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A REVERSE ISOPERIMETRIC INEQUALITY FOR PLANAR

(α, β)−CONVEX BODIES

GISELLA CROCE, ZAKARIA FATTAH, AND GIOVANNI PISANTE

Abstract. In this paper, we study a reverse isoperimetric inequality for planar convex
bodies whose radius of curvature is between two positive numbers 0 < α < β, called
(α, β)−convex bodies. We show that among planar (α, β)−convex bodies of fixed
perimeter, the extremal shape is a domain whose boundary is composed by two arcs
of circles of radius α joined by two arcs of circles of radius β.

1. Introduction

The isoperimetric inequality is one of the oldest problems in mathematics. In the
plane it states that the circle encloses the maximal area among all curves of the same
length. One can refer to [19] for a history of this inequality.

The reverse problem, that is, find, within the class of curves of given length, the
one enclosing the minimal area, is not well-posed. Indeed the area of any minimizing
sequence converges to 0 (one can think of a sequence of rectangles converging to a
segment). Therefore one has to look for a more restricted framework to set the reverse
isoperimetric problem in a proper way. In the literature one can find different ways to
define a well-posed problem.

In [3], K. Ball proposed to consider classes of affinely equivalent convex bodies. Modulo
affine transformations he showed that among all convex bodies in Rn, the n-dimensional
tetrahedron has largest surface area for a given volume, while among symmetric convex
bodies, the cube is extremal.

Other restrictions can involve the curvature. For example, [26] Zhang (see also the
references therein) considered the locus of curvature centers of the boundary, showing
the inequality

L2 ≤ 4πA+ (1 + ε)π|Ã1| ,
where Ã1 is the oriented area of the domain enclosed by the locus of curvature centers
of the boundary of the planar set A. One could also think of considering bounds on the
values of the curvature, with the aim of minimizing the area enclosed by plane curves
of given length. R. Howard and A. Treibergs in [17] studied planar domains enclosed
by curves whose curvature k satisfies the inequality |k| ≤ 1. A. Gard in [14], extended
this result to surfaces of revolution in R3 whose principal curvatures are bounded in
absolute value by 1. See also [7] for a reverse isoperimetric inequality in R3 involving
the Willmore energy. Other recent directions of research related to reverse isoperimetric
type inequalities have been studied for example in [13] and [20].

Within the family of planar convex sets, several papers can be found in the literature,
with assumptions on the upper or lower bounds on the values of the curvature k. A.
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Borisenko and K. Drach [8] considered convex sets whose curvature k is greater or equal
1
λ , where λ is a strictly positive constant. The extremal shape is the intersection of two

disks of radius λ (see also [11] for surfaces of revolution in R3). R. Chernov, K. Drach
and K. Tatarko [9] studied the complement interval in terms of curvature. Indeed, they
considered 0 ≤ k ≤ λ. The extremal shape is the convex hull of two balls of radius 1

λ .
Their work is developed not only for planar bodies, but in Rn, n ≥ 2.

In this paper we analyse the same reverse isoperimetric inequality within the family of
convex bodies of fixed perimeter and whose boundary has a radius of curvature between
two positive numbers α < β. We will call such domains (α, β)−convex bodies. We prove
that the following inequality for the area A(K) holds true

A(K) ≥ 1

2
(β + α)(P (K)− 2πα) + πα2 − (β − α)2 sin

(
P (K)− 2πα

2(β − α)

)
for any planar (α, β)-convex body such the the perimeter P (K) is between 2πα and 2πβ.
Moreover the equality holds if and only if K is the (α, β)−egg, that is, the (α, β)−convex
body whose boundary is composed by two arcs of circles of radius α joined by two arcs
of circles of radius β. Our result together with [8] and [9] gives a complete picture of the
reverse isoperimetric inequalities for convex bodies in the plane when one adds bounds
on the values of the curvature.

Our strategy uses the support function of the boundary of a convex set. Applying
the Pontryagin Maximum principle, roughly speaking, we can show that the radius of
curvature of an optimal set takes only the values α and β. More precisely, the boundary
of an optimal set consists of a finite number of congruent pairs of arcs of circles of
radius α and β joined each other at corner points, where the support function takes
always the same value, say λ. We will call such sets (α, β)-regular N−gones. Solving
the ordinary differential equation x + x′′ equal to α or β in the various intervals where
x is less or greater than λ, we can express the area and the perimeter as a function of
the number of the pairs of arcs and then minimize the area (keeping constant the value
of the perimeter).

The optimality condition described above is very similar to that one found in [8],
in terms of support function, as well. However, A. Borisenko and K. Drach use it in
a geometrical argument to write the area and the perimeter of an optimal body. Our
study is analytical, instead.

The paper is organized as follows. In Section 2 we will prove some regularity properties
of the (α, β)-convex sets and some geometrical features of (α, β)-regular N−gones. We
also derive some consequences of the Pontryagin Maximum Principle that we will use
to write down the optimality conditions. In Section 3 we present the main result of
this paper. We first prove the existence of an optimal body, we exploit the optimality
conditions showing that an optimal body is an α− β N-gone and then we establish the
reverse isoperimetric inequality, finding the α− β-egg as the optimal shape.

2. Preliminaries

With the notation S(A,B), where A and B are two sets and S is one of the standard
symbol for a functional space (such as C0,1 for Lipschitz functions, W 1,1 for absolutely
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continuous, etc.), we mean the space of maps defined on A with values in B. Moreover
for I = [a, b] ⊂ R with Sper(I,B) we denote the (b−a)-periodic functions in Sper(R, B).

2.1. Convex bodies and (α, β)-convexity. In this section we recall some basic prop-
erties of convex sets in euclidean spaces, we introduce the class of competitors for our
optimisation problem and prove some useful properties such as regularity and compact-
ness.

Throughout the paper we will denote with Br the closed ball with radius r > 0 centred
in the origin. By a convex body we shall mean a compact convex set K ⊂ Rn with non-
empty interior. With Kn we will denote the class of convex bodies in Rn. The support
function of K is the real-valued function defined on the unit sphere Sn−1 by

hK(v) := max
k∈K
〈k, v〉, v ∈ Sn−1.

We recall that the support function hK characterises the set K and any function h :
Sn−1 → R, such that its 1-homogeneous extension is convex, is the support function of
a convex body (cf. [22, §1.7]). Moreover K ∈ Rn is strictly convex if and only if the
1-homogeneous extension of its support function belongs to C1(Rn \ {0}) (see [22, Cor.
1.7.3 & §2.5]).

A convenient way to endow Kn with a topology is to use the Hausdorff distance
between two non-empty compact sets, denoted by dH(·, ·) (cf. [22, §1.8]). Indeed, we
recall that the perimeter and the area functionals are continuous with respect to the
Hausdorff topology on Kn (see also [18, Thm. 23 and Thm. 26 ]). By [22, Lem. 1.8.14],
given K,M ∈ Kn, we can characterize the Hausdorff distance of K from M in terms of
their support functions:

(2.1) dH(K,M) = ‖hK − hM‖L∞(Sn−1) .

Moreover, by the Blaschke selection theorem (cf. [22, Theorem 1.8.7]), every bounded
sequence of convex bodies has a subsequence that converges to a convex body in the
Hausdorff topology.

Following [22, pag. 157] we say that the convex body L is locally embeddable in the
convex body K if for each point x ∈ ∂K there are a point y ∈ L and a neighbourhood
U of y such that

(L ∩ U) + x− y ⊂ K.
The concept of local embeddability when K or L is a ball has been studied and used

in several contexts (cf. Remark 2.3 below). The following lemmata provide two classical
regularity properties related to this concept.

Lemma 2.1. If a convex body K is locally embeddable in a ball, then its support function
is of class C1,1.

Proof. From the local embeddability of K in a ball, say B, it follows that K is a strictly
convex body. Therefore by [22, Theorem 3.2.3], there exists a convex body M ∈ Kn such
that B = K + M (i.e. K is a summand of B) which is equivalent to say that K slides
freely inside B (cf. [22, Theorem 3.2.2]). The result follows by the characterization of
convex bodies with support function of class C1,1 (cf. [16, Proposition 2.3]). �

Lemma 2.2. Let K be a convex body. If a ball is locally embeddable in K, then its
boundary ∂K is of class C1,1.
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Proof. Let B a ball locally embeddable in K. Since B is strictly convex, by [22, Theorem
3.2.3] there exists a convex body M ∈ Kn such that K = B +M (i.e. B is a summand
of K), that is equivalent to ∂K being of class C1,1 (cf. for example [15, Proposition
2.4.3]). �

Let α and β be two real numbers with 0 < α < β. We say that a convex body
K is (α, β)−convex if K is locally embeddable in Bβ and Bα is locally embeddable in
K. From the previous lemmata it follows that an (α, β)−convex body is a C1,1 strictly
convex set with support function of class C1,1.

Remark 2.3. An equivalent definition of (α, β)−convexity can be given in terms of
the following notions of β−convexity and α−concavity. A convex body K is said to be
α−concave if the ball of radius 1/α is locally embeddable in K (cf. [9, Definition 1.2]).
While K is said to be β−convex if for each point y ∈ ∂K, there exist a point y ∈ ∂Bβ
and a neighbourhood U of x such that (K ∩ U) + y − x ⊂ Bβ. As a matter of fact,
as a consequence of [10, Theorem 1.9], a convex body K is β−convex if and only if K
is locally embeddable in Bβ. Therefore K is (α, β)−convex if it is at the same time
β−convex and 1/α−concave. These geometrical assumptions on local behaviour of the
boundary of convex bodies have been recently used as main assumptions to prove different
forms of reverse isoperimetric inequalites (cf. [9]).

We will mostly work in the two dimensional setting, dealing with planar convex sets,
therefore we recall some useful preliminaries results on planar convex geometry. First we
note that it is often convenient to work with the so called parametric support function,
i.e. pK(t) := hK ◦σ(t) where σ(t) = (cos(t), sin(t)) and t ∈ [0, 2π] (note that this is how
the support function of a planar convex body is defined in classical literature, cf. for
example [21] and [24]). In the next propositions we recall some well known and useful
properties related to the parametric support function of a planar convex body (see also
[6] for a recent survey on the subject). We remark that similar results holds under
weaker assumption regularity assumptions (cf. [25], [22]) but we restrict our attention
to what will be sufficient for our purposes.

Proposition 2.4. Let K ∈ K2 be a strictly convex planar body and pK its parametrized
support function. Assume that pK ∈ C1,1

per(0, 2π). Then the radius of curvature of the
boundary ∂K, ρK(t), satisfies for a.e. t ∈ (0, 2π) the equation

(2.2) ρK(t) = pK(t) + p′′K(t) ≥ 0.

Viceversa, if h ∈ C1,1
per(0, 2π) is a function satisfying (2.2), then there exists a convex

body K such that h is its parametric support function.

Proposition 2.5. Under the same assumptions of Proposition 2.4 the boundary ∂K can
be parametrized by {

x(t) = pK(t) cos(t)− p′K(t) sin(t)

y(t) = pK(t) sin(t) + p′K(t) cos(t)

Moreover the perimeter and the area of K can be computed by the following formulae

P (K) =

∫ 2π

0

(
pK(t) + p′′K(t)

)
dt =

∫ 2π

0
ρK(t)dt,
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A(K) =
1

2

∫ 2π

0

(
pK(t) + p′′K(t)

)
pK(t) dt =

1

2

∫ 2π

0
ρK(t) pK(t) dt.

The (α, β)-convexity for planar domains can be expressed in terms of parametrized
support function. Indeed a convex body K ∈ K2 is (α, β)-convex if and only if its
parametrized support function pK satisfies the inequalities

α ≤ pK(t) + p′′K(t) ≤ β a.e. in (0, 2π).

It easily follows, by Proposition 2.5, that the perimeter of any (α, β)-convex body in the
plane satisfies 2πα ≤ P (K) ≤ 2πβ. Moreover this characterization allows us to prove
that for planar domains the (α, β)-convexity is preserved by Hausdorff convergence.

Lemma 2.6. Let 0 < α < β < ∞ and {Kn}n∈N ⊂ K2 be a sequence of (α, β)-convex
bodies. Assume that the sequence Kn converges to K in the Hausdorff topology. Then
K is (α, β)-convex.

Proof. Let pKn be the parametric support function of Kn and pK the parametric support
function of K. As Kn is (α, β)−convex body then pKn is of class C1,1 and the radius of
curvature of ∂Kn exists almost everywhere. Therefore, the parametric support function
satisfies

(2.3) α ≤ pKn + p′′Kn
≤ β a.e. in [0, 2π].

By formula 2.1, as Kn converges to K in the Hausdorff distance, pKn converges to pK in
L∞([0, 2π]). Since pKn is bounded in L∞([0, 2π]), we deduce from inequality (2.3) that
p′′Kn

is bounded in L∞([0, 2π]).
By Proposition 2.5

p′Kn
(t) = −xn(t) sin(t) + yn(t) cos(t) ,

where (xn(t), yn(t)) is the parametrization of the boundary of Kn. As (xn(t), yn(t)) ∈
∂Kn and all theKn are contained in a ball, then p′Kn

is bounded in L∞([0, 2π]). Therefore

p′Kn
is bounded in the Sobolev space W 1,∞([0, 2π]). By the Rellich-Kondrachov theorem,

there exists w ∈W 1,∞([0, 2π]) such that, up to a subsequence, p′K
∗
⇀ w in W 1,∞([0, 2π])

and p′Kn
→ w in L∞([0, 2π]).

Since pKn is bounded in W 1,∞([0, 2π]), by using again the Rellich-Kondrachov the-

orem, there exists g ∈ W 1,∞([0, 2π]) such that, up to a subsequence, pKn

∗
⇀ g in

W 1,∞([0, 2π]) and pKn → g in L∞([0, 2π]).
Since Kn → K in the Hausdorff distance, the limit of pKn to pK in L∞([0, 2π]) implies

that g = x, w = g′. Thus, we can extract a subsequence still denoted p′Kn
such that

p′Kn

∗
⇀ p′K in W 1,∞([0, 2π]). This implies that pK ∈ W 2,∞([0, 2π]) which means pK is

C1,1. As pK is the parametric support function of K, then pK and p′′K are 2π− periodic.
Moreover, (2.3) implies∫

αφ ≤
∫

(pKn + p′′Kn
)φ ≤

∫
βφ for all φ smooth and non negative.

Using the weak-∗ convergence in W 2,∞([0, 2π]), we have∫
αφ ≤

∫
(pK + p′′K)φ ≤

∫
βφ for all φ smooth and non negative.
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Thus, by the Fundamental lemma in the calculus of variations, we deduce that

α ≤ pK + p′′K ≤ β a.e. in [0, 2π],

that is, K is (α, β)−convex. �

We conclude this section with an example of a family of planar (α, β)-convex bodies
that will play an important role in the sequel.

Example 2.7 ((α, β)-eggs). An example of (α, β)-convex bodies in K2 is a family of
sets that we will call (α, β)−eggs. They are symmetric with respect to the Cartesian
axes, their boundary is composed by 4 arcs of circles with radii α and β alternatively and
their centers are chosen in such a way to ensure the regularity of ∂K (see Lemma 2.2).
Given 0 < α < β < +∞ and l ∈ (απ, βπ), the (α, β)-egg, with perimeter P = 2l, can be
parametrised as follows. We set τ = 1

2
l−πα
β−α , κ1 = (β−α) cos(τ) and κ2 = (β−α) sin(τ).

We note that τ ∈
(
0, π2

)
and κ1 ·κ2 > 0. We define the points c1 = (−κ1, 0), c2 = (0, κ2),

c3 = (κ1, 0), c4 = (0,−κ2). Then the boundary of the (α, β)-egg is parametrised by

γ(t) =


c1 + βσ(t), t ∈ (−τ, τ)

c2 + ασ(t), t ∈ (τ, π − τ)

c3 + βσ(t), t ∈ (π − τ, π + τ)

c4 + ασ(t), t ∈ (π + τ, π − τ)

.

Remark 2.8. An (α, β)-egg is an example of convex set whose radius of curvature ρK
is piecewise constant and assumes alternatively the two values α and β. One could
consider in general a wider class of planar (α, β)-convex sets that satisfy this property.
i.e. considering the class of sets whose boundary is a finite union of arcs of circles with
radii α and β. Due to the regularity of the boundary given by Lemma 2.2, one can easily
infer that two consecutive arcs cannot have the same radius of curvature and at least
four arcs are needed. It follows therefore that the arcs forming the boundary of K have
to be even in number.

Example 2.9 ((α, β)-regular N -gone). Given N ∈ N with N ≥ 3, we call (α, β)-regular
N -gone the (α, β)-convex planar set K whose boundary ∂K is made up of 2N arcs of
circles alternating the radii between α and β and such that the length of all the arcs with
the same radius is constant. In order to write the parametrized radius of curvature of a
general (α, β)-regular N -gone, K, fix σ, τ > 0 such that N(σ + τ) = 2π and define, for
i ∈ {1, 2, . . . , 2N},

ti :=

{
i−1
2 (σ + τ) + σ if i is odd
i
2(σ + τ) if i is even

.

The parametrized radius of curvature of K can be written as

ρK(t) =

{
β, t ∈ [t2i+1, t2i+2]

α, t ∈ [t2i+2, t2i+3]
.

Let P (K) = L be the perimeter of K. By Proposition 2.5 we easily get

(2.4) P (K) = (βσ + ατ)N = L
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and therefore

(2.5) σ =
L− α2π

N(β − α)
, τ =

2πβ − L
N(β − α)

.

The parametric support function of K can consequently be written, by (2.2), as

pK(t) =

{
C2i+1
1 cos t+ C2i+1

2 sin t+ β , t ∈ [t2i+1, t2i+2]

C2i+2
1 cos t+ C2i+2

2 sin t+ α , t ∈ [t2i+2, t2i+3]
, i ∈ {0, 1, . . . , N − 1}.

Define λj := pK(tj) for j ∈ {0, 1, . . . , N − 1}. The continuity of pk in any tj ensures us
that

C2i+1
1 =

(λ2i+2 − β) sin(t2i+1)− (λ2i+1 − β) sin(t2i+2)

sin(t2i+2 − t2i+1)
,

C2i+1
2 =

(λ2i+2 − β) cos(t2i+1)− (λ2i+1 − β) cos(t2i+2)

sin(t2i+1 − t2i+2)
,

C2i
1 =

(λ2i − α) sin(t2i+1)− (λ2i+1 − α) sin(t2i)

sin(t2i+1 − t2i+2)
,

C2i
2 =

(λ2i − α) cos(t2i+1)− (λ2i+1 − α) cos(t2i)

sin(t2i − t2i+1)
.

2.2. Some easy consequences of the Pontryagin principle. We will reformulate
our constrained shape optimisation problem as an optimal control problem and we will
exploit the optimality conditions given by the Pontryagin principle. The optimal control
approach for shape optimisation problems is classical (see for example the monograph
[2] for a wide introduction on the subject and [1] for a more contemporary approach)
and recently has been fruitfully applied to deal with costrained optimisation problems
for convex domains (see [5], [4]). Here we summarise the elementary notions on con-
trol theory and we state the version of Pontryagin optimality conditions suited for out
purposes, considering indeed only autonomous problems with periodic phase variables
valued in R2.

Let I = [a, b] ⊂ R be a given interval, Ju ⊂ R be a compact set. For given maps
f, g ∈ C1(R3) and h ∈ C1(R3,R2) consider the problem of minimizing the functional

F (x, u) :=

∫ b

a
f
(
x(t), u(t)

)
dt

among all pairs
(
x(t), u(t)

)
∈W 1,1

per(I,R2)×L∞(I, J) that satisfy for almost every t ∈ I
the differential constraint

(2.6) x′(t) = h
(
x(t), u(t)

)
as well as the integral constraint

(2.7) G(x, u) :=

∫ b

a
g
(
x(t), u(t)

)
dt = C0

for a given constant C0. The previous constrained extremal problem is a typical exam-
ple of optimal control problem, u in the so called control variable, x takes the name of
phase variable and any pair (x, u) that satisfy (2.6) will be called a controlled process. A
controlled process that minimises (locally in a C(I)-neighbourhood of x) the functional
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F (x, u) among the controlled processes satisfying (2.7) will be called an optimal process
for F (x, u) under (2.6) and (2.7). Following the Euler’s terminology, integral constraints
of the type (2.7) are often named isoperimetric constraints and we will follow this con-
vention, motivated by the fact that in the next section we will rephrase a geometrical
isoperimetric problem as an optimal control problem and (2.7) will play exactly the role
of the constraint on the perimeter. As it is customary, we will use the self-explanatory
notations ∇xf , ∇xg, ∇xh, ∂uf , ∂ug, ∂uh and so on, to denote the partial derivatives of
f , g, h.

Theorem 2.10 (Pontryagin Principle). Let (x, u) ∈ W 1,1
per(I,R2) × L∞(I, J) be an op-

timal process F (x, u) under (2.6) and (2.7). Then there exist λ ≥ 0, µ ∈ R and
p ∈W 1,1(I,R2) not all of them trivial such that, for almost all t ∈ I,

(2.8) ṗ(t) = p · ∇xh
(
x(t)), u(t)

)
+ µ∇xg

(
x(t)), u(t)

)
− λ∇xf

(
x(t)), u(t)

)
and the optimal control u satisfies, for all t ∈ I, the optimality condition

p(t) · h
(
x(t)), u(t)

)
+ µg

(
x(t)), u(t)

)
− λf

(
x(t)), u(t)

)
= max

v∈J

{
p(t) · h

(
x(t)), v

)
+ µg

(
x(t)), v

)
− λf

(
x(t)), v

)}
.

(2.9)

The differential system (2.8) takes the name of adjoint system and it is nothing but
the Euler-Lagrange equation derived as a stationarity condition on the Lagrangian of
the optimal problem (cf. [2, §4.2.2]).

We will use a couple of consequences of Theorem 2.10 when applied to costrained
problems arising in plane convex geometry. To this aim in the following corollary we
specify the Pontryagin’s conditions for optimality in one dimensional control problems
with a second order differential constraint.

Corollary 2.11. Given f ∈ C1(R2) and g ∈ C1(R2) and a constraint C0. Let the pair

(x, u) ∈W 2,1
per(I,R)× L∞(I, J) be a minimizer of the functional

F (x, u) :=

∫ b

a
f
(
x(t), u(t)

)
dt

among all the admissible pairs satisfying the differential constraint

(2.10) x(t) + ẍ(t) = u(t)

and the integral constraint

(2.11)

∫ b

a
g
(
x(t), u(t)

)
dt = C0.

Then there exist λ ≥ 0, µ ∈ R and p ∈ W 1,1(I,R) not all of them trivial such that, for
almost all t ∈ I, p is a solution of the equation

(2.12) p̈(t) + p(t) = +µ∂xg
(
x(t), u(t)

)
− λ∂xf

(
x(t), u(t)

)
and the optimal control u satisfies, for all t ∈ I, the optimality condition

p(t)u(t) + µg
(
x(t), u(t)

)
− λf

(
x(t), u(t)

)
= max

v∈J

{
p(t)v + µg

(
x(t), v

)
− λf

(
x(t), v

)}
.

(2.13)
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Proof. The proof easily follows by rewriting the differential constraint as a system of first
order equation and applying Theorem 2.10 with the phase variable x(t) = (x1(t), x2(t))
that satisfies the system {

ẋ1 = x2
ẋ2 = u− x1

.

The functionals involved are independent of the auxiliary variable x2 and Theorem 2.10
provides the existence of the multipliers exist λ, µ and p := (p1, p2) satisfying the adjoint
system {

ṗ1 = p2 + µ∂xg
(
x(t)), u(t)

)
− λ∂xf

(
x(t)), u(t)

)
ṗ2 = −p1

and the maximality condition

p1(t)x2(t) + p2(t)
(
u(t)− x1(t)

)
+ µg

(
x1(t), u(t)

)
− λf

(
x1(t), u(t)

)
= max

v∈J

{
p1(t)x2(t) + p2(t)

(
v − x1(t)

)
+ µg

(
x1(t), v

)
− λf

(
x1(t), v

)}
.

= p1(t)x2(t)− p2(t)x1(t) + max
v∈J

{
p2(t)v + µg

(
x1(t), v

)
− λf

(
x1(t), v

)}
.

These equations are easily seen to be equivalent to (2.12) and (2.13) setting p = p2 and
x = x1.

�

In the special case when the functional F and the isoperimetric constraint are linear
in the control variable u, we can further deduce a bang-bang type condition for optimal
controls. The following corollary easily follows from the previous one from the optimality
condition (2.13) (being linear in the v variable).

Corollary 2.12. Under the same assumptions of Corollary 2.11, if we further assume
that f(x, u) = a(x)u and g(x, u) = b(x)u with a, b ∈ C1(I), then we have

(2.14) u(t) =

{
β if p(t) + µ b(x(t))− λ a(x(t)) > 0

α if p(t) + µ b(x(t))− λ a(x(t)) < 0

where α := min{t : t ∈ J} and β := max{t : t ∈ J}.

Remark 2.13. Let us remark that if the set

S := {t,∈ I : p(t) + µ b(x(t))− λ a(x(t)) = 0

has zero Lebesgue measure, then u is almost everywhere determined by (2.14). This is
the case for instance if (x, u) is an optimal control with a a non-singular trajectory (cf.
[23]).

3. Main result

The (α, β)-regular N -gones introduced in the Example 2.7 will play a crucial role in
this section.

Theorem 3.1. Let 0 < α < β < ∞ and L ∈ (2πα, 2πβ). Then, modulo proper rigid
transformations, the (α, β)-egg is the unique minimizer of the area functional among all
the (α, β)-convex bodies in the plane with given perimeter equal to L.
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Theorem 3.1 follows easily from the following reverse isoperimetric inequality.

Theorem 3.2. Let 0 < α < β < ∞. For any K ∈ K2, planar (α, β)-convex body such
the 2πα < P (K) < 2πβ, then the following inequality holds true

(3.1) A(K) ≥ 1

2
(β + α)(P (K)− 2πα) + πα2 − (β − α)2 sin

(
P (K)− 2πα

2(β − α)

)
.

Moreover the equality holds if and only if K is the (α, β)−egg.

The proof of the main theorem will be a consequence of the following lemmata. From
now on in this section we will implicitly assume that α, β and L are fixed in such a way
that 0 < α < β <∞ and L ∈ (2πα, 2πβ).

Lemma 3.3. The shape optimisation problem

(3.2) min
{
A(K) : K ∈ K2 is an (α, β)− convex body with P (K) = L

}
admits at least a solution.

Proof. The proof follows by direct methods of Calculus of Variations. Indeed first we
claim that any minimizing sequence Kn is bounded. For this is enough to observe that
all the competitors are convex sets with perimeter and area equi-bounded, therefore
also their diameters are equi-bounded (see for example [12, Lemma 4.1]). By Blaschke
selection theorem, up to extracting a subsequence, Kn converges to a convex body K∞
in the Hausdorff metric. Lemma 2.6 ensures that K∞ is an admissible set and the
conclusion follows by continuity of the perimeter and area functionals on (K2, dH). �

Lemma 3.4. Let K ∈ K2 be a minimizer for problem (3.2), then up to eventually
translate K, there exists a constant γ ∈ R such that

(3.3) ρK(t) =

{
β, for pK(t) < γ
α, for pK(t) > γ

, a.e. t ∈ (0, 2π),

where with pK , with a slight abuse of notation, we denoted the parametrised support
function of the eventual translation of K and ρK(t) is the radius of curvature of ∂K.
Moreover the set S := {t ∈ [0, 2π) : pK(t) = γ} is finite.

Proof. We start observing that by Propositions 2.4 we can identify a given admissible
set K ∈ K2 with its parametric support function pK and by Proposition 2.5 we can
rephrase the minimization problem (3.2) as an optimal control problem. If K ∈ K2

is a minimizer for problem (3.2), then the pair given by its support function and its

parametric radius of curvature, i.e. (x, u) = (pK , ρK) ∈ W 2,1
per(I,R) × L∞(I, J) with

I = (0, 2π) and J = [α, β], form indeed an optimal control process for the functional

F (x, u) :=
1

2

∫ 2π

0
u(t)x(t) dt

under the differential constraint

x(t) + ẍ(t) = u(t)

and the isoperimetric one ∫ 2π

0
u(t) dt = L.
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We can therefore use Corollary 2.12 to deduce that there exist λ ≥ 0, µ ∈ R and
s ∈W 1,1(I,R) not all of them trivial such that

(3.4) ρK(t) =

{
β if s(t) + µ− λ

2 pK(t) > 0

α if s(t) + µ− λ
2 pK(t) < 0

Moreover, from Corollary 2.11, the multiplier s(t) solves the adjoint equation

s̈(t) + s(t) = −λ
2
ρK(t),

that, together with the differential constraint written for the pair (pK , ρK), implies that
the function β := s+ λ

2pK is a 2π-periodic solution of the ordinary differential equation
y(t) + ÿ(t) = 0. Therefore there exist constants c1 and c2, such that

(3.5) s(t) +
λ

2
pK(t) = c1 cos(t) + c2 sin(t).

We can therefore rewrite (3.4) , as

ρK(t) =

{
β if c1 cos(t) + c2 sin(t) + µ− λ pK(t) > 0

α if c1 cos(t) + c2 sin(t) + µ− λ pK(t) < 0

We claim that λ 6= 0. If not, first we observe that by non-triviality condition of the
Pontryagin principle, µ and s(t) cannot be simultaneously identically zero. If s = 0,
then from (3.4) we have

ρK(t) =

{
β if µ > 0

α if µ < 0
.

Being µ 6= 0, K is a circle of radius α or β that is not an admissible set. If instead s 6= 0,
the adjoint equation (3.5) ensures us that s(t) = c1 cos(t) + c2 sin(t) = A cos(t+φ), with
A 6= 0 and φ constant. The condition (3.4) becomes

ρK(t) =

{
β if A cos(t+ φ) + µ > 0

α if A cos(t+ φ)− µ < 0
.

Therefore, since the equation A cos(t + φ) + µ = 0 admits at most two solutions in the
interval [0, 2π), it follows that ∂K is the union of at most two arcs of circle with radii
α and β. This is impossible for an (α, β)-convex set by the regularity Lemma 2.2 (cf.
Remark 2.8). This proves the claim.

Since λ > 0, in a translated coordinate system centered in
(
c1
λ ,

c2
λ

)
, the parametric

support function of K will change in pK(t) − c1
λ cos(t) − c2

λ sin(t). Therefore (3.4) will
read

ρK(t) =

{
β if pK(t) < µ

λ =: γ

α if pK(t) > µ
λ =: γ

We now prove that S := {t ∈ [0, 2π] : pK(t) = γ} is a finite set. Let t0 ∈ [0, 2π] ∈ Sc,
say pK(t0) > γ, and let (a0, b0) be the connected component of the set Sc, containing t0
(more explicitly we can define a0 = inf{t̃ : pK(t) > γ ∀ t ∈ (t̃, t0)} and b0 = sup{t̃ :
pK(t) > γ ∀ t ∈ (t0, t̃)}). Observe that by continuity of pK we deduce that

(3.6) pK(a0) = pK(b0) = γ.
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Moreover we can uniquely solve the equation pK + p′′K = α in (a0, b0), and therefore
deduce the existence of two constants C1 and C2 such that pK(t) = C1 cos t+C2 sin t+α
in [a0, b0]. We claim that b0 is an isolated point for S. The same argument could be
applied for the left endpoint a0. By contradiction, let {tm}m∈N with tm > b0, pK(tm) = γ
and such that tm → b+0 . The regularity of pK ensures that the left and right derivatives
of pK in b0 agree. We can write (recalling the explicit expression of pK in (a0, b0))

−C1 sin b+ C2 cos b = p′K(b−) = p′K(b+) = lim
m→∞

pK(tm)− pK(b)

tm − b
= 0.

The last equality, together with (3.6), tells us that the couple (C1, C2) solves the following
linear system 

C1 cos a0 + C2 sin a0 = γ − α
C1 cos b0 + C2 sin b0 = γ − α
−C1 sin b0 + C2 cos b0 = 0

,

that is solvable only if (imposing the determinant of the full matrix to be zero)

(γ − α)(cos(a0 − b0)− 1) = 0

that in turns implies γ = α or b0 − a0 = 2π. The last equality means that x represent a
full circle of radius α, that (if we choose L > 2πα) is not an admissible competitor for
our problem. It remains to study the case γ = α, that leads easily to a contradiction by
observing that the only solution od the linear system is (C1, C2) = (0, 0) and therefore
x(t) = α = γ for any t ∈ (a0, b0) against the definition of Sc and this proves the claim.
An analogous argument can be done when pK(t0) < γ, with β in place of α. Since the
connected components of Sc have isolated endpoints, they are finite in number. Finally
we have proved that Sc is a finite union of disjoint relatively open intervals in [0, 2π].
Therefore its complement S is a finite union of, possibly degenerate, relatively closed
intervals in [0, 2π]. With the same argument as above, it is easy to prove that the interior
of S is empty. Indeed it is sufficient to argue by contradiction and use the regularity of
pK at the endpoints of the connected components of S with non empty interior.

�

Lemma 3.5. Any (α, β)-convex body K ∈ K2 that satisfies (3.3) is necessarily an (α, β)-
regular N -gone.

Proof. From Lemma 3.4, we infer that ∂K is the union of a finite number of arcs of
circles with radii α and β, being the radius of curvature, ρK , a piecewise constant
function with a finite number of jumps, assuming only two values. Moreover in any
jump point t ∈ [0, 2π) of ρK , it holds PK(t) = γ. By Remark 2.8 we can easily deduce
that the arcs are even in number and the radii alternate between the values α and β.

We can therefore assume that ∂K is made of 2N disjoint arcs. The parametric support
function of K can be written as

pK(t) =

 C2i+1
1 cos t+ C2i+1

2 sin t+ β , t ∈ [t2i+1, t2i+2]

C2i+2
1 cos t+ C2i+2

2 sin t+ α , t ∈ [t2i+2, t2i+3]
, i ∈ 0, 1, . . . , N − 1.

with {t1 < t2 < t3 · · · < t2N+1 = t1 + 2π} and (C2i+1
1 , C2i+1

2 ) are the coordinates of

centers of the disks of radius β and (C2i+2
1 , C2i+2

2 ) are the coordinates of centers of the
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disks of radius α. Imposing the continuity in ti one gets

(3.7) C2i+1
1 = (γ − β)

sin t2i+2 − sin t2i+1

sin(t2i+2 − t2i+1)
; C2i+1

2 = (γ − β)
cos t2i+2 − cos t2i+1

sin(t2i+1 − t2i+2)
.

For 0 ≤ i ≤ N − 1, one gets

(3.8) C2i+2
1 = (γ − α)

sin t2i+3 − sin t2i+2

sin(t2i+3 − t2i+2)
; C2i+2

2 = (γ − α)
cos t2i+3 − cos t2i+2

sin(t2i+2 − t2i+3)
.

From (3.7) and (3.8) we easily deduce that γ 6= α and γ 6= β, otherwise the arcs of the
circles of radius α or β contained in ∂K should lie all on the same circle centered at the
origin.

The continuity of the derivative of the parametric support function in tj ensures us
that, for 0 ≤ j ≤ 2N − 1,

(3.9) Cj1 sin(tj+1)− Cj2 cos(tj+1) = Cj+1
1 sin(tj+1)− Cj+1

2 cos(tj+1)

Combining the relations (3.7), (3.8) and (3.9), we can write, for 0 ≤ i ≤ N − 1,
(γ − β)

1− cos(t2i+2 − t2i+1)

sin(t2i+2 − t2i+1)
= (γ − α)

−1 + cos(t2i+3 − t2i+2)

sin(t2i+3 − t2i+2)

(γ − α)
1− cos(t2i+3 − t2i+2)

sin(t2i+3 − t2i+2)
= (γ − β)

−1 + cos(t2i+4 − t2i+3)

sin(t2i+4 − t2i+3)

.

Since the function t→ 1−cos(t)
sin(t) is strictly monotone, from the previous system we infer the

existence of two positive constants τ and σ such that t2i+2−t2i+1 = τ and t2i+3−t2i+2 = σ
for any 0 ≤ i ≤ N − 1. This proves the claim. �

Remark 3.6. Let K ∈ K2 be an (α, β)-regular N -gone with perimeter P (K) = L, as
in the Example 2.9. Suppose that up to a translation of K, the values of the parametric
support functions in the points tj are constants, i.e. there exists λ, such that λj = λ for
any j ∈ {0, 1, . . . , N − 1}. As a byproduct of the proof of the previous lemma, we can
explicitly calculate the value of λ = pK(tj). Indeed, simply by imposing the continuity of
the parametric support function in ti and solving the linear system, we get

λ =
β[1− cos(τ)] sin(σ) + α[1− cos(σ)] sin(τ)

[1− cos(τ)] sin(σ) + [1− cos(σ)] sin(τ)
.

Lemma 3.7. Let K ∈ K2 be an (α, β)-regular N -gone with P (K) = L that satisfies
(3.3) then

(3.10) A(K) =
β + α

2
(L− 2πα) + πα2 + (β − α)2

N
(

cos( πN )− cos(π(β+α)−LN(β−α) )
)

2 sin( πN )
.

Moreover the minimum value for the area functional is realized for N = 2, i.e. for the
(α, β)-egg.
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Proof. Let K ∈ K2 be an (α, β)-regular N -gone and using the same notation as in
Example 2.9 for its parametric support function and radius of curvature, we can compute

2A(K) =
N∑
i=1

∫ t2i

t2i−1

β
[
C2i−1
1 cos(t) + C2i−1

2 sin(t) + β
]
dt

+
N∑
i=1

∫ t2i+1

t2i

α
[
C2i
1 cos(t) + C2i

2 sin(t) + α
]
dt

=

N∑
i=1

{
β
[
C2i−1
1 (sin(t2i)− sin(t2i−1)) + C2i−1

2 (cos(t2i−1)− cos(t2i))
]

+ α
[
C2i
1 (sin(t2i+1)− sin(t2i)) + C2i

2 (cos(t2i)− cos(t2i+1))
]}

+ β2(t2i − t2i−1) + α2(t2i+1 − t2i).

Therefore, using (3.7) and (3.8) in the previous formula and recalling that t2i−t2i+1 =
τ and t2i+1 − t2i = σ, we infer

A(K) = β(λ− β)N

[
1− cos(τ)

]
sin(τ)

+ α(λ− α)N

[
1− cos(σ)

]
sin(σ)

+
N

2
(β2τ + α2σ).

Finally, using the value of λ given by Remark 3.6, we get

λ− β = (α− β)
1− cos(σ)

sin(σ) + sin(τ)− sin(σ + τ)
sin(τ)

and

λ− α = (β − α)
1− cos(τ)

sin(σ) + sin(τ)− sin(σ + τ)
sin(σ).

Therefore we can write

(3.11) A(K) =
N

2
(β2τ + α2σ)−

N(β − α)2
[
1− cos(σ)

][
1− cos(τ)]

sin(σ) + sin(τ)− sin(σ + τ)
.

Using the elementary relations

sin(a) + sin(b) + sin(c)− sin(a+ b+ c) = 4 sin

(
a+ b

2

)
sin

(
b+ c

2

)
sin

(
a+ c

2

)
and (

1− cos(a)
)(

1− cos(b)
)

= 4 sin2(a/2) sin2(b/2)

from (3.11), we get

A(K) =
N

2
(β2τ + α2σ)−N(β − α)2

sin
(
σ
2

)
sin
(
τ
2

)
sin
(
σ+τ
2

) .

To make explicit the dependence on N in the expression of the area we introduce the
auxiliary variable (cf. (2.5))

ω := N
σ

2
=
L− 2πα

2(β − α)
.
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Recalling that N(σ+ τ) = 2π we can finally write the area of the (α, β)-regular N -gone
K as

A(K) = β2π − (β2 + α2)
ω

2
− (β − α)2Φ(N,ω),

where we have set

Φ(N,ω) := N
sin
(
ω
N

)
sin
(
π
N −

ω
N

)
sin
(
π
N

)
And this proves (3.10).

To prove that the minimum value of the area is attained when N = 2, which corre-
sponds to the area of the (α, β)−egg, it is sufficient to prove that

Φ(N,ω) ≤ Φ(2, ω) = sin(ω).

To this aim, we observe that ω ∈ [0, π] and we show that the function

fN (x) := sin(x) sin
( π
N

)
−N sin

(
π − x
N

)
sin
( x
N

)
is positive for x ∈ [0, π] and N ≥ 2. We observe that fN (0) = fN (π) = 0 and that fN (x)
is symmetric with respect to xs = π

2 . We claim that fN is increasing in [0, π2 ]. This will
imply that fN is positive on [0, π]. For that, we first observe that the function

hN (x) :=
sin(π−2xN )

sin(π−2xN+1 )

is increasing on (0, π2 ). Indeed its derivative

h′N (x) = −2
sin(π−2xN )

N(N + 1) sin(π−2xN+1 )

[
(N + 1) cot(

π − 2x

N
)−N cot(

π − 2x

N + 1
)

]
,

satisfies h′N (x) > 0 on (0, π2 ) since x 7→ x cotx is decreasing on
(
0, π2

)
and therefore

(N + 1) cot

(
π − 2x

N

)
−N cot

(
π − 2x

N + 1

)
< 0.

The monotonicity of hN , implies that for N ≥ 2

sin( π
N+1)

sin(π−2xN+1 )
≥

sin( πN )

sin(π−2xN )
,

that is, for any x ∈
(
0, π2

)
, the sequence {aN}∞N=2

aN :=
sin( πN )

sin(π−2xN )

is monotone in N , and therefore, for N ≥ 2, it holds aN ≥ a2, that reads as

sin( πN )

sin(π−2xN )
≥

sin(π2 )

sin(π−2x2 )
=

1

cos(x)
.

The last inequality is equivalent to say that

f ′N (x) = cosx sin(
π

N
)− sin(

π − 2x

N
) > 0 , x ∈

(
0,
π

2

)
,

proving the claim and the lemma. �
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