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Abstract. Classifying radar Doppler signals with Deep Learning algo-
rithms is a challenging task, in particular because of the noisy nature
of the data (clutter, thermal noise, etc.). Equivariant Neural Networks
(ENN) have already been shown very promising in this context by cou-
pling hyperbolic embedding techniques with dedicated SU(1, 1) convo-
lution operators in order to achieve local robustness by-design. In this
paper, we introduce a generalized SU(1, 1) equivariant convolution oper-
ator on the Fock-Bargmann spaces by leveraging on the representations
of SU(1, 1) over these functional Hilbert spaces. We further give a new
way of sampling over SU(1, 1) for Monte-Carlo computations by using
a generalization of the Bloch-Messiah decomposition of elements of the
symplectic group SL(2,R) to those of SU(1, 1). We finally illustrate our
approach on the problem of radar clutter classification and demonstrate
in this context that SU(1, 1) ENN achive better performance results than
conventional approaches from both accuracy and robustness standpoints.

Keywords: Equivariant convolution · Group representation · Monte-
Carlo sampling · Radar clutter classification

1 Introduction

Geometric Deep Learning [1] is an emerging field getting more and more trac-
tion because of its successful application to a wide range of domains [8, 12, 5,
6]. In this context, Equivariant Neural Networks (ENN) [9] have been shown to
be superior to conventional Deep Learning approaches from both accuracy and
robustness standpoints and appear as a natural alternative to data augmenta-
tion techniques to achieve geometrical robustness with respect to semantically
preserving transforms such as isometries.

Achieving equivariance with respect to the SU(1, 1) group is of particular in-
terest in the context of radar Doppler signal classification when representing the
signals as complex covariance matrices [2, 3] and leveraging on hyperbolic em-
bedding techniques to represent the input data as graphs of functionals defined
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on the Poincaré disk D [14]. In particular, the authors have proposed in [13] using
the equivariant convolution operator defined in [11] for functions f : D→ C and
to rely on a regular action of SU(1, 1) on those functions. However, other group
actions may need to be envisioned to better account for plausible real-world de-
formations of the original input data and to improve robustness accordingly, as
shown in [14] with respect to thermal noise effects.

In this paper, we introduce a new SU(1, 1) equivariant convolution operator
by leveraging on Unitary Irreducible Representations (UIR) of SU(1, 1) on the
Fock-Bargmann Hilbert spaces, as described in [7]. Leveraging on recent results
of [10] with respect to the extension of Bloch-Messiah decomposition of symplec-
tic matrices to SU(1, 1), we also propose an alternative sampling method to that
used in [13] for computing Monte-Carlo estimations of SU(1, 1)-based convolu-
tion operators. Finally, we illustrate the approach in the context of radar clutter
classification by working on data simulated according to a realistic model.

2 Mathematical Background

We denote D the Poincaré unit disk D = {z = x+ iy ∈ C/ |z| < 1} and then
consider the following Lie Group:

SU(1, 1) =

{
gα,β =

[
α β
β̄ ᾱ

]
, |α|2 − |β|2 = 1, α, β ∈ C

}
(1)

We can endow D with a transitive action ◦ of SU(1, 1) defined as it follows

∀gα,β ∈ SU(1, 1), ∀z ∈ D, gα,β ◦ z =
αz + β

β̄z + ᾱ
(2)

As highlighted in [7], this action can be extended to functions of the Fock-
Bargmann Hilbert space FBη, for η = 1, 32 , 2,

5
2 , ..., through the UIR represen-

tation ρη of SU(1, 1) on FBη which is defined as it follows, for f ∈ FBη and
z ∈ D :

[ρη (gα,β) (f)] (z) =
1(

α− β̄z
)2η f ( ᾱz − βα− β̄z

)
=

1(
α− β̄z

)2η f (g−1α,β ◦ z) (3)

Figure 1 illustrates this action of SU(1, 1) and provides a comparison with the
regular action considered in [13] and defined by ρreg (gα,β) (f) = f

(
g−1α,β ◦ z

)
,

showing in particular that several perturbations can be captured through the
representations ρη as η varies.

3 Generalized Convolution

We generalize here the convolution operator considered in [13] and show that
it allows achieving equivariance with respect to the action of G = SU(1, 1)
represented by ρη.
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Fig. 1. Example of the action of gα,β ∈ SU(1, 1) on the Fock-Bargmann Hilbert spaces
FBη. From top to bottom and left to right: the original function f being a Gaussian
kernel on D, the transformed function ρreg (gα,β) (f) by the regular action and the
transformed functions ρ3 (gα,β) (f) and ρ8 (gα,β) (f).

To do so, we define for z ∈ D,

ψηf,k (z) =

∫
G

[ρη (g) (k)] (z)
[
ρη (g)

−1
(f)
]

(0D) dµG (g) (4)

with 0D the center of D and where µG refers to the Haar measure of G that
is normalized according to

∫
G
F (g ◦ 0D) dµG (g) =

∫
D F (z) dm(z) for all F ∈

L1 (D, dm), and where the measure dm is given for z = z1 + iz2 by dm (z) =
dz1dz2

(1−|z|2)
2 .

Proposition 1. The operator f → ψηf,k is equivariant with respect to the action
of SU(1, 1) represented by ρη, in the following sense,

∀gα0,β0
∈ SU(1, 1), ρη (gα0,β0

)
(
ψηf,k

)
= ψη

ρη(gα0,β0)(f),k
(5)

Proof. ∀g0 = gα0,β0 ∈ G, ∀z ∈ D, we have:

ρη (g0)
(
ψηf,k

)
(z) =

1(
α0 − β̄0z

)2η ∫
G

[ρη (g) (k)]
(
g−10 ◦ z

) [
ρη (g)

−1
(f)
]

(0D) dµG (g)

∀g = gα,β ∈ G, it is also possible to write

ρη (g) (k)
(
g−10 ◦ z

)
=

(
α0 − β̄0z

)2η(
A− B̄z

)2η k ((g0g)
−1 ◦ z

)
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with A = αα0 + β̄β0 and B̄ = β̄ᾱ0 +αβ̄0, so that α = Aᾱ0−β0B̄. We then have

ρη (g0)
(
ψηf,k

)
(z) =

∫
G

1(
A− B̄z

)2η k ((g0g)
−1 ◦ z

) 1

ᾱ2η
f (g ◦ 0D) dµG (g)

=

∫
G

1(
A− B̄z

)2η k ((g0g)
−1 ◦ z

) 1(
α0Ā− ¯Bβ0

)2η f (g ◦ 0D) dµG (g)

=

∫
G

1(
A− B̄z

)2η k (g̃−1 ◦ z) 1(
α0Ā− ¯Bβ0

)2η f ((g̃−1g0)−1 ◦ 0D

)
dµG (g̃)

=

∫
G

[ρη (g̃) (k)] (z)
[
ρη (g̃)

−1
(ρη (g0) (f))

]
(0D) dµG (g̃)

= ψηρη(g0)(f),k (z)

where we have used the change of variable g̃A,B = g̃ = g0g and the invariance
property of the Haar measure.

4 Numerical Computation

In order to numerically compute the convolution (4), we can use a Monte-Carlo
technique following the approach introduced in [8] and then consider the follow-
ing estimator

ψη,Nf,k (z) =
1

N

N∑
i=1

[ρη (gi) (k)] (z)
[
ρη (gi)

−1
(f)
]

(0D) (6)

where the samples gi are drawn according to the Haar measure µG of G.
Motivated by the Cartan decomposition of G, [13] proposes sampling in

SU(1, 1) by first drawing elements in D seen as the cosets space SU(1, 1)/U(1)
and then lifting to SU(1, 1) by drawing random elements in the rotation group
U(1). We propose here an alternative approach by leveraging on the result of [10]
with respect to the extension of the Bloch-Messiah decomposition of symplectic
matrices to SU(1, 1) elements.

More precisely, the group elements can actually be parameterized by two
angles γ and γ

′
and one real parameter d, so that

gρ,γ,γ′ =

[
eiγ 0
0 e−iγ

] [
cosh ρ sinh ρ
sinh ρ cosh ρ

] [
eiγ

′

0

0 e−iγ
′

]

=

 e
i
(
γ+γ

′)
cosh ρ e

i
(
γ−γ

′)
sinh ρ

e
−i

(
γ−γ

′)
sinh ρ e

−i
(
γ+γ

′)
cosh ρ

 = gα,β

with α = e
i
(
γ+γ

′)
cosh ρ and β = e

i
(
γ−γ

′)
sinh ρ. The following proposition gives

the corresponding Haar measure that could then be used to sample elements
gρ,γ,γ′ ∈ SU(1, 1) to compute the Monte-Carlo estimator (6).
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Fig. 2. Left: sampling according to the Cartan parameterization for which SU(1, 1) 3
gα,β = gx,y,θ, with z = x + iy = β

ᾱ
and θ = 2argα. Right: sampling according to

the Bloch-Messiah parameterization for which SU(1, 1) 3 gα,β = gd,γ,γ′ , with α =

e
i
(
γ+γ

′)
cosh ρ and β = e

i
(
γ−γ

′)
sinh ρ.

Proposition 2. The normalized Haar measure corresponding to the Bloch-Messiah
parameterization of SU(1, 1) is given by

dµG
(
gρ,γ,γ′

)
=

1

4π2
|sinh 2ρ| dρdγdγ

′
(7)

Proof. Based on [4], we remind ourselves that an element gα,β ∈ SU(1, 1) can
be written as gα,β = t1 + izσz + xσx + yσy, with 1 the identity matrix and
σx, σy, σz the three Pauli matrices, where we have used the notations α = t+ iz
and β = x − iy with t2 + z2 − x2 − y2 = 1. With such a parameterization, we
can define the invariant Haar measure of the group by

dµG (gα,β) =
1√

1 + x2 + y2 − z2
dxdydz (8)

If we consider the Bloch-Messiah parameterization for which α = e
i
(
γ+γ

′)
cosh ρ

and β = e
i
(
γ−γ

′)
sinh ρ, we then have to consider the following change of vari-

ables, x = sinh ρ cos
(
γ − γ′

)
, y = − sinh ρ sin

(
γ − γ′

)
and z = cosh ρ sin

(
γ + γ

′
)
,

for which the absolute determinant of the Jacobian matrix is 2 cosh2 ρ
∣∣∣sinh ρ cos

(
γ + γ

′
)∣∣∣

We then have

dµG
(
gρ,γ,γ′

)
=

2 cosh2 ρ
∣∣∣sinh ρ cos

(
γ + γ

′
)∣∣∣√

cosh2 ρ cos (γ + γ′)
dρdγdγ

′
= |sinh 2ρ| dρdγdγ

′
(9)

The measure stated in (7) is then obtained after re-normalizing the above equal-
ity for the angular part.
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Figure 2 illustrates the sampling of SU(1, 1) according to the Cartan (left) and
Bloch-Messiah (right) parameterizations, the two pictures representing the same
group elements but with different parameterizations. It is also interesting to
notice that as the left-handside of Figure 2 can be folded along its θ axis, the
Cartan parameterization actually corresponds to a torus with D as orthogonal
sections.

5 Application to Radar Clutter Classification

In the following, we focus on radar clutter classification and consider the set-
up introduce in [3], in which the signals are represented as Toeplitz Hermitian
Positive Definite (THPD) covariance matrices of dimension n. A SU(1, 1) equiv-
ariant neural network can operate on the corresponding data by leveraging on the
Trench-Verblunsky theorem allowing to identify n-dimensional THPD matrices
with n − 1 reflection coefficients µi ∈ D after adequate rescaling. A lifting step
as introduced in [13] is then used to represent a THPD matrix Γ as a complex
signal fΓ on the Poincaré disk D.

More precisely, we represent each spatial cell by its THPD auto-correlation
matrix Γ , our goal being to predict the corresponding clutter c ∈ {1, ..., nc}
from the observation of Γ . Within our formalism, the training samples are of
the form (fΓi , ci) and the input data have been obtained by simulating a given
cell according to

Z =
√
τR1/2x+ bradar (10)

where τ is a positive random variable corresponding to the clutter texture, R
a THPD matrix associated with a given clutter, x ∼ NC (0, σx) and bradar ∼
NC (0, σ), withNC (0, t) referring to the complex gaussian distribution with mean
0 and standard deviation t. In the following, bradar will be considered as a source
of thermal noise inherent to the sensor.

We have instanciated a simple neural network constituted of one SU(1, 1) reg-
ular convolutional layer with two filters and ReLu activation functions, followed
by one fully connected layer and one softmax layer operating on the complex
numbers represented as 2-dimensional tensors. The kernel functions are modeled
as a neural networks with one layer of 16 neurons with swish activation func-
tions, combined with the Riemannian logarithm of D. The two convolution maps
have been evaluated on the same grid constituted of 100 elements of D sampled
according to the corresponding volume measure.

To appreciate the improvement provided by our approach, we will compare
the obtained results with those corresponding to the use of a conventional neural
network with roughly the same number of trainable parameters and operating
on the complex reflection coefficients. In the following, we will denote NG

σ (resp.
NFC
σ ) the neural network with SU(1, 1) equivariant convolutional (resp. fully

connected) layers and trained on 400 THPD matrices of dimension 10 corre-
sponding to 4 different classes (100 samples in each class) which have been
simulated according to (10) with a thermal noise standard deviation σ.
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Fig. 3. Left handside: confusion matrix corresponding to the evaluation of NG
1 on the

testing set T1, averaged over 10 realizations. Right handside: average accuracy results
of the algorithms NG

1 , NFC
1 , NG

250 and NFC
250 on the testing sets Tσ shown as a function

of σ, together with the corresponding standard deviation as error bars

In order to evaluate the algorithms NG
σ and NFC

σ , we have considered several
testing sets Tσ consisting in 2000 THPD matrices of dimension 10 (500 samples
in each of the 4 classes) simulated according to (10) with a thermal noise stan-
dard deviation σ. The obtained results are shown on Figure 3 where it can in
particular be seen that NG

1 reaches similar performances as NG
250 and NFC

250 while
significantly outperforming NFC

1 as σ increases, meaning that our approach al-
lows to achieve some degree of robustness with respect to the variation of σ
through the use of equivariant layers.

6 Conclusion and Further Work

Motivated by the sucessuful application of SU(1, 1) ENN to Doppler signal clas-
sification [14], we have generalized the convolution operator considered in [13]
in order to handle more general group actions through the representation of
SU(1, 1) on the Fock-Bargmann spaces. We have shown that our generalized op-
erator is equivariant with respect to the considered action of SU(1, 1), so that
it could be used to build equivariant layers of ENN. We have then proposed
a sampling method for computing convolution operators with Monte-Carlo es-
timators by leveraging on the Bloch-Messiah parameterization of SU(1, 1), an
approach complementary to that relying on the Cartan decomposition. We have
finally illustrated our approach on simulated clutter data and shown its supe-
riority with respect conventional Deep Learning algorithms from both accuracy
and robustness standpoints.

Further work will include the study of numerical methods other than Monte-
Carlo approaches which suffer from scalability issues when the convolution oper-
ators are used within deep ENN architectures and establishing some links with
the coadjoint representation theory [15] may be useful in this context. Also, by
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leveraging on the isomorphism between SU(1, 1) and SL(2,R), we will investigate
extending the approach presented in this paper to cover the action of SL(2,R)
on H2 and to build corresponding ENN in order to achieve robustness to a wider
range of real-world perturbations.

References

1. Bronstein, M.M., Bruna, J., Cohen, T., Veličković, P.: Geometric deep learning:
Grids, groups, graphs, geodesics, and gauges (2021)

2. Brooks, D., Schwander, O., Barbaresco, F., Schneider, J., Cord, M.: A hermi-
tian positive definite neural network for micro-doppler complex covariance pro-
cessing. In: 2019 International Radar Conference (RADAR). pp. 1–6 (2019).
https://doi.org/10.1109/RADAR41533.2019.171277

3. Cabanes, Y., Barbaresco, F., Arnaudon, M., Bigot, J.: Toeplitz hermitian positive
definite matrix machine learning based on fisher metric. In: Nielsen, F., Barbaresco,
F. (eds.) Geometric Science of Information. pp. 261–270. Springer International
Publishing, Cham (2019)

4. Chiribella, G., D’Ariano, G.M., Perinotti, P.: Applications of the group
su(1, 1) for quantum computation and tomography. Laser Physics
16(11), 1572–1581 (Nov 2006). https://doi.org/10.1134/s1054660x06110119,
http://dx.doi.org/10.1134/S1054660X06110119

5. Cohen, T.S., Geiger, M., Köhler, J., Welling, M.: Spherical cnns. CoRR
abs/1801.10130 (2018), http://arxiv.org/abs/1801.10130

6. Cohen, T.S., Weiler, M., Kicanaoglu, B., Welling, M.: Gauge equivariant convolu-
tional networks and the icosahedral cnn (2019)

7. del Olmo, M.A., Gazeau, J.P.: Covariant integral quantization of the
unit disk. Journal of Mathematical Physics 61(2), 022101 (Feb 2020).
https://doi.org/10.1063/1.5128066

8. Finzi, M., Stanton, S., Izmailov, P., Wilson, A.G.: Generalizing convolutional neu-
ral networks for equivariance to lie groups on arbitrary continuous data (2020)

9. Gerken, J.E., Aronsson, J., Carlsson, O., Linander, H., Ohlsson, F., Petersson, C.,
Persson, D.: Geometric deep learning and equivariant neural networks (2021)

10. Grain, J., Vennin, V.: Canonical transformations and squeezing formalism
in cosmology. Journal of Cosmology and Astroparticle Physics 2020(02),
022–022 (Feb 2020). https://doi.org/10.1088/1475-7516/2020/02/022,
http://dx.doi.org/10.1088/1475-7516/2020/02/022

11. Helgason, S.: Groups and geometric analysis (1984)
12. Lafarge, M.W., Bekkers, E.J., Pluim, J.P.W., Duits, R., Veta, M.: Roto-translation

equivariant convolutional networks: Application to histopathology image analysis
(2020)

13. Lagrave, P.Y., Cabanes, Y., Barbaresco, F.: "su(1,1) equivariant neural networks
and application to robust toeplitz hermitian positive definite matrix classification".
In: Nielsen, F., Barbaresco, F. (eds.) Geometric Science of Information. pp. 577–
584. Springer International Publishing, Cham (2021)

14. Lagrave, P.Y., Cabanes, Y., Barbaresco, F.: An equivariant neural net-
work with hyperbolic embedding for robust doppler signal classification.
In: 2021 21st International Radar Symposium (IRS). pp. 1–9 (2021).
https://doi.org/10.23919/IRS51887.2021.9466226

15. Rieffel, M.A.: Lie group convolution algebras as deformation quantizations of linear
poisson structures. American Journal of Mathematics 112(4), 657–685 (1990)


