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REMARKS ON A NUMERICAL METHOD
FOR UNILATERAL CONTACT INCLUDING FRICTION

C. LICHT * , E. PRATT ** , M. Raous""®

1. Introduction

We consider a Signorini problem (unilateral problem) with Coulomb
friction 1in elasticity, wunder a small strain hypothesis. For proportional
loading, the problem is equivalent to the statiec friction one introduced by
Duvaut and Lions ,[72).The general problem has been numerically treated
through an incremental formulation in Racus et al ,[88]).

For the static problem, Duvaut,[80],and Cocu,[84), give an
existence and uniqueness result for small values of the friction
coefficient K and for a regularized problem obtained using a non local
definition for the contact forces. Using the discretization of the
regularized problem, Jeannin ,[85],shows the convergence of the approximate
solution when the discretization step h tends to zero. Using a compliance
regularization, allowing a controlled penetration, Oden - Martins,[85],and
Klarbring et al,[88],give an existence result and obtain uniqueness under
the hypothesis that the friction coefficient is small.

For the initial problem without regularization, Necas et al,[80],
give an existence result for small values of p for a strip. This is done
through the introduction of a special Sobolev space for the displacement
which gives a compactness property. Jarusek ,[83], extends the result to

bounded domains.
A mixed finite element approximation has been studied by

Haslinger,[83], a relationship between the continuous problem and its
discretization is established.

In this paper, we propose an algorithm concerning a discretized
problem associated with the initial one without the regularization of
Duvaut and we give a theorem of existence. For small values of pu a fixed
point theorem may be used which implies the uniqueness of the solution as
well as the convergence of the algorithm. However, the relationship between
the continuous problem and the discretization proposed here is still an
open problem.

Numerical tests on the convergence illustrate these theoretical
results. Special attention is paid to the influence of the friction
coefficient and to the dependence on the mesh size. The numerical
convergence is better than the theoretical previsions : the conditions
required by the fixed point theorem seem to be very strong.



C. Licht et al.

2. The continuous problem

2.1 ic bl r lo

We consider an elastic solid occupying a bounded regular domain R
of R'with a regular boundary I' = FMUT,UT, and submitted to a volume force
density A(t) ®,(x) in N and to a surface force density A(t) @,(x) on T, (t
and X denote respectively the time and the space variables and A is an
increasing positive mapping such that A(0) ~ 0). The solid is clamped on
one part of its boundary I, . On I, the solid is in unilateral contact with
friction with a rigid obstacle.

For the quasi-statie problem with initial econditions equal to
zero, because of the specific nature of the loading, the displacement
U(x,t) and the constraint Z(x,t) may be sought as (U(x,t), Z(x,t))=
A(t) (u(x), o(x)) where the equations relating u to o are as follows :

(1) aiJ - K“kh e in Q ,
L Q
(2) &y =7 ; +yu ) InQ,
(3) o, =P, inQ,
(4} g0, = @, on [,
(5) u =0 on l"l,
(6) o ;0 = F,
(7) u, €0
(8) F, €0
onT, ,
{(9) u, .Fy = 0
{10) IFTI € pn IF"I
with
(11) lFrl<p.lFNl-0u.r-0.
and
(12) fFI' - r IF, I = - ur is collinear with F,and with the same
direction ,
where :

- K yxn are the elasticity coefficients ,
- n, are the components of the external normal to I' ,

Uy =mwyn and up, =, - wn,

- F“— O'“nlnd and Fu' o'Un‘1 - ani ,

- K is the friction coefficient,
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2.2 A mathematical formulation

The following assumptions are set on the data :

[--)

i3kh" Kjikh- Kiink €L
(13)

3, Rijen Txn Tiy = % Tij Ty v Tyg = Tsas
(14) wech),

Fp, >0 such that u(x) » B> 0 Vx€ F; ,
(15) ¢, €2, @ €L3(I,)"
We then set :
(16) V=t vEHE" fv=0onl },
(17) K=(vEV /v, €00nTl,},
(18) a(u,v) = IQ K“kh € nt dx ,
(19 L{v) = IQ P,V dx + jrz ®,vds .

Let W be an element of ¥ . If s=Ke(W) is such that div s=-9, ,
we can generallize (on the basis of Green's theorem )the notion of stress
vector s.n on I'; by introducing the element F(W) € H” (I';)* defined by :
(20) <F(W), v> = a(w,v)-L(v) VvEV ; v=m0 on nur, ,
where <.,.> is the duality product between l-l"é(l'3 )® and I-l}‘(l"3 ). We shall
maintain the same notation, i.e. <.,.>» , for the duality product between
H%(T,) and H ().

Because of the regularity of the boundary I', we can generalize
the notion of normal component Fy (W) of the stress vector by

(21) <F (@ , ®>a=<FW), ¢n> Vo€ H“(Fa)

A weak formulation of the system of local relations (1) to (12)
is then the following problem (cf Necas ,[80], Jarusek ,[83]) :

find u € K such that
(P)
a(u,v-u) - <Fy(u), B (lvy! - lu 1 ) >3 L(v-u) VvEK.
By introducing an extra assumption on p ,Necas, Haslinger and
Jarusek have shown (cf Necas et al ,[80], Jarusek,[83]), that this implicit
variational inequation (P) has a solution.
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. the co tresse
Through classical arguments, equation (3) 1s shown to be verified
in the distribution sense together with the limit conditions (4) (resp.(5))
on I, (resp. I'|) in the trace sense.
By choosing v=uty, & being regular and with a normal (resp.
tangential) component negative (resp. null) on r‘a, one obtains that F,

belongs to H -*<r',) ; this negative distribution is therefore a negative
measure, evidently equal to the opposite of its absolute value. Then by
choosing once again wv=uy, ¥ being regular but this time with a normal
component null on I', one obtains :
<F,_, uur><<u. Il-'nl,hurb ,

which establishes that F; (and therefore F) is a measure and that condition
(10), which expresses the fact that the stress vector along f; belongs to
the Coulomb cone, is satisfed in a measure sense.

3. A fipire dimensional problem

To problem (P) is associated a discretised problem by the use of
a finite element method .The discrete problem is shown to have a solution
which, under a condition on the friction coefficient u, is unique.

3-1 DLV L S B 8
We shall adopt the following notations :

- @ is a regular triangulation of the domain N : Q- U‘E@K
(cf Ciarlet (78]) ,

- Let us set ;

X - {w € ¢ (ﬁ)/ W

ePl},
KEE

where P, is the set of polynomials of degree 1l ,
-Vh-{ve(xh)n /v-OQnrl},

- K- {v €V /v, €0on r;} ,

- ¥* is the space of traces of X® on I, ,

- V* is the space of traces of V' on T,
P 3

We then set (w,) (resp.(v;}), i = 1... M (resp. P) a basis of X* (resp. V')

and {;:'} (resp, {;:’)0. i=1... ﬁ (resp. ;), a basis of ih (resp. Gh)

constructed from the non-zero traces of the w, (resp. v,) on I, . The fact
that one uses P ; finite elements enables us to assume the w, to be

positive. To each ;1 one can associate a unique element Rv, = v, on I and
equal to zero on each interior vertex of €. This defines a linear mapping

R from V¢ to Vb .
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We now define a discrete version Fland Fﬁ of the mappings F and

Fg by :
(22) <F(v),v>=a (v,Rv) - L(RY) Vv EW, VyEyh |
(23) < Fi(v), w> =< F'(v), wvn > VwueExhk VveEy

Finally ,let I denote the restriction to I, of the interpolation
operator associated with XP. Note that IP is such that :

. ] oh
(24) 3 e(h): Im('v“)lx.z(l"a) < c(h) Iv® l:."‘cf',: Vv EY

And once again because of the use of P, finite elements :
(25) I (v) is positive for all positive continuocus v on r,
A discrete formulation of problem (P) in VP is then :

Find W® € K* such that : ¥ v E K
(26) (P") |a(u®,v -u") - < u E(u), TP(lv ] - Iu.rhl) > > Liv-ul) |

Remark : In order to simplify the notation we suppose here that the
friction coefficient p 1s constant. The general case can be obtained by

setting IPp instead of p.

3.2 An equivalent fixed point problem :

Let G be the set of positive linear mappings on XP.
For all g € G the following problem :

Findu:ElK" such that : ¥V v € K

(27) (B%) a(uy,v -u?) + < g, "‘(|Vrl~|u‘,‘,]) > 2 L(v-u}) .

has a unique solution. This is because the use of P, finite elements
implies that the mapping v =< g, |nh(|v,|)| > 1s convex and therefore

problem P: is a classical minimization problem of a convex functional with

quadratic growth.

Let us now define the mapping T by :

T(g) = - # Fi(ul) for g€G .
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We shall now make sure that T takes its values in G, that is to

say that T(g) is a positive linear mapping on X"
<T(E): w$>-'<|"‘E:(u:)» wi>
- h - o
|J~<F"(u‘), w, >

- 1 [a b, RCwm) - LRC-wm)]

The w, are positive because of the use of P, finite elements, so

that R (-;‘n) is negative. By setting v = u? + R(-zin) (which is an element

of K*) in inequality (27) one obtains :

a(ul, R(-¥,;n)) - L(R(-w;n)) > - <g, TE(|cut + R(-;,n)),|-|U‘.‘=|>> :

And finally as (R(w,n)); = O ,
<T(g), w, >3>0 .

Therefore the existence of a fixed point of T is equivalent to
the existence of a solution u® of problem P®.

3.3 A constructive existence result in U®

We shall begin by establishing two lemmas concerning mapping T:
Lemma 1 :There exists C(h), positive constant depending on h, such that ,
vV g .8,€6C
1562 '

IT(EZ) = T(gl)ln <|* C(h) IEg - 81" ]
I< g, v® >I

where lgl, = Sup

i vt |
vhEV® H%(ra)

Proof :Taking g,, g € G and u,, u, the corresponding solutions of P:l

(resp. P:z), by adding the two inequalities (27) one obtains :

a (U« u, u-u)€<g-g, PCluyd - lul)>.
Because of the ellipticity of the elasticity matrix (13) one
has :
1
lu, - ulluz(Fa; < = lg, - g, 1. PClug,t - D L2

0
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and by using (25) followed by (24) :

c(h)
I - 2 g - |
(28) Yy “1|Lz(r3) x, lg, - g I,

By the definition of F} :
<E(u) - By(u,), w, >=a(u-w, Ry,) ,
so that :
@9 R - B [L<c - gl
8%y

The lemma may now be easily deduced from (28) and (29) because
the norms H* and L2 are equivalent on the finite dimensional space VP,
Lemma 2 : I M >0 such that IT(g)l, < M Vgeg.

Proof : By setting v=0 in inequality (27) one obtains :

(30) l“:,al <c, ,

and because :

I< F:(u:), vt o>

IT(g)l, = p Sup

!
lyb |
v EY a*crsa

a(u:,van) - L(Rv®n)
- K Sup .

B
Ivd |
vt EVY "K‘ra’

using (30) one concludes.

Theorem 1 : Problem P* has a solution .

Proof : Let H be the intersection of G with the ball of centre 0 and

radius M. H is a compact convex of the dual of V", Because of lemma 2,

T(H)CH and T is continuous by Lemma 1.
The existence of a solution u : of PRis deduced by applying

Brower's theorem to the mapping T. Lemma 1 induces the following
proposition,.
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1
tio c Ifp < E?E; , the mapping T is a contraction and there exists
a unique fixed point g" of T obtained as the limit of the following
sequence :
0

- g given ,

- gn~1'1_ T(g“)

1
eore . If mp< TSy problem P' has a unique solution uj,

4. algorichm

We determine the fixed point of the application T introduced in
section 3 .
For each given value of g, we solve problem P, to get the solution up -
Because of the symmetry of the bilinear form a(u,v), the variational
inequality (27) is equivalent to the minimization of the functionnal JB(v)

on the convex Kt with ,
1
P v) = S alv,v) - L) +<eg, (v, ) > .
As before we introduce a mesh with P, triangles with linear interpolation

for the displacements.
Denoting by I ,, I, the set of the indices concerning the normal

and tangential components of the contact displacements respectively, the
convex K* is written as :

2N R ifi€1, ,
e -T1 K, . with K, =
i=1 Rif 1 €I,
N being the total number of nodes.
Note : this is due to the positiveness of the shape functions for P,

elements. For higher order finite elements, K" would be much more
complicated.

We must find the vector ;; € K* minimizing in K* the functional:

IV == AY-F.S +E|3 |
> . v .l

where - v is the vector of nodal displacements ,
- A is the finite element matrix of general term a ;= a (w,, wJ)

and where w, are the shape functioms ,

- F is the loading vector: F, = L(v,) ,
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- G is the sliding limit vector. We underline the essential role of
the restriction mapping IP :

<g,ﬂ‘(2v w, )>-<g,z w, v 1>

T
i ! i

-2 <g o w >lv, 1,
i
G =<g, w>.
On the basis of the successive overrelaxation method(S.S.0.R.) we introduce
the following specific algorithm which takes into account both the

unilateral condition and the undifferentiable term. The minimization on one
component v, after the other leads to considering 3 cases :

If { & I, and i € I ., we have the classical minimization of a quadratic
functional on R. The overrelaxation iteration is written :

i-1 N
ui“';‘ - F, - Z a, u?” - Z a;, ujl,
a4 j=1 J=i+1

u?*‘ = (1-0) u} + w uf’K (0 is the overrelaxation coefficient)

We underline that the term E-,;-,l contains only components relative to
indices belonging to I,.

If i € Iy, we have the minimization of the same functional on the convex
K=R ,u}*'is projected onto R
ux;n - projn_ ((1-0.)) u‘i‘ + @ uﬂ:’i)

If 1 € I; , we have the minimization on R of the functional including the
absolute value which is simply treated by considering the two possibilities
for u"l? to be either positive or negative.

In Raous et al,[88], several acceleration procedures are given
such as a diagonal process on the determination of g, a4 condensation of the
problem to the contact variables alone, and a special matrix storage., So as
not to alterate the study of the convergence of the fixed point method
presented in the next paragraph, we will not use the diagonal process wich
consists in partial resolution for the first determinations of g.

We use an optimum relaxation coefficient determined through a
dichotomic research.
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5. Where results of section 3 are tested

To begin with we note that, applied to models connected to
physical problems, a pgood behaviour of the algorithm and of its
convergence has been observed.

We will focus here on how the convergence of the fixed point
iteration is influenced by the value of the friction coefficient (even for
unrealistic values), by mesh discretization, and by the choice of the
initial condition g°

The discussion is not exhaustive because it 1is limited to two
examples and to relatively few meshes; however it suggests a few comments
on the behaviour of the algorithm with regard to the results of section 3.

5.1 Description of the examples
Example A : contact of a long bar with a plane surface (plane strain
hypothesis).

A section of the bar is represented on Fig. 1 . A force density
f = -5 daN/mm® is applied on the side GE, and a force density F = 10 daN/mm
is applied on AG. On the side AD, unilateral conditions with Coulomb
friction are assumed. On the side ED, boundary conditions are imposed to
assume the symmetry (u, = 0) and to fix the point D (u, = u = 0). Plane

strain elasticity is assumed with a Young modulus E equal to 13 000 daN/mm?
and a Poisson coefficient v equal to 0.2.

RN

----_.! ———
_F, PR—

—n B C j-_ P

Fig. 1 : geometry of example A .

Details of the solution for different values of B are given in
Raous et al [88].

The test will be done on five different meshes . On Fig. 2, the
mesh Al has a local refinement on the contact boundary :N= 230 and NC~ 33.
N denotes the total number of nodes and NC the number of contact nodes.On
Figs. 3 to 6, four uniform meshes are given denoted by A2, A3, AG4, AS.
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N4 “Fﬂ N
CINEINININ
NANIN/INY
KPKPKDKD
PRERERPK

INZINZIN TN ZIN N FIN 7N
ZINZINZINEININIZINLANT AN
Wl v, .,

AR

AN

Fig. 2 : mesh Al of example A ,
N =230 , NC = 33 ,

Fig. 3 : mesh A2 of example A , Fig. 4 : mesh A3 of example A,
N=25, NC=5, N =381, NC =9 .

NSV R RSN
A ANAYAN AR A Y, N N
SANAEEKRNSARRENKR
DOARAR AR RARIRRREE
AOARARKRSRERRRRAR
igh‘h‘ﬂ'k‘k‘u‘ﬂk‘ﬂk‘k‘k‘ﬂk‘
SYATRTAY AN DY AN ATAN AT VN AN AN NN
SABAARARRRERARER]
A A AN AN AY AN ANAY AN AN AN AN AN N
RAYATAT AN G LN Y
SRLNNANSNENARKREARKER]
AAARRKERKARKKRER]
IAANNISISIRIAERN IS KIS
PAANANSKSARERANSKRE
RY AT AT AT AN AT AT AN LAY LAV
DNRNARANISRSASER]

: mesh A5 of example A,

Fig. 5 : mesh A4 of example A , Fig. 6
N = 1082 , NC = 33 .

N =289 , NC = 17

Example B : a dovetail assembling .

The geometry is given in Fig. 7. This is a two body contact problem
with an oblique contact zone. We show in Raous et al ,[88], how to
generalize the formulation and the algorithm for such a problem. In the
same paper, the complete solution is given. Plane stress hypothesis is
assumed. The meshes given in Fig. 8 are used (they have respectively 19 and

9 couples of contact nodes).
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|

i A
!
! E = 240 daN/mm?
| B v = 0.38
- w=0,2
| ¢ = -0.002656 daN/mn?
A
o
7

Fig. example B .
Dovetail assembling (displacements amplified twenty times).

NN SRR
SSOREESRRERK
R ER
4n'*';t"’;.:?,‘
wé‘g‘#‘:%‘ NS .4§‘ ‘\

SN ROOENIZ
» RS

;mni%g&%an
N ZINIZISEISEZN

N/IN/IN/INZINA
INAN/IN/INZIN
ANAN/IN/NZNY
/IN/IN/NZINZIN
NAN/IN/IN/NY/
INANAIN/NZIN

Fig. 8 :meshes Bl (N=384 NC=38) and B2 (N=148 NC=18) of example B .

5.2 1 Ltud

In the next two tables we give the number of iterations on g needed
for rthe fixed point process to converge for different values of i and for
different meshes. Some values of W are very large and have no mechanical
sense : the point is to check the apparent restriction of theorem 2 on the
magnitude of u,

Table I concerns example A and table II concerns example B.

The indication "no convergence" means that the tests of convergence
were not satisfied after a given number of iterations depending on the size

of the problem.
The test of convergence on g is :

J Erlo Skloo
<10°? with Igleg = Sup g | .
1% oo 1€1,
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The test of convergence for the relaxation procedure is :

2N
fu k+1l _ ukul ) 2
< .510°% , with I&I, = ] -
Iu.kl1 i=1
mesh
Al A2 Al Ab a5
value of p
0.01 4 4 4 4 4
0.1 6 5 5 6 §
0.2 7 6 6 6 7
0.4 7 7 7 8 8
0.6 8 8 8 8 9
1 10 9 9 9 10
2 14 11 11 12 15
S no conv S no conv |no convy | no conv
50 8 5 5 no conv | no conv
100 8 S 5 no conv | no conv

Table I:

number of fixed point iterations for different meshes
of example A.

Table L:

mesh
Bl B2
value of #

0.01 4 4
0.1 6 7
0.2 9 9
0.4 21 22
0.6 ne conv no conv

i no conv no conv
2 no conv no conv
5 14 no conv
10 22 no comnv
50 6 no conv
100 6 no conv

number of fixed point iterations for different
meshes of example B.
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Comments :
* In the range of physical admissible values of the friction

coefficient, the solution is obtained in less than 10 iterations on g and
the Influence of m is weak for this range of values. When the problem 1is
close to a frictionless one the number of iterations to get convergence is
small (4 iterations), in other cases it 1s about twice as much (between 6
and 10 iterations).

* For large values of i (between 1 and 100), convergence is not
obtained for special ranges which are not especially the largest values of
p. By checking the values of g in these cases, we observe that g oscillates
between two neighbouring values: the difference resides in ome or two nodes
located at the boundary between the separated zone and the sliding
one.Theses nodes are oscillating between contact with small contact force
(ug=0, Fy small) and a small separation (uy small,F,=0). The first state
introduces a small tangential force whereas the second one gives a zero
tangential force. The difference (g k+1 . oky does not succeed in passing
the convergence test(107%), and the algorithm does not stop. This behaviour
seems to be associated to the difficulty to compute the limit case of
contact without transmission of normal forces (uy = 0, Fg = 0). This has
been observed also on an example presented in Raous et al [88] concerning a
metal forming process with a small friction coefficient (p = 0.2).

* The mesh seems to have some influence because cases with large
fricion coefficients ( 1 = 100 for example ) converge for some grids and
not for others. The limit between the separated zone and the clamped zone
(for 1 = 100 there is no sliding zone) introduces a singularity of the same
kind as that of a crack in an elastic medium and that we are using values
of g computed in this part.

We have to underline that the presence of a sliding zone introduces
a tangential force in the neighbourhood of the clamped part and gives a
regularization of the previous singularity. The solution is smoother for
small friction coefficient and the convergence 1is the same for the
different meshes.

5.3 n e_choice t g

As presented in table W, the choice of the initial condition g’
seems to have no Influence on the number of iterations on g. Tablell
concerns example A with p =1 treated on the mesh Al, for which a good
convergence has been cbserved.

initial number of Total number

condition g° iterations on g|of relaxation iterations
(0,0,... ,0) 10 207
(L,1,... ,1) 10 205
(10,10,... ,10) 9 172
(100,100,... ,100) 9 172
(solution computed for B = 0.6) 9 172
(small perturbation of 9 171

the right solution)

Table IO : influence of the initial condition glon the convergence
for example A with p = 1 treated on the mesh Al (N = 230, NC = 33).
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3-4 Influence of the mesh on the convergence and on the solution

Fig. 9 gives a representation of the contact boundary of the
solution of example A for the different meshes. A good coherence of the
solutions is observed. One observes numerically the convergence of the
solution as h decreases, for the contact aera.

mesh A2 Q_ X X 1 I

mesh A3 Q X X X X 1 1 I I

mesh A4 Q0 X X X X x X X 1 I I b dl I ) (. S

mesh AS QOO0 x x xxx % % xxxxxxxIJITIITIITIITIIITII 111

mesh Al QO 0 x x % x x xxx %x%xxxxx7T I JTIJITIIIIIIITI] 1

Fig. 9 : representation of the contact boundary for example A (kb = 1) for

the different meshes : 0 separate node
X sliding nede
I stick node .
6. Conclusjions

We submit in this article a dicretization by classical finite
elements Pl of the unilateral contact problem with Coulomb frictionm.
Existence, as well as uniquenesss when the value of the friction coefficent
B 1s small, has been obtained. A fixed point theorem is used to establish
unicity for p small, therefore convergence of the successive approximation
algorithm follows. The use of a classical finite element method implies
that the implementation is simple (at each iteration a problem of
minimization of a convex functional 1is solved) and therefore allows for
many numerical tests. One observes in particular that for realistic values
of the friction coefficent convergence is obtained in less than ten
iterations. For these same values of p the discrete solution behaves very
well with regard to the mesh refinement, which seems to indicate that the
solution of the discrete problem has a limit when the mesh step tends to
zero
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