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Propagation of velocity moments and uniqueness for the magnetized Vlasov-Poisson system

In this paper we present two results regarding the three-dimensional Vlasov-Poisson system in the full space with a general bounded magnetic field. First, we study the propagation of velocity moments for solutions to the system. We rely on Pallard's optimal result regarding the unmagnetized Vlasov-Poisson system and we combine it with an induction procedure depending on the cyclotron frequency

. This induction procedure, similar to the one used by the author in the case of a constant magnetic field, is necessary because we can only get satisfactory estimates on a small time scale compared to the cyclotron frequency. Second, we manage to extend a result by Miot regarding uniqueness for Vlasov-Poisson to the magnetized case. This result relied heavily on the second-order structure of the Cauchy problem for the characteristics. The main difficulty in the magnetized case is that we lose this second-order structure.

Introduction

We study the Cauchy problem for the three-dimensional Vlasov-Poisson system with a general bounded magnetic field (which we will call magnetized Vlasov-Poisson system for the rest of the paper), given by the following set of equations:

∂ t f + v • ∇ x f + (E + v ∧ B) • ∇ v f = 0, f (0, x, v) = f in (x, v) ≥ 0. (1.1)
where f in is a positive measurable function and f := f (t, x, v) is the distribution function of particles at time t ∈ R + , position x ∈ R 3 and velocity v ∈ R 3 . The self-consistent electric field E := E(t, x) is given by:

E = -∇ x G 3 * ρ, (1.2) 
The first main result of this paper, which is the continuation of [START_REF] Rege | The Vlasov-Poisson system with a uniform magnetic field: propagation of moments and regularity[END_REF], is to prove the propagation of velocity moments for (1.1) with a general magnetic field B. We manage to obtain this result by combining Pallard's method [START_REF] Pallard | Moment propagation for weak solutions to the Vlasov-Poisson system[END_REF] with an induction argument using the cyclotron period similar to the one in [START_REF] Rege | The Vlasov-Poisson system with a uniform magnetic field: propagation of moments and regularity[END_REF]. However, in this paper we don't obtain explicit singularities like in [START_REF] Rege | The Vlasov-Poisson system with a uniform magnetic field: propagation of moments and regularity[END_REF] because we use the "Lagrangian" point of view (study of the characteristics) from [START_REF] Pfaffelmoser | Global classical solutions of the Vlasov-Poisson system in three dimensions for general initial data[END_REF] instead of using the "Eulerian" point of view (study of the distribution function) from [START_REF] Lions | Propagation of moments and regularity for the 3dimensional Vlasov-Poisson system[END_REF][START_REF] Rege | The Vlasov-Poisson system with a uniform magnetic field: propagation of moments and regularity[END_REF]. This means we need to work on a small time scale compared to the cyclotron period T c = 1 B ∞ to obtain estimates analogous to those in [START_REF] Pallard | Moment propagation for weak solutions to the Vlasov-Poisson system[END_REF]. This is due to the fact that on time scales comparable to T c or greater than T c , the variations of the characteristics are large and so the method in [START_REF] Pallard | Moment propagation for weak solutions to the Vlasov-Poisson system[END_REF] fails. The second difficulty is to show that the estimates from [START_REF] Pallard | Moment propagation for weak solutions to the Vlasov-Poisson system[END_REF] are also valid in our framework up to a certain time depending on T c , and that these estimates depend only on quantities that don't prevent us from using the induction argument. Finally, propagation of velocity moments also implies propagation of the regularity of the initial data which means we have existence of classical solutions to (1.1). This result is detailed in [START_REF] Rege | The Vlasov-Poisson system with a uniform magnetic field: propagation of moments and regularity[END_REF] (theorem 2.5) for a constant magnetic field under additional conditions on f in (f in decays faster in velocity) but can be easily extended to the case of a general B.

Now we turn to results regarding uniqueness. First let's mention the major contribution by Loeper [START_REF] Loeper | Uniqueness of the solution to the Vlasov-Poisson system with bounded density[END_REF] who proved, for the unmagnetized Vlasov-Poisson system, that the set of solutions with bounded microscopic density was a uniqueness class. This result was also extended to (1.1) for a constant B in [START_REF] Rege | The Vlasov-Poisson system with a uniform magnetic field: propagation of moments and regularity[END_REF] and we discuss how to prove a similar result for a general B below. Then in [START_REF] Miot | A uniqueness criterion for unbounded solutions to the Vlasov-Poisson system[END_REF], Miot improved the result by showing uniqueness under the condition that the L p norms of the macroscopic density grow at most linearly with respect to p. This allows for solutions with unbounded macroscopic density, more precisely with logarithmic blow-up. This paper's second main result is to prove that this uniqueness condition is also valid for (1.1), but only with added assumptions on the velocity moments of the initial data. In [START_REF] Miot | A uniqueness criterion for unbounded solutions to the Vlasov-Poisson system[END_REF], a key point was exploiting the second-order structure of the characteristics of the Vlasov-Poisson system. This explains why the uniqueness condition from [START_REF] Miot | A uniqueness criterion for unbounded solutions to the Vlasov-Poisson system[END_REF] doesn't apply to the two-dimensional Euler model for incompressible fluids, which presents many similarities with Vlasov-Poisson, whereas the condition from [START_REF] Loeper | Uniqueness of the solution to the Vlasov-Poisson system with bounded density[END_REF] works for both models. It is simply due to the fact that the characteristics of the Euler model only verify a first-order ODE. In our case, the main difficulty is that the added magnetic field breaks the second-order structure of the Cauchy problem for the characteristics. We manage to get around this by proving that the characteristics in the magnetized case can be controlled by assuming more regularity on B and with the additional assumptions on the moments of the initial data mentioned above. With these additional assumptions, we deduce a new uniqueness condition which is actually the same as the sufficient condition imposed on the initial data to verify the uniqueness criterion in [14, theorem 1.2] Outline of the paper: This paper will be organized as follows. We will finish this section by giving some notations and the classical a priori estimates satisfied by (1.1). In section 2 the main results of the paper will be presented. Then section 3 will be devoted to the proof of propagation of velocity moments (1.1). More precisely, we will explain how we find estimates that are equivalent to those in [START_REF] Pallard | Moment propagation for weak solutions to the Vlasov-Poisson system[END_REF] up to a time T B depending on the cyclotron frequency and show how we can then use the same induction argument as in [START_REF] Rege | The Vlasov-Poisson system with a uniform magnetic field: propagation of moments and regularity[END_REF] to conclude. We finish with section 4 where we detail our proof of uniqueness for solutions to (1.1), highlighting how additional assumptions on the moments of the initial data allow us to control the added terms due to the added magnetic field in the analysis.

Preliminaries

Let's first detail the two main a priori bounds that we can deduce from system (1.1). The first bound is a direct consequence of the Vlasov equation where the coefficients are divergence-free.

f (t) p = f in p (1.5)
for all time t and exponents p ∈ [0 , +∞].

The second bound is the conservation of the energy E(t) of the system, with

E(t) := 1 2 R 3 ×R 3 |v| 2 f (t, x, v)dxdv + 1 2 R 3 |E(t, x)| 2 dx = E(0) < +∞. (1.6)
Furthermore, thanks to the conservation of the energy E(t), we have the following bounds.

LEMMA 1.1. For all t ≥ 0, we have M 2 (t) ≤ C 1 and ρ(t) 5

3

≤ C 2 with the constants

C 1 , C 2 depending only on E(0), f in 1 , f in ∞ .
We also present the standard notation for velocity moments: for any k > 2 and t ≥ 0 we define:

M k (t) = sup 0≤s≤t |v| k f (s, x, v)dvdx. (1.7)
As said before we will use the Lagrangian formulation detailed in [START_REF] Pfaffelmoser | Global classical solutions of the Vlasov-Poisson system in three dimensions for general initial data[END_REF], so we define the characteristics (X, V ) of (1.1) which are solutions to the following Cauchy problem:

     d ds X(s; t, x, v) = V (s; t, x, v), d ds V (s; t, x, v) = E(s, X(s; t, x, v)) + V (s; t, x, v) ∧ B(s, X(s; t, x, v)), (1.8) 
with (X(t; t, x, v), V (t; t, x, v)) = (x, v).

(1.9)

Then like in [START_REF] Pallard | Moment propagation for weak solutions to the Vlasov-Poisson system[END_REF], we define for any t > 0 and δ ∈ ]0 , t[.

Q(t, δ) := sup t t-δ |E(s, X(s; 0, x, v))| ds, (x, v) ∈ R 3 × R 3 . (1.10)
For the unmagnetized Vlasov-Poisson system, Q(t, δ) quantifies the evolution of the characteristics on the interval [t -δ , t]. However, in our context with the added magnetic field, Q(t, δ) will only quantify a part of the characteristic evolution.

Results

We now give the first main result of this section, which is the propagation of velocity moments of order k > 2, extending theorem 1 in [START_REF] Pallard | Moment propagation for weak solutions to the Vlasov-Poisson system[END_REF] to the magnetized Vlasov-Poisson system.

THEOREM 2.1 (Propagation of moments). Let k 0 > 2, T > 0, f in = f in (x, v) ≥ 0 a.e. with f in ∈ L 1 ∩ L ∞ (R 3 × R 3
) and assume that

R 3 ×R 3 |v| k 0 f in dxdv < ∞. (2.11)
Then there exists a weak solution

f ∈ C(R + ; L p (R 3 × R 3 )) ∩ L ∞ (R + ; L p (R 3 × R 3 )) (2.12)
(1 ≤ p < +∞) to the Cauchy problem for the Vlasov-Poisson system with magnetic field

(1.1) in R 3 × R 3 such that sup 0≤t≤T R 3 ×R 3 |v| k 0 f (t, x, v)dvdx ≤ C (2.13)
with C that depends only on

T, k 0 , B ∞ , E(0), f in 1 , f in ∞ , R 3 ×R 3 |v| k 0 f in dxdv. (2.14)
REMARK 2.2. If f in satisfies the assumptions of the previous theorem, then all the moments of order k such that 0 ≤ k < k 0 are also propagated for the solution f , simply because of the following Hölder inequality

|v| k f (t, x, v)dvdx ≤ f k 0 -k k 0 1 |v| k 0 f (t, x, v)dvdx k k 0 (2.15)
where we use the decomposition

|v| k f = f k 0 -k k 0 |v| k f k k 0 and the exponents p = k 0 k 0 -k , q = k 0 k .
Like in [START_REF] Lions | Propagation of moments and regularity for the 3dimensional Vlasov-Poisson system[END_REF][START_REF] Rege | The Vlasov-Poisson system with a uniform magnetic field: propagation of moments and regularity[END_REF], we assume we have smooth solutions to conduct the proof in section 3, and since the a priori estimates depend only on (2.14) we can pass to the limit in the approximate Vlasov-Poisson system first introduced in [START_REF] Arsenev | Global existence of a weak solution of Vlasov's system of equations[END_REF]. In fact, theorem 2.1 will be a consequence of the main estimate in this paper which will only hold for these smooth solutions because it is an estimate on Q (given in (1.10)), which isn't necessarily well-defined for functions in Lebesgue spaces. We now give this estimate on Q.

Main estimate on Q:

For all T > 0 we have

N (T ) := sup 0≤t≤T Q(t, t) ≤ C, (2.16) 
with C that depends on the constants in (2.14). In the following remark, we explain how theorem 2.1 is a consequence of (3.31).

REMARK 2.3. The estimate on propagation of velocity moments (2.13) in theorem 2.1 follows from the estimate on N (T ) (2.16) because we have:

R 3 ×R 3 |v| k f (t, x, v)dvdx = R 3 ×R 3 |V (t; 0, x, v)| k f in (x, v)dvdx ≤ R 3 ×R 3 (|v| + N (T )) k exp(kt B ∞ )f in (x, v)dvdx ≤ 2 k-1 exp(kt B ∞ ) R 3 ×R 3 |v| k f in (x, v)dvdx + N (T ) k f in 1
The first inequality above is obtained through a Grönwall inequality on |V (t; 0, x, v)|, indeed thanks to (1.8) we can write which implies

V (t; 0, x, v) = v + t 0 E(s, X(s; 0, x, v))ds + t 0 V (s; 0, x, v) ∧ B(s, X(s; 0, x, v))ds (2.
|V (t; 0, x, v)| ≤ |v| + Q(t, t) + B ∞ t 0 |V (s; 0, x, v)| ds ≤ |v| + N (T ) + B ∞ t 0 |V (s; 0, x, v)| ds
This is the classical Grönwall inequality which allows us to conclude that

|V (t; 0, x, v)| ≤ (|v| + N (T )) exp(t B ∞ ). (2.18)
The second inequality is just due to the fact that

2 k-1 (1 + x k ) ≥ (1 + x) k for x ≥ 0.
We finish this section by mentioning that, contrary to what is done in [START_REF] Pallard | Moment propagation for weak solutions to the Vlasov-Poisson system[END_REF], we don't state any results on to the periodic case. This is simply explained by the fact that there are no results related to the existence of weak solutions to (1.1) in the periodic case. One possibility would be to adapt [START_REF] Batt | A Rigorous Stability Result for the Vlasov-Poisson System in Three Dimensions[END_REF] to the magnetized case, and then combine the results from [START_REF] Pallard | Moment propagation for weak solutions to the Vlasov-Poisson system[END_REF] for the periodic case and the proof of theorem 2.1 to show propagation of moments in the periodic case.

Uniqueness

For all the uniqueness results and so also in section 4, we assume the same regularity on B (1.3).

We first mention a very important result by Loeper [START_REF] Loeper | Uniqueness of the solution to the Vlasov-Poisson system with bounded density[END_REF] where it was shown that the boundedness of the macroscopic density ρ was a sufficient condition for uniqueness in the Vlasov-Poisson system. This result was extended to the Vlasov-Poisson system with constant magnetic field in [START_REF] Rege | The Vlasov-Poisson system with a uniform magnetic field: propagation of moments and regularity[END_REF] and the proof can be adapted to the case of a general magnetic field verifying (1.3). However, in the magnetized case, we require extra conditions on the velocity moments and space moments of the initial data f in , as shown in the following theorem:

THEOREM 2.4. Let B verify (1.3), let f in = f in (x, v) ≥ 0 a.e. with f in ∈ L 1 ∩L ∞ (R 3 ×R 3 )
and assume that

R 3 ×R 3 |v| 6 f in dxdv < ∞ and R 3 ×R 3 |x| 4 f in dxdv < ∞.
(2. [START_REF] Rege | The Vlasov-Poisson system with a uniform magnetic field: propagation of moments and regularity[END_REF] Assume further that the weak solution f to (1.1) provided by theorem 2.1 satisfies

ρ ∈ L ∞ ([0 , T ] × R 3 x ) (2.20)
for all T > 0.

Then the weak solution f is unique.

However, to exploit this result, one needs to build solutions to (1.1) with bounded macroscopic density. Hence, in the next proposition, we give an explicit condition that guarantees the existence of solutions to (1.1) with a bounded ρ. PROPOSITION 2.5. Let B verify (1.3) and let f in satisfy the assumptions of theorem 2.1 with k 0 > 6. We also assume that f in is such that for all R > 0 and T > 0

g R (t, x, v) ∈ L ∞ ([0 , T ] × R 3 x , L 1 (R 3 v )), (2.21) 
where g R (t, x, v) = sup (y,w)∈S t,x,v,R f in (y + vt, w) (2.22) with S t,x,v,R = (y, w) : |y -x| ≤ (R + B ∞ |v|)t 2 e B ∞ t , |w -v| ≤ (R + B ∞ |v|)te B ∞ t .
(2.23) Then the weak solution f of (1.1) provided by theorem 2.1 verifies

ρ ∈ L ∞ ([0 , T ] × R 3 x )
for all T > 0.

This proposition was shown in [19, proposition 2.7] in the case of a constant magnetic field and remains unchanged when we take a general B. Now we present a theorem which is the second main result of this paper, where we show that the uniqueness criterion proved in [START_REF] Miot | A uniqueness criterion for unbounded solutions to the Vlasov-Poisson system[END_REF] (theorems 1.1 and 1.2) also applies to (1.1) with B verifying (1.3), improving theorem 2.4 because it allows for solutions with unbounded macroscopic density. THEOREM 2.6. Let T > 0 and B verify (1.3). Furthermore, let f in ≥ 0 a.e. with

f in ∈ L 1 ∩ L ∞ (R 3 × R 3 ) and such that R 3 ×R 3 |v| m f in (x, v)dxdv < +∞, (2.24) 
for some m > 6.

Now let f ∈ L ∞ ([0 , T ], L 1 ∩ L ∞ (R 3 × R 3
)) be a weak solution provided by theorem 2.1 with initial data

f in . If f in satisfies ∀k ≥ 1, R 3 ×R 3 |v| k f in (x, v)dxdv ≤ (C 0 k) k 3 , (2.25) 
for some constant C 0 independent of k, then f the solution to the Cauchy problem for the magnetized Vlasov-Poisson system is unique and verifies

sup [0 ,T ] sup p≥1 ρ(t) p p < +∞. (2.26) REMARK 2.7.
In our framework, an important difference with [START_REF] Miot | A uniqueness criterion for unbounded solutions to the Vlasov-Poisson system[END_REF] is that the uniqueness criterion isn't given by the inequality on the macroscopic density (2.26) but rather the stronger assumption on the moments of the solution (2.25).

As mentioned above, the assumptions of theorem 2.6 are less restrictive than the condition (2.20) and thus allow us to consider initial data with unbounded macroscopic density. This result is illustrated by the following theorem ([14, theorem 1.3]): THEOREM 2.8 (Miot, [START_REF] Miot | A uniqueness criterion for unbounded solutions to the Vlasov-Poisson system[END_REF]). There exists f in ≥ 0 a.e. such that

f in ∈ L 1 ∩ L ∞ (R 3 × R 3 )
satisfying the assumptions of theorem 2.6 and such that

ρ 0 (x) = 4π 3 ln -(|x|), ∀x ∈ R 3 , (2.27) 
where ln -= max(-ln(x), 0) is the negative part of the function ln.

In section 4, we will detail the proof of theorem 2.6 first because it is the main result of this section. Then we will present the proof of theorem 2.4 where ingredients from the proof of theorem 2.6 are used, notably the boundedness of the velocity characteristic. However in theorem 2.4 we require a condition on the space moment of the initial data (2.19) which isn't the case in theorem 2.6.

Finally, with regards to uniqueness for Vlasov-Poisson, a major open problem is finding a uniqueness condition in the periodic case. Indeed, it would be very interesting to see if the conditions found in [START_REF] Loeper | Uniqueness of the solution to the Vlasov-Poisson system with bounded density[END_REF][START_REF] Miot | A uniqueness criterion for unbounded solutions to the Vlasov-Poisson system[END_REF] could be adapted to the periodic case.

Proofs regarding propagation of velocity moments

In this section, we shall denote by C a constant that can change from one line to another but that only depends on

E(0), f in 1 , f in ∞ . (3.28)
As mentioned above, the whole proof is conducted using smooth solutions. We consider k > 2 and ε > 0 small enough, say ε ∈ ]0 , ε 0 [ with ε 0 ≤ (k-2) 2k . As said in the introduction, the main difference with the analysis in [START_REF] Pallard | Moment propagation for weak solutions to the Vlasov-Poisson system[END_REF] is that we're going to show propagation of moments for all time by using an induction argument using the cyclotron period

T c = 1 B ∞
. We begin with the initialization, so we're first going consider T > 0 with T ≤ T B , where T B is the unique real number such that

T B ∈ R * + and B ∞ T B exp(T B B ∞ ) = a, (3.29) 
with a > 0. In our method, since we can only obtain estimates on Q for T B T c , we just need a small enough so we set a = 2 -10 .

Thus, we show propagation of velocity moments on [0 , T B ] using the following result.

PROPOSITION 3.1. For all T > 0 such that T ≤ T B , (2.16) is verified. More precisely we have the following estimate on Q(t, t)

Q(t, t) ≤ C exp(T B ∞ ) 2 5 (T 1 2 + T 7 5 ) (3.30) 
with C that only depends on

k, E(0), f in 1 , f in ∞ , M k (0). REMARK 3.2.
This estimate is the analogous of the estimate (13) in [START_REF] Pallard | Moment propagation for weak solutions to the Vlasov-Poisson system[END_REF]. In our magnetized framework, we only manage to generalize this result up to the time T B .

The following section will be devoted to the proof of this proposition, and just like in [START_REF] Pallard | Moment propagation for weak solutions to the Vlasov-Poisson system[END_REF] the proof is done in three steps which correspond to proposition 3.3, proposition 3.6 and proposition 3.7.

The case T ≤ T

B PROPOSITION 3.3. For any 0 ≤ δ ≤ t ≤ T ≤ T B we have: Q(t, δ) ≤ C(δQ(t, δ) 4 3 + δ 1 2 (1 + M 2+ε (T )) 1 2 ) (3.31) Proof. Let (t, x * , v * ) ∈ [0 , T ] × R 3 × R 3 and set (X * , V * )(s) = (X, V )(s; t, x * , v * ). For any δ ∈ [0 , t] we have by definition of E t t-δ |E(s, X(s; t, x * , v * ))| ds ≤ t t-δ ρ(s, x)dx 4π |x -X * (s)| 2 ds
Our objective in the rest of this section will be to estimate the integral:

I * (t, δ) := t t-δ ρ(s, x)dx |x -X * (s)| 2 ds = t t-δ f (s, x, v)dvdx |x -X * (s)| 2 ds (3.32)
Now we will use a procedure that is inspired from [START_REF] Schäffer | Global existence of smooth solutions to the Vlasov-Poisson system in three dimensions[END_REF] which consists in splitting [t -δ , t] × R 3 × R 3 into three parts. Here the partition is slightly different because, following [START_REF] Pallard | Moment propagation for weak solutions to the Vlasov-Poisson system[END_REF], we introduce ε > 0.

G = {(s, x, v) : min(|v| , |v -V * (s)|) < P } , B = {(s, x, v) : |x -X * (s)| ≤ Λ ε (s, v)} \G, U = [t -δ , t] × R 3 × R 3 \(G ∪ B), with P = 2 10 Q(t, δ) exp(δ B ∞ ) and Λ ε (s, v) = L(1 + |v| 2+ε ) -1 |v -V * (s)| -1 (3.33)
and L > 0 to be fixed later. The main difference here with [START_REF] Pallard | Moment propagation for weak solutions to the Vlasov-Poisson system[END_REF] is the definition of P , because the added magnetic modifies the evolution of the characteristic in velocity V (s). Furthermore, we take the same numerical constant 2 10 in the definition of P as in [START_REF] Pallard | Moment propagation for weak solutions to the Vlasov-Poisson system[END_REF] is (in truth this constant just needs to be large enough). Using obvious notations, we write

I * = I G * + I B * + I U * .
The first two integrals will be more straightforward to estimate than I U * , which involves the set U considered as the "ugly set" according to [START_REF] Glassey | The Cauchy Problem in Kinetic Theory[END_REF].

The first two contributions I G * , I B * are treated the same in both magnetized and unmagnetized cases, simply because the modifications made to the sets G, B to take into account the added magnetic field don't change the computations required to estimate I G * and I B * . We succinctly present how to control both integrals following the calculations from [START_REF] Pallard | Moment propagation for weak solutions to the Vlasov-Poisson system[END_REF]. The first bound is obtained by using a standard functional inequality.

For

κ ∈ L ∞ (R 3 ) ∩ L 5 3 (R 3 ) we have κ * |•| -2 ∞ ≤ c κ 5 9 5 3 κ 4 9 ∞ , (3.34) 
with c a numerical constant. We apply (3.34) to the quantity:

ρ G (s, x) = B(0,P )∪B(V * (s),P ) f (s, x, v)dv ≤ ρ(s, x), (3.35) 
which implies the following control on I G * (t, δ):

I G * (t, δ) ≤ C(δP 4 
3 ).

(3.36)

To estimate the contribution on B, we first integrate in the space variable using a spherical change of variable.

I B * (t, δ) ≤ t t-δ v |x-X * (s)|≤Λε(s,v) f (s, x, v)dx |x -X * (s)| 2 dvds, ≤ t t-δ v 4π Λε(s,v) 0 f in ∞ r 2 r 2 dr dvds, ≤ C t t-δ v L (1 + |v| 2+ε ) |v -V * (s)| dvds, ≤ C t t-δ |v|≤|v-V * (s)| L (1 + |v| 2+ε ) |v| dv + |v|>|v-V * (s)| L (1 + |v -V * (s)| 2+ε ) |v -V * (s)| dv ds, ≤ C t t-δ v L (1 + |v| 2+ε ) |v| dvds, ≤ C t t-δ R 3 Lr (1 + r 2+ε ) drds, ≤ CδL.
The last contribution I U * (t, δ) can be written

I U * (t, δ) = t t-δ f (s, x, v)1 U (s, x, v) |x -X * (s)| 2 dvdxds = t t-δ 1 U (s, X(s), V (s)) |X(s) -X * (s)| 2 dsf (t, x, v)dvdx (3.
37) where we have the obvious notation (X, V )(s) = (X, V )(s; t, x, v). Estimating this quantity is difficult and will occupy us for the rest of the proof of proposition 3.3.

The following lemma is very important in our proof because it highlights why we need to use the induction procedure mentioned above. In the unmagnetized case , we estimate I U * by noticing that because of the definition of U , the characteristic V (s) stays close to v on [t -δ , t] because v is large compared to P and P is much larger Q(t, δ) which quantifies the total variation of V (s) on [t -δ , t]. However in the magnetized case, this stays true only under the condition (3.29) because if the magnetic field is large than the variations of V (s) on [t -δ , t] can also be very large compared to P . 

LEMMA 3.4. Let s 1 ∈ [t -δ , t] such that (s 1 , X(s 1 ), V (s 1 )) ∈ U , then for all s ∈ [t -δ , t] we have 2 -1 |v| ≤ |V (s)| ≤ 2 |v| , (3.38) and 2 -1 |v -v * | ≤ |V (s) -V * (s)| ≤ 2 |v -v * | . ( 3 
[t -δ , t] V (s) -V (s 1 ) = s s 1 E(τ, X(τ ))dτ + s s 1 V (τ ) ∧ B(τ, X(τ ))dτ
Furthermore, one of the properties of the characteristics is that we have for all (x, v) ∈ R 3 ×R 3 and τ, t ∈ R + X(τ ; t, x, v) = X(τ ; 0, X(0; t, x, v), V (0; t, x, v))

and also that the function

(x, v) → X(τ ; t, x, v) is a C 1 -diffeomorphism which means that sup t t-δ |E(s, X(s; t, x, v))| ds, (x, v) ∈ R 3 × R 3 = sup t t-δ |E(s, X(s; 0, x, v))| ds, (x, v) ∈ R 3 × R 3 = Q(t, δ).
Thus we can write

|V (s) -V (s 1 )| ≤ Q(t, δ) + B ∞ δ V (s 1 ) + s s 1 |V (τ ) -V (s 1 )| dτ
which is a Grönwall inequality, so we finally have for all s ∈ [t -δ , t]

||V (s)| -|V (s 1 )|| ≤ |V (s) -V (s 1 )| ≤ (Q(t, δ) + B ∞ δ |V (s 1 )|) exp(δ B ∞ ). (3.41) 
This last inequality highlights the main difference with the unmagnetized case, indeed when we use V (s 1 ) as a reference point to quantity the variation of V (s), we see that the added term

B ∞ δ |V (s 1 )| exp(δ B ∞ )
, which is just the added variation of the velocity characteristic resulting from the magnetic field, is potentially unbounded. This is due to the fact that even if 0 ≤ δ ≤ T , B ∞ is potentially large. This is the reason we introduce the time T B which depends on the cyclotron frequency B ∞ . Now using this last inequality, thanks to the relation between P and Q(t, δ) given in (3.33), to (3.40), and to (3.29) (because t ≤ T B ) we have

|V (s)| ≤ |V (s 1 )| (1 + B ∞ δ exp(δ B ∞ )) + 2 -10 P ≤ |V (s 1 )| 1 + 2 -10 + 2 -10 = |V (s 1 )| 1 + 2 -9
and using the same relations but this time for -|V (s 1 )| we can write

|V (s 1 )| 1 -2 -10 -2 -10 ≤ |V (s 1 )| (1 -B ∞ δ exp(δ B ∞ )) -2 -10 P ≤ |V (s 1 )| (1 -B ∞ δ exp(δ B ∞ )) -Q(t, δ) exp(δ B ∞ ) ≤ |V (s)|
These inequalities are valid for all s ∈ [t -δ , t] and so in particular for s = t. And so we can write which is equivalent to (3.38). Now let's look at the inequality (3.39). Like for (3.38), we try to write a Grönwall inequality but this time on

Z(s) = |(V (s) -V * (s)) -(V (s 1 ) -V * (s 1 ))|. (V (s) -V * (s)) -(V (s 1 ) -V * (s 1 )) = s s 1 E(τ, X(τ ))dτ + s s 1 V (τ ) ∧ B(τ, X(τ ))dτ - s s 1 E(τ, X * (τ ))dτ - s s 1 V * (τ ) ∧ B(τ, X * (τ ))dτ.
This allows us to write

Z(s) ≤ 2Q(t, δ) + s s 1 (V (τ ) ∧ B(τ, X(τ )) -V * (τ ) ∧ B(τ, X * (τ ))) dτ ≤ 2Q(t, δ) + s s 1 |V (τ ) ∧ (B(τ, X(τ )) -B(τ, X * (τ )))| + |(V * (τ ) -V (τ )) ∧ B(τ, X * (τ ))| dτ ≤ 2Q(t, δ) + 2δ B ∞ 2 |V (s 1 )| + B ∞ δ |(V * (s 1 ) -V (s 1 ))| + s s 1 |(V (τ ) -V * (τ )) -(V (s 1 ) -V * (s 1 ))| dτ
where in the second term in the last inequality we used the bound

|V (s)| ≤ |V (s 1 )| (1+2 -9 ) ≤ 2 |V (s 1 )| that we established just before.
Thus we have our Grönwall inequality on Z(s) which gives us 

Z(s) ≤ (2Q(t, δ) + 4δ B ∞ |V (s 1 )| + B ∞ δ |(V * (s 1 ) -V (s 1 ))|) exp(δ B ∞ ). ( 3 
Z(s) ≤ (2Q(t, δ) + 5 B ∞ δ |(V * (s 1 ) -V (s 1 ))|) exp(δ B ∞ ), (3.44) 
and so by following exactly the same method as above to obtain (3.38), namely using (3.33), (3.40), and (3.29), from the last inequality we can write

|V (s) -V * (s)| ≤ |V (s 1 ) -V * (s 1 )| (1 + 5 B ∞ δ exp(δ B ∞ )) + 2 -9 P ≤ |V (s 1 ) -V * (s 1 )| 1 + 5 • 2 -10 + 2 -9 ≤ |V (s 1 ) -V * (s 1 )| 1 + 2 -6 and |V (s 1 ) -V * (s 1 )| 1 -2 -7 -2 -7 ≤ |V (s 1 ) -V * (s 1 )| 1 -5 • 2 -10 -2 -9 ≤ |V (s 1 ) -V * (s 1 )| (1 -5 B ∞ δ exp(δ B ∞ )) -2 -9 P ≤ |V (s 1 ) -V * (s 1 )| (1 -5 B ∞ δ exp(δ B ∞ )) -2Q(t, δ) exp(δ B ∞ ) ≤ |V (s) -V * (s)|
Now we look at the other case.

• Second case |V (s 1 ) -V * (s 1 )| < |V (s 1 )|:
From (3.43), we deduce 

Z(s) ≤ (2Q(t, δ) + 5 B ∞ δ |V (s 1 )|) exp(δ B ∞ ). ( 3 
|V (s) -V * (s)| ≤ |V (s 1 ) -V * (s 1 )| + |V (s 1 )| 5 B ∞ δ exp(δ B ∞ ) + 2 -9 P ≤ |V (s 1 )| 1 + 5 • 2 -10 + 2 -9 ≤ |V (s 1 )| 1 + 2 -6 .
We use exactly the same inequalities to get a lower bound on |V (s) -V * (s)|, but this time the hypothesis is used in the form -|V (s 1 ) -

V * (s 1 )| > -|V (s 1 )| |V (s 1 ) -V * (s 1 )| 1 -2 -7 -2 -7 ≤ |V (s 1 ) -V * (s 1 )| 1 -5 • 2 -10 -2 -9 ≤ |V (s 1 ) -V * (s 1 )| -|V (s 1 )| 5 • 2 -10 + 2 -9 ≤ |V (s 1 ) -V * (s 1 )| (1 -5 B ∞ δ exp(δ B ∞ )) -2 -9 P ≤ |V (s 1 ) -V * (s 1 )| (1 -5 B ∞ δ exp(δ B ∞ )) -2Q(t, δ) exp(δ B ∞ ) ≤ |V (s) -V * (s)| LEMMA 3.5. For any (x, v) ∈ R 6 we have t t-δ 1 U (s, X(s), V (s)) |X(s) -X * (s)| 2 ds ≤ C 1 + |v| 2+ε L . (3.46)
Proof. If (s, X(s), V (s)) / ∈ U for all s ∈ [t -δ , t] then the estimate (3.46) is verified. Now we assume that there exists s 1 ∈ [t -δ , t] such that (s 1 , X(s 1 ), V (s 1 )) ∈ U , then thanks to lemma 3.4 we can write

Λ ε (s, V (s)) ≥ L(1 + (2 |v|) 2+ε ) -1 (2 |v -v * |) -1 ≥ 2 -3-ε Λ ε (t, v) (3.47)
and hence

1 U (s, X(s), V (s)) |X(s) -X * (s)| 2 ≤ 1 R 3 \B(X * (s),2 -3-ε Λε(t,v)) (X(s)) |X(s) -X * (s)| 2 ≤ h(|Y (s)|), (3.48) 
where Y (s) = X(s)-X * (s) and h(u 

) = min(|u| -2 , 4 3+ε Λ ε (t, v) -2
|Y (s)| ≥ Y (s 0 ) + (s -s 0 )Y (s 0 ) - s s 0 (s -u)Y (u)du ≥ Y (s 0 ) + (s -s 0 )Y (s 0 ) -2 |s -s 0 | (Q(t, δ) + δ B ∞ |v -v * |). Now we consider s = s 0 that minimizes |Y (s)| 2 when s ∈ [t -δ , t], then this implies (s - s 0 )Y (s 0 ) • Y (s 0 ) ≥ 0 and so Y (s 0 ) + (s -s 0 )Y (s 0 ) 2 ≥ Y (s 0 ) 2 |s -s 0 | 2 (3.
Y (s 0 ) -2(Q(t, δ) + δ B ∞ |v -v * |) ≥ |v -v * | (2 -1 -2 -8 |v -v * | exp(-δ B ∞ ) -2δ B ∞ ) ≥ |v -v * | (2 -1 -2 -8 -2δ B ∞ ).
We need the quantity (2 -1 -2 -8 -2δ B ∞ ) to be strictly positive and so once again we need the condition (3.29) for δ B ∞ to be small and this inequality to be verified. Now we have

|Y (s)| ≥ α |v -v * | |s -s 0 | with α > 0.
Just as in [START_REF] Pallard | Moment propagation for weak solutions to the Vlasov-Poisson system[END_REF], we bring this inequality into (3.48), integrate with respect to the time variable and estimate the integral as follows to obtain (3.46):

t t-δ h(|Y (s)|)ds ≤ t t-δ h(α |v -v * | |s -s 0 |)ds, ≤ +∞ 0 h(α |v -v * | r)dr, = (α |v -v * |) -1 +∞ 0 h(r)dr, = (α |v -v * |) -1 2 -3-ε Λε(t,v) 0 4 3+ε Λ ε (t, v) -2 dr + +∞ 2 -3-ε Λε(t,v) 1 r 2 dr , = (α |v -v * |) -1 (2 3+ε Λ ε (t, v) -1 + 2 3+ε Λ ε (t, v) -1 ), ≤ C 1 + |v| 2+ε L .
Now integrating in x, v and using the mass conservation, we finally obtain

I U * (t, δ) ≤ CL -1 (1 + M 2+ε (T )). (3.50) 
We gather all the above estimates to conclude

I * (t, δ) ≤ C(δ (Q(t, δ) exp(δ B ∞ )) 4 3 + δL + L -1 (1 + M 2+ε (T )))
≤ C(δQ(t, δ)

4 3 + δL + L -1 (1 + M 2+ε (T )))
where the last inequality is justified by the fact that thanks to (3.29) we have exp(δ B ∞ ) ≤ exp(g(2 -10 )) where g is the inverse of the function x → x exp(x) on R + . We conclude in the same way as in [START_REF] Pallard | Moment propagation for weak solutions to the Vlasov-Poisson system[END_REF], firstly by optimizing the parameter L and then by noticing that the pair (x * , v * ) is arbitrary so that we have

sup I * (t, δ), (x * , v * ) ∈ R 3 × R 3 ≥ Q(t, δ). (3.51)
Finally, we obtain (3.31).

The next two propositions allow us to conclude. The proof of proposition 3.6 is identical to the one in [START_REF] Pallard | Moment propagation for weak solutions to the Vlasov-Poisson system[END_REF] because it doesn't rely on the characteristics of the system, but rather on real analysis arguments. In an effort of clarity, and also because some arguments of the proof are more detailed in this paper than in [START_REF] Pallard | Moment propagation for weak solutions to the Vlasov-Poisson system[END_REF], we place the proof of proposition 3.6 in the appendix.

PROPOSITION 3.6. For any t ∈ [0 , T ] with T ≤ T B , we have

Q(t, t) ≤ C(t 1 2 + t)(1 + M 2+ε (T )) 4 7 .
(3.52)

Now we state the last result necessary in the proof of proposition 3.1.

PROPOSITION 3.7. There exists τ (ε, k) > 0 such that for any t ∈ [0 , T ] we have 5 ).

Q(t, t) ≤ C(1 + M k (0)) τ (ε,k) exp(T B ∞ ) 2 5 (T 1 2 + T 7 
(3.53) REMARK 3.8. We notice that we obtain the same estimate (3.53) as in [START_REF] Pallard | Moment propagation for weak solutions to the Vlasov-Poisson system[END_REF] when the magnetic field B is zero.

Proof. Using the same argument as in (2.3), we can write

M k (t) ≤ 2 k-1 exp(kt B ∞ ) M k (0) + N (T ) k f in 1 (3.54)
with N (T ) defined in theorem 2.1. Now to obtain the desired estimate we have to bound M 2+ε (t), which we manage with the Hölder inequality. Thus for any t ∈ [0 , T ] we have

|v| 2+ε f (t, x, v)dxdv ≤ |v| 2 f (t, x, v)dxdv 2+ε-k 2-k |v| k f (t, x, v)dxdv ε k-2 .
(3.55) With the conservation of the energy E(t), this Hölder inequality implies that

M 2+ε (T ) ≤ CM k (T ) ε k-2 (3.56)
and bringing this inequality into (3.54) it yields

M 2+ε (T ) ≤ C exp( kε k -2 T B ∞ ) M k (0) + N (T ) k f in 1 ε k-2 . (3.57)
Now thanks to (3.52) we can deduce

M 2+ε (T ) ≤ C exp( kε k -2 T B ∞ ) M k (0) + N (T ) k f in 1 ε k-2 ≤ C exp( kε k -2 T B ∞ ) M k (0) + (T 1 2 + T ) k (1 + M 2+ε (T )) 4k 7 f in 1 ε k-2 ≤ C exp( kε k -2 T B ∞ )(1 + M k (0)) ε k-2 (T 1 2 + T ) kε k-2 (1 + M 2+ε (T )) 4kε 7(k-2)
Like in [START_REF] Pallard | Moment propagation for weak solutions to the Vlasov-Poisson system[END_REF], we write σ( , k) = 4kε 7(k-2) and notice that if we take ε small enough we have

σ( , k) ∈ ]0 , 1[. More precisely, if ε < ε 0 then σ( , k) ≤ 2 7 , kε k-2 ≤ 1 2 and ε k-2 ≤ 1 2k
and we find

M 2+ε (T ) ≤ C(1 + M k (0)) 1 2k exp(T B ∞ ) 1 2 (1 + T ) 1 2 (1 + M 2+ε (T )) 2 7 , (3.58) 
where we used T 1 2 + T ≤ 2(1 + T ). Now since the right term in the last inequality is larger than 1 up to a constant C, we deduce that

(1 + M 2+ε (T )) 5 7 ≤ C(1 + M k (0)) 1 2k exp(T B ∞ ) 1 2 (1 + T ) 1 2 (3.59) which finally yields 1 + M 2+ε (T ) ≤ C(1 + M k (0)) 7 10k exp(T B ∞ ) 7 10 (1 + T ) 7 10 .
(3.60)

Then, using (3.52) again we deduce 5 ).

Q(t, t) ≤ C(T 1 2 + T )(1 + M k (0)) 2 5k exp(T B ∞ ) 2 5 (1 + T ) 2 5 ≤ C(1 + M k (0)) 2 5k exp(T B ∞ ) 2 5 (T 1 2 + T 7 
This concludes the proof of proposition 3.7 and proposition 3.1.

The case T ≥ T B

We conclude the proof of ( 

Q(t, t) ≤ n-1 p=0 Q((p + 1)T B , T B ) + Q(t, t r ) ≤ C n p=0 (1 + M k (pT B )) 2 5k exp(T B B ∞ ) 2 5 (T 1 2 B + T 7 5 B ).
Furthermore, we can show by an immediate induction that for all p ∈ N with p ≤ n, M k (pT B ) is bounded such that (2.14). This concludes the proof of proposition 3.9 and theorem 2.1.

M k (pT B ) ≤ C p (k, B ∞ , E(0), f in 1 , f in ∞ , M k (0)). (3.61) This is just because M k (pT B ) ≤ C 1 ⇒ Q((p + 1)T B , T B ) ≤ C 2 ⇒ M k ((p + 1)T B ) ≤ C 3 with C 1 , C 2 , C 3 depending on

Proofs regarding uniqueness

The subsections 4.1, 4.2 and 4.3 will be devoted to the proof of theorem 2.6 and subsection 4.4 will be devoted to the proof of theorem 2.4. In this section, we shall denote by C a constant that can change from one line to another but that only depends on

E(0), f in 1 , f in ∞ , T, |v| m f in . (4.62)
4.1 Proof of the estimate on the L p norms of ρ (2.26)

We consider f in that satisfies the assumptions of theorem 2.6 and let f be the solution given by theorem 2.1 with initial data f in . By construction, we have propagation of moments:

sup t∈[0 ,T ] R 3 ×R 3 |v| m f (t, x, v)dxdv < +∞. (4.63) 
Now thanks to a classical velocity moment inequality, we show how to control the L p norms of the macroscopic density with velocity moments, this inequality is given by

ρ(t) k+3 3 ≤ C f (t) k k+3 ∞ M k (t) 3 k+3 . (4.64)
with C independent of k. Since we want ρ to verify (2.26), this means that we need to prove

∀k ≥ 1, sup t∈[0 ,T ] ( f (t) k k+3 ∞ M k (t) 3 k+3 ) ≤ Ck. (4.65) Since the solution f ∈ L ∞ ([0 , T ], L ∞ (R 3 × R 3 )), we finally need to show ∀k ≥ 1, sup t∈[0 ,T ] M k (t) 3 k+3 ≤ Ck. (4.66) 
First, we recall that thanks to (4.63) where m > 6 we can infer that ρ ∈ L ∞ ([0 , T ], L p (R 3 )) with p = m+3 3 > 3 and following (4.86

) we have E ∈ L ∞ ([0 , T ], L ∞ (R 3 )). Then we write d dt |V (t, x, v)| k = k |V (t, x, v)| k-1 V (t, x, v) • V (t, x, v) |V (t, x, v)| ,
and thanks to the bound on E and the definition of the characteristics (1.8) we can infer that for all k > m

|V (t, x, v)| k ≤ |v| k + k t 0 |V (s, x, v)| k-1 (E(s, X(s, x, v)) + V (s, x, v) ∧ B(s, X(s, x, v))) • V (s, x, v) |V (s, x, v)| ds ≤ |v| k + k E ∞ t 0 |V (s, x, v)| k-1 ds.
Since the contribution of magnetic field B vanishes, the following computations are the same as in the unmagnetized case [START_REF] Miot | A uniqueness criterion for unbounded solutions to the Vlasov-Poisson system[END_REF]. In an effort to be clear, we explicit these computations nonetheless.

Integrating this last inequality with respect to f in (x, v)dxdv we get

M k (t) ≤ M k (0) + k E ∞ t 0 M k-1 (s)ds. (4.67)
Thus by induction we deduce that sup t∈[0 ,T ] M k (t) is finite for all k > m. furthermore, by another classical velocity moment inequality we obtain that

M k-1 (s) ≤ f (s) 1 k 1 M k (s) k-1 k . (4.68) Since f (t) 1 is conserved, we get M k (t) ≤ M k (0) + Ck t 0 M k (s) k-1 k ds, . (4.69) 
Differentiating this inequality allows us to write

M k (t) ≤ CkM k (t) k-1 k ⇔ d dt (M k (t) 1 k ) ≤ C ⇒ sup t∈[0 ,T ] M k (t) 1 k ≤ M k (0) 1 k + C.
By assumption on M k (0) we find for all t ∈ [0 , T ]

M k (t) 1 k ≤ (C 0 k) 1 3 + C ≤ (Ck) 1 3 ≤ (Ck) 1 3 + 1 k , (4.70) 
which finally implies that sup

t∈[0 ,T ] M k (t) 3 k+3 ≤ Ck. (4.71) 

Estimate on the characteristics

We consider two solutions

f 1 , f 2 ∈ L ∞ ([0 , T ], L 1 ∩ L ∞ (R 3 × R 3 )) such that ρ 1 , ρ 2 verify ρ 1 , ρ 2 ∈ L ∞ ([0 , T ], L p (R 3 )) (4.72)
for some p > 3. This regularity on ρ 1,2 is guaranteed by the condition (2.24) thanks to the estimate (4.64). Then we write Y 1 = (X 1 , V 1 ) and Y 2 = (X 2 , V 2 ) for the corresponding characteristics, which are both solutions to (1.8) with t = 0. This means we can simplify the notation and will write Y i (t; 0, x, v) = Y i (t, x, v), i = 1, 2. Regarding the existence of such characteristics, the condition (4.72) yields sufficient regularity on the electric field E i , i = 1, 2, so that with the added regularity assumption on the magnetic field (1.3) we can define weak characteristics thanks to theorem III.2 (section III.2) in [START_REF] Diperna | Ordinary differential equations, transport theory and Sobolev spaces[END_REF]. Now we introduce the distance

D(t) = R 3 ×R 3 |X 1 (t, x, v) -X 2 (t, x, v)| f in (x, v)dxdv. (4.73)
From (1.8) we can infer that

X 1 (t, x, v) -X 2 (t, x, v) = t 0 s 0 E 1 (τ, X 1 (τ, x, v)) -E 2 (τ, X 2 (τ, x, v)) + V 1 (τ, x, v) ∧ B(τ, X 1 (τ, x, v)) -V 2 (τ, x, v) ∧ B(τ, X 2 (τ, x, v))dτ ds (4.74)
which yields that

D(t) ≤ t 0 s 0 R 6 |E 1 (τ, X 1 (τ, x, v)) -E 2 (τ, X 2 (τ, x, v))| + |V 1 (τ, x, v) ∧ B(τ, X 1 (τ, x, v)) -V 2 (τ, x, v) ∧ B(τ, X 2 (τ, x, v))| f in (x, v)dxdvdτ ds ≤ t 0 s 0 R 6 |E 1 (τ, X 1 (τ, x, v)) -E 2 (τ, X 2 (τ, x, v))| f in (x, v)dxdvdτ ds + B ∞ t 0 s 0 R 6 |V 1 (τ, x, v) -V 2 (τ, x, v)| f in (x, v)dxdvdτ ds + t 0 s 0 R 6 |V 2 (τ, x, v)| |B(τ, X 1 (τ, x, v)) -B(τ, X 2 (τ, x, v))| f in (x, v)dxdvdτ ds = I(t) + J(t) + K(t)
The term I(t) is the quantity estimated thanks to the method in [START_REF] Miot | A uniqueness criterion for unbounded solutions to the Vlasov-Poisson system[END_REF]. As for the other two terms J(t) and K(t), since we want to use the same method as in [START_REF] Miot | A uniqueness criterion for unbounded solutions to the Vlasov-Poisson system[END_REF] which is to exploit the fact that the characteristics of the Vlasov equation verify an ODE of order 2, we need them to be controlled by

t 0 s 0 D(τ ) 1-3
p dτ ds. This is true and the estimates are given in the following proposition. PROPOSITION 4.1. For all t ∈ [0 , T ] and for all p > 3, we have the following estimates: (4.77) with

I(t) ≤ CpC ρ 1 ,ρ 2 t 0 s 0 D(τ )
C ρ 1 ,ρ 2 = max 1 + ρ 1 L ∞ ([0 ,T ],L p ) , 1 + ρ 2 L ∞ ([0 ,T ],L p ) , K B,p = 2 B W 1,∞ E 2 ∞ exp(T B ∞ ), K B = 2 B W 1,∞ exp(T B ∞ ),
and where C denotes a constant that depends only on T, f in ∞ , f in 1 . Proof of proposition 4.1. As said above, the term I(t) is the quantity estimated thanks to the method in [START_REF] Miot | A uniqueness criterion for unbounded solutions to the Vlasov-Poisson system[END_REF], so we treat it identically to find the estimate (4.75).

Let's first look at the term K(t). Since B ∈ W 1,∞ (R + × R 3 ) then for all t ∈ [0 , T ] and

α ∈ ]0 , 1] B(t) ∈ C 0,α (R 3 ) (4.78) with Hölder coefficient C B(t) verifying C B(t) ≤ max(2 B ∞ , ∇B ∞ ) ≤ 2 B W 1,∞ .
Then we simply have for all p > 3

K(t) ≤ 2 B W 1,∞ t 0 s 0 R 6 |V 2 (τ, x, v)| |X 1 (τ, x, v) -X 2 (τ, x, v)| 1-3 p f in (x, v)dxdvdτ ds (4.
79) Now we need to estimate the velocity characteristic V 2 , and using (1.8) we can write once again

|V (t, x, v)| ≤ |v| + t 0 |E(s, X(s, x, v))| ds + B ∞ t 0 |V (s, x, v)| ds ≤ |v| + T E ∞ + B ∞ t 0 |V (s, x, v)| ds.
This classical Grönwall inequality yields for all t ∈ [0 , T ]

|V (t, x, v)| ≤ (|v| + T E ∞ ) exp(t B ∞ ).
(4.80)

So that we can write Then we estimate K 1 (t) by writing

K(t) ≤ 2 B W 1,∞ exp(T B ∞ ), t 0 s 0 R 6 (|v| + T E 2 ∞ ) |X 1 (τ, x, v) -X 2 (τ, x, v)| 1-3 p f in (x, v)dxdvdτ ds, = K 1 (t) + K 2 (t).
f in = (f in ) 1 p (f in ) 1 p
where 1 p + 1 p = 1, so that with the Hölder inequality applied to |v| (f in )

1 p and |X 1 (τ, x, v) -X 2 (τ, x, v)| 1-3 p (f in )
1 p with the exponents p and p we have This concludes the proof of (4.77).

K 1 (t) ≤ K B R 6 |v| p f in (x, v)dxdv 1 p t 0 s 0 R 6 |X 1 (τ, x, v) -X 2 (τ, x, v)| (1-3 p )p f in (x, v)dxdv
To estimate the last term J(t), we also use (1.8) to obtain a Grönwall inequality on |V 1 (t) -V 2 (t)|, and since the computations are complicated we write V 1,2 (s), X 1,2 (s) for the characteristics. First we write

|V 1 (t) -V 2 (t)| ≤ t 0 |E 1 (s, X 1 (s)) -E 2 (s, X 2 (s))| ds + B ∞ t 0 |V 1 (s) -V 2 (s)| ds + t 0 |V 2 (s)| |B(s, X 1 (s)) -B(s, X 2 (s))| ds.
Now using (4.78) and (4.80) we deduce

|V 1 (t) -V 2 (t)| ≤ t 0 |E 1 (s, X 1 (s)) -E 2 (s, X 2 (s))| ds + B ∞ t 0 |V 1 (s) -V 2 (s)| ds + (K B |v| + K B,p ) t 0 |X 1 (s) -X 2 (s)| 1-3 p ds
which is just the Grönwall inequality on |V 1 (t) -V 2 (t)| we were looking for and which yields

|V 1 (t) -V 2 (t)| ≤ t 0 |E 1 (s, X 1 (s)) -E 2 (s, X 2 (s))| + (K B |v| + K B,p ) |X 1 (s) -X 2 (s)| 1-3 p ds + t 0 s 0 |E 1 (τ, X 1 (τ )) -E 2 (τ, X 2 (τ ))| + (K B |v| + K B,p ) |X 1 (τ ) -X 2 (τ )| 1-3 p dτ × B ∞ exp((t -s) B ∞ )ds.
Now we insert this inequality in the definition of J(t) to obtain 

J(t) ≤ B ∞ t 0 s 0 τ 0 R 6 |E 1 (u, X 1 (u)) -E 2 (u, X 2 (u))| + (K B |v| + K B,p ) |X 1 (u) -X 2 (u)| 1-3 p × f in (x, v)dxdvdudτ ds + B 2 ∞ exp(T B ∞ )× t 0 s 0 τ 0 u 0 R 6 |E 1 (w, X 1 (w)) -E 2 (w, X 2 (w))| + (K B |v| + K B,p ) |X 1 (w) -X 2 (w)| 1-3 p × f in (x, v)dxdvdwdudτ ds. ( 4 
(t) to bound K B |v| |X 1 -X 2 | 1-3 p .
This gives the desired estimate (4.76) on J(t):

J(t) ≤ B ∞ t 0 s 0 τ 0 (CpC ρ 1 ,ρ 2 + (CpK B + K B,p )) D(u) 1-3 p dudτ ds + B 2 ∞ exp(T B ∞ ) t 0 s 0 τ 0 u 0 (CpC ρ 1 ,ρ 2 + (CpK B + K B,p )) D(w) 1-3 p dwdudτ ds.

A second order inequality on D(t)

We begin by looking at the dependence of K B,p with respect to p. The only term in K B,p which depends on p is E 2 ∞ , and since ρ 2 ∈ L ∞ ([0 , T ], L p (R 3 )) with p > 3, then we can deduce the desired L ∞ bound on E 2 because for all t ∈ [0 , T ]

E 2 (t) ∞ ≤ 1 |x|≥1 ∇G 3 ∞ ρ 2 (t) 1 + 1 |x|<1 ∇G 3 q ρ 2 (t) p (4.85) with 1 p + 1 q = 1.
From this last inequality we can finally deduce

E 2 ∞ ≤ C(1 + ρ 2 L ∞ ([0 ,T ],L p ) ), (4.86) 
where C depends only on f in 1 . Now we consider that the solutions f 1 , f 2 verify the assumptions of theorem 2.6. This means that max( ρ 1 L ∞ ([0 ,T ],L p ) , ρ 2 L ∞ ([0 ,T ],L p ) ) ≤ Cp for all p ≥ 1, and so thanks to (4.86) and proposition 4.1 we have for all p > 3

D(t) ≤ C 1 p 2 t 0 s 0 D(τ ) 1-3 p dτ ds + C 2 (p 2 + p) t 0 s 0 τ 0 D(u) 1-3 p dudτ ds + C 3 (p 2 + p) t 0 s 0 τ 0 u 0 D(w) 1-3 p dwdudτ ds, (4.87) where C 1 , C 2 , C 3 are constants that depend on T, f in ∞ , f in 1 , B ∞ , ∇B ∞ . Let F(t) = t 0 s 0 D(τ ) 1-3
p dτ ds. Since F is increasing by construction and since p > 3 we can finally conclude that

D(t) ≤ Cp 2 t 0 s 0 D(τ ) 1-3 p dτ ds, (4.88) 
with C that depends on T, f in ∞ , f in 1 , B ∞ , ∇B ∞ . Finally, we obtain the same second order differential inequality as in [START_REF] Miot | A uniqueness criterion for unbounded solutions to the Vlasov-Poisson system[END_REF], for all t ∈ [0 , T ] we have:

F (t) ≤ Cp 2 F(t). ( 4 

.89)

From this inequality, we use the same method as in [START_REF] Miot | A uniqueness criterion for unbounded solutions to the Vlasov-Poisson system[END_REF] to conclude that for all t ∈ [0 , T ] we have f 1 (t) = f 2 (t) a.e. on R 3 × R 3 . This concludes the proof of theorem 2.6.

Proof of theorem 2.4

We finish this section with the proof of theorem 2.4, which is the extension of Loeper's result [START_REF] Loeper | Uniqueness of the solution to the Vlasov-Poisson system with bounded density[END_REF] to the magnetized Vlasov-Poisson system. As said above, this proof was already done for B constant in [START_REF] Rege | The Vlasov-Poisson system with a uniform magnetic field: propagation of moments and regularity[END_REF]. In fact in [START_REF] Rege | The Vlasov-Poisson system with a uniform magnetic field: propagation of moments and regularity[END_REF], it was already proved that under the assumptions (2.21), (2.22), and (2.23), the macroscopic density ρ is bounded (2.20), and this proof doesn't change in the case of a general magnetic field.

Like in the theorem 2.6, we require additional assumptions on the moments of f in to obtain uniqueness (compared to the unmagnetized case). However, these assumptions on the moments aren't as strong as in theorem 2.6 because the boundedness of ρ is already a strong assumption.

To prove our theorem, we only need to adapt subsection 3.2 from [START_REF] Loeper | Uniqueness of the solution to the Vlasov-Poisson system with bounded density[END_REF]. Thus we consider two solutions of (1.1) f 1 , f 2 with initial datum f in that verifies the assumptions of theorem 2.4. Like in the previous proof, we write the corresponding densities, electric fields, and characteristics ρ 1 , ρ 2 , E 1 , E 2 , and Y 1 (t, x, v), Y 2 (t, x, v) = (X 1 (t, x, v), V 1 (t, x, v)), (X 2 (t, x, v), V 2 (t, x, v)).

To simplify the presentation, we will write Y i (t) for the characteristics. We define the following quantity Q:

Q(t) = 1 2 R 6 f in (x, v) |Y 1 (t, x, v) -Y 2 (t, x, v)| 2 dxdv. (4.90)
Now we differentiate Q (which we couldn't do with the distance D (4.73)) splitting the magnetic part of the Lorentz force V ∧ B like in the previous section:

Q(t) = R 6 f in (x, v)(Y 1 (t) -Y 2 (t)) • ∂ t (Y 1 (t) -Y 2 (t))dxdv, = R 6 f in (x, v)(X 1 (t) -X 2 (t)) • (V 1 (t) -V 2 (t))dxdv + R 6 f in (x, v)(V 1 (t) -V 2 (t)) • (E 1 (t, X 1 (t)) -E 2 (t, X 2 (t)))dxdv + R 6 f in (x, v)(V 1 (t) -V 2 (t)) • [V 2 (t) ∧ (B 1 (t, X 1 (t)) -B 2 (t, X 2 (t))] dxdv + R 6 f in (x, v)(V 1 (t) -V 2 (t)) • [(V 1 (t) -V 2 (t)) ∧ B(t, X 1 (t))] dxdv.
First, we notice that the last term is null, which means we only need to control the second to last term (due to the added magnetic field) which we denote P (t). The first term is bounded by Q(t) and the second term can be estimated using the analysis from [START_REF] Loeper | Uniqueness of the solution to the Vlasov-Poisson system with bounded density[END_REF] and is bounded by Q(t) ln( 1 Q(t) ). To control P (t) we first use the bound on the velocity characteristic (4.80).

P (t) ≤ B W 1,∞ R 6 f in (x, v) |V 1 (t) -V 2 (t)| |V 2 (t)| |X 1 (t) -X 2 (t)| dxdv, ≤ B W 1,∞ R 6 f in (x, v) |V 1 (t) -V 2 (t)| (|v| + T E 2 ∞ )e T B ∞ |X 1 (t) -X 2 (t)| dxdv, = R(t) + S(t).
We recall that since ρ 1,2 ∞ ≤ +∞ we can bound E 1,2 ∞ thanks to (4.86) and the interpolation inequality:

E i ∞ ≤ C( ρ 1 , ρ ∞ ) := C ρ , (4.91) 
with i = 1, 2. This means we can simply estimate S(t) with the Cauchy-Schwarz inequality applied on the functions (f in ) 

S(t) ≤ T C ρ C B,T R 6 f in (x, v) |V 1 (t) -V 2 (t)| 2 1 2 R 6 f in (x, v) |X 1 (t) -X 2 (t)| 2 1 2 ≤ T C ρ C B,T Q(t), with C B,T = B W 1,∞ e T B ∞ .
To control R(t) we first use the Cauchy-Schwarz inequality and then the bound on the velocity characteristic (4.80), which also gives us a bound on the position characteristic. With this inequality we can show, using standard Grönwall type arguments, that Q(0) = 0 ⇒ Q(t) = 0 for all t ≥ 0, which concludes the proof of theorem 2.4.

R(t) ≤ C B,T R 6 f in (x, v) |v| |Y 1 (t) -Y 2 (t)| 2 dxdv ≤ C B,T R 6 f in (x, v) |v| |Y 1 (t) -Y 2 (t)| |V 1 | 2 + |V 2 | 2 + |X 1 | 2 + |X 2 | 2 1 2 dxdv ≤ C B,T Q(t) R 6 f in (x, v) |v| 2 |V 1 | 2 + |V 2 | 2 + |X 1 | 2 + |X 2 | 2 dxdv ≤ C B,T Q(t) R 6 f in (x, v) |v| 2 2 (|v| + T C ρ ) 2 e 2T B ∞ + |x| + T (|v| + T C ρ )e T B ∞

Appendix

As said above, we present a slightly more detailed version of the proof of proposition 3.6 compared to the one found in [START_REF] Pallard | Moment propagation for weak solutions to the Vlasov-Poisson system[END_REF].
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  )

  .39) Proof. First, because of the definition of U , we can write min(|V (s 1 )| , |V (s 1 ) -V * (s 1 )|) ≥ P. (3.40) Let's start by proving the first bound (3.38), thanks to (1.8) we have for all s ∈

  .43) We notice the term 4δ B ∞ |V (s 1 )| in the inequality that will make the analysis a bit more complicated compared to what was done to obtain (3.38), because we will have to compare |V (s) -V * (s)| to both |V (s 1 ) -V * (s 1 )| and |V (s 1 )|. To do this we distinguish between the two cases |V (s 1 ) -V * (s 1 )| ≥ |V (s 1 )| and |V (s 1 ) -V * (s 1 )| < |V (s 1 )|. • First case |V (s 1 ) -V * (s 1 )| ≥ |V (s 1 )|: From (3.43), we deduce

  49) and thanks to (3.39) we get |Y (s 0 )| ≥ 2 -1 |v -v * | and when we evaluate (3.39) in s 1 this also yields Q(t, δ) ≤ 2 -9 |v -v * | exp(-δ B ∞ ) so we have

0 ( 0 ( 3 p

 003 ) ≤ (CpK B + K B,p ) CpC ρ 1 ,ρ 2 + (CpK B + K B,p )) D(u) CpC ρ 1 ,ρ 2 + (CpK B + K B,p )) D(w)1dwdudτ ds.

( 4 .

 4 81)By applying Jensen's inequality for concave functions to x → x

R 6 1 p ≤ (C 0 p) 1 3≤

 611 |v| p f in (x, v)dxdv Cp. Furthermore, we can once again use the Jensen inequality because (1 -3 p )p = p

  .84) Like previously, we can use the Jensen inequality to bound the terms K B,p |X 1 -X 2 | 1-3 p , the relation (4.75) to bound the terms |E 1 -E 2 | and the Hölder inequality used to estimate K 1

1 2

 1 |V 1 (t) -V 2 (t)| and (f in

  )

1 2

 1 |X 1 (t) -X 2 (t)|.

.

  Thanks to the assumption (2.19) of theorem 2.4, I is bounded because we haveI ≤ C f in |v| 6 , f in |x| 4 . (4.92)From these estimates, we conclude thatd dt Q(t) ≤ CQ(t) 1 + ln 1 Q(t) (4.93) with C := C T, B W 1,∞ , ρ 1 , ρ ∞ , f in |v| 6 , f in |x| 4 .

  ). Since h is a non-increasing function, we look for a lower bound on |Y (s)|. For any s 0 ∈ [t -δ , t] we have, thanks to(3.39) 

  2.16) by showing that Q(t, t) is bounded for all time. (0), we can reiterate the procedure on any time interval I p = [pT B , (p + 1)T B ]. Indeed, T, k and B ∞ are constants f (t) 1 and f (t) ∞ are conserved in time and the energy E(t) is bounded. This means we can write

PROPOSITION 3.9. The inequality (2.16) is valid for all T ≥ T B .

Proof. For all t ∈ [0 , T ], we write t = nT B +t r with n ∈ N and t r ∈ [0 , T B [. Since the constant C in proposition 3.1 depends only on T, k, B ∞ , f in 1 , f in ∞ , E(0) and M k

-1 |V (s)| ≤ |V (s)| 1 -2 -9 1 + 2 -9 ≤ |v| ≤ |V (s)| 1 + 2 -9 1 -2 -9 ≤ 2 |V (s)| (3.42)

Proof of proposition 3.6. Let t ∈ [0 , T ]. We note here H = 1 + M 2+ε (T ) and for any δ ∈ [0 , t] we define N 1 (t, δ) = δQ(t, δ) 4 3 and N 2 (t, δ) = (δH) 1 2 as in the left hand side of inequality (3.31). We set: 

(4.98)

Then for any such t, we can write t = nc * H -1 7 + r with n ∈ N * and r < c * H -1 7 and thanks to the last inequality we obtain

c * (rH)

So that finally for all t ∈ [c * H -