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Unpacking ecosystem service bundles: towards predictive 37 

mapping of synergies and trade-offs between ecosystem 38 

services 39 

 40 

Abstract 41 

Multiple ecosystem services (ES) can respond similarly to social and ecological factors to form 42 

bundles. Identifying key social-ecological variables and understanding how they co-vary to produce 43 

these consistent sets of ES may ultimately allow the prediction and modelling of ES bundles, and 44 

thus, help us understand critical synergies and trade-offs across landscapes. Such an understanding is 45 

essential for informing better management of multi-functional landscapes and minimising costly 46 

trade-offs. However, the relative importance of different social and biophysical drivers of ES bundles 47 

in different types of social-ecological systems remains unclear. As such, a bottom-up understanding of 48 

the determinants of ES bundles is a critical research gap in ES and sustainability science.  49 

Here, we evaluate the current methods used in ES bundle science and synthesize these into four steps 50 

that capture the plurality of methods used to examine predictors of ES bundles. We then apply these 51 

four steps to a cross-study comparison (North and South French Alps) of relationships between social-52 

ecological variables and ES bundles, as it is widely advocated that cross-study comparisons are 53 

necessary for achieving a general understanding of predictors of ES associations. We use the results 54 

of this case study to assess the strengths and limitations of current approaches for understanding 55 

distributions of ES bundles. We conclude that inconsistency of spatial scale remains the primary 56 

barrier for understanding and predicting ES bundles. We suggest a hypothesis-driven approach is 57 

required to predict relationships between ES, and we outline the research required for such an 58 

understanding to emerge. 59 

Keywords: cross-study comparison, ecosystem services, French Alps, land use, social-ecological 60 

systems, trade-off, natural capital, biodiversity. 61 

1. Introduction 62 

Current understanding of how multiple ecosystems services (ES) are associated across heterogeneous 63 

landscapes remains limited (Bennett et al. 2009; Qui & Turner et al. 2013; Bennett et al. 2015). This 64 

understanding is essential for informing better management of multi-functional landscapes. Although 65 

the idea that the spatial distribution of ES and their associations are driven by the interplay between 66 

social and ecological variables is well-established (Reyers et al. 2013), the relative importance of 67 

different social and biophysical drivers of sets of ES and how these change across different socio-68 
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ecological systems remains unclear (Bennett et al. 2015). Consequently, there have been calls to 69 

achieve a greater understanding of the drivers of ES distributions and associations (Bennett et al. 70 

2009, Howe et al. 2014, Bennett et al. 2015).  71 

Associations among ES are understood to occur when multiple services respond to the same driver of 72 

change or ecological process, or when interactions among the services themselves cause changes in 73 

one service to alter the provision of another (Bennett et al. 2009). Such associations are commonly 74 

referred to as ES interactions (Raudsepp-Hearne et al. 2010), with synergies and trade-offs being 75 

routinely explored in multi-ES assessments (Howe et al. 2014). Synergies arise when multiple 76 

services are enhanced simultaneously, while trade-offs occur when the provision of one service is 77 

reduced due to increased use of another. While ES associations can be highly context-specific (Howe 78 

et al. 2014), there have been calls for the development of general rules about the relationships among 79 

ES (Bennett et al. 2009; Raudsepp-Hearne et al. 2010). In attempting to distinguish ES associations 80 

that are context-specific from those that are universal, several authors have emphasised the need for 81 

cross-study comparisons (e.g. Bennett et al. 2009; Raudsepp-Hearne et al. 2014, Meacham et al. 82 

2015). However, cross-study comparisons are hampered by differences in approaches, the services 83 

covered, spatial scale, how ES are modelled and what drivers are used (Grêt-Regamey et al., 2014; 84 

Queiroz et al. 2015). 85 

The concept of ‘ecosystem service bundles’ has been operationalised to help in the search for general 86 

rules determining ES associations (Bennett et al. 2009; Raudsepp-Hearne et al. 2010). While rather 87 

confusingly the use of the term varies in the literature, with bundles and synergies used 88 

interchangeably (Berry et al 2015; see Box 1 for definitions used here), the term has been widely used 89 

in conjunction with the application of a spatially explicit framework developed by Raudsepp-Hearne 90 

et al. (2010) for identifying and mapping ES associations based on cluster analysis. Raudsepp-Hearne 91 

et al. (2010) defined ES bundles as coherent sets of ES repeatable in space or time. This clustering 92 

approach has been applied across the world to facilitate cross-study comparisons of ES associations 93 

and their drivers (Table 1; Fig 1). Maps of ES bundles delineated with this approach can indicate what 94 

services can be expected to associate based on where we find services repeatedly occurring together 95 

across a landscape (Raudsepp-Hearne et al. 2010). Their distributions have been typically interpreted 96 

with regards to known distributions of principal human activities or land use within the region (Table 97 

1), and are therefore considered useful for communicating the potential impact of management 98 

decisions to policy-makers (Crouzat et al. 2015). This qualitative interpretation of ES bundle 99 

distribution provides some information about the drivers of ES associations and whether different 100 

social-ecological systems have particular sets of ES associated with them (Bennett et al 2009). 101 

In addition to qualitative interpretation of ES bundles, recent studies have attempted a more 102 

mechanistic approach to understanding ES bundle distribution, based on the relative roles of different 103 

social-ecological drivers, with multi-variate approaches being increasingly used (Mouchet et al. 2014) 104 
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reviewed the quantitative methods that are available for such analyses. Raudsepp-Hearne et al. (2010) 105 

suggested that spatially explicit analyses of the social-ecological variables driving ES bundles could 106 

ultimately allow for the prediction and modelling of ES bundles and thus, critical trade-offs and 107 

synergies across regions (Raudsepp-Hearne et al. 2010). Studies that aim to achieve such an 108 

understanding typically infer ES associations from the analysis of spatial trends in the distribution of 109 

two or more ES, and relate these to underlying social-ecological determinants (Mouchet et al. 2014). 110 

Further, if widely accessible data on social-ecological drivers (such as land use and population 111 

density) can predict ES bundles, this could potentially overcome problems associated with complex 112 

and data-intensive models that are required to produce ES maps (Meacham et al. 2015). Indeed, an 113 

ability to use limited variables to inform about the ES context is particularly important in data scarce 114 

regions (Meacham et al. 2016).  115 

Here, we critically assess the strengths and limitations of current approaches for explaining and/or 116 

predicting the distribution of spatial associations between multiple ES. Most studies of this type to 117 

date follow the spatially explicit ES bundle approach first outlined by Raudsepp-Hearne et al. (2010) 118 

(Table 1). We first review studies that have applied this approach (Table 1; Fig. 1) and synthesise the 119 

application of it into four steps (Fig. 2), that capture the plurality of methods currently used, and 120 

illustrate them with a case study – a cross-study comparison of the North and South regions of the 121 

French Alps. We then use the outcomes of this case study to assess the strengths and limitations of 122 

current approaches for linking social ecological drivers to ES bundles. . Finally, we outline a roadmap 123 

for research required to enable a general understanding of ES associations. 124 
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 125 

Box 1. Definitions of key concepts surrounding ecosystem services (ES) used in this 

article 

ES 

associations 

Arise when two or more services respond to the same driver of change or ecological 

process or when true interactions among the services themselves cause changes in 

one service to alter the provision of another (Bennett et al. 2009). Commonly referred 

to as ES interactions (Mouchet et al. 2014) and are inferred from spatial overlaps or 

lack thereof. 

ES bundle ‘‘Sets of ES that appear together repeatedly across space or time’’ (Raudsepp-

Hearne et al., 2010). Have been delineated and mapped using cluster analysis 

following Raudsepp-Hearne et al. 2010 (Table 1). In a bundle, ES can be positively 

(synergy) or negatively (trade-off) associated (Mouchet et al. 2014). 

ES demand “the amount of a service required or desired by society’’ (Villamagna et al., 2013). 

Different sectors of society can have different, and even conflicting demands. 

ES flow  “the service actually received by people, which can be measured directly as the 

amount of a service delivered, or indirectly as the number of beneficiaries served’’ 

(Villamagna et al., 2013). 

ES supply The capacity of the structures and processes of a particular ecosystem to provide ES 

within a given time period (modified from Burkhard et al., 2012).  

ES use  Refers to an ecosystem being accessed/altered/managed/protected due to ES 

demand (Turkelboom et al. 2015). 

ES indicator Proxy measures derived from empirical data or modelled estimates of ES. 

Realised ES By definition, an ES is only realised if there is a human benefit. Without human 

beneficiaries and demand for an ES, ecosystem functions and processes are not 

services (Fisher et al., 2009). 

Social-

ecological 

system 

A set of social and ecological components that interact in a constantly evolving and 

interdependent manner (Berkes and Folke, 1998). 

Synergy Arises when multiple services are enhanced simultaneously by the use of an ES. 

Typically inferred from positive spatial overlaps. 

Trade-off

  

 

When the provision of one service is reduced as a consequence of increased use of 

another, such as the case of crop production diminishing water quality. Inferred from 

negative spatial overlaps. 

Win-win A situation (or area) where a synergy occurs. 
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Table 1. Examples of studies that have assessed social-ecological drivers of spatially explicit ES bundles. The studies included here identified and 126 

produced maps of bundles of ecosystem services derived from spatially explicit multivariate analyses of ES*. 127 

Study Region 

Service 
categories 

(total number 
of variables)# 

Grain 
Method used to obtain 

bundles 
Interpretation of ES bundles 

Raudsepp-
Hearne 
(2010) 

Quebec, 
Canada 

P,C,R(12) Municipality k-means clustering 
Qualitatively interpreted with regards to coincidence with social-
ecological systems as defined by dominant land uses. 

Haines-
Young et al. 
(2011) 

Part of 
Europe 

P,C,R(15)  

(Not just ES) 
NUTS-2 regions Unknown 

Mean service loadings and marginal impacts of land use and 
cover change for four services across two time periods were 
clustered to define groupings of NUTS-2 regions with similar 

change trajectories. 

Martin-Lopez 

et al. (2012) 

Iberian 
Peninsula, 
Spain 

P,C,R(14) Respondents Hierarchical clustering  

Used redundancy analysis to analyse associations between the 
relative importance of ecosystem services perceived by people 
and three types of explanatory variables: stakeholders’ 
characteristics (e.g. education, income), land management 
strategy (e.g. protection level) and ecosystem type (e.g. 
presence of mountains). First three axes of the RDA were 
clustered to obtain bundles. 

Qiu and 
Turner 
(2013)* 

Yahara 

Watershed 
southern 
Wisconsin 
(USA) 

P, C, R (10) 
30-m grid cells 
(within 1,336 
km2 watershed) 

Factor analysis 

Identified three orthogonal axes that represented synergies as 
well as trade-offs for ES supply. Interpreted interactions by 
mapping factor scores that represented synergies and trade-offs 

in ES.  

Hanspach et 
al. (2014) 

Southern 
Transylvan
ia, 

Romania 

P, C,R,B(9) Village Hierarchical clustering 

Qualitatively interpreted with regards to spatial coincidence with 
socio-demographic data, derived from commune level statistics, 
including e.g. total population size, proportions of the main ethnic 

groups, unemployment, migration levels. 
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Plieninger et 
al. (2014) 

Guttau, 
Germany 

C(11) 

(includes 
disservices) 

‘land cover unit’ 
Hierarchical clustering 
of PCA scores 

Bundles in the perception of cultural services obtained by 
clustering PCA axes of ES variables by land cover units. 
Qualitatively interpreted with regards to land cover type of the 
land cover unit. 

Turner et al. 
(2014) 

Denmark P,C,R (11) 10 km × 10 km 
k-means clustering of 
PCA scores 

Qualitatively interpreted with regards to overlap with social-
ecological systems as defined by dominant land uses. 

Derkzen et al. 
(2015) 

Rotterdam, 
Netherland

s 

R,C(6) 
Neighbourhood 

District 
k-means clustering 

Qualitatively interpreted with regards to overlap with water 
bodies and urban green spaces.  

Renard et al. 
(2015) 

Quebec, 
Canada 

P,C,R(9) Municipality k-means clustering 

Used redundancy analysis to analyse the relationship between 
the provision of ES and socioeconomic (population density, 
distance from urban center) and biophysical (agricultural land 
capability) variables. 

Crouzat et al. 
(2015) 

French 
Alps, 
France 

P,C,R,B(18) 1 km × 1 km Self-organizing map 
Qualitatively analysed the geographical distributions, elevation 
and land cover patterns of different ES bundles. 

Hamann et al. 

(2015) 

South 

Africa 
P(6) Municipality k-means clustering 

Multinomial logistic regression used to identify the most 
important social-ecological predictors of the spatial pattern 
observed in the distribution of ES bundle types. 

Quieroz et al. 
(2015) 

Sweden P,C,R(16) Municipality k-means clustering 
Qualitatively interpreted with regards to overlap with social-
ecological systems as defined by dominant land uses, 

management intensity and soil types. 

Yang et al. 
(2015) 

Yangtze 
River 
Delta, 
China 

P,C,R(12) 

“Urban-rural 
complexes” as 
defined by city 
boundaries 

Hierarchical clustering 
Qualitatively interpreted with regards to overlap with social-
ecological systems as defined by dominant land uses and 
human activities. 

Meacham et 
al. (2016) 

Sweden P,C,R(16) Municipality 
Bundles identified by 
Quieroz et al. (2015) 

Used random forest analysis to identify best combinations of 
social-ecological variables to best predict ES bundle types. 

Schulze et al. 
(2016) 

Germany P, R, B(6) 500 m × 500 m  k-means clustering 
Binomial logistic regression used to assess relative importance 
of variables in determining the occurrence of different bundles 
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* These are studies that have delineated and mapped ES bundles using cluster analysis or PCA/factor analysis. Studies were identified by a key word search 128 

in the ISI Web of Science (“ecosystem service*” AND bundle*), followed by a ‘snowballing’ approach, searching for references within retrieved articles and 129 

pertinent reviews e.g. Lee and Lautenbach (2016). 130 

# Ecosystem service categories: P, provisioning; C, cultural; R, regulating; B , biodiversity.131 

Raudsepp-
Hearne & 

Peterson 
(2016) 

Quebec, 

Canada 
P,C,R (12) 

1 km × 1 km 

3 km × 3 km 

Municipality 

k-means clustering 
Assessed how interactions among ES as characterised using 

correlation and cluster analysis varied across three grain sizes 

Hamann et al. 
(2016) 

South 
Africa 

P(6) Municipality 
Bundles identified by 
Hamann et al. (2015) 

Assessed spatial overlap with ‘well-being bundles’, as identified 
using cluster analysis of social and demographic factors such as 
income and education. 

Lamy et al. 
(2016) 

Quebec, 
Canada 

P,C,R(10) Municipality 
Multivariate regression 
tree (MRT) 

Used eight landscape variables (composition and configuration 

metrics) as a constraint in the clustering. Performed an RDA 
analysis to explore relationship between ES covariation and 
landscape structural variables. 

Depellegrin et 
al. (2016) 

Lithuania P,C,R(31) 100 m × 100 m PCA 

Identified five orthogonal axes that represented synergies as well 
as trade-offs for ES potential (ES were derived using a look-up 
table and a land cover map). Interpreted interactions by mapping 
factor scores that represented synergies and trade-offs in ES. 

Yao et al. 
(2016) 

Liaoning 

Province, 
China 

P,R(11) Watershed Cluster analysis Qualitatively interpreted with regards to dominant land uses. 

Mouchet et 

al. (2017) 
Europe P, C, R(11) 1 km × 1 km Self-organizing map 

Used redundancy analysis to identify combinations of social-
ecological variables that explained the co-variation of ES 
indicators within each cluster. 
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 132 

Figure 1. Distribution of 21 case studies that have mapped ES bundles based on cluster 133 

analysis. Three studies at the European scale (extent) are not plotted. See Table 1. 134 

  135 
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2. Current approaches to understanding spatially explicit ES 136 

associations 137 

 138 

Figure 2. Approach of the spatially explicit analyses of ES associations, organized into four 139 

conceptual steps. 140 

2.1 Step 1: Assessment, aggregation and harmonisation of ecosystem service indicators  141 

Studies that have examined drivers of spatial ES bundles exhibit considerable variation regarding the 142 

number and types of ES considered, and in how individual ES are quantified (Table 1). Studies have 143 

typically considered a relatively large number of ES (averaging ~12 ES), encompassing a range of 144 

provisioning, regulating and cultural ES, and also biodiversity metrics (Table 1). Contrasting large 145 

numbers of ES within different ES categories can contribute to a better understanding of ES trade-offs 146 

(Raudsepp-Hearne et al. 2010; Crossman et al. 2013). 147 

ES maps often vary in the units, range of output values, and spatial resolution. To enable bivariate or 148 

multivariate analyses, ES datasets have been aggregated to a common resolution. While studies have 149 

mapped ES at scales ranging from local to global (see Crossman et al. 2013 and Malinga et al. 2015 150 

for recent reviews), studies mapping ES bundles tend to be conducted for parts of countries at the 151 

spatial resolution of administrative boundaries, typically the smallest political units such as 152 

municipalities (Table 1). The use of administrative boundaries has been advocated as relevant for 153 

multi-ES studies (Raudsepp-Hearne et al. 2010), as municipalities represent the smallest scale of 154 

Step 2: Assessment of spatial ES 
associations and delineation of ES 

bundles 
- e.g. PCA, cluster analysis 

  

Step 4: Assessment of congruence 
between ES bundles and social-
ecological system classifications 

Step 3: Identification of social-
ecological variables important in 
determining or predicting ES bundles 

- e.g. qualitative interpretation of maps of 
ES associations (through maps of PCA 

site scores or cluster identity) 
- e.g. quantitative analyses linking drivers 

to multiple ES or ES bundles such as 
redundancy analysis 

Step 1: Aggregation and harmonisation 
of ES data  
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governance (in most areas of Europe) where many decisions regarding planning and landscape 155 

management are taken (Hamann et al. 2015; Queiroz et al. 2015). The selected grain for multi-ES 156 

research is also likely to have been driven by data availability; municipalities often are the finest scale 157 

at which some ES (such as provisioning ES) and potential social data are available (e.g. census data). 158 

We consider the potential limitations of municipality-level analyses in the discussion. 159 

Following collation and aggregation of multi-ES datasets, data are usually harmonised to a common 160 

range and unit to allow for comparison prior to data analysis. The methods used such as 161 

standardisation (transformation to z-scores by centring and scaling), serve to adjust the magnitude and 162 

variability of the variables to make them compatible for analysis (Legendre & Legendre 2012).  163 

Application of step 1 to French Alps case study 164 

The French Alps represent a relatively large, highly socially and ecologically diverse region 165 

characterized by excellent ES data over this large extent (e.g. Crouzat et al. 2015). Within the region, 166 

elevation, climate and vegetation gradients have had historical influenced social dynamics and 167 

economic activities, resulting in the conventional separation into the North and the South Alps 168 

(Crouzat et al. 2015; a detailed description of study system is given in SI). This social-ecological 169 

divide is also recognised by an administrative boundary at the NUTS II level (Nomenclature of 170 

Territorial Units For Statistics by Eurostat [http://ec.europa.eu/Eurostat], basic regions for the 171 

application of regional policies).  172 

We selected nine ES that have been quantified and mapped in the French Alps previously by Crouzat 173 

et al. (2015). These services were deemed socially, ecologically, and economically relevant to the 174 

region following consultation with scientists and local collaborators (Crouzat et al. 2015), and 175 

included three provisioning (crop [crop], fodder [fodd] and wood [wood] production) three cultural 176 

(hunting [hunt], recreation [rec] and tourism [tour]) and three regulating ES (water quantity regulation 177 

[wqt], carbon storage [cstock], erosion mitigation [eros]; see Table S1. These ES are mixed indicators, 178 

ranging from potential capacity to actual use values, as is the case in the majority of ES bundle 179 

analyses (Raudsepp-Hearne et al. 2010; Crouzat et al. 2015; Queiroz et al. 2015; Meacham et al. 180 

2016). By using the same ES for both the North and South Alps we were able to control for the effect 181 

of choice of the ES selected in our bundles in our cross-study comparison. All ES were based on 182 

either primary data or bespoke modelled surfaces of ES based on primary data. Full details of these 183 

ES are in Crouzat et al. 2015 and Appendix S1. Our analyses were conducted at the municipality scale 184 

(a total of 2336 municipalities; 1498 in North Alps and 838 in the South, ranging in area from 0.52 to 185 

246.20 km², averaging 22.19 km² (SD 23.98km²)). To minimise skew and make the ES variables 186 

dimensionless and comparable in terms of their magnitudes and variability, Box-Cox transformation 187 

(Box & Cox, 1964), centring and scaling was applied.  188 

http://ec.europa.eu/Eurostat
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2.2 Step 2: Assessment of ecosystem service associations and delineation of ES bundles 189 

ES associations have typically been assessed by mapping multiple ES across broad regions, and any 190 

spatial overlaps (or absence of overlaps) are assumed to signify a particular type of ES association; 191 

positively correlated ES are assumed to be synergistic, while negative correlations infer trade-offs 192 

(Tomscha & Gergel, 2016). Spatial overlaps between multiple ES have been most commonly 193 

quantified through assessments of pairwise correlations or PCA (Mouchet et al. 2014); a correlation 194 

biplot from a PCA (scaling type 2; Borcard et al. 2011) is considered a useful way to visualise the 195 

strength of correlations between multiple ES indicators (e.g. Maes et al. 2012; Turner et al. 2014).  196 

Raudsepp-Hearne et al. (2010) developed an approach for identifying ES bundles based on cluster 197 

analysis, which has since been widely applied to social-ecological systems across the world (Table 1; 198 

Fig 1). In this approach, clustering algorithms (e.g. k-means, self-organizing maps) have been applied 199 

to define groups of ES that are associated in space by delineating spatial units supplying the same 200 

magnitude and types of ES (Raudsepp-Hearne et al. 2010; Mouchet et al. 2014). As such, ES bundles 201 

as defined by cluster analysis are emergent properties of the maps of different ES that are used in the 202 

cluster analysis and will often result from the distribution of underlying driver variables that drive 203 

more than one ES. Following clustering, ES associations have frequently been visualized using star 204 

diagrams (Mouchet et al. 2014), showing the relative delivery of different ES within each bundle. 205 

Clustering approaches also underpin many current methodologies for mapping social-ecological 206 

systems (Ellis and Ramankutty 2008; Asselan and Verburg 2012; Levers et al. 2015), by identifying 207 

localities that have similar sets of multiple social-ecological variables. 208 

Application of step 2 to French Alps case study 209 

Following the spatially explicit ES bundle approach of Raudsepp-Hearne et al. (2010) we used k-210 

means cluster analysis to delineate ES bundles across the N and S French Alps separately (Full 211 

Methods in Appendix S2). Briefly, for both the North and South regions, a two step clustering 212 

approach was adopted (Turner et al. 2014). A PCA was firstly used to quantify the main multivariate 213 

relationships between the ES variables to assess whether ES co-occur in spatial bundles. As a 214 

precursor to cluster analysis, PCA can serve to separate signal from noise and lead to a more stable 215 

clustering solution (Husson et al. 2010). We applied k-means clustering to the relevant PCA axes 216 

(selected according to the Kaiser-Guttman criterion; Legendre and Legendre, 2012; Turner et al. 217 

2014), to delineate ES bundles with 1000 random starts and 10,000 iterations to find a solution with 218 

the lowest within-cluster sum of squares according to the relevant PCA axes. K-means clusters 219 

municipalities so that the composition of ES values are more alike within than between clusters. 220 

Following Renard et al. (2015), we quantified the effective number of ES provided in each bundle 221 

using a transformation (H) of the Gini–Simpson’s index (S): H = 1/(1 − S), (Jost, 2006; Appendix S2). 222 
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In both the North and South Alps, three ecosystem service bundles (ESBs) were identified. In both 223 

regions, bundles were identified that were characterized by high crop production and far below 224 

average levels of most other services (ESB1(N) and ESB1(S)). Crop production was negatively 225 

correlated with most services across both study regions, except for water quantity regulation in the 226 

south (Appendix S2). In both the north and south, these crop-dominated bundles had the lowest 227 

diversity (H=2.8 for the north Alps and 1.8 for the south Alps). In the north and south regions, 228 

bundles were identified that were characterised by a high delivery of forest ecosystem services 229 

(carbon storage, wood production), and relatively high provision of other services but a complete lack 230 

of crop production (ESB2(N) and ESB2(S)). These forest ES-dominated bundles had the highest 231 

diversity in both the North and South regions. In the North Alps, multifunctionality was higher 232 

(H=9.0) than in the South Alps (H=6.0). A third ESB had a more intermediate mix of ecosystem 233 

services in the north and South Alps. In the north, ESB3(N) exhibited intermediate levels of crop 234 

production while remaining relatively multi-functional, delivering other services including high levels 235 

of tourism and intermediate hunting and recreation (Fig. 3; H = 6.9). In the South, ESB3(S) was 236 

dominated by delivery of hunting, erosion mitigation, and carbon storage (H=5.9; Fig. 3). 237 

  238 
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 239 

 240 

Figure 3. Distributions of ecosystem service bundles (ESBs) for the North and South French 241 

Alps. Barplots indicate the relative provision of ES within each bundle type. Values are ES z-scores 242 

averaged across all municipalities belonging to a specific bundle. Positive z-scores refer to above-243 

average, negative z-scores to below- average values regarding the ES for the regions. 244 
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2.3 Step 3: Identification of social-ecological determinants of ES bundles 245 

Understanding the spatial distribution of ES associations means identifying key drivers and their 246 

interactions that produce coherent sets of ES across landscapes (Raudsepp-Hearne et al. 2010; 247 

Meacham et al. 2016). Several studies have mapped ES associations to allow for their qualitative 248 

interpretation by association with broad social-ecological systems (Table 1). The results of cluster 249 

analysis are made spatially explicit when the spatial units (typically administrative units or grid cells, 250 

Table 1) are classified into groups (bundles) and projected onto maps (Fig 3), allowing the researcher 251 

to identify which localities exhibit similar ES associations (Raudsepp-Hearne et al. 2010; Mouchet et 252 

al. 2014). ES interactions have also been visualised by mapping the site scores of factor analysis and 253 

PCA of multiple ES (Qiu & Turner, 2013; Turner et al. 2014). This approach has allowed for the 254 

identification of where trade-offs and synergies are the most pronounced in the landscape. Mapping 255 

ES associations in these ways has enabled qualitative interpretation of mapped bundles with respect to 256 

known distributions of dominant land uses or principal human activities within regions (e.g. 257 

Raudsepp-Hearne et al. 2010; Quieroz et al. 2015; Turner et al. 2014; Crouzat et al. 2015). 258 

In addition to qualitative interpretation, several quantitative methods are available for analysing ES 259 

bundles in relation to potential social-ecological determinants or predictors (Mouchet et al. 2014). 260 

Widely used methods include those frequently used in community ecology to study the relationships 261 

between ecological communities and the environment, through the coupling of two data tables, a site 262 

× environmental variable table and a site × species table (Doledec & Chessel, 1994). Studies are 263 

increasingly applying these techniques in ES research to determine how drivers and ES are related to 264 

one another, by replacing the latter table with a site × ES table (Mouchet et al. 2014; Meacham et al. 265 

2016), including, for example, redundancy analysis and canonical correspondence analysis. Other 266 

approaches have used regression-based or machine-learning methods with a single response variable, 267 

such as ES bundle type (e.g. Hamann et al. 2015; Meacham et al. 2016; Schulze et al. 2016), or 268 

whether a locality represents a win-win or not (Qui & Turner et al. 2013). 269 

Whichever quantitative method is used, a critical step is the identification of candidate social-270 

ecological variables that are important in explaining or predicting different ES bundles. This initial 271 

selection is based either on relationships demonstrated in the primary literature or on expert 272 

knowledge, and of course depends on the ES considered in the study. Meacham et al. (2016) explored 273 

four theories of the driving forces behind human impact on ecosystems and tested their relative ability 274 

to predict ES bundles. The four models were created by distilling the different driver variables that 275 

each theory emphasises. Using random forest analysis, they found that models based on 276 

socioeconomic variables performed better than those based on land use. Hamann et al. (2015) used 277 

multiple logistic regression to predict the distribution of three ES bundles characterised by low, 278 

medium and high levels of direct ES use across South Africa. Drivers were chosen based on variables 279 

thought to contribute to the use of natural resources at the household level. They found bundle 280 
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distribution was determined by social factors, such as household income, gender of the household 281 

head, and land tenure, and only partly determined by the supply of natural resources. Qui and Turner 282 

(2013) used logistic regression to determine social-ecological determinants of win-win areas, with 283 

candidate variables including land use, population density, slope and soil properties. See Mouchet et 284 

al. (2014) and Table 1 for a review of quantitative methods for identifying drivers of ES associations. 285 

Application of step 3 to the French Alps case study 286 

In our case study, potential social-ecological drivers included social and ecological components used 287 

in the modelling or quantification of the ES in question (including land cover, elevation, climatic 288 

factors), in addition to variables that directly or indirectly drive individual ES and their associations as 289 

identified in the literature (biodiversity, NPP) (Table S1). Land cover variables and population density 290 

are frequently cited drivers of ES magnitude and distribution (Kienast et al. 2009), including 291 

mountainous regions (Grêt-Regamey et al. 2012) and have been widely used as a proxy of ES demand 292 

and supply in ES assessments (e.g. Burkhard et al. 2012). Protected area coverage relates to an 293 

ecosystem’s governance and accessibility, has been used as a proxy for spiritual, aesthetic and 294 

recreational services (van Jaarsveld et al. 2005) and has been shown to be positively correlated with 295 

measures of aggregated ecosystem service supply across Europe (Maes et al. 2012). Full details are 296 

given in Appendix S3. 297 

To identify candidate variables significantly affecting the co-variation of multiple ES, we performed a 298 

preliminary redundancy analysis (RDA) with all potential social-ecological driver variables followed 299 

by forward stepwise selection to select the model with the combination of variables with the highest 300 

R² and p-value (Legendre and Legendre, 2012). This stepwise procedure defined which variables are 301 

relevant in exploring relationships among ES. RDA and the stepwise selection of variables were 302 

performed using the “vegan” and “packfor” R packages (Oksanen et al., 2013; Dray et al. 2011). 303 

RDA revealed that the combinations of the following variables significantly explained the co-304 

variation of ES indicators within the North and South Alps (p ≤ 0.001): the coverage of grassland, 305 

forest, semi-natural, urban land area, protected area coverage, elevation, NPP, plant species richness 306 

and population density. The adjusted R2 values, representing the amount of variance of ES indicators 307 

explained by the social-ecological variables were 0.46 for the north and 0.42 for the south. Full 308 

methodological details and results are in Appendix S3. 309 

 310 

 311 
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2.4 Step 4: Assessing whether ES bundles are associated with different social-ecological 312 

systems  313 

In a call to develop general rules about ES relationships and their implications for management of ES, 314 

Bennett et al. (2009) asked whether there exist consistent sets of ES associated with particular social-315 

ecological systems. As these systems are not only defined by land cover type, Bennett et al. (2009) 316 

suggested that the ‘anthrome’ approach of Ellis and Ramankutty (2008) might be useful for 317 

identifying a social-ecological system classifications, with distinct systems derived from overlays of 318 

social and land use/land cover (LULC) data. Hamann et al. (2015) tested this assertion and quantified 319 

the percentage of land area occupied by different anthrome types (derived from overlays of population 320 

and LULC data) and bundles of locally derived provisioning ES across South Africa. Hamann et al. 321 

(2016) also assessed the spatial overlap with ‘well-being bundles’, as identified using cluster analysis 322 

of social and demographic factors such as income and education.We include this last step, as it 323 

represents a logical progression from testing the relative predictive power of individual social-324 

ecological variables. 325 

Application of step 4 to the French Alps case study 326 

We followed the approach of Hamann et al. (2015, 2016) to ascertain whether ES bundles were 327 

congruent with social-ecological systems. Having identified the most important social-ecological 328 

determinants of ES bundles in step 3 using RDA, we used the k-means algorithm to cluster these 329 

variables into social-ecological bundles (SEBs). SEBs delineate spatial units supplying the same 330 

magnitude and types of social-ecological variables. Hamann et al. (2015) found that anthromes 331 

offered little predictive power for provisioning service bundles in South Africa. We therefore used the 332 

variables deemed important from the RDA to delineate SEBs, as opposed to those used in the original 333 

construction of anthromes (Ellis & Ramunkutty, 2008). 334 

To assess whether particular ES bundles are associated with SEBs, or whether SEBs can act as 335 

proxies for ES bundles, the spatial congruence between SEBs and ES bundles was assessed using 336 

overlap analysis, a simple and intuitive way to run a spatially explicit detection of possible 337 

associations (Mouchet et al. 2014). We calculated overlap as the percentage of municipalities of a 338 

particular bundle category that overlapped with each SEB category.  339 

The crop-dominated bundles in the North and South (ESB1(N) and ESB1(S)) overlapped with SEBs 340 

characterised by agricultural land coverage at low elevation and low to intermediate cover of other 341 

land uses (Figs. 4 and 5; SEB1(N) and SEB1(S)). In the north, the bundle characterised by high 342 

provision of forest services (ESB2(N)) broadly overlapped with a bundle characterised by high forest 343 

cover (SEB2(N)). The North ES bundle dominated by tourism (ESB3N) did not overlap neatly with 344 

any SEB (Fig. 5), except in the north-east of the region (Fig. 4), dominated by high elevation 345 

grasslands and semi-natural areas with high levels of protected area coverage. However, in the South, 346 
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the forest bundle (high wood production and carbon storage) (ESB2(S)) does not overlap with forest 347 

cover, but with high elevation areas with grassland and semi-natural coverage).  348 

  349 
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 350 

 351 

Figure 4. Distributions of SEBs for the North and South French Alps. Barplots indicate the 352 

relative magnitude of social-ecological variables within each bundle type. Values are variable z-scores 353 

averaged across all municipalities belonging to a specific SEB. Positive z-scores refer to above-354 

average, negative z-scores to below- average values regarding the variables for the region. See 355 

appendix S2 for variable descriptions). 356 
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 357 

Figure 5. Overlap between ES bundle and SEBs for the north (left) and south (right) of the 358 

French Alps, expressed as a percentage of municipalities.  359 

3. Discussion 360 

A multitude of methods are available to analyse and explore ES associations relative to possible 361 

social-ecological predictors (Mouchet et al. 2014). Here, we have reviewed the application of a widely 362 

(Fig 1) and increasingly used (Table 1) method that analyses the spatial distribution of ES bundles, 363 

delineated by cluster analysis, in relation to possible socio-ecological predictors. A common theme 364 

across all such studies is the reliance on the spatial coincidence of ES and driver variables (Crouzat et 365 

al. 2015), assuming that consistency in the spatial congruency between ES likely emerges from 366 

common social-ecological drivers. While comparison among multiple studies, such as cross-site 367 

comparisons, could help disentangle the effect of context-dependent drivers from interactions between 368 

services within bundles (Queiroz et al. 2015), such comparisons are made difficult by study 369 

differences in scale (i.e. grain and extent), and methodology, in terms of how ES are modelled and 370 

what drivers are used (Grêt-Regamey et al., 2014; Queiroz et al. 2015). It is also widely 371 

acknowledged that which ES are selected is critical because conclusions are highly influenced by 372 

which indicators are considered in a decision making context (Rodríguez-Loinaz et al. 2012). 373 

Thereofore, studies that have bundled different ES, or measured or modelled ES in different ways, are 374 

not straightforward to compare, or necessarily generalisable to other regions. We attempted to 375 

overcome both issues in our French Alps case study by comparing two regions using the same ES and 376 

social-ecological datasets, and do so using a widely used method to analyseES bundles. However, we 377 

show that even within the French Alps, there is enormous variation in the degree to which different 378 
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social-ecological variables can explain the distributions of ES bundles (See Appendix S4 for more 379 

discussion on the findings from the case study).  380 

Importantly, our case study – which is based on the current state of the science – does not enable us to 381 

identify why the explanatory power of different social and ecological variables considered here differs 382 

so much between our two regions. As such, current approaches based on readily available data that 383 

may have little relationship to underpinning mechanisms may not provide an effective basis for 384 

predicting ES bundles across space or time, as is required for effective sustainable management of ES. 385 

Here we discuss why current approaches for analysing ES bundles are poorly suited to enabling sound 386 

understanding and prediction of ES bundles and propose a roadmap to guide future studies aimed at 387 

understanding, mapping or predicting ES associations.  388 

3.1 Issues of scale in understanding determinants of ES associations 389 

Here we detail issues of scale related to the ES bundle approach. We address two key components of 390 

scale: i) grain, the size of the spatial unit of analysis; and ii) extent, the size of the study area.  391 

3.1.1 Spatial unit and grain 392 

ES associations are often analysed  using municipalities or similar administrative spatial units (e.g. 393 

Raudsepp-Hearne et al. 2010; Table 1), justified by the fact that municipalities are expected to be a 394 

grain at which synergies and trade-offs between ES are observed (Rodríguez-Loinaz et al. 2012), and 395 

as while ES synergies and trade-offs can be causally linked, they do not necessarily occur in close 396 

proximity (Berry et al. 2015). However, municipality boundaries could be relevant for some ES, such 397 

as cultural ES, but arbitrary for others in management terms, such as for managing water quality. 398 

Boundaries may often dissect ecologically meaningful units, such as watersheds, that could be 399 

appropriate for measuring and managing some ES.  400 

The choice of municipality-level analysis is also often driven by data availability; municipalities often 401 

are the finest scale at which some ES (namely provisioning ES) and social variables are available 402 

(census data). Despite some good reasons for municipality-scale analyses, several considerations must 403 

inform their interpretation. At such coarse scales, the identification of ES bundles relies on spatial 404 

coincidence (Crouzat et al. 2015), and cannot show direct causal relationships between ES and social-405 

ecological variables. This is a key assumption with the approach; that consistency in the spatial 406 

congruency between ES likely emerges from common social-ecological drivers. In actuality, the fine-407 

scale processes that some ES respond to might not be represented at this scale.  408 

As one moves across different grain sizes, different processes are responsible for apparent synergies 409 

and trade-offs between ES and relationships to social-ecological drivers. At coarse grains such as 410 

municipalities, spatial units are highly heterogeneous, encompassing multiple LULC types. ES 411 

relationships are likely to be largely driven by fractional land cover of the large spatial units, due to its 412 
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representation of i) natural conditions; e.g. natural land cover and soil conditions as well as ii) human 413 

impacts; mainly via land use (Burkhard et al. 2012). ES relationships will, therefore, principally 414 

reflect land use distribution. For example, ES may trade-off against each other simply because they 415 

compete for space (e.g. a negative relationship between timber and crop production; Lautenbach et al. 416 

2010). At smaller grain sizes, where individual spatial units are less heterogeneous and likely to 417 

comprise a principal land cover type, the main drivers of ES variation are still likely to be land use. If 418 

ES within a single land cover type are analysed at small grains, however, such as individual forest 419 

plots or stands, then it is possible that a more useful understanding might be obtained. By analysing a 420 

single land cover type, one can understand drivers of ES variation in relation to land use activities that 421 

result in ‘land modifications’, changes that occur within the same LULC type (e.g. Lavorel et al. 422 

2011). These remain much less studied than multi-ES relationships to LULC, but data are becoming 423 

increasingly available (Erb et al. 2016). 424 

Another well-documented scale effect related to spatial unit is the modifiable area unit problem, in 425 

which statistical results can depend on the size and shape of spatial units in which a variable is 426 

aggregated (Openshaw & Taylor, 1979). Grain size-dependence in the direction of correlations of ES 427 

has been demonstrated in several studies (e.g. Naidoo et al., 2008; Anderson et al. 2009). Various 428 

processes can cause this phenomenon. Aggregation obscures ES trade-offs particularly when ES 429 

compete for space. For example, different crop competing for productive floodplain soils could be 430 

seen as spatially concurrent in aggregated datasets, thereby suggesting a synergistic relationship 431 

(Tomscha & Gergel, 2016).  432 

When administrative units are used, the degree of variation in the grain size among units is likely to 433 

be an issue for the interpretation of relationships, as the mechanisms essential to an ES at one grain 434 

can be less important or absent at another. Significant variation in areal size could then reduce the 435 

specificity of the measured associations, and also decrease their strength (Arsenault et al. 2013). Such 436 

a phenomenon could affect the apparent relationships between ES or social-ecological variables, e.g. 437 

population density could appear to be inversely related to landscape multi-functionality, but in 438 

actuality, this could be a function of municipality size, as densely populated areas often divided into 439 

smaller administrative units for health care and mail delivery (Arsenault et al. 2013). Raudsepp-440 

Hearne & Peterson (2016) showed that bundles delineated at three grain sizes (1×1 km, 3×3 km and 441 

municipality) exhibited contrasting patterns across the study area and varied in their composition in 442 

terms of the magnitude and types of ES. They concluded that individual ES that exhibit strongly 443 

clumped or sparse distributions are likely to vary significantly as one moves from smaller to larger 444 

grain sizes, and therefore are more likely to influence bundling in a larger study area if they are 445 

present in multiple areas, which is more likely at a larger scale of observation (Raudsepp-Hearne & 446 

Peterson (2016).  447 

http://www.sciencedirect.com/science/article/pii/S1470160X12000374#bib0205
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3.1.2 Study spatial extent and context-dependency 448 

The spatial extent of the study region can impact ES relationships. At present, most studies have 449 

delineated ES bundles at regional scale (Table 1), likely due to data availability, but also due to the 450 

relevance to management of considering variation in ES bundles across municipalities within a 451 

region. However, regions will differ in the variability of both the ES and social-ecological drivers that 452 

may underpin these ES, as seen, for example in our case study, confusing our results. The relative 453 

importance of social-ecological variables in driving ES variation can change across regions, and 454 

therefore study extent. For example, Holland et al., (2011) found a negative relationship between 455 

agricultural production and river habitat quality at the extent of Britain, due to the negative effects of 456 

agriculture on aquatic ecosystems. However, within some heavily urbanized sub-regions of Britain, a 457 

positive relationship was observed; this was attributed to urban land cover having a larger negative 458 

effect on aquatic ecosystems than agricultural land. Variability of predictor and response variables 459 

also affects the degree of statistical power that is available to detect relationships between spatial 460 

variables (Eigenbrod et al. 2011). Moreover, the types of social-ecological driver variables considered 461 

will likely vary with spatial extent. For example, over larger study regions, it is possible to analyse the 462 

effect of slow variables, that exhibit variation at larger extents, but remain homogeneous across 463 

spatial units at small extents. Given these issues, cross-study comparisons will not necessarily enable 464 

meaningful comparisons of the relative explanatory power of different drivers between regions, even 465 

when the same ES and the same explanatory variables are considered (as in this study). 466 

3.2 Careful selection of ES indicators in multi-ES analyses is critical for interpretation  467 

The studies that have delineated ES bundles based on spatial associations in Table 1 exhibit 468 

considerable variation in the number (mean ~12 ES) and types of ES considered, and in how 469 

individual ES are quantified. It is important to distinguish what aspect of a service is being measured 470 

by an ES indicator; the potential value provided by an ecosystem, or the service that is actually 471 

realised by humans (Jones et al. 2016). Most previous ES bundle analyses, including this study, have 472 

mixed indicators ranging from potential supply to actual use values. Two key problems with mixing 473 

indicators make attribution and prediction difficult. Firstly, because the ES indicators may be 474 

anywhere along a spectrum from ecological stocks to flows to benefits in support of human well-475 

being, some ES indicators may not respond to the influence of social factors (Hamann et al. 2015). 476 

Indeed, supply and demand bundles are likely to exhibit very different dynamics and respond to 477 

different drivers, potentially making mixed-indicator bundles more difficult to interpret or predict, as 478 

in this and previous studies (Hamann et al. 2015; Meacham et al. 2016). Hamann et al. (2015) focused 479 

on bundles of one type of ES, direct use of locally available ES in South Africa (e.g. wood for 480 

heating), potentially allowing for a deeper understanding of linkages between ES use and human well-481 

being. There is a second difficulty of interpreting bundles of mixed ES indicators: Crouzat et al. 482 
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(2015) highlighted that positive associations between ES that are actual or potential do not necessarily 483 

reflect synergies and can even represent conflicts once the ES are utilised.  484 

The selection of which ES are analysed jointly is particularly critical to cross-study comparisons; 485 

studies that have analysed associations of different ES, or ES measured or modelled in different ways, 486 

are not straightforward to compare. Ultimately, ES bundles delineated by cluster analysis are not 487 

generalizable to other regions because a clustering solution is entirely dependent upon the variables 488 

used. This issue is already recognised as a limitation for the use of composite indicators of ES 489 

(Rodríguez-Loinaz et al. 2012). Raudsepp-Hearne & Peterson (2016) demonstrated that ES bundle 490 

spatial patterns were highly dependent on the numbers and types of ES included in the cluster 491 

analysis.  492 

3.3 Careful selection of social-ecological variables in multi-ES analyses is critical for 493 

attribution 494 

There have been several calls for ES analysts to improve understanding of ES associations, to allow 495 

for knowledge of how to minimize trade-offs and enhance synergies (Bennett et al. 2009; Bennett et 496 

al. 2015). This understanding requires identifying key social-ecological variables that determine the 497 

co-variation in ES. Other authors have suggested the potential benefit of predicting ES associations 498 

from widely available social-ecological datasets, that are not necessarily causal (Meacham et al. 499 

2015). If widely accessible data on social-ecological drivers (such as land use and population density) 500 

can predict ES associations, this may overcome problems associated with complex and data-intensive 501 

models that are required to produce ES maps in data scarce regions (Meacham et al. 2016). While 502 

causal relationships are predictive (within similar contexts), prediction of ES associations does not 503 

necessarily require causative links. We emphasise that causal social-ecological predictors for multi-504 

ES analysis are likely to be more robust and less-context dependent (see also Mouchet et al. 2014). 505 

Land-use change is a management intervention that can drive demand and supply in one or more ES 506 

(Bennett et al. 2009), and therefore land use/land cover (LULC) has been considered as a determinant 507 

of individual ES or ES bundles in this study and many others (e.g. Hamann et al. 2015; Meacham et 508 

al. 2016; Schulze et al. 2016). There are several issues with using LULC as a determinant in multi-ES 509 

analyses. In this study and others, land cover categories were treated as homogeneous across study 510 

regions, ignoring significant variations due to management and biophysical gradients (e.g. tree species 511 

and age structure in forests). In our study, forest cover was correlated with forest services (wood 512 

production, carbon storage) in the North (Figs 3 and S6), but not in the South (Figs 4 and S7). This is 513 

because the French South Alps experienced extensive afforestation during the last century due to both 514 

natural regeneration and deliberate planting on abandoned agricultural land. The secondary forests are 515 

not widely harvested because their uniform and dense structure makes cutting expensive, and because 516 

local populations are concerned for their conservation (Douguédroit, 1981). By using forest cover as a 517 
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driver, we gained no fine understanding of ecological processes and interactions. We only considered 518 

variables for which continuous spatial data were available in the French Alps, but other unmeasured 519 

factors or practices (relating to management history, age of abandonment, or forest age structure) 520 

could affect synergies and trade-offs among ES in the regions. This emphasises the need for careful 521 

consideration of what actually constitutes a driver of individual ES and ES bundles. Bennett et al. 522 

(2009) considered many drivers as finer scale management interventions; for example, exogeneous 523 

drivers (e.g. industrial production) causing environmental change in the social-ecological system, and 524 

pressures (e.g. use of fertilizers) quantifying the effect of exogenous drivers on a given social-525 

ecological system (Mouchet et al. 2014). By using LULC as a determinant, much ES research states 526 

the obvious about LULC-ES relationships. A danger of circularity exists in such associations, as when 527 

crop yield is necessarily associated with agricultural lands, and forest-based recreational services can 528 

only be provided by forests.  529 

3.4 Issues relevant to using cluster analysis for modelling ES associations 530 

Cluster analysis is considered a useful first step when no prior knowledge about existing relationships 531 

in a multivariate dataset exists (Bennett et al. 2009; Dheng et al. 2016). However, its exploratory 532 

nature makes it unsuitable for understanding causality in ES assocations. Cluster analysis requires 533 

somewhat subjective decisions including the clustering algorithm and the number of clusters, which is 534 

not straightforward (Legendre & Legendre 2012). The clustering solution is also entirely dependent 535 

on the input variables, rendering the results ungeneralizable to other regions. In summary, the 536 

subjectivity of cluster analysis makes it poorly suited to cross-study comparisons that are required for 537 

understanding general socio-ecological causes of ES associations. This will likely have led to the poor 538 

congruence between ES-bundles and social-ecological bundles as found in this study (Fig. 5). Maps 539 

produced in this way should therefore be used with caution when presented to stakeholders. The ‘air 540 

of authority’ (Hauck et al. 2013) imparted by these maps and their associated star diagrams 541 

completely mask any uncertainty and could lead to erroneous management decisions. 542 

3.5 Summary: ES bundles display pattern-based multifunctionality, but not process-based 543 

multifunctionality 544 

The visualisation of relationships among multiple ES is considered a challenge to ES analysts 545 

(Birkhofer et al., 2015) and for effectively communicating with policy makers (Crouzat et al. 2015). 546 

Maps of ES bundles are therefore useful for visualising the joint spatial distributions of multiple ES. 547 

They can be used to identify ‘pattern-based multifunctionality’, the joint supply of multiple ES in 548 

space, without regard for the ecological processes underlying the pattern (Mastrangelo et al. 2014), 549 

and help guide land management decisions, such as where to allocate urban development or prioritise 550 

conservation efforts. This is possible when the scale of analysis (spatial unit type, grain and extent) 551 

are close to the desired scale required by key stakeholders (Scholes, et al. 2013). We suggest that 552 
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analyses that wish to map ES bundles compare multiple scales corresponding to a portfolio of 553 

management policies (Qiu et al. 2017), focussing for example on biophysically bounded spatial units 554 

such as watersheds of different size (e.g., Qiu and Turner 2013). 555 

However, while such correlational analysis is a logical first step in assessing ES associations, it cannot 556 

allow for a mechanistic understanding (Bennett et al. 2009). When ES bundles are delineated using 557 

correlation at coarse resolutions, with spatial units exhibiting high within-unit heterogeneity in land 558 

cover and thus ES, and with each ES mapped at the same resolution and extent, the approach cannot 559 

help ES analysts understand general rules of mechanistic relationships between key drivers and ES. 560 

They therefore cannot provide ‘process-based multifunctionality’, the joint supply of ES in space 561 

caused by well-understood relationships (Mastrangelo et al. 2014). Such a mechanistic understanding 562 

of relationships between ES and management will allow the transferral of management 563 

recommendations outside the context where data were collected (Birkhofer et al., 2015). 564 

4. A roadmap for predictive mapping of bundles of ecosystem 565 

services  566 

Determining the cause of a relationship among ES based on studies that track only their spatial 567 

concordance is difficult (Bennett et al. 2009). Here, we outline three key requirements for 568 

improvements to current approaches to understanding and predicting ES associations. The theme that 569 

underlies all these requirements is that studies that aim to explain or predict associations between ES 570 

must be designed to have a clear mechanistic basis in order to be confident about any relationships 571 

found.  572 

4.1 Requirement 1: Design studies to test specific hypotheses about specific predictors of 573 

key relationships between key ES of interest.  574 

The quantification and mapping of associations between a wide range of ES including provisioning, 575 

cultural, and regulating services, is thought to enable the identification of a diverse range of trade-offs 576 

and synergies that might be missed if only individual ES, or a few more commonly quantified ES are 577 

considered (Lee & Lautenbach 2016). However, as outlined earlier, differences in the distributions 578 

and types of ES found in different regions mean that determining causal drivers of bundles of all 579 

available ES is likely impossible.  580 

Given the diversity and complexity of drivers that affect different ES, a promising approach for 581 

understanding the degree of generality of different predictors of relationships between ES may be to 582 

test specific predictions about the importance of specific drivers of relationships of key policy-583 

relevant ES, based on putative mechanistic relationships. For example, a study might set out to test the 584 

relative importance of forest management history and forest age in determining the value of multiple 585 

ES across heterogeneous stands (as in Sutherland et al. 2016). Such ‘unpacking’ of ES bundles into 586 
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series of specific, focused studies should enable a bottom-up understanding of ES bundles in a way 587 

that studies that consider all ES simultaneously – like this case study – cannot. Mitchell et al’s (2015) 588 

recent framework and set of specific predictions about how habitat fragmentation will affect ES 589 

provides an excellent example of the types of clearly defined questions that are required for a 590 

predictive science for ES. The need for formulating specific questions and hypotheses in ES research 591 

is also relevant to the generation of policy-relevant knowledge. Indeed, designing problem-oriented 592 

ES assessments, which focus on the information demands of decision-makers, can help make ES 593 

studies more decision relevant (Förster et al. 2015; Willcock et al. 2016). 594 

4.2 Requirement 2: The testing of specific research questions requires bespoke study 595 

designs 596 

Observational studies of the relationships between ES and their drivers are unlike experimental 597 

studies in that the identity, crossing, replication and interspersion of variables are, by definition, 598 

outside the control of the observer (Smart et al. 2012). Careful study designs can help to deal with 599 

these challenges and generate meaningful tests of very specific and focused predictions about 600 

relationships between ES. Here, ES science should build on the large literature examining the effects 601 

of habitat loss and fragmentation on biodiversity (Fahrig, 2003; McGarigal and Cushman’s 2002). Of 602 

key importance is the need to account for habitat amount before considering effects of habitat 603 

configuration when attributing effects. For example, Qiu & Turner (2015) examined whether adding 604 

configuration variables could significantly improve the explanatory power of models explaining water 605 

quality after accounting for the effect of composition. Using this two-step procedure, they found 606 

forests to be more effective at retaining nutrients when more dispersed across subwatersheds. 607 

One major consideration in designing studies to test predictors of relationships between ES is the 608 

issue of scale (section 3.1). Multi-scale assessments of social-ecological relationships with individual 609 

ES are vital to understanding scale-dependent social and ecological processes and causality (Scholes 610 

et al. 2013; Eigenbrod, 2016). Multi-scale assessments may not be possible, for example when the 611 

highest spatial resolution of the data is the municipality as with census-derived socioeconomic 612 

variables (Raudsepp-Hearne et al. 2010, Hamann et al. 2015, Queiroz et al. 2015). Recent 613 

developments in downscaling or disaggregating datasets hold promise for higher resolution analyses 614 

with available datasets (e.g. Keil & Jetz 2014; Lamboni et al. 2016). 615 

4.3 Requirement 3: Utilize a wider range of statistical and modelling approaches 616 

While statistical techniques cannot compensate for poor study design (e.g. Hurlbert 1984), taking 617 

advantage of the best statistical approaches will maximize the inferential strength of a given study 618 

design. As such, a predictive science for ES should take advantage of recent advances from ecological 619 

modelling including models that take account of biases in data, confounding variables, and 620 

mechanistic relationships (e.g. Sugihara et al. 2012; Warton et al. 2015). 621 
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One approach with potential to provide major insights in refining our hypotheses about how different 622 

predictor variables may affect relationships between ES is simulation modelling. For example, the 623 

creation of artificial landscapes could enable researchers to control and tease apart variables that are 624 

inherently confounded in real landscapes. Such studies have led to major insights in landscape 625 

ecology (e.g. With and King 1997; Gardner et al. 1989), macroecology (e.g. Lennon, 2000), but also 626 

in our understanding of how landscape structure might affect ES at different spatial scales (Mitchell et 627 

al. 2015). Simulation models can also be linked with future scenarios in which effects of changing 628 

drivers, such as land-use patterns and climate, on spatial dynamics of ecosystem services are explored 629 

(e.g., Carpenter et al. 2015). 630 

4.4 The use of primary data or process models rather than land cover based proxies  631 

A major issue for understanding causal drivers of relationships between ES is that most available 632 

maps of ES are themselves modelled rather than measured. For example, regulating services such as 633 

pollination and erosion mitigation are typically and necessarily quantified using models that 634 

incorporate causal relationships between social–ecological variables (Martínez-Harms & Balvanera, 635 

2012). An element of circularity therefore exists in ours and most other studies from having assessed 636 

the relationship between social-ecological variables and modelled surfaces of ES derived from exactly 637 

such variables. As such, a true understanding of determinant predictors of ES will only come through 638 

increased availability of primary data on actual services rather than LULC surrogates, including from 639 

remote sensing (Ayanu et al. 2012) and field studies that measure ES indicators such as water quality 640 

and carbon storage. That said, understanding the degree to which widely accessible social-ecological 641 

data can be used to predict ES associations, composed of ES that are either data-intensive or complex 642 

to model is still useful (Meacham et al. 2016), as it facilitates modelling of such ES associations in 643 

data-poor regions.  644 

The consideration of temporal changes in ES and drivers 645 

Inferring interactions from spatial co-incidence is loosely analogous to a space-for-time substitution in 646 

that spatial relationships are used to infer dynamics over time (Tomscha & Gergel, 2016). A major 647 

limitation of this approach is that most spatial studies use ES snapshot data to assess ES associations 648 

and relationships with drivers. Mismatches in the timing between change in a driver (including 649 

demand) and the supply of an ES may cause relationships to be misinterpreted or overlooked, 650 

particularly in transitioning landscapes. This can also be due to mismatches in the time series of 651 

available datasets. ES are not static but spatially and temporally dynamic in terms of their delivery 652 

and associations with other services.; Municipalities have been found to change in the bundles of 653 

services they provide over time raising concerns about using snapshots of ES provision to build 654 

understanding of ES relationships in complex and dynamic social-ecological systems (Renard et al. 655 

2015),. Long-term monitoring studies could potentially capture complex long-term ES interactions 656 
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and help us avoid or minimize trade-offs and adequately track synergies that simultaneously support 657 

multiple ES (Tomscha & Gergel, 2016). 658 
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Appendix S1. Ecosystem service data and spatial characteristics of the case study area 875 

The French Alps study region (Figure S1) covers a total of 52,149 km² (SPCA 1991) and is 876 

characterised by high variation in biodiversity, ecosystems and ES provision relative to European 877 

averages (Tappeiner et al. 2008, Crouzat et al. 2015), typical of mountain regions (Grêt-Regamey et 878 

al. 2012). The region is dominated by forests and semi-natural areas (67% of the region), with arable 879 

lands mainly concentrated in the western broad valleys and piedmonts (27% of the region), while 880 

artificial areas cover only 5% of the region. This leads to a clear distinction, typical for mountain 881 

regions, of low elevation high-density urban areas surrounded by intensive agriculture in the valleys, 882 

and more isolated rural areas (Tappeiner et al. 2008, Crouzat et al. 2015).  883 

 884 

Figure S1. Location of the French Alps study region in France. 885 

We selected nine ES that have been quantified and mapped in the French Alps previously by Crouzat 886 

et al. (2015). These are services that were deemed socially, ecologically and economically relevant to 887 

the region following consultation with scientists and local collaborators (Crouzat et al. 2015), and 888 

include three provisioning (crop, fodd, wood) three cultural (hunt, rec, tour) and three regulating ES 889 

(wqt, cstock, eros; see Table 1 for variable codes). All ES are based on either primary data or bespoke 890 

modelled surfaces of ES. Full details of these ES are in Crouzat et al. 2015 and Appendix S1. 891 

Within the region, elevation, climate and vegetation gradients have had historical consequences on 892 

social dynamics and economic activities, resulting in the common separation into the North (Rhône-893 

Alpes) and the South Alps (Provence-Alps-Côte d’Azur; Crouzat et al. 2015). The social-ecological 894 

north-south divide is also recognised by an administrative boundary at the NUTS II level, providing a 895 



38 

 

spatial context that is relevant for decision making. The North and South Alps therefore lend 896 

themselves well to a cross-study comparison.  897 

Table S1.  Details of ecosystem services modelled in the French Alps case study 898 

ES 

category 

ES Code Description Aggregation to 

municipality-level 

P 
Agricultural 

production  

crop 
Yields for annual crops, vineyards and 

orchards (kg ha−1 year−1) 

Median 

P Forage 

production 

fodd 
Yields of pastures, meadows and mountain 

grasslands (kg dry matter ha−1 year−1) 

Median 

P Wood 

production 

wood 
Potential woody biomass supply for 

stemwood and logging residues (Gg dry 

matter km−2 year−1) 

Median 

C Recreation 

potential 

rec Recreation potential for daily recreation 

(index) 

Median 

C Tourism tour 
Territorial capital of rural tourism involving 

overnight stays (index) 

Median 

C Leisure 

hunting 

hunt 
Density of shot wild ungulates (number of 

animals km−2 year−1)  

Median 

R Erosion 

mitigation 

eros 
Biotic contribution to erosion risk mitigation 

(classes) 

Majority 

R Physical 

water 

quantity 

regulation 

(wqt) 

wqt 
Relative water retention enabling flood 

regulation (index) 

  

Median 

R Carbon 

storage 

csto 
Sum of carbon stocks from above-ground 

and below-ground biomass, dead organic 

matter and soils (tC km−²) 

Median 

 899 
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Appendix S2. Delineation of ES bundles across the study regions 900 

Methods used to delineate ES bundles 901 

Associations among individual ES were quantified using pairwise correlation coefficients based on 902 

Spearman's rho (Fig. S2), as is frequently used to inder relationships between ES (Mouchet et al. 903 

2014). We adopted the spatially explicit ES-bundle approach of Raudsepp-Hearne et al. (2010) and 904 

used cluster analysis to delineate ES bundles across the N and S of the French Alps. A two step 905 

clustering approach was adopted (Turner et al. 2015). To minimise skew and make the ES variables 906 

dimensionless and comparable in terms of their magnitudes and variability, Box-Cox transformation 907 

(Box & Cox, 1964), centring and scaling was applied. First, a PCA was used to quantify the main 908 

multivariate relationships between the ES variables to assess whether ES co-occur in spatial bundles. 909 

The number of PCA axes deemed sufficient to characterize the non-random structure in the data in 910 

both the N and S ES datasets was selected according to the  Kaiser-Guttman criterion, which selects 911 

the axes whose eigenvalues are greater than the mean of all eigenvalues (Legendre and Legendre, 912 

1998; Turner et al. 2015). For both regions, the first three components were selected and accounted 913 

for 61% and 57% of the total variation in ES in the N and S, respectively. As a precursor to cluster 914 

analysis, PCA can serve to separate signal from noise and lead to a more stable clustering solution, 915 

with the first axes extracting the essential information while the latter are restricted to noise (Husson 916 

et al. 2010). Clustering of PCA axes i.e. uncorrelated components also means that correlated services 917 

are not counted more than once or more heavily weighted (Turner et al. 2015). We applied k-means 918 

clustering to the relevant PCA axes to delineate ES bundles with 1000 random starts and 10,000 919 

iterations to find a solution with the lowest within-cluster sum of squares according to the relevant 920 

PCA axes. K-means clusters municipalities so that the composition of ES values are more alike within 921 

than between clusters.  Three clusters was deemed appropriate for both the N and S datasets according 922 

to a hierarchical cluster analysis using Ward’s method and squared euclidean distance (with the 923 

FactoMineR package; Lê et al. 2008) and qualitative assessment of ES bundles. Following Renard et 924 

al. (2015), we quantified the effective number of ES provided in each bundle using a transformation 925 

(H) of the Gini–Simpson’s index (S): H = 1/(1 − S), where  926 

𝑆 = 1 −∑𝑝𝑖
2

𝑁

𝑖=1

 927 

for a bundle with N ES with varying proportions p of each service (i). 928 

 929 
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Results of correlation and PCA analyses for the North and South Alps 930 

North French Alps 931 

 932 

Figure S2. Spearman’s rank correlation coefficients of pairs of ES across the North French Alps 933 

 934 

 935 

 936 
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 937 

Figure S3. Principal component analysis biplot for ES in the North French Alps. The first axis (PC1) 938 

represents a spatial trade-off between crop and most other services, most strongly with wood and 939 

cstock. The second axis (PC2) represents a synergy between high fodd and eros services, and their 940 

trade-off with rec. The third axis (PC3) represents a synergy between fodd and tourism, trade-off with 941 

wqt. The angles between ES represent the strength of their correlations. The first three components 942 

accounted for 61% of the total variation in ES. 943 

 944 

  945 
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Table S3. Loadings of ES onto each principal component. 946 

 
PC1 PC2 PC3 

cstock -0.44 -0.06 -0.13 

eros -0.28 -0.55 -0.21 

fodd -0.2 -0.44 0.54 

hunt -0.25 -0.18 -0.05 

rec -0.28 0.62 -0.01 

tour -0.33 0.21 0.39 

wood -0.46 0.18 -0.06 

wqt -0.23 -0.06 -0.67 

crop 0.42 -0.01 -0.19 

 947 

South French Alps 948 

 949 

Figure S4. Spearman’s rank correlation coefficients of pairs of ES across the South French Alps 950 

  951 
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 952 

 953 

Figure S5. Principal component analysis biplot for ES in the South French Alps. The first axis (PC1) 954 

represents a spatial trade-off between crop and most other services, most strongly with wood, fodd 955 

and cstock. The second axis (PC2) is highly descriptive of the distribution of hunt, and its synergy with 956 

eros. The third axis (PC3) represents a synergy between hunt and tourism, trade-off with wqt. The 957 

angles between ES represent the strength of their correlations. The first three components accounted 958 

for 57% of the total variation in ES. 959 

Table S4. Loadings of ES onto each principal component. 960 

    

 
PC1 PC2 PC3 

cstock -0.50 0.23 -0.14 

eros -0.26 0.46 -0.41 

fodd -0.38 -0.35 -0.06 

hunt -0.07 0.63 0.26 

rec -0.27 -0.33 -0.15 

tour -0.28 -0.20 0.31 

wood -0.45 -0.20 0.06 

wqt 0.13 -0.08 -0.79 

crop 0.40 -0.18 -0.01 
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Appendix S3. Identification of social-ecological variables important in discriminating 961 

between ES bundles 962 

Table S2 gives the initial list of candidate variables deemed important for explaining ES co-variation, 963 

after consulting with the literature.  964 

Table S2. Details of social-ecological variables that are potentially important in distinguishing 965 

amongst ES bundles in the French Alps. 966 

Social-ecological 
variable 

Code Description Unit Source 

Agricultural land agric 
Municipality land area occupied by area 
classed as agricultural 

% CORINE 

Grazing land grass 
Municipality land area occupied by area 
classed as grassland and pastures 

% CORINE 

Forest land forest 
Municipality land area occupied by area 
classed as forest 

% CORINE 

Urban land urban 
Municipality land area occupied by area 
classed as urban 

% CORINE 

Open semi-natural 
land 

semi 
Municipality land area occupied by area 
classed as semi-natural, other than 
forest 

% CORINE 

Protected area 
coverage 

natura 

The percentage of area covered by 
Natura 2000 sites designated by EU 
Member States under the Birds 

Directive (79/409/EEC) and the 
Habitats Directive (92/43/EEC) 

% EEA database 

Elevation elev 
Derived from ASTER global digital 
elevation model 

m 

Global digital 
elevation 
model (DEM) 
derived from 

GTOPO30. 

     

NPP npp Potential NPP tC/m²/yr 
Haberl et al., 
2007 

Biodiversity plant Species richness of plants 
Species 
richness 

Maiorano et 
al., 2013 

Annual mean 
temperature 

bio1 
Annual mean temperature for the 1950-
2000 period 

°C 

WorldClim 
Global Climate 
Data 

Hijmans et al., 
2005 

Annual 
precipitation 

bio12 
Annual trends of precipitation for the 
1950-2000 period 

mm 

WorldClim 
Global Climate 

Data 

Hijmans et al., 
2005 



45 

 

Population density  
Population density per square kilometre 
obtained by dividing the municipality 
population size by its area 

Inhabitants/km² INSEE 

Protected area coverage (natura) 967 

Protected area coverage was calculated by taking the percentage of total land area of each 968 

municipality occupied by Natura 2000 sites. Natura 2000 is an ecological network composed of sites 969 

designated under the Birds Directive (Special Protection Areas, SPAs) and the Habitats Directive 970 

(Sites of Community Importance, SCIs, and Special Areas of Conservation, SACs). Shapefiles for the 971 

most recently available year (2014) were used (available from http://www.eea.europa.eu/data-and-972 

maps/data/natura-6).  973 

Agricultural land (agric) 974 

Agricultural land was calculated by taking the percentage of total land area of each municipality 975 

occupied by area classed as agricultural by CORINE.  976 

Grazing land (grass) 977 

Grazing land was calculated by taking the percentage of total land area of each municipality occupied 978 

by area classed as grasslands or pastures by CORINE.  979 

Forested land (forest) 980 

Forest land was calculated by taking the percentage of total land area of each municipality occupied 981 

by area classed as forest by CORINE.  982 

Urban land (urban) 983 

Urban land was calculated by taking the percentage of total land area of each municipality occupied 984 

by area classed as urban by CORINE. 985 

Open semi-natural (semi) 986 

Open semi-natural land was calculated by taking the percentage of total land area of each municipality 987 

occupied by area classed as semi-natural, other than forest by CORINE.  988 

Elevation (elev) 989 

Elevation values at 30-m resolution were taken from ASTER global digital elevation model raster 990 

files (GTOPO30; available at https://asterweb.jpl.nasa.gov/gdem.asp). The median value for each 991 

municipality was used. 992 

http://www.eea.europa.eu/data-and-maps/data/natura-6
http://www.eea.europa.eu/data-and-maps/data/natura-6
https://asterweb.jpl.nasa.gov/gdem.asp
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Mean annual temperature (bio1) 993 

We used the mean annual mean temperature (°C) for the 1950-2000 period using the variable ‘bio1’ 994 

from WorldClim Global Climate Data (Hijmans et al., 2005). The median value for each municipality 995 

was used.  996 

Annual precipitation (bio12) 997 

Annual trends of precipitation for the 1950-2000 period in mm. ‘bio12’ from the WorldClim Global 998 

Climate Data (Hijmans et al., 2005). The median value for each municipality was used. 999 

Population density (pop) 1000 

We used the log of population density per square kilometre, obtained by dividing the municipality 1001 

population size by its area. Data were compiled for the most recently available year (2007) (INSEE). 1002 

Details of redundancy analysis used to select social-ecological variables important in 1003 

explaining covariation of ES 1004 

We initially considered all of the variables included in Table S2 for explaining covariation in ES. We 1005 

inspected pairwise correlations between the variables and removed variables with correlation 1006 

coefficients of >0.80 to reduce multicollinearity (bio1 and bio12). We then computed a global RDA 1007 

with the remaining potential candidate variables: agric, forest, grass, semi, urban, pop, elev, natura 1008 

and plant (see above for variables codes). Linear dependencies were further explored by computing 1009 

variables’ variance inflation factors (VIF) for the global model. For both the North and South 1010 

analyses, the variable agric (proportion of land area covered by agriculture) was not included in the 1011 

global models to reduce variance inflation factors (all below 5 for the global models without agric). 1012 

Forward selection using the packfor package (Dray et al. 2007) was run on the global model to select 1013 

social-ecological variables important in explaining variation in ES. This procedure selects the model 1014 

with the combination of variables with the highest R² and p-value (Legendre and Legendre, 2012).  1015 

  1016 
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North French Alps 1017 

 1018 

 1019 

Figure S6. Redundancy analysis triplot of nine ES (red) constrained by the social-ecological variables 1020 

(blue) across the North French Alps, scaling 2. The bottom and left-hand scales are for the ES, the 1021 

top and right-hand scales are for the social-ecological drivers. The angles in the plot between ES and 1022 

social-ecological variables, and between ES themselves, represent the strength of their correlations. 1023 
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 South French Alps 1024 

 1025 

 1026 

Figure S7. Redundancy analysis triplot of nine ES (red) constrained by the social-ecological variables 1027 

(blue) across the southern French Alps, scaling 2. The bottom and left-hand scales are for the ES, the 1028 

top and right-hand scales are for the social-ecological drivers. The angles in the plot between ES and 1029 

social-ecological variables, and between ES themselves represent the strength of their correlations.  1030 

 1031 
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Appendix S4. Supplementary discussion of case study results 1032 

Here we discuss the correspondence between bundles of social-ecological variables and ES bundles, as 1033 

revealed by RDA and cluster analysis, in order to test the extent to which social-ecological variables 1034 

could be relevantly used in the French Alps to explain and predict ES bundles. Based on the qualitative 1035 

interpretation of RDA site scores and cluster distribution, and expert knowledge, we show that results 1036 

of cluster analysis are contrasted when comparing North to Southern Alps.      1037 

In the North Alps, ESB1(N) is characterised by a high level of crop production and a below-average 1038 

level of supply for all other ES (Fig. 2). Spatially, this bundle is clustered over the broadest lowland 1039 

valleys and the fringe of the external Alps (Figures 2 and S6). This appears very consistent with its 1040 

broad overlap with SEB1(N) (Fig. 5), where agricultural and artificial areas are overrepresented (Fig. 1041 

4). ESB2(N) presents opposite patterns, as all ES are supplied at above-average levels except crop 1042 

production which is supplied far below-average (Fig. 2). In particular, this bundle supplies the highest 1043 

regional levels of forest-related ES (carbon stocks, erosion mitigation and wood stocks). This is 1044 

coherent with its large overlap with SEB2(N) (Fig. 4), where forested areas are overrepresented 1045 

compared to the two others (Fig. 4). In between, ESB3(N) supplies an average level of most ES except 1046 

those specific to bundles ESB1(N) and ESB3(N) (Fig. 2). ESB3(N) is essentially concentrated over 1047 

areas of intermediate altitude of the external Alps (e.g., the Chartreuse range), which can be captured 1048 

at municipal scale as mosaic areas containing a mix of forests, grasslands, built-up and semi-natural 1049 

open areas. This could explain the mixed overlap of ESB3(N) with the three SEB identified for the 1050 

North Alps (Fig. 4). 1051 

In the Southern Alps, ESB2(S) is characteristic of rural mosaic landscapes of the internal Alps, 1052 

comprising forested and open areas at generally high altitudes (Figs 2 and S6). It supplies the highest 1053 

regional levels of numerous ES, in particular fodder production and wood production, recreation and 1054 

tourism, and carbon stocks (Fig. 2). This is consistent with its large overlap with SEB2(S) (Fig. 4), 1055 

which over-represents high altitude grasslands and also contains a regional average level of forested 1056 

areas (Fig. 4). ESB3(S) is a rich and diverse bundle as it supplies an average level of most ES, and the 1057 

highest regional levels of erosion mitigation and leisure hunting in particular (Fig. 2). This high 1058 

multifunctionality could be related to its heterogeneous spatial patterns, as inferred by the large 1059 

combined overlaps of ESB3(S) with both SEB1(S) and SEB2(S) (Fig. 5), i.e. with areas of low to 1060 

average elevations with contrasting land use features (Fig. 4). ESB1(S) echoes ESB1(N) in the North 1061 

Alps and is characterised by a high level of crop production and an under-average level of supply for 1062 

all other ES (Fig. 2). This mono-functional bundle is broadly located in the main intensive agricultura l 1063 

and urbanized valleys (Rhône and Durance rivers) but poorly overlaps with the Southern SEBs (Fig. 4).  1064 

Overall, we highlight a discrepancy in our ability to understand, and further predict, ESBs from SEBs 1065 

in comparing the results from the North versus the Southern Alps. We hypothesize that this could be 1066 
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linked to discrepancies in the clustering patterns between ES and social-ecological variables in these 1067 

two regions, as captured at municipal scale. The North Alps can be characterised with easily 1068 

distinguishable entities in terms of ES and ecological variables at the municipal scale, relying on 1069 

aggregated land use and biophysical patterns (e.g., internal versus external Alps, large contrasts in terms 1070 

of elevation and land uses). In contrast, the Southern Alps, and in particular the Southern pre-Alps, have 1071 

more heterogeneous landscapes. Such landscapes are composed by a fine-grained mosaic of open spaces 1072 

(pastures) and secondary forests, related to ecological secondary succession after agricultura l 1073 

abandonment (post World War II) (Hinojosa et al. 2016). We hypothesize that SEBs at municipal scale 1074 

are too coarse in these heterogeneous landscapes for being predictive of aggregated ES. SEBs in the 1075 

Southern Alps can be considered as a typology of land cover types, combined with elevation, and these 1076 

appear not sufficient for predicting ES bundles in municipalities characterized by a high landscape 1077 

heterogeneity – especially in the southern Pre-Alps (northwestern part of the map). ES were initially 1078 

modelled at a finer resolution (1-km) and then aggregated at municipal scale to be coherent and 1079 

comparable with SE variables. But in heterogeneous landscapes, the effect of fine landscape patterns 1080 

on ES supply might not be negligible (Mitchell et al. 2015), explaining why SEBs at municipal scale 1081 

cannot be good predictors of ESB. These results point to a discrepancy between the municipal scale 1082 

required for many SE variables (in particular social ones), and the finer scale required for understanding 1083 

ecological processes and ES patterns. As a conclusion, while the SEBs identified could be relevant 1084 

predictors of ESBs at municipal scale in aggregated and contrasted landscape types as in the North Alps, 1085 

they appear insufficiently comprehensive for heterogeneous areas as in the Southern Alps.  1086 

 1087 

 1088 


