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Chapter 19

On Two Variational Inequalities Arising
Jrom a Periodic Viscoelastic
Unilateral Problem

M. Raous

1. INTRODUCTION

We study the periodic problem connected with the behaviour of a viscoela-
stic cracked solid submitted to periodic loads. The unilateral conditions on
the edges of the crack lead to a complementarity problem coupled with a
differential equation for time. We solve the problem in the case of Maxwell
behaviour equations. In the linear case, the Maxwell law is among the most
difficult because of the presence of a secular term of displacements and
strains.

We choose a model where coefficients are functions of time (often, via the
temperature, but sometimes also directly (aging concrete [1], for exam-
ple), and of space (non-homogeneous material). We show how this problem
leads to two coupled variational inequalities: the first one is a stationary
variational inequality for the secular term; the second one is a variational
inequality coupled with a differential equation for the periodic parts of the
solutions.

Here, we solve these two problems with suitable numerical methods:
a finite element method for space discretization, a Runge-Kutta method
on time, an overrelaxation method with projection to solve the inequalities.
A convenient combination of these discritization methods is realized and a
particular solving method proposed. The associated algorithms are given
and applied to an example: we give numerical results and discuss them from
a mechanical point of view.

2. THE MECHANICAL PROBLEM

This work takes place in the study of the adaptation of a cracked solid
under cyclic thermal fatigue: we try to show from a theoretical point of
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view that a thermic crack is not brittle. It will be possible with a suitable
choice of damage law (generally empirical) to calculate, from the stress
solution of the problem with a given length of crack, the progression velo-
city of the crack.

Il.re, we calculate the stress and displacement fields for the periodic
problem with a given crack configuration. The study we present here is rela-
ted to the oligocyclic fatigue in cracked turbine blades. The period T will be,
for example, the period of the plane flight.

Since the hypothesis of contact without friction is unrealistic in physics,
the crack is supposed to lie in a plane of symmetry, which allows us to
formulate conditions of contact mathematically identical to those of a con-
tact without friction. The periodic problem leads to a weakly coupled
system of variational inequalities equivalent to two complementary systems.

Let us consider a plane medium for wich the classical hypotheses of infi-
nitesimal displacement and plane stresses are assumed. For these reasons,
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we suppose the problem to be symmetrical with respect to the axis Ox,, so
that we need only consider the part located in the positive x, half-plane.
We denote by © the open set limiting the medium, 3Q being its boundary.

All the fields considered, given or unknown, will be functions of time ¢
and of position x = (x,, x, ): for example, the condition

¥ (t,x)el0, T]x 3,0 u(t,x)=u(t, x)
will be written u = 4® on 9, Q.

The unknown fields of displacements, stresses and strains will be respect-
ively denoted u, s, and e.



Variational Ineqs. and Viscoelastic Unilateral Problem

A prescribed strain field e° is given on §. Here, it is a dilation field:
(D e® =-x0

where 6 is a temperature field and x a field of thermal dilation symmetrical
tensor. We set

2) e=Du+ ¢e°

that means

1 ( ouY; oy )
&= (— + —L |- x..0
T2\ T ok )X

with tensor notations.
As for now, we shall write the constitutive law under the symbolic form

(3) B s= A (e)
which represents a functional relation between the stress and strain fields
will be specified in section 3.

Equilibrium equations are written

4) Sij, ;= - ®1i

where ¢, denotes a given field of forces per unit area on [0, T] x £2.
The boundary is divided into four disjoint open arcs. We define

(5 ) u=0 on 81 Q
The symmetry hypothesis is written in the form

(6) u, =0 51, =0 on 9, Q

On 35 Q, we give a field ¢, of forces per unit length:
7 Sijty = ¢

The arc 3, is the upper edge of the crack: it is submitted to contact
forces from the lower edge (they are vertical due to the symmetry). These
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forces are represented by a field of forces (0, g) per unit lengthon [0, T x 04 £2.
Then, the equilibrium equations on 9, {2 are written:

(8) 512 =0 -2 = § on 9,4 £2
Let us note that g is unknown.

Now, we write the following unilateral constraints that will lead to the com-
plementarity problem:

(9) Uy = 0
(10) g>0 on 9,0
(11) Uy "8 = 0

where uy is the second component of the trace of u under 9, .

The condition (9) means that the edges of the crack can be parted but
cannot interpenetrate each other; g is a compression force.

Finally, the condition (11) means that the contact force g vanishes when

the edges are parted.

3. THE CONSTITUTIVE LAW

We choose for (3) a Maxwell behaviour law that allows one to take into
account the flow phenomenom. We write it with the strain parameter ¢ (see

[41):

s(t, x) = n(t, x) £ (, x)

12
(12) 52, x) = K2, %) [e(t, x) - £(t,%)]

n and K are mappings defined on [0, T] x  with values in the space of 3x3
symmetrical matrices: K is the stiffness matrix, and 7 is the viscosity matrix.

S
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We shall look for a periodic stress solution. We see immediately from equa-
tion (12) that E will be periodic, but in general with a mean value different
from zero. Therefore, the strains ¢ and e take the form:

(13) £(t, x)=alx)t + r(t, x)
(14) e(t,x) = a(x)t + p(t, x)

where a(x) is a strain secular term.
Consequently, the displacement will have also the form:

(15) u(t,x)=px)t + q(t, x)

where f(x) is a displacement secular term. These secular terms a(x) and 8(x)
mean that, under constant loads, the strains and the displacements are linear
with time (flow phenomenom).

The constitutive law (12) shows that the strains will be defined with an
arbitrary additive constant on time. Then, the solutions will not be unique.
Consequently, we may choose r(z, x), p(¢,x) and q(¢,x) as periodic func-
tions of time with mean value zero.

4. FUNCTIONAL SCHEME

The mathematical approach of that Signorini problem (see unilateral condi-
tions (9), (10), (11)) are treated in [2, 3] by duality and virtual works tech-
niques. We recall here the functional scheme.

The situation is summed up in the following:

uye L(C) L(CO)cT (-, ) G g e G
Lt VIL

ueC C cU (, » dcU ¢ e &
D D

e,t eE E (, S s € S

with U= Hj; (Q)* space of displacement defined by:
U={u=wW,,u))ueld'(Q);u=00n9,Q;u, =00na, N}

C is the cone defined as the set of displacements which have the second
component of their trace on 9, Q positive or zero:
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C={ueU:Lu> 0}

The mapping L associates to a displacement u the second component of its
trace on 3,Q. Weset ' = L(U). U ' is the topological dual of U. A classical

subset of U’ is a set isomorphic to ®=L?(£2)*x I12(3;Q)%. @ is the load space.
‘ E = I*(Q)? is the space of symmetrical strain tensors. S = L*(Q)? is the
space of symmetrical stress tensors. D is the strain operator defined by rela-
tion (2): e = Du + €°. t D transposed of D for the duality, is the equilibrium
mapping. It is defined by the relations @), (7), and (8):

Ds=¢p + g
means
-div s=¢, on

SN =¢; on 93

s'n=g on 9,4 0

(n is the ﬁormal vector to the considered arc).
The duality bilinear forms are:

Ku, oN = u(x)¢,(x)dx + j yu(x) 9, (x) dx'
Q 3,8

(e, )= [e(x)s(x)dx
)

(yu denotes the trace of u on the part 9, Q).
From a mechanical point of view, (u, ¢»is the work of the loads ¢ in the
displacement u, and - e, 5) is the work of the stress s in the strain e.

5. THE EQUATIONS

Now, we set the following asymptotic problem because of the presence of
the secular terms.

5.1. Problem P1

Let the given data satisfy: ¢(2) is T periodic and e° (¢) is T periodic. Find the
time fo, the stress s(#) (T periodic), the displacement u(@®)=p-t+q(t)
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g == | g{)drs
T 0

where

From now on, we shall always denote the mean value of a T-periodic function

f:
_ T
f=% [f(t)dt

0

5.3. Parting the problem P2 into two coupled problems

We introduce the restrictive hypothesis that the viscosity does not depend on
the time ¢.

Note In fact, we can solve the problems where the viscosity may be
written (see [3]):

n(t, x) = o (£) n(x)

where no. (¢) is a smooth, scalar, positive, T-periodic function.
Then, using the first equations of the problem P1, we can write:

s=nf with £=Dg+7¢
and then

s =nDp
It follows that the problem P2 leads to two coupled complementarity
problems; we give here, immediately, the variational form of these problems.
Problem P3 ’
Let ¢ be given. Find 8 € C such that

6)) MveC (v-B,'Dn DB-¢» >0

This is a classical elliptic problem of Signorini which is stationary. The op-
erator ‘DnD is similar to the elasticity operator and has also all the good
properties (coercivity, symmetry, . . . ). There will be no difficulties to solve
it. The solution gives us the secular term of displacement g.

It can be shown that, in the case where only the stiffness matrix K is a
function of time, the secular terms are zero if the mean values of the loads
are zero.
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with g(¢) T periodic, the strain e(¢) = at + p(¢f) with p(¢) T periodic, the
strain £(¢) = at + r(t) with r(¢) T periodic, and the force g(¢), such that

e = Du+e°

Ds = ¢+ 'Lg
s = nk ¥teln+ 1), neN
s = K(e-§)
uy = Lu
uy > 0
g >0 V>t
uy-g =0

Comment Indeed, at the points x ¢ 9, 2 of the crack where g is not zero,
the unilateral conditions are satisfied only after a time ¢,.

This is a periodic problem of Signorini type coupled with a differential
equation. We shall transform this problem into two coupled complementarity
problems: the first one on the secular terms, and the other one on the peri-
odic parts of the solution.

5.2. Parting the unilateral conditions

Theorem 1

The problem P1 is equivalent to problem P2.

Problem P2

Let ¢ () and €°(¢) be given as in P1. Find s(¢), u(?), e(®), £@), g(¢) as in P1
such that:

e =Du+e°

‘Ds = ¢+ 'Lg

s = nk

= Ke-t) ¥ tel0,T]
by = LB

gv = Lq

By =0 gy =0

g >0 and g >0

By -8 0 av-g =0
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Problem P4
Let ¢ (2) and €° (¢) be given as in P1. Find q(¢) € C, and r(¢) as in P1, such that

§)) YveC <<v-q(t5, 'DK(?) Dq(t) + 'DK@) [e® (t) -r(D)] -0t > O
G)  nr () =-K@)r@t) + K@) [Dg@) + €° ()] -nDB

with s(¢) = nDB + nr T-periodic.
The connection between the variational inequation (j) and the differential
equation (jj) is realized by the variables r(¢) and g(z).

6. DISCRETIZATION AND NUMERICAL TREATMENT

6.1. Problem P5

This problem is a classical elliptic problem connected with a stationary
variational inequality. We use a finite element method to discretize this
problem. Weé then replace the initial problem with the following approxi-
mate problem:

Problem P5

Let ¢ be given. Find

=) ot
i

such that:
v ole CP (u"-g", 1Dy DEP-9M > 0

C" is a convex subset of U" which is conveniently assumed to realize an
approximation of the given cone C U" is the finite-dimensional space
depending on a parameter-# connected with the mesh.

Let w’lf be a basis in U? (i=1,...,n). The approximate problem PS5 leads
to a discrete problem written in the n-dimensional vector space IR" (n being
the dimension of U"). We thus exibit an n x n matrix N* given by:

N,;’ = (Dw;, nDw;)

It is completely similar to the classical elasticity matrix because the viscosity
matrix n has the same properties as the stiffness matrix XK.

- We solve that first classical problem by an overrelaxation method with
projection on the cone C* at each step [6, 7]1. We are only confronted with
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the usual numerical difficulties inherent to this problem.

6.2. Problem P6

This problem is more difficult because of the coupling between the vari-
ational inequality and the differential equation. Moreover, it is a periodic
problem.

A result about the asymptotic stability of the Cauchy problem solution,
i.e. of the associated problem with initial condition (instead of the peri-
odic condition) can be found in [2, 3]. Consequently, we have an explicit
result about the asymptotic convergence of the Cauchy solution towards the
periodic solution. That explicit result (see [5]) enables us to estimate
a priori the length of time of the Cauchy solution to be calculated to have a
‘sufficiently’ periodic solution. For the examples treated, this time was
always less than 10 x T (where T is the period).

Remark 1 For the cases where that convergence would be very slow, we
shall consider a direct treatment with a Fourier decomposition on time. The
formulation leads to a very large system which is sparse and banded by block.
We have treated a one-dimensional example with this method for a case
without. constraints. The numerical difficulty comes from the very large
dimension of that matrix: we shall prefer to use the first method each time
it will be reasonable for the computation time.

Remark 2 On the other hand, we have tried to use the Poincaré mapping
(or mapping of translation) which is classical for the ordinary periodic
differential equation in a Hilbert space. For this, we introduce an integral
operator of which the discretization is alas not numerically ‘reasonable’.
So, that trial fails. However, that formulation enables us to exhibit the
asymptotic stability of the Cauchy solution and also the stability condition
(because of the use of an explicit integration method) and to give the error
estimation (in the case without constraint, for instance).

So, we shall solve the Cauchy problem associated with problem P4, where
the condition (find s =9Dg +n# periodic) is replaced by an initial condition
(r(0)=r, given). And- then, we calculate the Cauchy solution until ls(nT)-
s((n+1)D)ls< €.

The approximate problem. On space, we use a finite element method: we
write the problem P4 in the finite-dimensional space U h defined above. To
integrate the coupled differential equation, we use a Runge-Kutta method.

6.2.1 Semi-discretization on time

After several comparative trials with an equivalenf number of operations,
on several Runge-Kutta methods (order 1: Euler; order 2: Heunn; order 4)
and also on a semi-implicit method (prediction-correction), we choose the
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Heunn method with a fitting discretization on time. This method is preferable
to the order-4 Runge-Kutta method because of the variable discretization on
time. Indeed, with an equivalent number of operations, the discretization is
more adjusted in this case.

We set

fr,q, )=-0"" K@) r(t) + n7 K(t)q(t) + 07" K(¢) e (¢) - DB
The Heunn relation written on the equation (jj) leads to:
(11) Tew1=te + (1-p) Atgfy + pAtifr

with p =3/4, fi =f(re, 9k, &)
= _é_t’i [] ] = Atk
fk' ﬂ"k + 2p ﬁc’ ', tk ) and =1 + —2[7

gy’ , is a solution of the equation (j) with ¢ = #, and

At
Ty =T +'2—pk fx

Let M be the number of samples of the discretization on time (k=1,....M)

6.2.2. Spatial discretization

A finite element scheme applied to the equation (j) leads to relation (2)
similar to the problem P5 (with regard to the notations)

Ve k=1,...,M

n
=Y i of
i=1

(1) vl e CF (- qft, Axgl - Byrf + EY > 0
where A4; is the elasticity operator ‘DK D, By is the operator DKy, F{' is
the term connected with the loads ¢ ; and the prescribed strain eg.

We associate to the problem P4 the following approximate problem P6.

6.2.3. Problem P6
Let ¢ (£, x) and €° (¢, x) be given T periodic. Find gf(x) ¢ C* with

qk (x) = i: qk ool (x)

i=1
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with k=1,..., M such that:
(1) Vole C' of-q, Arql - Bird + Ffn > 0

(11) R =+ (1-p) Atxfi + pALSy
where rf‘ is given, remembering that % is the symbol for space discretization
and k is the symbol for discretization on time.

The problem P6 is the approximate_problem associated with problem P4:
we do not give here the explicit form of the discrete problem in the n-di-
mensional vector space IR" that we solve in fact, so as not to complicate
this paper with heavy notations. The exhibited # x » matrix associated with
the operator A is the classical elasticity matrix:

A,, (Dw;, KDwj)

Therefore, the algorithm is:

- we choose an initial condition r¥;

- we solve the variational inequality problem (1) by an overrelaxation.
method w1th projection on the cone C" at each step;

- as r,? and qk are now known, we use the explicit relation (11) to calculate

1 (in fact, we must solve the variational inequality (1) m times, if m is

the order of the used Runge-Kutta method: here m =2, we must solve the
inequality (1) on time again to calculate g;, and then f;1);

- and so on, until the periodicity of the stress is ‘sufficient’ i.e.

Technical remark We have to solve several times the variational inequal-
ity (1); the matrix 4 remains constant if K does not depend of time, or
changes little between two successive times # and #.1. Thus, at each step
we have a good initial condition for the overrelaxation method with the
result of the preceding calculation. We use iterative methods for this reason.

7. EXAMPLE

After several tests, the application of the method to a first simplified example
gives the following results.

It is an example where the secular term is zero. Indeed, we have solved
several problems on secular terms (solution > 0, or =0, ...): there is no
specific difficulty. So, we present here an example where § =0.

We study a square domain with a 75 nodes mesh (see Figure 1) with the
plane stress hypothesis (bidimensional problem). This calculation is a prelimi-
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nary approach to an example that should allow a comparison with an ex-
perimental study on a rectangular symmetric piece of IN 100 (turbine blade)
at 1100°C; this experience will be performed by ONERA.

Here, the temperature is then constant and in consequence all the para-
meters are constants too. Period 7=600 s. Relaxation time 7 =60 s. Young’s
modulus £ = 13000 kg/mm?. Poisson’s coefficient v=0.2. On AB, boundary
‘conditions u, =0 and, for the node B, u; =0 u, =0. On BC, the unilateral
conditions. On ED, we give the following loads

¢2xl(t, X)'_- 0
¢,x, (t,x)= F, sin 2—7’,’ t with F =10 kg/mm?
E D
A C
T 77777777777
B

Figure 1 The mesh.

on Q, ¢, (¢, x)=0 (no volumic loads), €°(#, x)=0 (constant }gmperature).

Short computational aspect The dimension of the matrix 4 is 150: the
band-width is 34. Determination of the relaxation coefficient: we find after
a dichotomic analysis of the interval 10, 2[, @ =1.919. We give in table 1,
the number of necessary iterations to obtain, in a case without constraints,
the same residue as that with the use of a direct pivoting method. We note
the great sensitivity of the method with regard to the relaxation coefficient.
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Table 1 Optimal relaxtion coefficients.

& 1.7 1.8 19 191 1919 193 195
Numberof 494 341 167 144 115 123 155
iterations

We calculate the solution of the Cauchy problem on 3 periods: the stress s is
then periodic with a precision of 3%. On time, we take M=41. The overall
computation time (including the exploitation of the results) is of 8' on the
UNIVAC 1110. We use 15k-words of the central memory and store the sol-
utions in a file of 30K-words.

The solution First, we look at the stress and displacement variations
along a period, at one fixed point (here, the node C (Figure 1)), to show the
unilateral aspect of the solution before reaching the asymptotic state. (In this
case, for the asymptotic solution, we have contact with no stresses along the
crack because the coefficients are constant and the mean value of the load is
Zero).

With plane stress hypothesis, the stress tensor takes the form:

S11 S12 O

§ =|S12 S22 0

o 0 O y hmm
A 2
da N/mm
4
X z 5/l d
\\\ o= P r C
N > % /
\\\_’/1 r/,d
:?; 0.1
44 S22 (
f‘//
q /
zjg; y /J/T
’ a bcd
Figure 2 Stress s= (813, S22, §12) at the Figure 3 Displacement Uy of the node

node C along a period. C along a period.
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Figures 2 and 3 show the unilateral aspect of the solution on the edges of
the crack: when £ e [a, b] or t e [c, d], the crack is open and we have 4y > 0
and g=0;when ¢ e [b, c], the crack is closed and we have uy=0 and g > O:
the sudden variation of s,, shows the compression effect on the
edge of the crack.

On the other hand, we can look at the displacement and the stress field in
the whole domain at one fixed time. _

On Figure 4, we show the stress level curves (3 components) for t=7/4
(maximum stress).

+56
component 3 +.0 component s,

—

+4,
_4,/ﬁ\
"4. ‘\\
\'\ \ +8. r.o
+12
component'$12

Figure 4 Stress tensor components for £=7/4

On figures 4,5 and 6, the displacements are multiplied by a coefficient
10 to see them clearly.

Figure 5 gives a more synthetic aspect of the stress state of the plate with
the principal stresses (again for ¢t = T/4).
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b

Figure § Principal stresses for ¢=7/4

In the Figure 6, we give the stress level curves of the second invariant of
the stress deviator tensor in all the cracked plate. The quantity plotted in
Figure 6 is usually used as a classical plasticity test; here, it shows the solici-

tation levels in the plate.

Figure 6 Second invariant of the stress deviator tensor in all
the cracked plate for t=T/4

T e e

e S ———
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These presentations exhibit the high stress gradient at the top of the crack.
For a better approach to the stress on that part, we shall use special elements
(special functions defined on that zone; see [8]).

8. OTHER ASPECTS AND REFERENCES

The functional analysis aspect of the problem can be found in [2,3]. In
this paper, existence and ‘uniqueness’ theorems for the Cauchy Signorini
problem and for the periodic Signorini problem are given; a result on
asymptotic stability of the Cauchy problem is also established.

Moreover, we have established several numerical analysis results with
Geymonat [5] in the case where C=U (i.e. the variational inequalities
become only variational equalities): that is the case of the problem without
crack. In this paper, we first give results of existence and asymptotic stability
for the problems by another means than in [3]. But the main result given in
[5] is to obtain the numerical stability condition under an explicit form.

Furthermore, the condition on the choice of At is independent of the
space discretization: A < 27 (where 7 is the smallest value of the relaxation
time). This interesting result occurs because we have a bounded operator
(order zero). We also give for this case, the error estimates for space and time
discretization.
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