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ON STABILITY OF QUANTUM TRAJECTORIES AND THEIR CESARO

MEAN

NINA H. AMINI , MAËL BOMPAIS AND CLÉMENT PELLEGRINI

Abstract. We address the question of stability of quantum trajectories, also referred as
quantum filters. We determine the limit of the quantum fidelity between the true quantum
trajectory and the estimated one. Under a purification assumption we show that this limit
equals to one meaning that quantum filters are stable. In the general case, under an identifi-
ability and a spectral assumption we show that the limit of the Cesaro mean of the estimated
trajectory is the same as the true one.
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1. Introduction

Quantum trajectories describe the evolution of an open quantum system [Dav76a] undergo-
ing indirect measurements [BP02, WM10, GBD+07, BG09, Gis84, Dio88, Bel89a, BVHJ07].
The setup consists of a quantum system interacting with an environment. After interaction,
the environment is observed and following the measurement record, one can infer the evolu-
tion of the system. Typically, the evolution of (ρt), i.e., a quantum trajectory of the quantum
system is random taking into account the back-action of the measurement. Generic models
describing (ρt) are stochastic differential equations called stochastic master equations driven
by jump-diffusion processes [BH95, BG09, Pel10]. In absence of measurements, the evolution
of the system is described by a Lindblad operator [Dav76a, Lin76, GKS76].

Recently these models have attracted a lot of investigations studying the large time behavior
of quantum trajectories. In [BB11, BBB13] models of quantum non demolition which are at
the cornerstone of the recent experiment of Serge Haroche’s team are studied in details. In par-
ticular in [BB11, BBB13, BBB12], conditioning and martingale techniques are used to obtain
sharp results concerning the large time behavior. These techniques have been used also in the
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continuous time setup in [BP14]. Generalization of these approaches are developed in [BGP18]
for quantum parameter estimation and in progress in [BBP21] concerning a law of large num-
ber, a central limit theorem and a large deviation principle. In [BFPP19, BFPP21], results
on invariant measure and convergence toward the stationary regime are obtained under a pu-
rification and an ergodicity assumptions. Recent contributions, namely entropy production
considerations, are developed in [BJPP18, BCJP21] using ergodic theory and thermodynamic
formalism. It is worth noticing that the first relevant results in the long time behavior of
quantum trajectories were the purification result [MK06] and an ergodic theorem [KM04].

In control theory, quantum trajectories are referred as quantum filters. The theory has been
initiated by E. B. Davies in the 1960s [Dav69, Dav76b] and further developed by Belavkin in the
1980s [Bel83, Bel89b, Bel95, Bel92]. The quantum filters are applied in the design of a state-
based feedback. In particular, stabilization of pure states by a state-based feedback is central in
advancing quantum technologies. In [SDZ+11, AMR12, ASD+13], stabilizations of quantum
systems undergoing discrete-time non-demolition measurements are considered. Regarding
stabilization of continuous-time quantum filters, see e.g., [MVH07, VHSM05, LAM19, CSR20,
BPT17, TNA13, GT21]. Roughly speaking, quantum filters should take into account different
physical imperfections such as unknown initial states and physical parameters, which are
present in real experiments. In [LAM21], the robustness of feedback strategies proposed
in [LAM19] with respect to such imperfections has been addressed.

In this article, we investigate stability of quantum filters. When the initial state ρ0 of
the quantum trajectory (ρt) is unknown, we construct an estimated filter by guessing the
initial state ρ̂0. Then one uploads an estimated trajectory (ρ̂t) following the results of the
measurements which are the only data accessible. This estimated trajectory (ρ̂t) evolves as if
it was the true trajectory (ρt) but starting with a guessed initial state. The natural question
is whether the trajectories become closer and closer by acquiring more and more results after
measurements. Does the distance between the true trajectory and the estimated trajectory
converges to zero in long time? Convergence results have been already investigated. In [vH09],
it was shown that observability provides sufficient condition to ensure stability of quantum
filters. In [BBB13, BP14], convergence for quantum non demolition models are obtained. The
natural distance in this context is the fidelity and in [APR14, Rou11], it has been shown that
in average this fidelity increases.1 In this article, we study the limit of the fidelity between (ρt)
and (ρ̂t), we show that this fidelity can be expressed in terms of a particular martingale which
is convergent. This martingale expressed in terms of the operator generating the outputs of
measurements, is at the cornerstone of the works [BFPP19, BFPP21]. In particular we obtain
an expression for the limit of this fidelity when t goes to infinity. This allows to show that
under a purification condition this limit of fidelity is one meaning that the quantum filters
are stable. We show that it is not the case in general. In the general case, where the limit
fidelity is not one we investigate a mean ergodic theorem. For a true trajectory it is known
that the Cesaro mean converges toward a random variable with values on the set of invariant
states of the evolution without measurement [KM04]. We address the same question for the
estimated trajectory. Under an absolutely continuity condition, we show that the Cesaro mean
of estimated trajectory converges also toward an invariant state. When there are more than
one invariant state the limit of the Cesaro mean for the estimated trajectory is in general
different than the one of the Cesaro mean of the true trajectory. It is then natural to present
sufficient conditions where the two limits coincide. Under an identifiability assumption as well

1The fidelity F (ρ, σ) satisfies that 0 ≤ F (ρ, σ) ≤ 1 and F (ρ, σ) = 1 if and only if ρ = σ
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as a spectral assumption we show that the two limits coincide. This uses the conditioning
techniques of [BBB13].

The article is structured as follows. Section 2 is devoted to the presentation of the true
trajectory and the estimated one. In particular, we present an absolute continuity between
initial states which is an essential ingredient of the paper. Section 3 concerns the fidelity
between the true and estimated trajectories. We study the limit of this quantity when t goes
to infinity. Section 4 is devoted to the Cesaro mean considerations. Some technical proofs are
devoted into an appendix.

2. Quantum Trajectories

2.1. Construction of quantum trajectories. In this section, we recall some basic con-
struction of continuous time quantum trajectories [BG09]. The underlying quantum system
is described by H = C

k and the set of density matrices is denoted by

Dk = {ρ ∈ Mk(C), ρ = ρ∗, ρ ≥ 0, tr(ρ) = 1}.

Within the construction of quantum trajectories, we present the evolution of the estimated
filter. The true quantum trajectory will be denoted by (ρt) whereas the estimated filter will
be denoted by (ρ̂t).

We consider a filtered probability space
(

Ω, (Ft)t,F∞,P
)

. On this space we consider
(St)t∈[0,∞) the solution to the following stochastic differential equation (SDE for short):

dSt =
(

K + n−p
2 Id

)

St− dt+

p
∑

i=1

LiSt− dWi(t) +

n
∑

j=p+1

(Cj − Id)St− dNj(t), S0 = Id (2.1)

where

K = −iH − 1

2





p
∑

i=1

L∗
iLi +

n
∑

j=p+1

C∗
jCj



 .

The operator H is an Hermitian operator which plays the role of an Hamiltonian and the
operators Li, i = 1, . . . , p, Cj , j = p + 1, . . . , n are any operators. The parameter n is a
fixed integer which corresponds to the number of noises. On

(

Ω, (Ft)t,F∞,P
)

, the processes
(Wi(t)), i = 1, . . . , p, appearing in the above equation, are independent brownian motions,
independent of independent Poisson processes (Nj(t)), j = p+ 1, . . . , n.

Now, we shall introduce the process which corresponds to the measurement records. For
any ρ ∈ Dk, let (Zρ

t )t be the positive real-valued process defined by

Zρ
t = tr(S∗

t Stρ),

and let (ρt)t be the Dk-valued process defined by

ρt =
StρS

∗
t

tr(StρS
∗
t )

(2.2)

if Zρ
t 6= 0, taking an arbitrarily fixed value whenever Zρ

t = 0. The process (ρt) is called a
quantum trajectory with initial condition ρ0 = ρ

The following results on the properties of (Zρ
t )t were proven in [BH95].
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Lemma 2.1. For any ρ ∈ Dk, the stochastic process (Zρ
t )t is the unique solution of the SDE

dZρ
t = Zρ

t−

(

p
∑

i=1

tr
(

(Li +L∗
i )ρt−

)

dWi(t) +

n
∑

j=p+1

(

tr(C∗
jCjρt−)− 1

)(

dNj(t)− dt
)

)

, Zρ
0 = 1.

Moreover, (Zρ
t )t is a nonnegative martingale under P.

This martingale property is a crucial ingredient toward the interpretation of (ρt) as a quan-
tum measurement process. We refer to the book [BG09] and [BH95] for a complete reference.
For any ρ ∈ Dk, we define a probability P

ρ
t on (Ω,Ft):

dPρ
t = Zρ

t dP|Ft . (2.3)

Since (Zρ
t )t is a P-martingale from Lemma 2.1, the family (Pρ

t )t is consistent, that is Pρ
t (E) =

P
ρ
s(E) for t ≥ s and E ∈ Fs. This then defines a unique probability on (Ω,F∞), which we

denote by P
ρ. We will denote by E

ρ the expectation with respect to P
ρ. Furthermore note

that P
ρ(Zρ

t = 0) = 0, this way the process (ρt) is well defined under P
ρ and the arbitrary

condition is P
ρ almost surely not necessary.

The following proposition makes explicit the relationship between P and P
ρ. It is a classical

result in indirect measurement which gives the statistics of the output process.

Proposition 2.2. Let ρ ∈ Dk. For all i = 1, . . . , p and t ∈ R+, let

W̃ ρ
i (t) =Wi(t)−

∫ t

0
tr
(

(Li + L∗
i )ρs−

)

ds.

Under P
ρ, the processes (W̃ ρ

i (t)), i = 1, . . . , p are independent Wiener processes and the pro-
cesses (Nj(t)), j = p+ 1, . . . , n are point processes of respective stochastic intensity {t 7→
tr(C∗

jCjρt−)}, j = p+ 1, . . . , n.
In particular under P

ρ, the processes

W̃ ρ
i (t) = Wi(t)−

∫ t

0
tr
(

(Li + L∗
i )ρs−

)

ds, i = 1, . . . , p (2.4)

Ñρ
j (t) = Nj(t)−

∫ t

0
tr
(

Cjρs−C
∗
j

)

ds, j = p+ 1, . . . , n (2.5)

are P
ρ martingales.

Now we can express the SDE satisfied by (ρt) in terms of the process W̃ ρ and consider
under Pρ the evolution of a Markov open quantum system subject to indirect measurements.

Using Itô calculus, one then derives the SDE satisfied by (ρt):

dρt = L(ρt−)dt

+

p
∑

i=1

(

Liρt− + ρt−L
∗
i − tr

(

ρt−(Li + L∗
i )
)

ρt−

)

dW̃ ρ
i (t)

+

n
∑

j=p+1

( Cjρt−C
∗
j

tr(Cjρt−C∗
j )

− ρt−

)

dÑρ
j (t)),

(2.6)

where the operator L is called Lindbladian operator defined as

L(ρ) = −i[H, ρ] +
p
∑

i=1

(

LiρL
∗
i −

1

2
{L∗

iLi, ρ}
)

+

n
∑

j=p+1

(

CjρC
∗
j − 1

2
{C∗

jCj, ρ}
)

,
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for all ρ ∈ Dk. Here {A,B} := AB +BA, for all operators A and B.
Remark also that for any ρ ∈ Dk, using (2.3), we have

E
ρ(ρt) = etL(ρ), (2.7)

which is the usual quantum master equation, describing the evolution of a quantum system
without measurement.

Now we can introduce the estimated process. As announced if we do not know the initial
state ρ0, one introduces an estimated process starting with an arbitrary initial state ρ̂0 which
evolves conditionally to the output of the measurement as if it was the true trajectory. More
precisely if ρ0 = ρ is the unknown initial state, the natural underlying probability is P

ρ. This
way under P

ρ, we consider the process

ρ̂t =
Stρ̂S

∗
t

tr(Stρ̂S∗
t )
, ρ̂0 = ρ̂.

Before expressing the SDE satisfied by (ρ̂t), we need to impose a necessary condition to be
allowed to normalize by the quantity tr(Stρ̂S

∗
t ). As for (ρt), we can use an arbitrary state in

the case where tr(Stρ̂S
∗
t ) = 0. Though in order to compare in an efficient way (ρ̂t) and (ρt)

under P
ρ, one would expect that P

ρ(tr(Stρ̂S
∗
t ) = 0) = 0. In general this quantity can vanish

under P
ρ. A usual sufficient condition ensuring this property is

ker ρ̂ ⊂ ker ρ.

This way we have suppρ ⊂ suppρ̂, where supp denotes the support of an operator, that is the
orthogonal of the kernel. This way, there exists a constant c such that

ρ ≤ cρ̂,

which implies that tr(StρS
∗
t ) ≤ c tr(Stρ̂S

∗
t ), for all t ≥ 0, Pρ almost surely. As a consequence

one can see that
P
ρ(tr(Stρ̂S

∗
t ) = 0) ≤ P

ρ(tr(StρS
∗
t ) = 0) = 0

and the process (ρ̂t) is well defined without requiring an arbitrary state. The process (ρ̂t)

satisfies the same SDE as Equation (2.6) with processes (W̃ ρ̂) and (Ñ ρ̂), that is

dρ̂t = L(ρ̂t−)dt

+

p
∑

i=1

(

Liρ̂t− + ρ̂t−L
∗
i − tr

(

ρ̂t−(Li + L∗
i )
)

ρ̂t−

)

dW̃ ρ̂
i (t)

+

n
∑

j=p+1

( Cj ρ̂t−C
∗
j

tr(Cj ρ̂t−C∗
j )

− ρt−

)

dÑ ρ̂
j (t).

(2.8)

In terms of the true signal (W̃ ρ) and (Ñρ) we get

dρ̂t = L(ρ̂t−)dt

+

p
∑

i=1

(

Liρ̂t− + ρ̂t−L
∗
i − tr

(

ρ̂t−(Li + L∗
i )
)

ρ̂t−

)

×

×
(

dW̃ ρ
i (t) +

(

tr(ρt−(Li + L∗
i )
)

− tr
(

ρ̂t−(Li + L∗
i )
)

dt
)

+

n
∑

j=p+1

( Cj ρ̂t−C
∗
j

tr(Cj ρ̂t−C∗
j )

− ρt−

)(

dÑρ
j (t) +

(

tr(Cjρt−C
∗
j )− tr(Cj ρ̂t−C

∗
j )
)

dt
)

(2.9)
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One can then notice that under P
ρ the process (ρ̂t) is not autonomous and not Markovian.

Actually the couple (ρ̂t, ρt) is Markovian. Furthermore taking the expectation with respect to
P
ρ we get

dEρ[ρ̂t] = E
ρ

[

L(ρ̂t−) +
p
∑

i=1

(

Liρ̂t + ρ̂tL
∗
i − tr

(

ρ̂t(Li + L∗
i )
)

ρ̂t

)

×

×
(

tr
(

ρt(Li + L∗
i )
)

− tr
(

ρ̂t(Li + L∗
i )
)

)

+
n
∑

j=p+1

( Cj ρ̂tC
∗
j

tr(Cj ρ̂tC
∗
j )

− ρ̂t

)(

tr(CjρtC
∗
j )− tr(Cj ρ̂tC

∗
j )
)

]

dt (2.10)

which is not a master equation in Lindblad form.

Now let us introduce a key martingale. Such a martingale is at the cornerstone of the result
of [BFPP21]. Here we need to involve ρ and ρ̂.

Proposition 2.3. Let define the stochastic process (Mρ,ρ̂
t ) by

Mρ,ρ̂
t =

ρ1/2S∗
t Stρ

1/2

tr(S∗
t Stρ̂)

and by an arbitrary state in the case where tr(S∗
t Stρ̂) = 0. The process (Mρ,ρ̂

t ) is a bounded
martingale under P

ρ̂ which converges in L1(Pρ̂) and P
ρ̂ almost surely to a random variable

(Mρ,ρ̂
∞ ).
Furthermore for all t ≥ 0, we have

dPρ

dPρ̂ |Ft

= tr(Mρ,ρ̂
t ). (2.11)

Then P
ρ ≪ P

ρ̂ and
dPρ

dPρ̂ |F∞

= tr(Mρ,ρ̂
∞ ) (2.12)

As a consequence, the process (Mρ,ρ̂
t ) converges also in L1(Pρ) and P

ρ almost surely.

The proof is a slight adaptation of the proof in [BFPP21]. In a sake of completeness, we
provide some details in the appendix.

In the next section, in order to study the limit of the distance between (ρ̂t) and (ρt) we
will use such martingale with respect to the chaotic state. Let us denote ch when using the
chaotic state ρ = I

k . In the sequel, we shall use the process (M ch,ch
t ) defined for all t by

M ch,ch
t =

S∗
t St

tr(S∗
t St)

.

Since P
ρ ≪ P

ch for all ρ ∈ Dk and since P
ch(tr(S∗

t St) = 0) = 0 we have P
ρ(tr(S∗

t St) = 0) = 0

for all ρ ∈ Dk. This way M ch,ch
t is well defined under P

ρ for all ρ ∈ Dk. In the sequel, we will
denote M ch,ch

t =: Mt and we will notice that (Mt) converges almost surely and in L1 under
all Pρ for all ρ ∈ Dk (see [BFPP19, BFPP21]).
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3. Stability of quantum filter, fidelity.

One of the aspect of the stability of quantum filter concerns the study of a distance between
the estimated trajectory (ρ̂t) and the true trajectory (ρt). A natural distance in this context
is the quantum fidelity F (., .) defined by

F (ρ, σ) = tr2
(

√√
ρσ

√
ρ

)

for all states (ρ, σ) ∈ (Dk)
2. Recall that the fidelity is defined for all density matrices ρ, σ, all

norm one vectors x, y, and for all unitary operators U as follows

F (ρ, σ) = F (σ, ρ),

F (UρU∗, UσU∗) = F (ρ, σ),

F (ρ, |x〉〈x|) = tr(ρ|x〉〈x|) = 〈x|ρ|x〉,
F (|x〉〈x|, |y〉〈y|) = 〈x|y〉2,

F (ρ, σ) = 1 ⇔ ρ = σ.

In this section, we shall study the quantum fidelity between the true quantum trajectory (ρt)
and its estimation (ρ̂t). So far, in this direction, an interesting result was the result showing
that the fidelity between the estimated trajectory and the true trajectory is a submartingale
[Rou11, APR14]. Here we make precise the fidelity in terms of (Mt) which allows to study its
behavior in long time. As a particular case, under the following purification assumption we
show that the fidelity converges to 1, i.e., the stability is ensured.

Purification Assumption: Any orthogonal projection π such that for all i = 1, . . . , p and
for all j = p+ 1, . . . , n, there exists λk, k = 1, . . . , n such that

π(Li + L∗
i )π = λiπ, and πC∗

jCjπ = λjπ

is of rank one.

In [BFPP21], it has been shown that this condition implies the convergence of (Mt) toward
a rank one orthogonal projector.

Here we have the following result.

Proposition 3.1. Let (ρt) and (ρ̂t) be the true quantum trajectory and its estimated one
starting respectively at ρ0 = ρ and ρ̂0 = ρ̂. Suppose that ker ρ̂ ⊂ ker ρ. The fidelity between the
true quantum trajectory and its estimation (ρ̂t) satisfy for all t ≥ 0

F (ρ̂t, ρt) = F

(

StρS
∗
t

tr(StρSt)
,
Stρ̂S

∗
t

tr(Stρ̂St)

)

= F

(√
Mtρ

√
Mt

tr(Mtρ)
,

√
Mtρ̂

√
Mt

tr(Mtρ̂)

)

. (3.1)

As a consequence (F (ρ̂t, ρt)) converges P
ρ almost surely and in L1(Pρ) toward

F

(√
M∞ρ

√
M∞

tr(M∞ρ)
,

√
M∞ρ̂

√
M∞

tr(M∞ρ̂)

)

.

As a consequence under the Purification assumption, we have that

lim
t→∞

F (ρt, ρ̂t) = 1

in L1(Pρ) and P
ρ almost surely.
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Proof. In order to prove the equality (3.1), we use the polar decomposition of St, that is

St = Ut

√

S∗
t St = Ut

√

tr(S∗
t St)

√

Mt

This way for all ρ and for all t ≥ 0 we have

ρt =
StρS

∗
t

tr(StρSt)
=
Ut

√
Mtρ

√
MtU

∗
t

tr(Mtρ)

then

F (ρ̂t, ρt) = F

(

StρS
∗
t

tr(StρSt)
,
Stρ̂S

∗
t

tr(Stρ̂St)

)

(3.2)

= F

(

Ut

√
Mtρ

√
MtU

∗
t

tr(Mtρ)
,
Ut

√
Mtρ̂

√
MtU

∗
t

tr(Mtρ̂)

)

(3.3)

= F

(√
Mtρ

√
Mt

tr(Mtρ)
,

√
Mtρ̂

√
Mt

tr(Mtρ̂)

)

(3.4)

by the unitary invariance. The convergence result is then a consequence of the convergence
of (Mt) under all probabilities P

ρ and the fact that the fidelity is continuous. The only thing
that we need to take care is the possibility that tr(M∞ρ̂) = 0 but since tr(M∞ρ) ≤ c tr(M∞ρ̂)
this would imply that tr(M∞ρ) = 0 which appears with P

ρ probability zero.
Now under purification, we know (see [BFPP21]) that there exists a random variable z of

norm one such that
M∞ = |z〉〈z|,

P
ρ almost surely. This way we have

F

(√
M∞ρ

√
M∞

tr(M∞ρ)
,

√
M∞ρ̂

√
M∞

tr(M∞ρ̂)

)

= F

(

√

|z〉〈z|ρ
√

|z〉〈z|
tr(|z〉〈z|ρ) ,

√

|z〉〈z|ρ̂
√

|z〉〈z|
tr(|z〉〈z|ρ̂)

)

= F (|z〉〈z|, |z〉〈z|) = 1 (3.5)

and the result is proven. �

The almost sure convergence of the fidelity was already known since it has been proven
in [Rou11] for a discrete time version and in [APR14] for a continuous time version that the
fidelity is a submartingale. Since it is nonnegative and bounded it almost surely converges.
Here we express the limit in terms of the limitM∞ which completes the works [Rou11, APR14].
In the purification context, we show that the quantum filter is stable. In the general case, we
have that

F

(√
M∞ρ

√
M∞

tr(M∞ρ)
,

√
M∞ρ̂

√
M∞

tr(M∞ρ̂)

)

= 1 ⇔
√
M∞ρ

√
M∞

tr(M∞ρ)
=

√
M∞ρ̂

√
M∞

tr(M∞ρ̂)

In particular if π∞ denotes the projector onto the support of M∞ we have
√
M∞ρ

√
M∞

tr(M∞ρ)
=

√
M∞ρ̂

√
M∞

tr(M∞ρ̂)
⇔ ∃λ∞ s.t π∞ρ̂π∞ = λ∞π∞ρπ∞

This way, one can see that obtaining the stability of the filter needs a strong assumption on
the initialization of the filter. Indeed the estimated starting state needs to be proportional to
ρ onto the support on M∞ which is clearly satisfied if M∞ is a rank one orthogonal projector.
In general, if rank(M∞) > 1, it is not possible unless choosing ρ̂ = ρ which is of course not
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allowed. In general a natural choice for the starting state of (ρ̂t) is the chaotic state that is
ρ̂0 =

I
k in order to ensure the property ker ρ̂ ⊂ ker ρ.

Remark 1. We note that for a qubit, purification can be completely described. As in dimension
two, the only orthogonal projector of rank two is the identity operator. This way, either
purification holds or all Li satisfy Li +L∗

i = αiI for some constant αi and all Cj are multiple
of unitary operators. Let i ∈ {1, . . . , p}, the condition Li+L

∗
i = αiI means that Li = Ai+βiI

for some anti-hermitian operator Ai and some constant βi.

In the case where the stability is not satisfied, one can wonder if it is the case for the
Cesaro means. Such consideration follows the line of the ergodic Theorem of Kümmerer-
Maassen [KM04]. This is the question addressed in the next section. Note that in the case
that the stability holds the answer is trivial.

4. Cesaro mean of the estimated filter

Concerning large time behavior of quantum trajectories, a first major result is the pathwise
ergodic theorem of Maassen. This theorem essentially shows that the Cesaro mean of quantum
trajectories converges toward an invariant state of the Lindblad master equation. We denote
by

I = {ρ ∈ Dk | L(ρ) = 0}
that is the set of equilibrium states. Now we state the ergodic theorem for quantum trajecto-
ries.

Theorem 4.1 (Ergodic Theorem of Kümmerer-Maassen [KM04]). Let (ρt) be the quantum
trajectory starting with initial condition ρ0 = ρ. Then there exists a random variable Θρ

∞

valued in I such that

lim
t→∞

1

t

∫ t

0
ρsds = Θρ

∞

P
ρ almost surely.

The proof of this result relies on martingale property and on the fact that E
ρ[ρt] = etL(ρ).

In this section, we want to address the same question for the estimated trajectory (ρ̂t) that is
what is the limit under P

ρ of
1

t

∫ t

0
ρ̂sds.

It is not straightforward to adopt the approach of the proof of the original ergodic theorem
since the mean evolution of (ρ̂t) under P

ρ̂ is not in Lindblad form and even more not linear.
Hence a lot of key points cannot be directly obtained. Nevertheless, the absolute continuity
P
ρ ≪ P

ρ̂ makes the proof of the following result very simple. Such approach with absolute
continuity has already been used successfully in the context of quantum non demolition in
[BBB13] where they prove that an estimated filter has the same behavior as the true quantum
trajectory.

Theorem 4.2. Let (ρt) and (ρ̂t) be the quantum trajectory and the estimated one starting
respectively with initial conditions ρ0 = ρ and ρ̂0 = ρ̂ such that ker ρ̂ ⊂ ker ρ. Then, there

exists a random variable Θρ̂
∞ valued in I such that

lim
t→∞

1

t

∫ t

0
ρ̂sds = Θρ̂

∞

P
ρ almost surely.
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Proof. As mentioned the proof of this result is an application of the absolute continuity result.
Indeed since P

ρ ≪ P
ρ̂, an almost sure result for Pρ̂ will imply an almost sure result for Pρ. As

a consequence, using the ergodic Theorem 4.1 we have that

P
ρ̂

(

lim
t→∞

1

t

∫ t

0
ρ̂sds = Θρ̂

∞

)

= 1

then

P
ρ

(

lim
t→∞

1

t

∫ t

0
ρ̂sds = Θρ̂

∞

)

= 1,

which is the desired result. �

Corollary 4.3. Let (ρt) and (ρ̂t) be the quantum trajectory and the estimated one starting
respectively with initial conditions ρ0 = ρ and ρ̂0 = ρ̂ such that ker ρ̂ ⊂ ker ρ. If I is reduced to
one element ρ∞, that is there exists a unique invariant state for the Lindblad master equation
then

lim
t→∞

1

t

∫ t

0
ρsds = lim

t→∞

1

t

∫ t

0
ρ̂sds = ρ∞

P
ρ almost surely.

Note that Theorem 4.2 tells that the Cesaro mean of the estimated trajectory converges
toward a random invariant state under Pρ as well as the true trajectory. In general, when there
are more than one invariant state, there are an infinity of states (every convex combination).
Then there is no reason that the invariant state obtained for the Cesaro mean of the estimated
trajectory is the same as the true one. Indeed the random variable Θρ̂

∞ has not the same
law under P

ρ and P
ρ̂. One can easily construct examples where the two Cesaro means have

different limits (see the end of this section).
In the sequel of this section, we shall investigate a natural situation where there are more

than one invariant state and where we are able to show that both Cesaro means converge to
the same invariant state.

We shall adopt the notation of [BN12] where the set of invariant states is described in terms
of enclosure. We refer also to [CP16, JTV16] where similar results are exposed. We consider

D = {ψ ∈ H s.t 〈ψ, etL(ρ)ψ〉 −−−→
t→∞

0 ∀ρ ∈ Dk} and R = D⊥.

In particular R contains the support of all invariant states. We consider the situation where

D = 0, R =

K
⊕

i=1

Vi

where each Vi is the support of a minimal invariant state and where this decomposition is
unique. We denote by ρi∞ the invariant state with support equals to Vi. The minimality is
understood into the fact that there is no invariant state whose support is strictly included
in Vi. For each ρi∞, we consider the positive associated operator Mi such that L∗(Mi) = 0,
tr(Mkρ

i
∞) = δki. The operators Mi are orthogonal projectors and satisfy

∑K
i=1Mi = Id. Note

that the case D 6= 0 is more tricky and will be considered in full generality in [BBP21] where
a law of large number, a central limit theorem as well as a large deviation principle will be
derived. The article [BBP21] is not linked with estimated filters and will investigate discrete
time quantum trajectories.

Now let us introduce
Qρ

i (t) = tr(Miρt),
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for all t ≥ 0 and for all i = 1, . . . ,K. This process can be interpreted as the probability of
"seing" the quantum trajectory (ρt) into the support of ρi∞. It is as if we measure directly an
observable of the form A =

∑K
i=1 µiMi on the state (ρt) at time t.

We shall need the following assumption in order to derive the following results.

Identifiability Assumption: For all u 6= v, u, v = 1, . . . ,K, there exists i = 1, . . . , p or
j = p+ 1, . . . , n such that

tr((Li + L∗
i )ρ

u
∞) 6= tr((Li + L∗

i )ρ
v
∞) or tr(Cjρ

u
∞C

∗
j ) 6= tr(Cjρ

v
∞C

∗
j ).

Spectral Assumption: The operator L has no purely imaginary eigenvalues.

The proof of the following result is given in the appendix.

Proposition 4.4. Let ρ ∈ Dk. The processes (Qρ
i (t)), i = 1, . . . ,K are bounded martingale

under P
ρ. They converge in L1(Pρ) and P

ρ almost surely toward random variables Qρ
i (∞), i =

1, . . . ,K.
Assume that the Identifiability and the Spectral Assumption hold, then

Qρ
v(∞)Qρ

u(∞) = 0

P
ρ almost surely. Then Qρ

u(∞) ∈ {0, 1}.
In particular there exists a random variable Γ valued in {1, . . . ,K} such that Qρ

Γ(∞) = 1,
P
ρ almost surely and

P
ρ[Γ = i] = P

ρ(Qi(∞) = 1) = Qρ
i (0).

Theorem 4.5. Let (ρt) be the quantum trajectory started with initial condition ρ0 = ρ and
(ρ̂t) the estimated trajectory starting with ρ̂0 = ρ̂ such that ker ρ̂ ⊂ ker ρ. Assume that the
Identifiability and the Spectral Assumptions hold, then

lim
t→∞

1

t

∫ t

0
ρsds = lim

t→∞

1

t

∫ t

0
ρ̂sds = Θρ

∞ =
K
∑

i=1

Qρ
i (∞)ρi∞

P
ρ almost surely.

Proof. The proof is again based on application of the absolute continuity. Since ker ρ̂ ⊂ ker ρ,
note that

Qρ
u(t) ≤ cQρ̂

u(t)

for all t ≥ 0 and for all u = 1, . . . ,K. This way we have Qρ
u(∞) ≤ cQρ̂

u(∞). Under P
ρ̂ or P

ρ,
only one Qρ

u(∞) is non zero and only one Qρ̂
v(∞) is non zero. Necessarily u = v. Indeed let

u be such that Qρ
u(∞) = 1 then Qρ̂

u(∞) > 0 and then Qρ̂
u(∞) = 1. Reciprocally let u be such

that Qρ̂
u(∞) = 1 then for all v 6= u, we have Qρ̂

v(∞) = 0 which implies Qρ
v(∞) = 0 and then

Qρ
u(∞) = 1. We finally have the following equivalence

Qρ
v(∞) = 0 ⇔ Qρ̂

v(∞) = 0 and Qρ
u(∞) = 1 ⇔ Qρ̂

u(∞) = 1.

Now we know that under P
ρ (see the proof in the appendix), we have

Θρ
∞ =

K
∑

i=1

Qρ
i (∞)ρi∞ and Θρ̂

∞ =

K
∑

i=1

Qρ̂
i (∞)ρi∞.

The above equivalence yields the result. �
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Theorem 4.5 clearly states that under the Identifiability Assumption and Spectral Assump-
tion the Cesaro mean of the estimated filter converges toward the same limit of the one for
the true quantum trajectory. The identifiability assumption is clearly the good setup for such
a result. Indeed consider simply block type operators of the form

Li =

(

L̃i 0

0 L̃i

)

Cj =

(

C̃j 0

0 C̃j

)

and suppose that

ρ0 =

(

0 0
0 ρ̃

)

Suppose for example that the operators L̃i and C̃j generate a unique invariant state ρ̃∞ for
the corresponding Lindblad operator. It is then clear that if the estimated filter is initialized
at ρ̂0 = I/k, then the Cesaro mean of the estimated filter will converge to

(

1
2 ρ̃∞ 0
0 1

2 ρ̃∞

)

whereas the Cesaro mean of the true quantum trajectory converges toward
(

0 0
0 ρ̃∞

)

.

Of course the Identifiability Assumption is obviously not satisfied.
Concerning the Spectral Assumption, we suspect that it is too strong, however it is needed

in the proof of a version of the Ergodic Theorem of Kummerer Maasen for a subsequence
(see the appendix). In particular, since we do not have the control on this subsequence, the
spectral condition allows us to conclude.
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5. Appendix

Proof of Proposition 2.3. Introduce the process Rt =
Stρ1/2√
tr(S∗

t Stρ̂)
for all t ≥ 0, then applying

Itô calculus yields

dMρ,ρ̂
t =

p
∑

i=1

(

R∗
t−(Li + L∗

i )Rt− −Mρ,ρ̂
t− tr

(

R∗
t−(Li + L∗

i )Rt−

)

)

dW̃ ρ̂
i (t)

+

n
∑

j=p+1

( R∗
t−C

∗
jCjRt−

tr(R∗
t−C

∗
jCjRt−)

−Mρ,ρ̂
t−

)

dÑ ρ̂
j (t).

Then Proposition 2.2 yields the result concerning the martingale property under P
ρ̂. Now

note that (Mρ,ρ̂
t ) is P

ρ̂ almost surely a nonnegative operator. Since ρ ≤ cρ̂, we have

tr(Mρ,ρ̂
t ) ≤ c,

for all t ≥ 0, Pρ̂-almost surely. Then under P
ρ̂, (Mρ,ρ̂

t ) is a nonnegative bounded martingale
which converges in L1(Pρ̂) and P

ρ̂ almost surely to a random variable Mρ,ρ̂
∞ .

Now the following equality

tr(StρS
∗
t ) =

tr(StρS
∗
t )

tr(Stρ̂S
∗
t )

tr(Stρ̂S
∗
t ) (5.1)
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for all t ≥ 0 implies that

dPρ

dPρ̂ |Ft

= tr(Mρ,ρ̂
t )

and the L1(Pρ̂) convergence yields the absolute continuity result that is

dPρ

dPρ̂
= tr(Mρ,ρ̂

∞ ).

�

In the proof of Proposition (4.4), we shall need the intermediate ergodic result which actually
is not a direct consequence of the Ergodic Theorem of Kummerer Maassen.

Proposition 5.1. Let (ρt) be a quantum trajectory starting with initial condition ρ0 = ρ. As-
sume that L satisfies the Spectral Assumption. For all increasing subsequence (tn) converging
toward ∞, there exists a random variable Θ∞ (which depends possibly of the subsequence) such
that

lim
n→

1

n

n
∑

k=1

ρtk = Θ∞ (5.2)

P
ρ almost surely.

Proof. This result is very close to the ergodic theorem of Kummerer Maassen and the proof
is almost exactly the same. Actually the only point to check is that the process (P (ρtk )) is a
bounded convergent martingale toward Θ∞, where

P (ρ) = lim
n→∞

1

n

n
∑

k=1

etkL(ρ). (5.3)

Since L has no purely imaginary part eigenvalues (etkL(ρ)) is a convergent sequence toward
an invariant state. Then P (ρ) is an invariant state. Now we easily have

E
ρ[P (ρtj )|Fj−1] = lim

n→∞

1

n

n
∑

k=1

etkL(Eρ[(ρtj )|Fj−1]) (5.4)

= lim
n→∞

1

n

n
∑

k=1

etkL(e(tj−tj−1)L(ρtj−1
)) (5.5)

= e(tj−tj−1)L(P (ρtj−1
)) = P (ρtj−1

) (5.6)

Now the interesting reader can follow the line of [KM04] to complete the proof. We just want
to point out that since we do not have the hand of the subsequence, we need to impose the
condition L has no purely imaginary part in order that P (ρ) is an invariant state. In the case
where L has purely imaginary eigenvalues the convergence, of the Cesaro mean (5.3) toward
an invariant state is not ensured (consider unitary operator for example). �
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Proof of Proposition (4.4). For k = 1, . . . ,K, the fact that (Qρ
k(t)) is a martingale under P

ρ

is straightforward. Using the fact that L∗(Mk) = 0, we indeed get

dQρ
k(t) =

p
∑

i=1

(

tr(Mk(Liρt− + ρt−L
∗
i )− tr

(

ρt−(Li + L∗
i )
)

tr(Mkρt−))
)

dW̃ ρ
i (t)

+
n
∑

j=p+1

(

tr(MkCjρt−C
∗
j )

tr(Cjρt−C
∗
j )

− tr(Mkρt−)

)

dÑρ
j (t)), (5.7)

which is clearly a martingale under P
ρ. Now, compute the second moment, for all t ≥ 0 we

have

E
ρ[(Qρ

k(t))
2] = E

ρ

[

∫ t

0

p
∑

i=1

(

tr(Mk(Liρs + ρsL
∗
i )− tr

(

ρs(Li + L∗
i )
)

tr(Mkρs))
)2
ds

+

∫ t

0

n
∑

j=p+1

(

tr(MkCjρsC
∗
j )

tr(CjρsC∗
j )

− tr(Mkρs)

)2

tr(CjρsC
∗
j )ds

]

. (5.8)

The fact that (Qρ
k(t)) is bounded and P

ρ almost surely implies convergence of all the moment.
This quantity converges namely when n goes to infinity toward

∫ ∞

0
E
ρ

[

p
∑

i=1

(

tr(Mk(Liρs + ρsL
∗
i )− tr

(

ρs(Li + L∗
i )
)

tr(Mkρs))
)2
]

ds

+

∫ ∞

0
E
ρ

[

n
∑

j=p+1

(

tr(MkCjρsC
∗
j )

tr(CjρsC∗
j )

− tr(Mkρs)

)2

tr(CjρsC
∗
j )

]

ds. (5.9)

Since the integrand are nonnegative, their liminf at infinity is equal to zero. Then there exists
a increasing subsequence (tn) converging toward infinity such that

lim
n→∞

E
ρ

[

p
∑

i=1

(

tr(Mk(Liρtn + ρtnL
∗
i )− tr

(

ρtn(Li + L∗
i )
)

tr(Mkρtn))
)2

+

n
∑

j=p+1

(

tr(MkCjρtnC
∗
j )

tr(CjρtnC
∗
j )

− tr(Mkρtn)

)2

tr(CjρtnC
∗
j )

]

= 0. (5.10)

Then, the sequence

p
∑

i=1

(

tr(Mk(Liρtn + ρtnL
∗
i )− tr

(

ρtn(Li + L∗
i )
)

tr(Mkρtn))
)2

(5.11)

+
n
∑

j=p+1

(

tr(MkCjρtnC
∗
j )

tr(CjρtnC
∗
j )

− tr(Mkρtn)

)2

tr(CjρtnC
∗
j ) (5.12)

converges in L1(Pρ) and then up to a subsequence we have a convergence P
ρ almost surely.

Up to extracting again, there exists an increasing subsequence still denoted by (tn) converging
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toward infinity such that

lim
n→∞

p
∑

i=1

(

tr(Mk(Liρtn + ρtnL
∗
i )− tr

(

ρtn(Li + L∗
i )
)

tr(Mkρtn))
)2

+
n
∑

j=p+1

(tr(MkCjρtnC
∗
j )

tr(CjρtnC
∗
j )

− tr(Mkρtn)
)2

tr(CjρtnC
∗
j ) = 0. (5.13)

Invoking Qρ
k(∞), we get

lim
n→∞

p
∑

i=1

(

tr(Mk(Liρtn + ρtnL
∗
i )− tr

(

ρtn(Li + L∗
i )
)

Qρ
k(∞)

)2

+

n
∑

j=p+1

(

tr(MkCjρtnC
∗
j )

tr(CjρtnC
∗
j )

−Qρ
k(∞)

)2

tr(CjρtnC
∗
j ) = 0, (5.14)

P
ρ almost surely. This way, for all i = 1, . . . , p and j = p+ 1, . . . , n

lim
n→∞

(

tr(Mk(Liρtn + ρtnL
∗
i )− tr

(

ρtn(Li + L∗
i )
)

Qρ
k(∞)

)2
= 0

lim
n→∞

(

tr(MkCjρtnC
∗
j )

tr(CjρtnC
∗
j )

−Qρ
k(∞)

)2

tr(CjρtnC
∗
j ) = 0, (5.15)

which yields by multiplying by tr(CjρtnC
∗
j ) which is bounded

lim
n→∞

(

tr(Mk(Liρtn + ρtnL
∗
i )− tr

(

ρtn(Li + L∗
i )
)

Qρ
k(∞)

)2
= 0

lim
n→∞

( tr(MkCjρtnC
∗
j )

tr(CjρtnC
∗
j )

−Qρ
k(∞)

)2
tr(CjρtnC

∗
j )

2 (5.16)

= lim
n→∞

(

tr(MkCjρtnC
∗
j )− tr(CjρtnC

∗
j )Q

ρ
k(∞)

)2
= 0. (5.17)

Finally, we get

lim
n→∞

(

tr(Mk(Liρtn + ρtnL
∗
i )− tr

(

ρtn(Li + L∗
i )
)

Qρ
k(∞)

)

= 0

lim
n→∞

(

tr(MkCjρtnC
∗
j )− tr(CjρtnC

∗
j )Qk(∞

)

= 0. (5.18)

Using the version of the ergodic result, Proposition 5.1 we get

lim
n→∞

1

n

n
∑

l=1

(

tr(Mk(Liρtl + ρtlL
∗
i )− tr

(

ρtl(Li + L∗
i )
)

Qρ
k(∞)

)

(5.19)

=
(

tr(Mk(LiΘ∞ +Θ∞L
∗
i )− tr

(

Θ∞(Li + L∗
i )
)

Qρ
k(∞)

)

= 0

lim
n→∞

1

n

n
∑

l=1

(

tr(MkCjρtlC
∗
j )− tr(CjρtlC

∗
j )Q

ρ
k(∞)

)

=
(

tr(MkCjΘ∞C
∗
j )− tr(CjΘ∞C

∗
j )Q

ρ
k(∞)

)

= 0 (5.20)
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Now let us note that

tr(MkΘ∞) = lim
1

n

n
∑

j=1

tr(Muρtj ) = lim
1

n

n
∑

j=1

Qu(tj) = Qk(∞)

and we then have

Θ∞ =
K
∑

u=1

Qu(∞)ρu∞.

Here, we can note that the limit does not depend of the subsequence. Let us exploit that for
all i = 1, . . . , p

(

tr(Mk(LiΘ∞ +Θ∞L
∗
i ) − tr

(

Θ∞(Li + L∗
i )
)

Qρ
k(∞)

)

= 0

⇒ tr(Mk(LiΘ∞ +Θ∞L
∗
i ) = tr

(

Θ∞(Li + L∗
i )
)

Qρ
k(∞).

Multiplying by Qρ
v(∞), we get

Qρ
v(∞) tr(Mk(LiΘ∞ +Θ∞L

∗
i )) = tr

(

Θ∞(Li + L∗
i )
)

Qρ
k(∞)Qv(∞) (5.21)

= Qρ
k(∞) tr(Mv(LiΘ∞ +Θ∞L

∗
i ) (5.22)

Furthermore

Qρ
v(∞) tr(Mk(LiΘ∞ +Θ∞L

∗
i ) = Qρ

v(∞)Qρ
k(∞) tr(Mk(Liρk + ρkL

∗
i ) (5.23)

= Qρ
v(∞)Qρ

k(∞) tr(Mv(Liρv + ρvL
∗
i ) (5.24)

In the same way we get for all j = p+ 1, . . . , n

Qρ
v(∞)Qρ

k(∞) tr(Mv(CjρvC
∗
j ) = Qv(∞)Qρ

k(∞) tr(Mk(CjρkC
∗
j ).

This implies that for all v, k = 1, . . . ,K

Qρ
v(∞)Qρ

k(∞) = 0.

At this stage since
∑K

k=1Q
ρ
k(∞) = 1, there is only one index u such that Qρ

u(∞) = 1 and all
other are equal to zero. This determines the random variable Γ which is valued in {1, . . . ,K}.

Now, in order to finish the proof, we just need to see that for all k = 1, . . . ,K

P
ρ(Γ = k) = P

ρ(Qρ
k(∞)) = 1 = E

ρ[Qρ
k(∞)] = Qρ

k(0),

by the martingale property. �
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