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Let f : (R n , 0) → (R, 0) be an analytic function germ with non isolated singularities and let F : (R 1+n , 0) → (R, 0) be a 1-parameter deformation of f . Let f -1 t (0) ∩ B n , 0 < |t| , be the "generalized" Milnor fibre of the deformation F . Under some conditions on F , we give a topological degree formula for the Euler characteristic of this fibre. This generalizes a result of Fukui.

Introduction

Let f : (R n , 0) → (R, 0) be an analytic function germ with an isolated critical point at 0. The Khimshiashvili formula (see [START_REF] Khimshiashvili | On the local degree of a smooth map[END_REF]) states that

χ(f -1 (δ) ∩ B n ) = 1 -sign(-δ) n deg 0 ∇f,
where 0 < |δ| 1, B n is the closed ball of radius centered at 0, ∇f is the gradient of f and deg 0 ∇f is the topological degree of the mapping ∇f |∇f | : S n-1 → S n-1 . If F : (R n+1 , 0) → (R, 0) is a 1-parameter deformation of f and the map H = (F, ∂F ∂x1 , • • • , ∂F ∂xn ) has an isolated zero at the origin, Fukui [START_REF] Fukui | An algebraic formula for a topological invariant of bifurcation of 1-parameter family of function-germs, Stratifications, singularities, and differential equations[END_REF] (see also [START_REF] Dutertre | Topology and geometry of real singularities[END_REF]) proves that χ(f -1 t (0) ∩ B n ) = 1 -deg 0 ∇f, if n is even and

χ(f -1 t (0) ∩ B n ) = 1 -deg 0 ∇F -sign(t) deg 0 H, if n is odd.
As a corollary of the Khimshiashvili formula, by a result of Arnol'd [START_REF] Arnol | 'd, Index of a singular point of a vector field, the Petrovski-Oleinik inequality, and mixed Hodge structures[END_REF] and Wall [START_REF] Wall | Topological invariant of the Milnor number mod 2[END_REF] we have that

χ({f ≤ 0} ∩ S n-1 ) = 1 -deg 0 ∇f, χ({f ≥ 0} ∩ S n-1 ) = 1 + (-1) n-1 deg 0 ∇f, and 
χ({f = 0} ∩ S n-1 ) = 2 -2 deg 0 ∇f, if n is even.
Szafraniec [START_REF] Szafraniec | On the Euler characteristic of analytic and algebraic sets[END_REF] generalized the results of Arnol'd and Wall to the case of a function germ f with non-isolated singularities and in [START_REF] Szafraniec | Topological invariants of weighted homogeneous polynomials[END_REF] he improved this result for a weighted homogeneous polynomial f : R n → R, constructing polynomials g 1 and g 2 with algebraically isolated critical point at the origin, which makes the topological degree of their gradient vector fields computable by the Eisenbud-Levine formula. We note that similar results were also obtained in the homogeneous case by Bruce in [START_REF] Bruce | Euler characteristics of real varieties[END_REF].

In [START_REF] Dutertre | On the topology of non-isolated real singularities[END_REF] Lemma 2.5, the first author proves a new relation between the topology of the positive (resp. negative) real Milnor fibre of an analytic function germ f : (R n , 0) → (R, 0) and the topology of the link of the set {f ≤ 0} (resp. {f ≥ 0}). Using Szafraniec's results, he deduces a generalization of the Khimshiashvili formula for non-isolated singularities. Namely he proves that if 0 < δ , then

χ(f -1 (-δ) ∩ B n ) = 1 -(-1) n deg 0 ∇g -, and 
χ(f -1 (δ) ∩ B n ) = 1 -(-1) n deg 0 ∇g + , with g -= -f -ω d , g + = f -ω d , ω(x) = x 2 1 + • • • + x 2
n and d is an integer big enough. Moreover, if f : R n → R is weighted homogeneous with ∇f (0) = 0, then χ(f -1 (-1)) = 1 -(-1) n deg 0 ∇g 2 , and χ(f -1 (1)) = 1 -(-1) n deg 0 ∇g 1 , where g 1 and g 2 are the above polynomials constructed by Szafraniec. In this paper we adapt the methods developed by Szafraniec in [START_REF] Szafraniec | On the Euler characteristic of analytic and algebraic sets[END_REF][START_REF] Szafraniec | Topological invariants of weighted homogeneous polynomials[END_REF] and by the first author in [START_REF] Dutertre | On the topology of non-isolated real singularities[END_REF] to establish a generalization of the Fukui formula for non-isolated singularities. We consider an analytic function germ f : (R n , 0) → (R, 0) with non isolated singularities and a 1-parameter deformation

F : (R 1+n , 0) → (R, 0) of f , F (t, x) = f t (x). We set X = F -1 (0), Σ F = ∇F -1 ((0, 0)) and we assume that Σ F ⊂ {t = 0}.
Let ω : (R n , 0) → (R, 0) be an analytic function germ such that ω(0) = 0 and ω(x) > 0 if x = 0. We assume |t| > ω on Γ X ω,t where Γ X ω,t = (t, x) ∈ X | t = 0, rank (e 0 , ∇F (t, x), ∇ω(x)) = 2 , and e 0 = (1, 0, . . . , 0) in R 1+n . In Corollary 2.11 we show that if n is even then

χ f -1 t (0) ∩ B n = 1 -deg 0 ∇g, for 0 < t
, where

g(x) = G(0, x) and G(t, x) = F (t + ω(x), x).
A similar formula holds for f -1 -t (0) ∩ B n (see Corollary 2.12). In order to obtain a formula in the case n odd, we assume that F has an isolated critical point at (0, 0). Under this assumption, we show in Corollary 2.18 that

χ f -1 t (0) ∩ B n = 1 -deg 0 ∇F -deg 0 H, where H(t, x) = F (t, x), W 1 (t, x), . . . , W n (t, x) , and for i ∈ {1, . . . , n} W i (t, x) = ∂F ∂t (t, x) ∂ω ∂x i (x) + ∂F ∂x i (t, x).
A similar formula holds for f -1 -t (0) ∩ B n (see Corollary 2.19). All these formulas generalize the Fukui formula [START_REF] Fukui | An algebraic formula for a topological invariant of bifurcation of 1-parameter family of function-germs, Stratifications, singularities, and differential equations[END_REF].

Then we explain how to construct a function germ ω that satisfies the condition of collinearity in the general case and in the special case of weighted homogeneous polynomials, having generalizations for the results of Szafraniec [START_REF] Szafraniec | On the Euler characteristic of analytic and algebraic sets[END_REF], [START_REF] Szafraniec | Topological invariants of weighted homogeneous polynomials[END_REF], Bruce [START_REF] Bruce | Euler characteristics of real varieties[END_REF] and the first author [START_REF] Dutertre | On the topology of non-isolated real singularities[END_REF].

The paper is organized as follows. In the second section we prove the main results (Corollaries 2.11, 2.12, 2.18 and 2.19) and, as applications, in Section 3 we present the construction for ω in the general and in the weighted homogeneous cases.

The general situation

Let f : (R n , 0) → (R, 0) be an analytic function germ with arbitrary critical set Σ f . Let F : (R 1+n , 0) → (R, 0) be an analytic function germ such that F (0, x) = f (x). It is a 1-parameter deformation of f .

We use the notation f t (x) = F (t, x) and we call f -1 t (0) ∩ B n , 0 < |t| , the "generalized" Milnor fibre of the deformation F .

We set

X = F -1 (0), Σ F = {(t, x) | ∇F (t, x) = 0}
and make the hypothesis that Σ F ⊂ {t = 0}. Lemma 2.1. For t = 0, f -1 t (0) is smooth near the origin.

Proof. We have the following equivalences:

x ∈ f -1 δ (0) ⇔ F (δ, x) = 0 ⇔ (δ, x) ∈ X ∩ {t = δ}. So f -1 δ (0) is diffeomorphic to X ∩ {t = δ}. But X ∩ {t = δ} = (X \ Σ F ) ∩ {t = δ} and by the Curve Selection Lemma, {t = δ} intersects X \ Σ F transversally.
Hence the deformation f t of f is actually a smoothing of f . Let ω : (R n , 0) → (R, 0) be analytic such that ω(0) = 0 and ω(x) > 0 for x = 0. Definition 2.2. We set Γ X ω,t = (t, x) ∈ X | t = 0, rank (e 0 , ∇F (t, x), ∇ω(x)) = 2 , where e 0 = (1, 0, . . . , 0) in R 1+n .

Remark 2.3. If (t, x) ∈ X and t = 0 then rank(e 0 , ∇F (t, x)) = 2 and so Γ X ω,t = (t, x) ∈ X | t = 0, rank (e 0 , ∇F (t, x), ∇ω(x)) = rank (e 0 , ∇F (t, x)) .

We make the following assumption:

(A) : |t| > ω on Γ X ω,t .
Let φ : R 1+n → R 1+n be the diffeomorphism defined by φ(t, x) = (t + ω(x), x).

Let G : (R 1+n , 0) → (R, 0) be defined by G(t, x) = F (φ(t, x)), let Y = G -1 (0) and let Σ G = {(t, x) | ∇G(t, x) = 0}. Then φ(Y ) = X and φ -1 (X) = Y . We note that ∂G ∂t (t, x) = ∂F ∂t (t + ω(x), x) and that for i ∈ {1, . . . , n}, ∂G ∂x i (t, x) = ∂F ∂t (t + ω(x), x) ∂ω ∂x i (x) + ∂F ∂x i (t + ω(x), x).
Let us study first the restriction of t to Y .

Lemma 2.4. We have {t = 0} ∩ Σ G ⊂ {(0, 0)}.

Proof. Let us study the critical points of G. A point (t 0 , x) belongs to Σ G if and only if ∂F ∂t (t 0 + ω(x), x) = 0 and for i = 1, . . . , n, ∂F ∂t

(t 0 + ω(x), x) ∂ω ∂x i (x) + ∂F ∂x i (t 0 + ω(x), x) = 0.
This implies that (t 0 + ω(x), x) ∈ Σ F and so that t 0 + ω(x) = 0. Therefore Σ G ⊂ {t + ω = 0}. This implies that {t = 0} ∩ Σ G ⊂ {(0, 0)}.

Hence the intersection {t = 0} ∩ Y \ {(0, 0)} is included in Y \ Σ G . Moreover this intersection is tranverse as explained in the following lemma.

Lemma 2.5. The hyperplane {t = 0} intersects Y \ {(0, 0)} transversally.

Proof. Let (0, x), with x = 0, be a critical point of t |Y \{0} . We have ∇G(0, x) = 0 and rank(e 0 , ∇G(0,

x)) = 1. The point φ(0, x) = (ω(x), x) belongs to X \ Σ F since (0, x) ∈ Y \ Σ G . We have ∂G ∂t (0, x) = ∂F ∂t (ω(x), x),
and

∂G ∂x i (0, x) = ∂F ∂t (ω(x), x) ∂ω ∂x i (x) + ∂F ∂x i (ω(x), x).
Since (0, x) is a critical point of t |Y \{0} , ∂G ∂xi (0, x) = 0 for i ∈ {1, . . . , n} and ∂G ∂t (0, x) = 0. Hence ∂F ∂t (ω(x), x) = 0 and we have

∇ω(x) = - ∇ x F (ω(x), x) ∂F ∂t (ω(x), x)
.

Since x = 0, ω(x) = 0 and so (ω(x), x) belongs to Γ X ω,t . This is not possible because |t| > ω(x) on Γ X ω,t by Assumption (A).

For any subanalytic set Z ⊂ R 1+n , we denote by Lk(Z) the link of Z at (0, 0).

Lemma 2.6. We have

χ Lk(X ∩ {t ≤ 0}) = χ Lk(Y ∩ {t ≤ 0}) .
Proof. We note that the function (t, x) → t 2 + ω is a non-negative analytic function which vanishes only at (0, 0). Therefore, for any closed subanalytic set Z ⊂ R 1+n such that (0, 0) ∈ Z, Lk(Z) is homeomorphic to Z ∩ {t 2 + ω = } for 0 < 1. This is explained for example in [START_REF] Durfee | Neighborhoods of algebraic sets[END_REF] in the semi-algebraic case, but the arguments also work in the subanalytic case. Hence the set Lk

(Y ∩ {t ≤ 0}) is homeomorphic to Y ∩{t 2 +ω = 2 }∩{t ≤ 0} and Lk(X ∩{t ≤ 0}) is homeomorphic to X ∩{t 2 +ω = 2 } ∩ {t ≤ 0} where 0 < 1. Now (t 0 , x) ∈ Lk(Y ∩ {t ≤ 0}) ⇔    (t 0 , x) ∈ Y t 2 0 + ω(x) = 2 t 0 ≤ 0 . Recall that φ : R 1+n → R 1+n is the diffeomorphism (t 0 , x) → (u, x) = (t 0 +ω(x), x). Then (u, x) = φ(t 0 , x) ∈ φ (Lk(Y ∩ {t ≤ 0})) ⇔    (t 0 , x) ∈ Y (u -ω(x)) 2 + ω(x) = 2 u -ω(x) ≤ 0 ⇔    (u, x) ∈ X (u -ω(x)) 2 + ω(x) = 2 u ≤ ω(x)
.

Since the function (u, x) → (u -ω(x)) 2 + ω is analytic, non-negative and vanishes only at (0, 0), we can conclude that Lk

(Y ∩{t ≤ 0}) is homeomorphic to Lk(X ∩{t ≤ ω(x)}). Now (t 0 , x) ∈ Lk(X ∩ {t ≤ ω(x)}) ⇔    (t 0 , x) ∈ X t 2 0 + ω(x) = 2 t 0 ≤ 2 -t 2 0 ⇔    (t 0 , x) ∈ X t 2 0 + ω(x) = 2 t 0 + t 2 0 ≤ 2 . Similarly (t 0 , x) ∈ Lk(X ∩ {t ≤ 0}) ⇔    (t 0 , x) ∈ X t 2 0 + ω(x) = 2 t 0 ≤ 0 .
But, since |t 0 | < and is small, we have that 1 + t 0 ≥ 0 and so

(t 0 , x) ∈ Lk(X ∩ {t ≤ 0}) ⇔    (t 0 , x) ∈ X t 2 0 + ω(x) = 2 t 2 0 + t 0 ≤ 0 . Let p be a critical point of t 2 + t restricted to X ∩ {t 2 + ω = 2 }, and such that (t 2 + t)(p) > 0. Then p belongs to Γ X ω,t and so t(p) > ω(p) and (t + t 2 )(p) > ω(p) + t 2 (p) = 2 . Therefore the function t 2 + t restricted to X ∩ {t 2 + ω = 2 } has no critical point on the set {0 < t 2 + t ≤ 2 }. So the set X ∩ {t 2 + ω = 2 } ∩ {t ≤ 0} is a deformation retract of X ∩ {t 2 + ω = 2 } ∩ {t ≤ ω}. This implies that χ(Lk(Y ∩ {t ≤ 0})) = χ(Lk(X ∩ {t ≤ 0})).
Lemma 2.7. Let 0 < δ 1. We have:

χ X ∩B n+1 ∩{t = -δ} -χ X ∩S n ∩{t = -δ} = χ Lk(X) -χ Lk(X ∩{t ≥ 0}) , χ X ∩ B n+1 ∩ {t = δ} -χ X ∩ S n ∩ {t = δ} = χ Lk(X) -χ Lk(X ∩ {t ≤ 0}) . Proof. If X ∩ {t = -δ} ∩ B n+1 is empty for 0 < δ 1, which means that t ≥ 0 on X ∩ B n+1 , then the result is trivial for Lk(X) = Lk(X ∩ {t ≥ 0}).
Let us treat the case when X ∩ {t = -δ} ⊂ B n+1 , i.e. X ∩ {t = -δ} ∩ S n is empty for 0 < δ 1. Let C be a connected component of X \ {0}. Then C ∩{t = -δ}∩S n is empty for δ ∈]0, δ [ for some δ > 0. By conic structure, C ∩S n is connected and so by continuity, either t ≥ 0 on C ∩ S n or t < 0 on C ∩ S n .

Let γ : [0, ν[→ C be an analytic arc such that γ(0) = 0. Then there exists

1 > 0 such that either t < 0 on γ(]0, ν[) ∩ B n+1 1 , either t = 0 on γ(]0, ν[) ∩ B n+1 1 or t > 0 on γ(]0, ν[) ∩ B n+1 1 .
By the above observation, and taking a smaller 1 if necessary, we conclude that either t < 0 on C ∩ B n+1

1 or t ≥ 0 on C ∩ B n+1 1 . Let C + (resp. C -) be the set of connected components of X \ {0} on which t ≥ 0 (resp. t < 0). Then χ({t ≥ 0} ∩ X ∩ S n ) = C∈C + χ(C ∩ S n ) and χ(X ∩ {t = -δ} ∩ B n+1 ) = C∈C - χ(C ∩ S n ),
for if C ∈ C -then the function -t is strictly positive on C and C ∩ S n and C ∩ {t = -δ} are homeomorphic, as explained in Lemma 2.6. We conclude with the remark that

C∈C - χ(C ∩ S n ) = χ(Lk(X)) - C∈C + χ(C ∩ S n ).
Now let us assume that X ∩ {t = -δ} ∩ S n is not empty for 0 < δ 1. Since Σ F ⊂ {t = 0}, we can use the deformation argument due to Milnor [START_REF] Milnor | Singular points of complex hypersurfaces[END_REF] and get that X ∩ {t = -δ} ∩ B n+1 is homeomorphic to X ∩ {t ≤ -δ} ∩ S n . Then we use the fact that

χ Lk(X) = χ X ∩ S n = χ {t ≤ -δ} ∩ X ∩ S n +χ {t ≥ -δ} ∩ X ∩ S n -χ {t = -δ} ∩ X ∩ S n . But the inclusion {t ≥ 0} ∩ X ∩ S n ⊂ {t ≥ -δ} ∩ X ∩ S n is a homotopy equivalence, and so χ {t ≥ -δ} ∩ X ∩ S n = χ Lk(X ∩ {t ≥ 0} .
A similar result is true for Y , but only for positive values of t.

Lemma 2.8. Let 0 < δ 1. We have:

χ Y ∩ B n+1 ∩ {t = δ} -χ Y ∩ S n ∩ {t = δ} = χ Lk(Y ) -χ Lk(Y ∩ {t ≤ 0}) .
Proof. We remark that Σ G ⊂ {t ≤ 0} since, as explained in Lemma 2.4, Σ G is included in {t + ω = 0}. By a Curve Selection Lemma argument, this implies that the fibre {t = δ} ∩ Y is smooth in a neighborhood of the origin for 0 < δ . Then the proof is the same as in the previous lemma.

Corollary 2.9. Let 0 < δ 1. We have

χ {t = δ} ∩ X ∩ B n+1 -χ {t = δ} ∩ X ∩ S n = χ {t = δ} ∩ Y ∩ B n+1 -χ {t = δ} ∩ Y ∩ S n .
Proof. We know that X = φ(Y ) so X and Y are homeomorphic. By the conic structure, Lk(X) and Lk(Y ) are homeomorphic. The result is just a consequence of Lemmas 2.6, 2.7 and 2.8.

Let g : (R n , 0) → (R, 0) be the analytic function germ defined by g(x) = G(0, x). We note that G is a 1-parameter deformation of g. Lemma 2.10. The function g has an isolated critical point at the origin and g -1 t (0) is smooth near the origin for 0 < t .

Proof. If x = 0 is a critical point of g then for i ∈ {1, . . . , n}, ∂G ∂xi (0, x) = 0. Moreover since {t = 0} ∩ Σ G ⊂ {(0, 0)} by Lemma 2.4, ∂G ∂t (0, x) = 0. Therefore (0, x) is a critical point of t |Y \{(0,0)} . This is not possible for {t = 0} intersects Y \ {(0, 0)} transversally by Lemma 2.5. This means that g has an isolated critical point at 0.

We have explained in Lemma 2.8 that the fibre {t = δ} ∩ Y is smooth in a neighborhhod of (0, 0) for 0 < δ 1. But this fibre is diffeomorphic to g -1 δ (0). Applying Corollary 2.9, we obtain Corollary 2.11. Let 0 < t 1. We have

χ f -1 t (0) ∩ B n = χ g -1 t (0) ∩ B n . Moreover if n is even, χ f -1 t (0) ∩ B n = 1 -deg 0 ∇g.
Proof. We apply Corollary 2.9 and we use the fact that if (M, ∂M ) is a compact manifold with boundary then χ(∂M ) = 0 if the manifold is even-dimensional and

χ(∂M ) = 2χ(M ) if it is odd-dimensional.
If n is even, we use the Arnold-Wall formula [START_REF] Arnol | 'd, Index of a singular point of a vector field, the Petrovski-Oleinik inequality, and mixed Hodge structures[END_REF][START_REF] Wall | Topological invariant of the Milnor number mod 2[END_REF] to get that

1 -deg 0 ∇g = 1 2 χ Lk({g = 0}) = 1 2 χ g -1 t (0) ∩ S n-1 = χ g -1 t (0) ∩ B n .
In order to get the corresponding result for f -1 -t (0) ∩ B n , we apply the same procedure to the functions G (t, x) = F (t -ω(x), x), g (x) = G (0, x) and to the set Y = G -1 ((0, 0)). We find that ∇g has an isolated zero at the origin. Furthermore applying the method of Lemma 2.6, we get that

χ Lk({t ≥ 0} ∩ X) = χ Lk({t ≥ 0} ∩ Y ) .
Corollary 2.12. Let 0 < t 1. We have

χ f -1 -t (0) ∩ B n = χ g -1 -t (0) ∩ B n .
Moreover if n is even, χ f -1 -t (0) ∩ B n = 1 -deg 0 ∇g . This method only gives a topological degree formula when n is even. In order to get a topological degree formula when n is odd, we need to impose a stronger condition on Σ F .

From now on we make the hypothesis that Σ F ⊂ {0}, i.e. F has an isolated critical point at the origin. Let

Σ X t = (t, x) ∈ X | ∂F ∂x i (t, x) = 0, i = 1, . . . , n .
The set Σ X t is the set of critical points of t |X , and so Σ X t ⊂ X ∩ {t = 0} by the Curve Selection Lemma.

Lemma 2.13. The set Σ f is diffeomorphic to Σ X t .

Proof. We see that (t, x) ∈ Σ X t if and only if t = 0 and ∂F ∂xi (0, x) = 0 for i ∈ {1, . . . , n}, that is if and only if t = 0 and x ∈ Σ f . Therefore Σ X t = ψ(Σ f ) where ψ is the diffeomorphism

R n → R 1+n ∩ {t = 0} x → (0, x).
We recall that G : (R 1+n , 0) → (R, 0) is defined by G(t, x) = F (t + ω(x), x) and that Y = G -1 (0). Lemma 2.14. The function G has an isolated critical point at (0, 0).

Proof. Since (∇F ) -1 ((0, 0)) ⊂ {(0, 0)} and G(t, x) = F (t + ω(x), x), we find that (∇G) -1 ((0, 0)) ⊂ {(0, 0)} using the relations between the partial derivatives of G and F . Lemma 2.15. We have deg 0 ∇F = deg 0 ∇G.

Proof. We have ∇G(t, x) = A(t, x)∇F (φ(t, x)) where

A(t, x) =      1 0 • • • 0 ∂ω ∂x1 (x) 1 • • • 0 . . . . . . . . . . . . ∂ω ∂xn (x) 0 • • • 1     
.

Let H : (R 1+n , 0) → (R 1+n , 0) be defined by H = (G, ∂G ∂x1 , . . . , ∂G ∂xn ).

Corollary 2.16. We have H-1 ((0, 0)) = {(0, 0)}.

Proof. Since by Lemma 2.14 G has an isolated critical point at the origin, the mapping H has an isolated zero if and only if the function t |Y has an isolated critical point at the origin. But (0, x) is a critical point of t |Y if and only if x is a critical point of g.

We note that t |Y has an isolated critical point at the origin, whereas t |X can have an arbitrary set of critical points.

Let us consider the map H :

H : (R 1+n , 0) → (R 1+n , 0), (t, x) → (F (t, x), W 1 (t, x), . . . , W n (t, x)),
where for each i ∈ {1, . . . , n},

W i (t, x) = ∂F ∂t (t, x) ∂ω ∂x i (x) + ∂F ∂x i (t, x).
Lemma 2.17. We have H -1 ((0, 0)) = {(0, 0)} and deg 0 H = deg 0 H.

Proof.

We have H(t, x) = H(φ(t, x)) where we recall that φ(t, x) = (t + ω(x), x). So we get the result, for φ preserves orientation. Now we can give the topological degree formulas for χ f -1 t (0) ∩ B n . Corollary 2.18. Let 0 < t . If n is even then

χ f -1 t (0) ∩ B n = 1 -deg 0 ∇g, and if n is odd then χ f -1 t (0) ∩ B n = 1 -deg 0 ∇F -deg 0 H. Proof. By Corollary 2.11, we know that χ f -1 t (0) ∩ B n = χ g -1 t (0) ∩ B n .
If n is even, we have already explained that χ g -1 t (0) ∩ B n = 1 -deg 0 ∇g in the same corollary. In the case n odd, the Fukui formula [START_REF] Fukui | An algebraic formula for a topological invariant of bifurcation of 1-parameter family of function-germs, Stratifications, singularities, and differential equations[END_REF][START_REF] Dutertre | Topology and geometry of real singularities[END_REF] states that :

χ g -1 t (0) ∩ B n = 1 -deg 0 ∇G -deg 0 H.
We use Lemmas 2.15 and 2.17 to conclude.

To get the corresponding formulas for f -1 -t (0) ∩ B n , we apply the same procedure to the function G (t, x) = F (t -ω(x), x). We define H by H = (F, W 1 , . . . , W n ) where for each i ∈ {1, . . . , n},

W i (t, x) = - ∂F ∂t (t, x) ∂ω ∂x i (x) + ∂F ∂x i (t, x).
We find that H , ∇G have an isolated zero at the origin and that deg 0 ∇G = deg 0 ∇F .

Corollary 2.19. Let 0 < t . If n is even then χ f -1 -t (0) ∩ B n = 1 -deg 0 ∇g , and if n is odd then χ f -1 -t (0) ∩ B n = 1 -deg 0 ∇F -deg 0 H .

Applications

In this section, we give some results on the existence of the function ω and we give some explicit examples.

3.1. General case. We keep the notations of the previous section. Proof. We adapt to our situation the method developped in [START_REF] Szafraniec | On the Euler characteristic of analytic and algebraic sets[END_REF]. Recall that Γ X ω,t = (t, x) ∈ X | t = 0, rank (e 0 , ∇F (t, x), ∇ω(x)) = 2 . Let Σ be the following closed analytic set:

Σ = {(t, x; r, y) ∈ X × R × R | ω(x) = r, all ∆ i,j (t, x) = 0, t = y} , where for (i, j) ∈ {1, . . . , n} 2 , ∆ i,j (t, x) = ∂F ∂xi (t, x) ∂F ∂xj (t, x) ∂ω ∂xi (x) ∂ω ∂xj (x) 
. If (t, x) belongs to Γ X ω,t then (t, x, ω(x), t) belongs to Σ and (ω, t) lies in π(Σ). Hence, if t = 0 then |t| > ω(x) d for (t, x) ∈ Γ X ω,t sufficiently close to the origin.

Let π : X × R × R → R × R
Corollary 3.2. We have |t| > ω(x) d on Γ X ω d ,t . Proof. We have ∇ω d = dω d-1 ∇ω so Γ X ω d ,t ∩ {ω = 0} = Γ X ω,t ∩ {ω = 0}. We conclude remarking that the inequality is trivial if ω d = 0.
Therefore we can apply our method to the functions G(t, x) = F (t + ω d (x), x) and G (t, x) = F (t -ω d (x), x). This generalizes the results of Szafraniec [START_REF] Szafraniec | On the Euler characteristic of analytic and algebraic sets[END_REF] and the first author [START_REF] Dutertre | On the topology of non-isolated real singularities[END_REF].

3.2. Weighted homogeneous case. Let f : R n → R be a weighted homogeneous polynomial and let F : R 1+n → R be a 1-parameter weighted homogeneous deformation of f such that Σ F ⊂ {t = 0}.

We assume that F is of type (d; d 0 , d 1 , . . . , d n ) where d ≥ 2. Since F (0, x) = f (x) then f is of type (d; d 1 , . . . , d n ). Let p be the smallest positive integer such that 2p > d and each d i , with 1 ≤ i ≤ n, divides p. Let a i = p/d i and let ω(x) =

x 2a 1 1 2a1 + . . . + x 2an n 2an . We denote λ • (t, x) = (λ d0 t, λ d1 x 1 , . . . , λ dn x n ).
Lemma 3.3. We have |t| > ω on Γ X ω,t . Proof. We adapt to our situation the method developped in [START_REF] Szafraniec | Topological invariants of weighted homogeneous polynomials[END_REF]. Recall that

Γ X ω,t = {(t, x) ∈ X | t = 0, rank(e 0 , ∇F (t, x), ∇ω(x)) = 2} . Let Σ = (t, x; r, y) ∈ X × R × R | ω(x) = r 2p , all ∆ i,j (t, x) = 0, t = y , where for (i, j) ∈ {1, . . . , n} 2 , ∆ i,j (t, x) = ∂F ∂xi (t, x) ∂F ∂xj (t, x) ∂ω ∂xi (x) ∂ω ∂xj (x) 
.

Let π : X × R × R → R × R be the natural projection. If r > 0 then π(Σ) ∩ {r} × R = {r} × {critical values of t |X∩ω -1 (r 2p ) },
and π(Σ) ∩ {r} × R is a finite set of points, since a polynomial function has a finite number of critical values. Let ((t, x), r, y) ∈ Σ and let λ ∈ R. We have ω(λ

• x) = λ 2p ω(x) = (λr) 2p , ∆ i,j (λ • (t, x)) = λ 2p+d-di-dj ∆ i,j ((t, x)),
and F (λ • (t, x)) = λ d F (t, x). So if ((t, x), r, y) ∈ Σ then (λ • (t, x), λr, λ d0 y) ∈ Σ too. Hence π(Σ) is a finite union of curves and if (r, y) ∈ π(Σ) and λ ∈ R then (λr, λ d0 y) ∈ π(Σ). Because 2p > d ≥ d 0 then |y| > r 2p for every point (r, y) ∈ π(Σ) with y = 0, sufficiently close to 0. Then if (t, x) ∈ Γ X ω,t is close to (0, 0) then ((t, x), ω(x)

1 2p , t) ∈ Σ and |t| = |y| > r 2p = ω(x).
Therefore we can apply our method to the functions G(t, x) = F (t + ω(x), x) and G (t, x) = F (t -ω(x), x). In [START_REF] Bruce | Euler characteristics of real varieties[END_REF][START_REF] Szafraniec | Topological invariants of weighted homogeneous polynomials[END_REF], the topological degrees appearing in the formulas can be expressed as signatures, because the mappings have algebraically isolated zeros. In the sequel, we will see that this is also the case here under the assumption that the complexification of F has an isolated critical point at (0, 0).

We use the following notation: for any real analytic map h : R m → R p , we denote by h C : C m → C p its complexification.

Let L be the following constructible set:

L = x ∈ C n \ {0} | ∇f C (x) = 0 and all m i,j (x) = 0 ,
where for (i, j) ∈ {1, . . . , n} 2 ,

m i,j (x) = ∂f C ∂xi (x) ∂f C ∂xj (x) ∂ω C ∂xi (x) ∂ω C ∂xj (x)
.

Let C = {x ∈ C n | ∇ω C (x)+∇f C (x) = 0}.
It is proved in [START_REF] Szafraniec | Topological invariants of weighted homogeneous polynomials[END_REF] that C is an algebraic compact subset of C n , hence it is a finite set of points.

Lemma 3.4. A point x belongs to L if and only if there exist z ∈ C \ {0} and λ ∈ C * such that x = λ • z.

Proof. If z ∈ C \ {0} then ∇ω C (z) = 0 and so ∇f C (z) = 0. Since ∂ω C ∂xi (λ • z) = λ 2p-di ∂ω C ∂xi (z) and ∂f C ∂xi (λ • z) = λ d-di ∂f C ∂xi (z), it is clear that λ • z belongs to L for λ = 0.
Reciprocally if x ∈ L then there is α = 0 such that α∇ω C (x) + ∇f C (x) = 0. This implies that λ • x belongs to C \ {0} where λ 2p-d = α. Lemma 3.5. If F C has an isolated critical point at the origin, then g C and G C have an isolated critical point at the origin and H C has an isolated zero at the origin.

Proof. Let x be a critical point of g C . For i ∈ {1, . . . , n}, we have

∂F C ∂t (0, x) ∂ω C ∂x i (x) + ∂F C ∂x i (0, x) = 0.
If ∂F C ∂t (0, x) = 0 then (0, x) is a critical point of F C and x = 0. If ∂F C ∂t (0, x) = 0 and ∇ω C (x) = 0 then x = 0. If ∂F C ∂t (0, x) = 0 and ∇ω C (x) = 0 then ∇f C (x) = 0 and x lies in L. So if 0 is not an isolated critical point of g C , then there exists a sequence of points (x n ) n∈N in L such that ∇g C (x n ) = 0 and x n → 0. By Lemma 3.4 and the fact that C is finite, there exist a sequence (λ n ) n∈N , λ n ∈ C * , and a point z ∈ C \ {0} such that ∇g C (λ n • z) = 0 and |λ n | → 0. By weighted homogeneity, for i ∈ {1, . . . , n} we have

∂F C ∂t (0, λ n • z) ∂ω C ∂x i (λ n • z) + ∂f C ∂x i (λ n • z) = λ d-d0 n λ 2p-di n ∂F C ∂t (0, z) ∂ω C ∂x i (z) + λ d-di n ∂f C ∂x i (z) = 0. Therefore λ 2p-d0 n ∂F C ∂t (0, z) ∂ω C ∂xi (z) + ∂f C ∂xi (z) = 0. Since z is in C \ {0}, we get that λ 2p-d0 n ∂F C ∂t (0, z) -1 = 0. But 2p -d 0 ≥ 1 and so lim n→+∞ λ 2p-d0 n ∂F C
∂t (0, z) = 0, which gives a contradiction. We conclude that g C has an isolated critical point at the origin.

The fact that G C has an isolated critical point at (0, 0) is proved as in the real case. Let (t 0 , x) be a zero of HC . This means that G C (t 0 , x) = 0 and ∂G C ∂xi (t 0 , x) = 0 for i ∈ {1, . . . , n}.

If ∂G C ∂t (t 0 , x) = 0 then (t 0 , x) = (0, 0). If ∂G C ∂t (t 0 , x) = 0 then (t 0 , x) is a critical point of t C|Y C , because Y C = G -1
C (0) has at worst an isolated singularity at (0, 0). Therefore t 0 = 0 and so x is a critical point of g C , which implies that x = 0. We conclude that HC has an isolated zero at (0, 0) and, as in the real case, that H C has an isolated zero at (0, 0). Therefore when F C has an isolated critical point at the origin, the topological degrees can be expressed as signatures. This generalizes the results of Bruce [START_REF] Bruce | Euler characteristics of real varieties[END_REF], Szafraniec [START_REF] Szafraniec | Topological invariants of weighted homogeneous polynomials[END_REF] and the first author [START_REF] Dutertre | On the topology of non-isolated real singularities[END_REF]. We end with some explicit examples in the weighted homogeneous case. We have computed the signatures using Singular.

Example 3.6. Let f be the weighted homogeneous polynomial defined by f (x, y) = x 2 y 2 + y 3 and let F be the weighted homogenous 1-parameter deformation of f defined by F (t, x, y) = x 2 y 2 + y 3 + t 2 y. We have ∇F -1 C (0, 0, 0) ⊂ {t = 0}. The function F is of type (6; 2, 1, 2) and according to Section 3, we can take ω(x, y) = 4 . Then, G(t, x) = x 2 y 2 + y 3 + (t + x 8 8 + y 4 4 ) 2 y and G (t, x) = x 2 y 2 + y 3 + (t -x 8 8 -y 4 4 ) 2 y Applying Corollaries 2.11 and 2.12 for n even we get that

χ(f -1 t (0) ∩ B 2 ) = 1 -deg 0 ∇g = 3 and χ(f -1 -t (0) ∩ B 2 ) = 1 -deg 0 ∇g = 3. Example 3.7.
Let f be the weighted homogeneous polynomial defined by f (x, y) = x 4 + x 2 y and let F be the weighted homogenous 1-parameter deformation of f defined by F (t, x, y) = x 4 + x 2 y + t 2 y. We have with ∇F -1 C (0, 0, 0) ⊂ {t = 0}. The function F is of type (4; 1, 1, 2) and according to Section 3, we can take ω(x, y) =

x 8 8 + y 4 4 . Then, G(t, x) = x 4 + x 2 y + (t + x 8 8 + y 4 4 ) 2 y and G (t, x) = x 4 + x 2 y + (t - x 8 
8 -y 4 4 ) 2 y. Applying Corollaries 2.11 and 2.12 for n even we get that χ(f -1 t (0) ∩ B 2 ) = 1 -deg 0 ∇g = -1 and χ(f -1 -t (0) ∩ B 2 ) = 1 -deg 0 ∇g = -1. We note that in the above examples, the functions g and g have an algebraically isolated critical point at the origin, which makes the degrees computable thanks to the Eisenbud-Levine formula. However under the assumption ∇F C ⊂ {t = 0}, we do not know in general if g and g have an algebraically isolated critical point at the origin.

Example 3.8. Let f be the weighted homogeneous polynomial defined by f (x, y) = x 2 y 2 + y 3 and let F be the weighted homogenous 1-parameter deformation of f defined by F (t, x, y) = x 2 y 2 + y 3 + tx. We have ∇F -1 C (0, 0, 0) = (0, 0, 0). The function F is of type (6; 5, 1, 2) and according to Section 3, we can take ω(x, y) = 4 . Then, G(t, x, y) = x 2 y 2 + y 3 + tx + x 9 8 + y 4 x 4 and G (t, x, y) = x 2 y 2 + y 3 + tx -x 9 8 -y 4 x 4 . Applying Corollaries 2.11 and 2.12 for n even, we get that χ(f -1 t (0) ∩ B 2 ) = 1 -deg 0 ∇g = 1 and χ((f -1 -t (0) ∩ B 2 )) = 1 -deg 0 ∇g = 1. Example 3.9. Let f be the weighted homogeneous polynomial defined by f (x, y, z) = x 2 y 2 -y 2 -yz 2 weighted homogeneous and let F be the weighted homogenous 1parameter deformation of f defined by F (t, x, y, z) = x 2 y 2 -y 2 -yz 2 -tx. We have ∇F -1 C (0, 0, 0, 0) = (0, 0, 0, 0). The function F is of type (4; 3, 1, 2, 1) and ω(x, y, z) = C (0, 0, 0, 0) = (0, 0, 0, 0). The function F is of type (4; 3, 2, 1, 2) and ω(x, y) = x 4 4 + y 8 8 + z 4 4 . Applying Corollaries 2.18 and 2.19 for n odd, we get that

χ(f -1 t (0) ∩ B 3 ) = 1 -deg 0 ∇F -deg 0 H = 1 -1 -1 = -1 and χ(f -1 -t (0) ∩ B 3 ) = 1 -deg 0 ∇F -deg 0 H = 1 -1 -(-1) = 1.

Lemma 3 . 1 .

 31 There exists d ∈ N such that |t| > ω d on Γ X ω,t \ {ω = 0} close to the origin.

  be the natural projection. The mapping π |Σ : Σ → π(Σ) is proper, and so π(Σ) is closed and semi-analytic (see[START_REF] Lojasiewicz | Ensembles semi-analytiques[END_REF], p.127). Let us setY 1 = R × {0} and Y 2 = π(Σ) \ Y 1 . The set Y 2 is semi-analytic. If r > 0 then π(Σ) ∩ {r} × R = {r} × {critical values of t |X∩ω -1 (r) },and π(Σ) ∩ {r} × R is a discrete set of points, since the set of critical values of an analytic function is discrete. Hence Y 2 has dimension less than or equal to 1 in a neighborhood of 0. So 0 is isolated in Y 1 ∩ Y 2 . By the Lojasiewicz inequality[START_REF] Lojasiewicz | Ensembles semi-analytiques[END_REF], there are positive constants C, α such that |y| ≥ Cr α for (r, y) ∈ Y 2 sufficiently close to the origin. If d ∈ N is such that d > α, then Cr α > r d if r > 0 is sufficiently small. Therefore |y| > r d for (r, y) ∈ Y 2 sufficiently close to the origin.
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 48848848 Then, G(t, x, y, z) = x 2 y 2 -y 2 -yz 2 -tx+ x 9 G (t, x, y, z) = x 2 y 2 -y 2 -yz 2 -tx -x 9Applying Corollaries 2.18 and 2.19 for n odd, we get thatχ(f -1 t (0) ∩ B 3 ) = 1 -deg 0 ∇F -deg 0 H = 1 -1 -2 = -2 and χ(f -1 -t (0) ∩ B 3 ) = 1 -deg 0 ∇F -deg 0 H = 1 -1 -(-2) = 2.Example 3.10. Let f be the weighted homogeneous polynomial defined by f (x, y, z) = x 2 + xy 2 -xz and let F be the weighted homogenous 1-parameter deformation of f defined by F (t, x, y, z) = x 2 + xy 2 -xz + ty. We have ∇F-1 
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