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Abstract. This paper aims at motivating the use of geometrically in-
formed Machine Learning algorithms for Defense applications by provid-
ing intuitions with respect to their underlying mechanisms and by shed-
ding light on successful applications such as remote sensing imagery,
radar Doppler signal processing, trajectory prediction, physical model
simulation and kinematics recognition. We in particular discuss the use
Equivariant Neural Networks (ENN) which achieve geometrical robust-
ness by-design and which also appear more robust to adversarial attacks.
We will also highlight how Lie Group Statistics and Machine Learning
techniques can be used to process data in their native geometry. Both
technologies have a wide range of applications for the Defense industry
and we generally believe that exploiting the data geometry and the un-
derlying symmetries is key to the design of efficient, reliable and robust
AI-based Defense systems.

Keywords: Equivariant Neural Networks · Geometric Deep Learning ·
Lie Group Statistics and Machine Learning · Robustness-by-design

1 Introduction and Motivations

Conventional Deep Learning algorithms only encode limited priors about robust-
ness to perturbations into their design. Taking the example of computer vision
tasks, CNN enforce local robustness with respect to translations but they have
been shown to lack of robustness with respect to other transforms such as ro-
tations, scaling, lightening, small noise, etc. To remedy this issue, a practical
approach referred to as data augmentation consists in augmenting the train-
ing set by applying transformations to the original data, typically on-the-fly
during the gradient descent routine [28]. Although widely applied by practi-
tioners because of its empirical success and implementation convenience, data
augmentation is not fully satisfactory as learning invariances directly form the
(augmented) data consumes significant algorithmic capacity and therefore re-
quires models with a large number of trainable parameters, which may not be
aligned with operational constraints such as memory footprint limitations or in-
ference timing performance. Another caveat with this type of approach is that,
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although recent attempts have been made with respect to the formalization of
the method through group theory [7], we are still generally lacking of theoretical
guarantees with respect to the behavior the algorithms trained with augmented
data. Finally, data augmentation has also been shown suboptimal [12] when
compared to approaches consisting in using architectures where group-based in-
variance/equivariance is natively enforced.

In this context, Equivariant Neural Networks (ENN), which belong to the
field of Geometric Deep Learning [6], are becoming more and more popular
thanks to their conceptual soundness and to their ability to reach state-of-the-
art accuracies for a wide range of applications [16,13]. In particular, the under-
lying equivariant and/or invariant layers of ENN (see Figure 1) allow building
architectures robust to generic geometrical transforms, therefore making the use
of ENN a reasonable alternative to data augmentation techniques. Another way
of improving the geometrical robustness of Machine Learning models is to have
them operate on the native representation of the input data. In this context, Lie
Group Statistics and Machine learning techniques [1,5,2,20] provide statistical
approaches for data lying within Lie Groups and can therefore been seen as a
particular type of learning methods on symmetric manifolds, which are com-
patible with the notion of equivariance as illustrated by the notion of Gauge
Equivariant Neural Networks [30].

2 Encoding Symmetries with Equivariant Neural
Networks

After having motivated the specification of ENN, we give in the following a high
level description of their underlying mechanisms and shed light on practical
applications. We refer the interested reader to [6,15] for more detailed surveys
and thorough descriptions of the associated theory.

Fig. 1. Generic structure of Equivariant Neural Networks (from [6]): ENN typically
share similar topology with conventional CNN, with (generalized) equivariant convo-
lution layers and (local or global) pooling mechanisms.
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2.1 Symmetries Representation

In the following, symmetries will be represented by the invariance/equivariance
of a function to the action of a Lie group on the input data. More precisely,
a group G is acting on a set S if there exists a map ◦ : G × S → S which is
compatible with the group law ◦ in the sense that h◦(g ◦ S) = (hg)◦S, ∀g, h ∈ G.
For two sets X and Y on which a group G acts respectively with ◦X and ◦Y , a
function f : X → Y is said to be G-equivariant (or G-covariant) if ∀x ∈ X and
∀g ∈ G, f (g ◦X x) = g ◦Y f (x). Similarly, f : X → Y is said to be G-invariant
if f (g ◦X x) = f (x), ∀x ∈ X and ∀g ∈ G. Hence, G-invariance is a special
case of G−equivariance, for which the group action ◦Y is trivial. To illustrate
the above, we consider the set I2 of 2−dimensional gray scale images that we
represent by continuous functions f : R2 → [−1, 1], where f (x, y) represents the
value of the renormalized pixel at position (x, y). Examples of Lie groups acting
on the set I2 include the translation group R2, the rotation group SO(2) and
the special euclidean group SE(2). An image classifier is typically expected to
be invariant with respect to such action, while segmentation algorithms should
be equivariant, as illustrated on Figure 2.

Fig. 2. Left (image from [27]): the planes should be classified as such regardless of
their orientation. Corresponding algorithms are in particular expected to be invariant
to the rotation group with this respect. Right (image from [15]): commutative diagram
representing the expected equivariant behavior of segmentation algorithms.

2.2 From CNN to G-CNN

CNN [19] are by-design well adapted to computer vision tasks as the underlying
2d convolution operators are equivariant to translation, allowing for efficient
weights sharing for features extraction. Unfortunately, the equivariance property
of conventional CNN is limited to translation, which is a caveat even for planar
images for which equivariance to rotation and scaling would be a beneficial for
the inner representation of the data.
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Group-Convolutional Neural Networks (G-CNN) have initially been intro-
duced in 2016 by the seminal work [8] as a generalization of CNN by introducing
group-based convolution operators (see Section 2.3) to achieve equivariance with
respect to the action of finite groups and have further been generalized to more
generic actions. In particular, [10] proposed a sound theory for the case of the
transitive action of a compact group on its homogeneous space by leveraging
on group representation theory. More recently, [13] introduced a very generic
approach providing equivariance to the action of any Lie group with a surjective
exponential map and which is applicable to any input data representable by a
function defined on a smooth manifold and valued in a vectorial space.

2.3 Group-Based Convolution

A natural way to achieve equivariance with respect to the action of a given group
G is to generalize the 2d planar convolution. More precisely, we consider that the
kernel κ and feature map f are signals on the group G valued in a vectorial space
V such that κ, f : G→ V and we define the generalized convolution operator on
the group G by writing, ∀g ∈ G:

(κ ? f) (g) =

∫
G

κ
(
h−1g

)
f(h)dµG(h) (1)

where µG is the Haar measure of the group G. Denoting Lh the left shift operator
such that ∀h ∈ G, ∀g ∈ G and ∀φ : G → V , Lhφ(g) = φ

(
h−1g

)
, the operator

defined by equation (1) is equivariant with respect tot the action of G in the sense
that Lh (κ ? f) (g) = (κ ? Lhf) (g). Specializing with G = R2 allows retrieving
the usual 2d convolution operator. Group-based convolution operators can then
be used within G-CNN architectures to instanciate equivariant layers of the ENN
blueprint shown on Figure 1.

2.4 Adversarial Robustness

In addition to providing by-design geometrical robustness, preliminary studies
have shown that G-CNN also appear more robust to adversarial attacks than
conventional architectures in the context of image classification. In [11], SO(2)
is considered and we have extended the study to the SE(2) case by leveraging on
the corresponding ENN implementation of [16]. Fig 3 in particular shows that,
for a given number of iterations, the adversarial perturbations corresponding
to DeepFool adversarial MNIST samples [24] for a SE(2)-ENN are higher in
expectation than those corresponding to usual approaches (MLP and CNN).

2.5 Applications

ENN have already found a wide range of applications, including in Computer
Vision [16,30], for Graph and Point Cloud processing [14,26], Simulation and
Trajectory prediction [13,29], in Reinforcement learning [25] and for Time Series
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Fig. 3. Distribution of the size (`2-norm) of the adversarial perturbations obtained
with the DeepFool attack for a fixed number of iterations, for a SE(2)-ENN (SE2cnn),
a conventional CNN (R2cnn) and a simple MLP (fcnn) with roughly the same number
of parameters and trained on the MNIST dataset.

Analysis [18,17], all of these areas being of interest in the context of building
safe and secure AI-based Defense systems. More precisely, we highlight below
examples of possible Defense applications:

– Robust remote sensing image processing such as the detection of planes
from satellite images by exploiting roto-translation and scale equivariance
[27].

– Native omnidirectional image processing by using 3d rotation equiv-
ariance as to benefit from the native spherical geometry of the input data
(e.g., obtained with bidirectional fish-eye lenses) and to avoid dealing with
the distortion effects induced by planar projection methods [9].

– Efficient simulation of Partial Differential Equations (PDE) such as Maxwell
and Navier Stokes equations by building ENN equivariant to the symmetry
group of the underlying PDE [29], allowing for faster convergence and better
stability than finite difference/element methods.

– Robust radar Doppler signal processing by representing the signal as
complex covariance matrices and combining equivariance with hyperbolic
embedding to increase the robustness to real-world perturbations such as
thermal noise [18,17].

3 Lie Group Statistics and Machine Learning

Lie Group Statistics and Machine Learning is a very promising aera of research
with well identified Defense applications such as robotics, radar Doppler signal
processing and kinematics recognition [4], and which anchors in deep theoreti-
cal results [5,2,3,21,22]. Also, the practical implementation of these approaches
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becomes more and more convenient with the emergence of dedicated python
packages such as Geomstats [23].

More precisely, the geometric models of information theory, statistical physics
and machine learning inference share common structures as was illustrated at the
Ecole de Physique des Houches in July 2020, SPIGL’20 [1]. Information Geom-
etry has introduced natural learning gradients that are invariant to information
coding via the Fisher metric. These schemes have been extended to differen-
tial manifolds or Lie groups when symmetries exist by extending the notion of
Fisher metric to Koszul-Souriau metric and the definition of Entropy as invariant
Casimir function in coadjoint representation. To define statistics on Lie Group,
we have to consider the associated Symplectic homogeneous manifold given by
the Kirillov-Kostant-Souriau 2-form, associated to the Lie group coadjoint orbits,
and to define extension of Gauss density as Gibbs density. This model has been
introduced by Jean-Marie Souriau and named “Lie groups thermodynamics”. In
the Souriau model, Fisher-Koszul metric is given by:

I(β) = −∂
2Φ

∂β2
with Φ(β) = − log

∫
M

e−〈U(ξ),β〉dλω and U :M → g∗ (2)

where the Entropy is given by Legendre transform: S(Q) = 〈Q, β〉−Φ(β) with Q =
∂Φ(β)
∂β ∈ g∗ and β = ∂S(Q)

∂Q ∈ g, where β is a “geometric” (Planck) temperature,
element of Lie algebra g of the group, and Q is a “geometric” heat, element of the
dual space of the Lie algebra g∗ of the group. Souriau defined a Gibbs density
that is covariant under the action of the group:

pGibbs(ξ) = eΦ(β)−〈U(ξ),β〉 =
e−〈U(ξ),β〉∫

M

e−〈U(ξ),β〉dλω
(3)

with Φ(β) = − log
∫
M

e−〈U(ξ),β〉dλω. We can express the Gibbs density with re-

spect to Q by inverting the relation Q = ∂Φ(β)
∂β = Θ (β). Then pGibbs,Q(ξ) =

eΦ(β)−〈U(ξ),Θ−1(Q)〉 with β = Θ−1 (Q).
We can then beneficiate of different tools based on Souriau Lie Groups Ther-

modynamics and Kirillov Representation Theory for:
– Supervised Machine Learning: Maximum Entropy covariant density on

co-adjoint orbits through moment map and extension of natural gradient on
Lie algebra for Lie groups Machine Learning.

– Non-Supervised Machine Learning: Extension of Mean/Median on Lie
group by Fréchet definition of geodesic barycenter on Souriau-Fisher Metric
Space, solved by Karcher Flow, and extension of Mean-Shift for homogeneous
symplectic manifold and Souriau-Fisher Metric Space.

4 Conclusion

We have given some general background about ENN and explained their rational
in the context of achieving robustness with respect to geometrical transforms. We
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have also shed light on Lie Group Statistics and Machine Learning techniques
and their interest for exploiting the native geometry of the input data. Both
technologies have a wide range of applications for the Defense industry and we
generally believe that exploiting data geometry and the underlying symmetries
is key to the design of efficient, reliable and robust AI-based Defense systems.
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