Low Temperature Characterization and Modeling of FDSOI Transistors for Cryo CMOS Applications
Résumé
The wide range of cryogenic applications, such as spatial, high performance computing or high-energy physics, has boosted the investigation of CMOS technology performance down to cryogenic temperatures. In particular, the readout electronics of quantum computers operating at low temperature requires larger bandwidth than spatial applications, so that advanced CMOS node has to be considered. FDSOI technology appears as a valuable solution for co-integration between qubits and consistent engineering of control and read-out. However, there is still lack of reports on literature concerning advanced CMOS nodes behavior at deep cryogenic operation, from devices electrostatics to mismatch and self-heating, all requested for the development of robust design tools. For these reasons, this chapter presents a review of electrical characterization and modeling results recently obtained on ultra-thin film FDSOI MOSFETs down to 4.2 K.