) 6= 0 and x

lies in L. So if 0 is not an isolated critical point of gC, then there exists a sequence
of points (xn)n∈N in L such that ∇gC(xn) = 0 and ‖xn‖ → 0. By Lemma 3.4
and the fact that C is finite, there exist a sequence (λn)n∈N, λn ∈ C∗, and a point
z ∈ C \ {0} such that ∇gC(λn · z) = 0 and |λn| → 0. By weighted homogeneity, for
i ∈ {1, . . . , n} we have

∂FC

∂t
(0, λn · z)

∂ωC

∂xi
(λn · z) +

∂fC
∂xi

(λn · z)

= λd−d0n λ2p−di
n

∂FC

∂t
(0, z)

∂ωC

∂xi
(z) + λd−din

∂fC
∂xi

(z) = 0.

Therefore λ2p−d0
n

∂FC
∂t (0, z)∂ωC

∂xi
(z) + ∂fC

∂xi
(z) = 0. Since z is in C \ {0}, we get that

λ2p−d0
n

∂FC
∂t (0, z) − 1 = 0. But 2p − d0 ≥ 1 and so limn→+∞ λ2p−d0

n
∂FC
∂t (0, z) = 0,

which gives a contradiction. We conclude that gC has an isolated critical point at
the origin.

The fact that GC has an isolated critical point at (0, 0) is proved as in the real

case. Let (t0, x) be a zero of H̃C. This means that GC(t0, x) = 0 and ∂GC
∂xi

(t0, x) = 0

for i ∈ {1, . . . , n}. If ∂GC
∂t (t0, x) = 0 then (t0, x) = (0, 0). If ∂GC

∂t (t0, x) 6= 0 then

(t0, x) is a critical point of tC|YC , because YC = G−1
C (0) has at worst an isolated

singularity at (0, 0). Therefore t0 = 0 and so x is a critical point of gC, which

implies that x = 0. We conclude that H̃C has an isolated zero at (0, 0) and, as in
the real case, that HC has an isolated zero at (0, 0).

�

Therefore when FC has an isolated critical point at the origin, the topological
degrees can be expressed as signatures. This generalizes the results of Bruce [2],
Szafraniec [12] and the first author [5]. We end with some explicit examples in the
weighted homogeneous case. We have computed the signatures using Singular.
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Example 3.6. Let f be the weighted homogeneous polynomial defined by f(x, y) =
x2y2 + y3 and let F be the weighted homogenous 1-parameter deformation of f
defined by F (t, x, y) = x2y2 + y3 + t2y. We have ∇F−1

C (0, 0, 0) ⊂ {t = 0}. The
function F is of type (6; 2, 1, 2) and according to Section 3, we can take ω(x, y) =
x8

8 + y4

4 . Then, G(t, x) = x2y2 + y3 + (t + x8

8 + y4

4 )2y and G′(t, x) = x2y2 + y3 +

(t− x8

8 −
y4

4 )2y
Applying Corollaries 2.11 and 2.12 for n even we get that

χ(f−1
t (0) ∩B2

ε ) = 1− deg0∇g = 3

and

χ(f−1
−t (0) ∩B2

ε ) = 1− deg0∇g′ = 3.

Example 3.7. Let f be the weighted homogeneous polynomial defined by f(x, y) =
x4 + x2y and let F be the weighted homogenous 1-parameter deformation of f
defined by F (t, x, y) = x4 + x2y+ t2y. We have with ∇F−1

C (0, 0, 0) ⊂ {t = 0}. The
function F is of type (4; 1, 1, 2) and according to Section 3, we can take ω(x, y) =
x8

8 + y4

4 . Then, G(t, x) = x4 + x2y+ (t+ x8

8 + y4

4 )2y and G′(t, x) = x4 + x2y+ (t−
x8

8 −
y4

4 )2y.
Applying Corollaries 2.11 and 2.12 for n even we get that

χ(f−1
t (0) ∩B2

ε ) = 1− deg0∇g = −1

and

χ(f−1
−t (0) ∩B2

ε ) = 1− deg0∇g′ = −1.

We note that in the above examples, the functions g and g′ have an algebraically
isolated critical point at the origin, which makes the degrees computable thanks to
the Eisenbud-Levine formula. However under the assumption ∇FC ⊂ {t = 0}, we
do not know in general if g and g′ have an algebraically isolated critical point at
the origin.

Example 3.8. Let f be the weighted homogeneous polynomial defined by f(x, y) =
x2y2 + y3 and let F be the weighted homogenous 1-parameter deformation of f
defined by F (t, x, y) = x2y2 + y3 + tx. We have ∇F−1

C (0, 0, 0) = (0, 0, 0). The
function F is of type (6; 5, 1, 2) and according to Section 3, we can take ω(x, y) =
x8

8 + y4

4 . Then, G(t, x, y) = x2y2 + y3 + tx+ x9

8 + y4x
4 and G′(t, x, y) = x2y2 + y3 +

tx− x9

8 −
y4x
4 .

Applying Corollaries 2.11 and 2.12 for n even, we get that

χ(f−1
t (0) ∩B2

ε ) = 1− deg0∇g = 1

and

χ((f−1
−t (0) ∩B2

ε )) = 1− deg0∇g′ = 1.

Example 3.9. Let f be the weighted homogeneous polynomial defined by f(x, y, z) =
x2y2 − y2 − yz2 weighted homogeneous and let F be the weighted homogenous 1-
parameter deformation of f defined by F (t, x, y, z) = x2y2 − y2 − yz2 − tx. We
have ∇F−1

C (0, 0, 0, 0) = (0, 0, 0, 0). The function F is of type (4; 3, 1, 2, 1) and

ω(x, y, z) = x8

8 + y4

4 + z8

8 . Then, G(t, x, y, z) = x2y2−y2−yz2− tx+ x9

8 + y4x
4 + z8x

8

and G′(t, x, y, z) = x2y2 − y2 − yz2 − tx− x9

8 −
y4x
4 −

z8x
8 .



Topology of 1-parameter deformations of non-isolated real singularities 13

Applying Corollaries 2.18 and 2.19 for n odd, we get that

χ(f−1
t (0) ∩B3

ε ) = 1− deg0∇F − deg0H = 1− 1− 2 = −2

and
χ(f−1
−t (0) ∩B3

ε ) = 1− deg0∇F − deg0H
′ = 1− 1− (−2) = 2.

Example 3.10. Let f be the weighted homogeneous polynomial defined by f(x, y, z) =
x2 +xy2−xz and let F be the weighted homogenous 1-parameter deformation of f
defined by F (t, x, y, z) = x2 +xy2−xz+ ty. We have ∇F−1

C (0, 0, 0, 0) = (0, 0, 0, 0).

The function F is of type (4; 3, 2, 1, 2) and ω(x, y) = x4

4 + y8

8 + z4

4 .
Applying Corollaries 2.18 and 2.19 for n odd, we get that

χ(f−1
t (0) ∩B3

ε ) = 1− deg0∇F − deg0H = 1− 1− 1 = −1

and
χ(f−1
−t (0) ∩B3

ε ) = 1− deg0∇F − deg0H
′ = 1− 1− (−1) = 1.
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