
HAL Id: hal-03307374
https://hal.science/hal-03307374

Submitted on 16 Nov 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Flow of particles suspended in a sheared viscous fluid:
Effects of finite inertia and inelastic collisions

Micheline Abbas, Eric Climent, Jean-François Parmentier, Olivier Simonin

To cite this version:
Micheline Abbas, Eric Climent, Jean-François Parmentier, Olivier Simonin. Flow of particles sus-
pended in a sheared viscous fluid: Effects of finite inertia and inelastic collisions. AIChE Journal,
2010, 56 (10), pp.2523-2538. �10.1002/aic.12192�. �hal-03307374�

https://hal.science/hal-03307374
https://hal.archives-ouvertes.fr


Flow of Particles Suspended in a Sheared
Viscous Fluid: Effects of Finite Inertia and

Inelastic Collisions
Micheline Abbas and Eric Climent
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We investigate in this article the macroscopic behavior of sheared suspensions of
spherical particles. The effects of the fluid inertia, the Brownian diffusion, and the
gravity are neglected. We highlight the influence of the solid-phase inertia on the mac-
roscopic behavior of the suspension, considering moderate to high Stokes numbers.
Typically, this study is concerned with solid particles O (100 lm) suspended in a gas
with a concentration varying from 5% to 30%. A hard-sphere collision model (with
elastic or inelasic rebounds) coupled with the particle Lagrangian tracking is used to
simulate the suspension dynamics in an unbounded periodic domain. We first consider
the behavior of the suspension with perfect elastic collisions. The suspension proper-
ties reveal a strong dependence on the particle inertia and concentration. Increasing
the Stokes number from 1 to 10 induces an enhancement of the particle agitation by
three orders of magnitude and an evolution of the probability density function of the
fluctuating velocity from a highly peaked (close to the Dirac function) to a Maxwellian
shape. This sharp transition in the velocity distribution function is related to the time
scale which controls the overall dynamics of the suspension flow. The particle relaxa-
tion (resp. collision) time scale dominates the particulate phase behavior in the weakly
(resp. highly) agitated suspensions. The numerical results are compared with the pre-
diction of two statistical models based on the kinetic theory for granular flows adapted
to moderately inertial regimes. The suspensions have a Newtonian behavior when they
are highly agitated similarly to rapid granular flows. However, the stress tensors are
highly anisotropic in weakly agitated suspensions as a difference of normal stresses
arises. Finally, we discuss the effect of energy dissipation due to inelastic collisions on
the statistical quantities. We also tested the influence of a simple modeling of local
hydrodynamic interactions during the collision by using a restitution coefficient which
depends on the local impact velocities. VVC 2010 American Institute of Chemical Engineers
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Introduction

Gas–solid flows are encountered in many industrial proc-
esses: fuel combustion, pneumatic conveying of particles,
catalytic cracking fluidization, particle separators like cyclo-
nes,…. They may be also encountered in a natural environ-
ment like sand storms, moving sand dunes, avalanches. Opti-
mum designs of the industrial processes or reliable predic-
tions of natural phenomena may be achieved when the
physics governing these particulate flows will be thoroughly
understood and accuretaly modeled.1,2 Usual designs of engi-
neering configurations are often based on empirical rules and
modeling. The purpose of our study is to contribute to devel-
oping and validating macroscopic models recommended for
gas–solid suspension flows. In this context, we propose to
analyze discrete particle simulations leading to detailed in-
formation about the statistical behavior of the suspension
which otherwise might be difficult to obtain in physical
experiments.3,4 The statistics based on the individual track-
ing of all the particles can then be compared with theoretical
predictions for validation and improvement of closure mod-
els useful for the computational fluid dynamics of practical
applications.

Our study is focused on homogeneous gas–solid flows, par-
ticularly sheared suspensions. Because of the combined effects
of inertia and collisons, the instantaneous slip velocity between
the particles and the carrying fluid flow is significant. We con-
sider that the particle/particle interactions are dominated by
collisions and that the particle/fluid interaction is simply mod-
eled by the Stokes drag valid for low Reynolds numbers. Gas–
solid or liquid–solid fluidized beds are typical configurations
where the suspension dynamics is controlled by both the drag
force and collisions in addition to the gravity forcing.5–7

Whereas most of the real flows encountered in industry
(milling, fluidization, and filtration processes) are facing
complicated time and space velocity gradients, we choose to
emphasize the response of the suspension to a simple linear
shear flow as a prototype configuration. Also, we neglect
gravity to disentangle the effects of a mean slip velocity and
the agitation induced by the presence of the shear flow.

The relative importance of the different relevant phenom-
ena in flows of suspension can be expressed in terms of
dimensionless numbers. The particle inertia is characterized
by the Stokes number St ¼ sp/sf. This dimensionless number
compares the fluid characteristic time scale sf (equal to c�1

in a shear flow where c is the local shear rate) and the vis-
cous particulate relaxation time sp ¼ 2qpa

2/9lf (where qp
and a stand, respectively, for the particle density and radius;
lf is the dynamic fluid viscosity). The viscous stress is com-
pared with the fluid inertia in the Reynolds number Re ¼
qfca

2/lf. Advection of the particles and thermal agitation are
compared in the Péclet number Pe ¼ ca2/(kBT/6pla) where
the diffusion coefficient has been approximated by Stokes-
Einstein’s law for an isolated particle. Practically, the dimen-
sionless numbers depend on the particle size and density in a
uniformly sheared suspension (c ¼ 10 s�1 is a typical shear

rate of classical applications) for fixed properties of the gas.

In Figure 1, we chose the gas to be air and varied the physi-
cal properties (size and density) of the particles within engi-
neering applications (ranging from powder of wood coal to
uranium particles). Horizontal dashed lines correspond to

certain types of material and different sizes of particle. Solid
lines correspond, respectively, to the dimensionless St, Re,
and Pe numbers equal to unity. Constant Péclet and Reyn-
olds numbers are vertical lines as they depend only on the

particle radius and not on the particle density. The range of
particle radius subject to Brownian motion is located on the
left side of the line Pe ¼ 1 and macroscopic particles are
located on the right. On the left of the line St ¼ 1, the parti-
cle trajectories are weakly influenced by inertia effects,

whereas the suspension may be called inertial on the right
side of this line. For the line Re ¼ 1, suspensions standing
on the left are described by the Stokes equations (creeping
flow), whereas the Navier-Stokes equations hold on the right

of this line. The Ar number which measures the influence of
buoyancy is not shown in this figure because for this range
of particle density, the particles are always much influenced
by gravity. But we chose to neglect the settling of the sus-

pension to emphasize the effect of shear. We consider sus-
pensions with moderate inertia in the limit of vanishing
Reynolds numbers and Brownian diffusion. Consequently,
the range of particle radius and densities lie between the

lines St ¼ 1 and Re ¼ 1 in Figure 1.
The shear flow promotes local particle encounters. Hence,

interparticle but also fluid-particle interactions generate ve-
locity fluctuations in the particulate phase. These micro-
scopic fluctuations induce momentum and possibly mass
transfer (if the suspension is not homogensous) on a larger
scale. In the regime of infinite inertia of the dispersed phase
(St ! 1), the suspensions behave like a dry granular mate-
rial. Particles fly along straight lines between successive col-
lisions following random paths. The dynamics of nearly elas-
tic particles driven by collisions is similar to those of the
molecules in a hard-sphere gas which was traditionaly
described by a statistical approach based on the kinetic
theory. This theory relies on a statistical approach for an en-
semble of hard spheres (Boltzman equation8). Ogawa et al.9

suggested that the mechanical energy of granular flow is first
transformed into random particle motion and then dissipated.
Savage and Jeffrey10 related this fluctuating velocity to the
absolute value of the shear gradient by means of a dimen-
sionless group and observed that the dense phase kinetic
theory, as described in the classical book by Chapman and
Cowling8 could be used. In a sheared granular material, the
inelasticity of collisions is the only energy dissipation mech-
anism; otherwise, the particle agitation would increase to in-
finity due to the input of energy by the shear. In the other
limit when St \\ 1, collisions of smooth particles are
unlikely as hydrodynamic interactions (lubrication repulsion)
prevent actual contacts in a finite time if the roughness or re-
sidual Brownian motion are not considered. The rheology



and self-diffusion of such suspensions were extensively stud-
ied.11–14

In the intermediate case, that is, moderate particle inertia,
the particles experience a significant drag forcing them to
recover the fluid streamlines in a time closely related to the
viscous relaxation time scale sp. Therefore, three characteris-
tic times control the suspension dynamics: sp, sf, and sc (the
typical time spent by a given particle between two consecu-
tive collisions). When the particle inertia is reduced, the role
of the drag force is enhanced leading to a significant reduc-
tion of the particle kinetic energy. A dynamical equilibrium
sets in balancing the energy injected by the shear and the
dissipation induced by the drag and the inelastic collisions.
The theoretical background of the flow suspension model is
based on the conservation equation of the different kinetic
stress components. However, solving this problem requires
some assumptions and among them the choice of the proba-
bility density function of the velocity fluctuations. This input
is essential to determine the collisional rate of change of the
stress components. Ding and Gidaspow7 used the Maxwel-
lian velocity distribution function for solving the equations
of continuum two-phase flows in a gas–solid fluidized bed,
taking into account the drag force effect. For the more fun-
damental case of sheared flows, the problem was addressed
for different flow regimes. In highly agitated suspensions
(dry granular flows), Jenkins and Richman15 have calculated
the collisional terms using the deviated Maxwellian function
proposed by Grad for homogeneous sheared suspensions.16

Sangani et al.17 and Boelle et al.18 used similar expressions
for moderately agitated sytems, taking into account the effect
of interstitial fluid. In weakly agitated suspensions, Tsao and
Koch19 proposed a model based on the Dirac function for
the velocity distribution function. They obtained a good pre-
diction of the suspension behavior in the limit of dilute and
low inertia suspensions. Whereas all these reference studies
were concerned with flows at vanishing Reynolds numbers,
recent works have investigated the rheology of sheared sus-
pensions in wall-bounded flows in the limit of finite fluid

inertia. Kulkarni and Morris20 analyzed particularly the sta-
tistical behavior of noninertial particles using Lattice Boltz-
mann simulations. Verberg and Koch21 and Xu et al.22 have
investigated the effect of both the fluid and particle inertia
comparing theoretical analysis with Lattice Boltzmann
simulations.

This article is devoted to the analysis of sheared suspen-
sions when varying both the particle inertia St and the solid
volume fraction /, comparing the behavior of weakly and
highly agitated suspensions. The article is organized as fol-
lows. First, we summarize the existing statistical theories for
flow of suspensions with finite particle inertia. Then, the
simulation method is briefly described in the Section on
‘‘Simulations’’. In the next section, the evolution of the par-
ticle agitation level, and the kinetic and collisional stresses
are commented for different suspension parameters. Only
perfectly elastic collisions are first considered, keeping the
drag as the only dissipation mechanism. Detailed compari-
sons of the simulation results with the relevant theories are
presented. Then, inelastic collisions are considered in the
last section: first a constant restitution coefficient and then a
restitution coefficient depending on the impact parameters,
which could be a model for local hydrodynamics interac-
tions.

Overview of Existing Theories

The flow of suspensions composed by rigid particles with
finite inertia (St [ 1) and inelasticity (e = 1) has been
addressed theoretically with several assumptions. The theo-
retical background used to predict the dynamical behavior of
these suspensions is briefly described later.

In a linear flow, the velocity field of the unperturbed fluid
flow is simply given by

@ui
@xj

¼ cij (1)

where u and x are, respectively, the fluid velocity and the
position vectors. cij is the shear rate tensor. For a pure shear
flow, c12 ¼ c is the only remaining component. The indices 1,
2, and 3 stand, respectively, for the flow direction, for the
velocity gradient direction, and for the spanwise direction (or
vorticity direction). c�1 is a characteristic time scale of the
flow based on the ambient shear. The mean particle motion is
equal locally to the fluid flow Up(x) ¼ u(x)

When the particle inertia is finite, the interaction with the
fluid (drag force) is significant leading to a reduction of the
kinetic energy of the particles. We neglect the effect of grav-
ity, pressure gradient, added mass, and lift forces. The drag
is the only force experienced by a particle embedded in the
fluid. We consider only the Stokes drag on an isolated parti-
cle using Eq. 2. In Eq. 2, v is the particle velocity and sp ¼
mp/6pla ¼ Stc�1 the viscous relaxation time of the particle.
u is the local fluid velocity at the particle position. More
sophisticate drag correlations were determined taking into
account the effects of solid volume fraction and Reynolds
number.6,23–25 However, for our numerical study, Eq. 2 holds
in the limit of low to moderate concentrations and negligible
Reynolds number. Thus, this simple expression of the drag
has been used in the available theories.

Figure 1. Dependence of the dimensionless numbers
on the suspension parameters (a and qp/qf).

Gas considered: air. Solid lines: boundaries for regions where
the dimensionless numbers are, respectively,\1 or[1.



dv

dt
¼ � v� uð Þ

sp
(2)

The theory used for dry granular material can be adapted to
inertial particles with the additional forcing of the drag.8 The
theoretical model is based on the balance equation for the ki-
netic stress components, similar to the granular flows, but with
additional terms due to drag dissipation. At steady state, the
equation for the kinetic stress transport (see Refs. 17 and 18
for more details) becomes in homogeneous configuration:

cjkr
k
ki þ cikr

k
kj þ

2

sp
rkij ¼ Cij (3)

where Cij is the collisional contribution and rkij ¼ qp/Tij the
kinetic stress tensors. The term qp/ represents the bulk
density. Tij is the velocity fluctuation tensor. For the analytic
evaluation of the collisional rate of change of the stress
components in Eq. 3, we need an assumption on the particle
velocity distribution function f(c,x) and on the two-particle
distribution function during a collision f(2)(cA,cB) (where cA
and cB are the colliding particle velocities). It is assumed that
colliding particles are statistically uncorrelated. This is know
as the molecular chaos assumption. Similarly to the theory for
dense gases,8 the enhancement of the probability to find close
particle pairs for moderate / is accounted by assuming
f(2)(cA,cB) ¼ g0f(cA)f(cB), with g0 a scalar function that depends
on / for a homogeneous suspension. g0 is given by the peak
value of the radial distribution of pairs at contact (r ¼ 2a). We
use in this paper g0 ¼ (1 � ///m)

�2.5/m, proposed by Lun and
Savage26, which tends to infinity when / approaches the close
packing volume fraction (/m ¼ 0.64) for a random suspension
of monodisperse spherical particles.

Solution of highly agitated suspensions

In a high agitation regime of granular flow resulting from
a homogeneous shear, Grad16 proposed to approximate f by
a deviated Maxwellian distribution function accounting for a
possible anisotropy aij of the kinetic stress Tij defined by the
coefficients:

f ðc; xÞ ¼ 1þ 1

2
T aij

@2

@ci@cj

� �
f0ðc; xÞ (4)

The components of the kinetic stress tensor Tij are by defi-
nition the integral of the second order moments of velocity
fluctuations [nTij ¼ $CiCj f(c,x)dc] over the whole velocity
phase space, where C ¼ c � Up(x) is the local velocity fluc-
tuation relative to the average particulate phase velocity
Up(x). The particle agitation is calculated from the trace of
this tensor T ¼ Tii/3. The coefficients aij are related to the
kinetic stress terms according to the following relation:

aij ¼ Tij=T � dij (5)

As proposed by Jenkins and Richman,15 the collisional
term can be divided into a source term and a flux term. Eq.
3 becomes:

cjkrki þ cikrkj þ
2

sp
rkij ¼ vij (6)

where rij ¼ rkij þ yij is the total particulate stress tensor and yij
is the collisional stress tensors. Sangani et al.17 and Boelle

et al.18 used a similar approach to predict T and Tij for particles
of moderate inertia embedded in a viscous fluid in the
particular case of a pure shear flow. Finally, the particle
agitation in a pure shear flow configuration is solution of an
algebraic equation17:

X4
k¼0

dkx
k
g ¼ 0 (7)

where

xg ¼ 24
5
ffiffi
p

p /g0g 2� gð Þ
ffiffiffi
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and a ¼ 384
25p g

2
0g

2ð2� gÞ and g¼ (1þ e)/2. Equation 7 is valid for
elastic and inelastic collisions indicating that once the shear is
imposed to the suspension, the dimensionless granular tem-
perature T/c2a2 is a function of the suspension characteristics
(Stokes number, concentration, and restitution coefficient).

The coefficients aij depend only on the suspension charac-
teristics (St, /, and e). Inserting Eq. 5 in Eq. 6 leads to the
following expressions for the anisotropic coefficients (see
Ref. 17):

a22 ¼ a33 ¼ � a11
2

¼ � 5 1� gð Þxg þ 3 2� gð ÞSt�1

3 2� gð Þ xg þ St�1
� � (8a)

a12 ¼ 1

2 xg þ St�1
� �

� � 1þ 8

5
/g0g
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a22 � 1þ 4/g0gð Þ þ 12

5
/g0g 2� 2gð Þ

� �
ð8bÞ

Solution for dense flow and high solid phase intertia

In a dense flow and at large Stokes number, the effect of
hydrodynamic interactions among particles is small and the
particles travel in nearly straight lines between successive col-
lisions. Thus, the particles are expected to behave similarly to
the molecules of a dense gas consisting of smooth, spherical
molecules with a hard-sphere interaction potential. Therefore,
as proposed by Sangani et al.,17 the standard expressions for
the equation of state, viscosity, and conductivity of dense
granular materials can be used. Moreover the particle velocity
distribution is close to an isotropic Maxwellian so this one can
be used to estimate the leading-order of the energy dissipated
due to inelastic collisions. The velocity variance is determined
by equating the energy input in shearing the suspension to the
energy dissipation by inelastic collisions and viscous effects.
This lead to the following expression Eq. 9:

ffiffiffi
T

p

ca


 �2
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15ð1� eÞ 1þ p
12

1þ 5

8/g0
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" #

(9)



For perfectly elastic particles (e ¼ 1) and high but finite
Stokes number, T is given by

ffiffiffi
T

p

ca
¼ 16

15
ffiffiffi
p

p St/g0 1þ p
12

1þ 5

8/g0


 �2
" #

(10)

Solution of weakly agitated suspensions

When both the suspension concentration and the particle
inertia are low, the relaxation time of the particle sp is of the
same order or lower than the average time between succes-
sive collisions sc. Particles have very weak velocity fluctua-
tions as they more likely recover the fluid streamlines after a
collision. This peculiar regime was called by Tsao and Koch
‘‘the quenched state’’ as opposed to the ‘‘ignited theory’’ for
agitated systems. Tsao and Koch19 proposed to close the
equations assuming a Dirac function [f(C) ¼ d(C)] for the
velocity distribution function. It means that all the particles
are moving with the local fluid velocity and that collisions
are only shear-induced. However, their formulation holds
only for dilute particulate flows since they considered that
the two-particle distribution function in the collisional terms
verifies f(2)(cA, cB) ¼ f(cA)f(cB) (cA and cB are the colliding
particle velocities). For moderate /, the enhancement of the
probability to find close particle pairs could be accounted
for, similarly to the theory for dense gases,8 by assuming
f(2)(cA, cB) ¼ g0f(cA)f(cB). A verification of Tsao and Koch’s
approach permitted us to point out that a factor 2 is missing
in the collision terms (Eqs. 4.8 and 4.9 of Ref. 19). The ki-
netic stress terms are obtained by solving the Eq. 3 and leads
to the following relations for e ¼ 1:

T11

ðcaÞ2 ¼ 2g0
64

315p
St3/ 1þ 9p

16

1

St
þ 2

St2

� 
(11a)

T22

ðcaÞ2 ¼ 4
T33

ðcaÞ2 ¼ 2g0
128

315p
St/ (11b)

T12

ðcaÞ2 ¼ �2g0
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315p
St2/ 1þ 9p

16

1

St
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(11c)

By summation of the diagonal terms, T ¼ Tii/3:

T

ðcaÞ2 ¼ 2g0
64

945p
St3/ 1þ 9p

16
St�1 þ 9

2
St�2

� 
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(12)

The theoretical collisional stress components are null in the
quenched regime.

Modelling the multibody hydrodynamic interactions

In moderately concentrated to dense suspensions, the
multibody hydrodynamic interactions can be a major phe-
nomenon that controls the level of particle agitation in sus-
pension. Sangani et al.17 modeled these interactions by a cor-
rective function Rdiss(/) applied to the Stokes drag. Using
this correction prefactor yields a reduction of the overall
Stokes number of the suspension flow. Wylie et al.27

included in the coefficient Rdiss the effect of finite fluid iner-
tia in the limit of infinite particle inertia. Later, Verberg and

Koch21 studied sheared suspensions with finite inertia of the
fluid and tested the validity of their theory in the limit of fi-
nite Stokes numbers. We neglect the effect of the multibody
hydrodynamic interactions in the simulations where the resti-
tution coefficient is constant. However, in the section ‘‘Resti-
tution coefficient including hydrodynamic effects’’, the effect
of binary hydrodynamic interactions is modeled with an al-
ternative approach: an effective restitution coefficient is esti-
mated for each collision between two particles based on the
impact parameters.

Simulations

For investigating the suspension dynamics and testing the
accuracy of the theoretical predictions when the particle
inertia is finite, we carried out discrete particle simulations,
where we assume that the fluid flow is not perturbed by the
presence of the particles. The particles are considered as
hard spheres. They experience only Stokes drag force and bi-
nary collisions which is valid for low to moderate solid con-
centration. A fixed time step dt is used for time integration
of the trajectories using a fourth order Adams-Bashforth
scheme. Particles are initially seeded at nonoverlapping ran-
dom positions within the entire domain and their velocity is
set to the local fluid velocity (u1 ¼ cx2) (c being the shear
rate). The detection of a collision occurs when the distance
between two particle centers is less or equal to their diame-
ter (|xA � xB| � 2a). Actually, our numerical scheme is close
to the classical hard-sphere model. We did not select an
event-driven scheme but rather used a small constant time
step dt. After the end of the new time step, overlapping par-
ticles are detected and the exact collision time of each colli-
sion (t þ dti, where dt\ dt) is precisely determined between
t and t þ dt. The postcollision velocities are calculated and
each particle is moved forward in time from t þ dti to t þ
dt. The numerical scheme is illustrated in Figure 2.

The simulations are performed in a cubic domain of
width L ¼ 2p. The particle size is kept constant (L/a �
48) and various volumetric concentrations of the suspension
are investigated when varying the total number of particles.
Periodic boundary conditions in the three directions of
space help preserving the homogeneity of the suspension
under shear. When a particle exits the simulation domain
from the bottom (resp. upper) boundary, it appears on the
opposite side and its velocity is adapted by adding (resp.
subtracting) the local flow velocity cL. This is equivalent
to applying the shear in a dynamic way by means of the
Lees-Edward boundary conditions.28 The ratio L/a has been
selected fitting the two following constraints: not too large
for preventing the formation of layers populated with par-
ticles29 and not too small so that each particle may encoun-
ters many collisions when travelling between two opposite
boundaries.

The time step has to be carefully selected. We strictly
verified the condition dt ¼ min(sp, sc)/50 for all the simula-
tions. This condition meets the two following requirements:
each particle trajectory recovering the fluid streamline on the
time scale sp is well-resolved and for highly inertial particles
the time spent between two consecutive collisions sc is dis-
cretized in at least 50 time steps. The collision time scale is
calculated a priori using the theoretical analysis described in



the previous section assuming that the suspension is strongly
agitated:

sc ¼ a
ffiffiffi
p

p

12/g0
ffiffiffi
T

p (13)

The level of particle agitation T in Eq. 13 is estimated
using Eq. 7 once the Stokes number, the volumetric concen-
tration, and the restitution coefficient are fixed. There is no
numerical limitation on the relaxation time sp when the par-
ticles are highly inertial but attention should be paid in the
simulations with low Stokes numbers for preventing succes-
sive collisions (see Ref. 30). The selection of the time step
in a very dilute suspension needs even more care as two
additional conditions should be satisfied. First, the time step
has to be much smaller than a time scale based on the veloc-
ity fluctuation a=

ffiffiffi
T

p
, especially at high particle inertia. Sec-

ond, a particle must experience several collisions as it travels
through the entire domain of simulation. The condition
sc\\L=

ffiffiffi
T

p
prevents an unrealistic increase of the suspen-

sion agitation energy due to the accumulation of Lc velocity
increments (or decrements) when particles are crossing the
bottom (resp. upper) boundary conditions many times with-
out experiencing collisions.

The particle radius a and the shear rate c�1 are used,
respectively, as length and time scales for normalizing all
the statistical quantities. The average over particles are
formed every 10 time steps. After the initial seeding, all the
statistics evolve along a transient regime which is not con-
sidered in the analysis. Then, the flow of the suspension is
simulated during a time long enough to guarantee the con-
vergence of the statistics. The most critical constraint was
observed on the length of time series required to reach a dif-
fusive behavior for the dispersion of particles.13,31 Typically,
each particle was allowed to experience at least 600 colli-
sions. This typical number of collisions is only indicative
and varies strongly with the concentration and the Stokes
number. The selection of the simulation time to achieve sta-

tistical convergence is not made a priori. Actually, the simu-
lations were run until the particle flow statistics (particle agi-
tation, stress terms, self-diffusion…) have reached a steady-
state.

Statistical Quantities for Elastic Collisions and
Varying Particle Inertia

Based on the two versions of the theory described previ-
ously, we expect distinct responses of the flow suspension
for different characteristics (St and /). In the present section,
we investigate the influence of the drag as the only dissipa-
tive mechanism (perfectly elastic collisions) on the macro-
scopic behavior of the suspension when varying the Stokes
number. Two asymptotic cases can be identified. When St
[[ 1, the particle fluctuating energy is high. Thus, Tsao
and Koch19 have shown that for St [ 5 the suspension is
always highly agitated even for low concentration. When St
\\ 1, the energy of particle fluctuations is very low, short
distance interactions are dominant and the role of hydrody-
namic interactions11,13,14 and lubrication are the major
effects. Therefore, we restrict our simulations to moderate
particle inertia (1 � St � 10). This range of parameters has
shown extremely rich dynamics for dilute suspensions17 and
we aim at simulating low to moderate concentration (5% �
/ � 30%).

Particle agitation

The level of particle velocity fluctuations is measured by
T ¼ Tii/3, where Tij is given by Eq. 14 where hi is an aver-
age formed over all the particles and over the simulation
time (the initial transient time to reach a statistical equilib-
rium is not considered).

Tij ¼ v00i v
00
j

D E
� v00i
� �

v00j
D E

(14)

v00 is equivalent to the variable c in the phase space, and it
corresponds to the particle velocity fluctuation relative to the
ensemble average velocity Up(x) ¼ cx2i1. We have verified
that the velocity fluctuation averages v00i

� �
v00i
� �

are negligibly
small compared with v00i v

00
j

D E
(typically v00i
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� �

/ v00i v
00
j
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\

10�4). In the limit of high Stokes numbers, the simulations for
high concentrations have to be carefully carried out. A very
short time step O(10�4c�1) is required due to the high collision
frequency to resolve all the collisions. Instantaneous multiple
collisions are not considered in the numerical model and this
can lead to short time overlapping of the particles.

Figure 3 shows the numerical results of the particle agita-
tion when varying the concentration for different Stokes
numbers. When increasing St from 1 to 10 for a given /, the
agitation level is enhanced by three orders of magnitude. In
the limit of high St, two distinct trends are observed at low
and high solid fractions. In dilute suspensions, the particle
agitation decreases with the concentration because of the
reduction of the interparticle distance. In dense suspensions,
the particle agitation level remains high although the mean
free path of the particles is reduced. For small St, the parti-
cle agitation increases monotonically with the concentration.

For moderate to high St numbers (St ¼ 5 – 10), the level
of particle agitation obtained by the simulations or predicted

Figure 2. Sketch of the numerical scheme at time
step n.



by the kinetic theory for the ignited state match very well.
Moreover, we verified that for St ¼ 10 the simplified expres-
sion (Eq. 10) valid for St ! 1 is also a very good estimate.
Therefore, we do not expect new features for St higher than
10. In contrast, for lower Stokes numbers the theoretical pre-
diction using the ignited state is far from being accurate at
low concentrations (two orders of magnitude discrepancy
when / ¼ 5%). Figure 3 shows clearly that the theory (Eq.
7) is only valid for strongly agitated suspensions (T [ c2a2,
the so-called ignited state). A transition (depending on St
and /) exists. Below this limit, the suspension agitation is
weak but finite (so-called quenched state). Similar results
have been obtained in Boelle et al.18 for lower Stokes num-
bers (St ¼ 0.5).

The underestimation of T by the theory for moderately in-
ertial particles at low St and / is presumably a direct conse-
quence from the assumptions used to derive Eq. 7. Indeed, a
major input for this theoretical prediction is the expression
of the probability density function of velocity fluctuations. It
is assumed to be a deviated Maxwellian function. The analy-
sis of the velocity distribution function obtained in the simu-
lation is crucial to validate such an hypothesis. At high St,
we verified that for each case, f(v00i) has the shape of a Gaus-
sian function or equivalently f(v00) is close to a Maxwellian
function. It is not the case at low / and St. For instance at
St ¼ 1, the velocity distribution function shown in Figure 4
experiences a dramatic evolution when / is varied. It is
close to the Gaussian distribution at / ¼ 30% but the veloc-
ity distribution is highly peaked around v001 ¼ 0 for dilute sus-
pensions (/ ¼ 5%) (similar observation for v002 and v003). It
indicates that most of the particles are following the fluid
streamlines with weak velocity fluctuation. The simulations
showed that when the solid volume fraction is reduced, the
occurence of low velocity fluctuations is strongly enhanced.
Hence, the total number of particles with zero velocity fluc-

tuations is increased (quenched state). This flowing regime is
dominated by the drag.

In the limit of high inertia, the particles fly randomly fol-
lowing straight paths (only weak damping of the velocity by
the drag between two consecutive collisions). Such a flow
regime is collision-dominated where most collisions are
driven by the fluctuating energy of the particles (ignited
state). In contrast, for the quenched state most collisions are
shear-induced. We showed in Ref. 31 that the time scale ra-
tio sp/sc (particulate relaxation time compared with the typi-
cal time between successive collisions) indicates the transi-
tion from the drag to the collision dominated regime. The
dominant mechanism has the smallest time scale. sp is
imposed in the simulations by the selection of the Stokes
number, whereas sc is calculated using the collision fre-
quency computed from the total number of collisions
detected during a certain simulation time. For the two
regimes, sc can be estimated. In simulations where the agita-
tion is high, Eq. 13 is accurate whereas Eq. 15 is more
adequate for shear driven collisions. The transition between
the ignited and the quenched state occurs when sp/sc ¼
O(1).

scc ¼ p
16/c

(15)

Both the analysis of the collision time scale and the shape
of the velocity distribution function suggest that at low con-
centration and low Stokes numbers the suspension is flowing
in the quenched regime. Then, the results of the simulation
in the Figure 3 have to be compared with the prediction of
Eq. 12. It is clear that the prediction based on the quenched
theory is much closer to the simulation results than the
ignited regime assumption (especially for St ¼ 1 and / ¼
5% or 15%). The remaining discrepancy between the simula-
tions and the quenched theory may be inferred to the under-
estimation of the collisional change in the stress tensor.
Indeed, the quenched theory considers only the shear-

Figure 3. Particle agitation vs. the solid volume fraction
for different Stokes numbers (from. Ref. 31).
Symbols (D, *, h, and * are, respectively, for
St 5 10, 5, 3.5, and 1) represent the numerical
results.

Solid lines (from top to bottom St ¼ 10, 5, 3.5, and 1) cor-
respond to the theoretical predictions of Eq. 7. Dashed-dot-
ted line (from top to bottom St ¼ 3.5 and 1) correspond to
the quenched theory prediction Eq. 12.

Figure 4. Normalized probability density functions vs.
normalized velocity fluctuations in the flow
direction v1=

ffiffiffiffiffiffiffiðTÞp� �
for / 5 5%.

Dashed-dotted and dashed lines correspond, respectively, to
St ¼ 1 and 5. Solid line: Gaussian distribution function.



induced collisions and neglects the existence of the addi-
tional collisions driven by the agitation. These events are not
frequent but contribute to keep a higher level of agitation for
St ¼ 3.5 and / ¼ 5%.

Stress tensor of the particulate phase

Normal Components. Momentum transfer in the suspen-
sion is characterized by stress tensors and we can gain
insightful information on the physics by analyzing the differ-
ent contributions. In a suspension of solid particles, there are
two distinct contributions: the kinetic part (qp/Tij) where the
momentum is carried by moving particles and the collisional
part yij which corresponds to transfer by the collisions. The
total dimensionless stress tensor is hence:

r�ij ¼
1

qp/c2a2
qp/Tij þ hij
� �

: (16)

We first discussed the diagonal terms of these tensors.
The stress tensor components were computed for the same
simulation sets presented (St [ [1 – 10], / [ [5 – 30%] and
e ¼ 1). The evolution of the kinetic stress component T11 is
shown in Figure 5 for different St and /. The other normal
components (T22 and T33) are not shown but behave simi-
larly. Depending on the flowing regime, the numerical
results are compared with the relevant theory. The kinetic
stress components increase monotonically with the concen-
tration in the limit of low Stokes numbers, whereas they
show a local minimum in the limit of high inertia (for / �
15%). For a dilute and highly inertial suspension, the kinetic
stress is dominating over the collisional contribution as the
particles may travel relatively long distances between colli-
sions. However, in concentrated suspensions, the collision
frequency increases sharply and collision-induced momen-
tum transfer becomes important.

The theoretical expression for the collisional stress is
obtained by integrating the momentum transfer over all the
collisions.15

hij ¼ ð1þ eÞqp/2g0 2T � 8

5
a

ffiffiffi
T

p

r
ekk

 !
dij

(

þ 4

5
Tij � Tdij
� �� 16

5
a

ffiffiffi
T

p

r
eij

)
ð17Þ

where eij ¼ (cij þ cji)/2. The collisional stress tensor
components are calculated explicitly in the simulations using
the impulse difference j ¼ mp(v

0 � v) occurring at each
collision. The volumetric collisional stress averaged over the
simulation time Tsim is given by

hij ¼ 2a

#Tsim

X
coll

mp jikj
� �

(18)

where W ¼ (2p)3 is the total volume of the domain. Particles
involved in a collision have to verify g.k\ 0 at contact.

The numerical results for the collisional stress component
y11 are compared to Eq. 17 in Figure 6. In contrast to the
kinetic stress, the collisional stress components always
increase with concentration because of the increasing colli-
sion frequency. Although the kinetic stress is dominant in
dilute and highly inertial suspensions, the collisional contri-
bution becomes significant and may even dominate in more
concentrated suspensions where momentum and energy
transfers are related to collisions (

hij
qp/Tij

> 2, see Figures 5
and 6).

The shear flow forces a stress anisotropy in the solid-
phase (difference in the normal stresses). The stress redistrib-
ution vij between the different components contains the con-
tribution of collisions which leads generally to a reduction
of anisotropy. Indeed, when the restitution coefficient e ¼ 1,
the collisions do not dissipate energy but mainly transfer
momentum in the suspension over the different directions.
Equation 19 shows that when e ¼ 1 and c ¼ 0 (elastic colli-
sions in a quiescent fluid), the collisional momentum transfer
is not zero as long as the particle agitation is finite and the
kinetic stress tensor is anisotropic. This will lead to the
redistribution of the kinetic energy of the suspension.

Figure 5. Kinetic stress component in the flow direc-
tion T11/(ca)

2 vs. the solid volume fraction for
different Stokes numbers.

For caption see Figure 3.

Figure 6. Collisional stress component in the flow
direction y11/(qp/c

2a2) vs. the solid volume
fraction for different Stokes numbers.

For caption see Figure 3.
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The stress in the suspension of moderately inertial par-
ticles does not develop equally in all the directions. The ki-
netic stress in the flow direction is always dominant because
it is directly produced by the mean shear of the flow. The
other diagonal terms of the kinetic stress arise only from the
collision contribution as there is no production by the shear
rate in those directions. They are essentially induced by the
redistribution due to collisions (through v22 and v33). For a
fixed Stokes number, when the concentration increases the
influence of the collisional momentum transfer overcomes
the drag contribution [Eq. 3]. The redistribution of the fluc-
tuating energy is enhanced and the difference between the
diagonal component of the kinetic stress tensor decreases
(see the coefficients aij in Figures 7a,b). Consequently, the
flow of the suspension tends to recover a Newtonian behav-
ior.

At high particle inertia or concentration, the anisotropy is
weak. The agreement between the simulations and theory is
very good for St ¼ 5, where the drag contribution to each ki-
netic stress component is moderate. The kinetic stress is
quasi-isotropic when / approaches 30%. All the results on
the anisotropy can be interpreted in terms of the ratio of the
two significant time scales sp/sc.

31

Off-Diagonal Components: Viscosity of the Particulate
Phase. Because of symetry, only two off-diagonal terms of
the stress tensors are non-zero: T12 and y12. Their behavior
is similar to the respective normal stress components when
the Stokes numbers and concentration are varied. Kinetic
shear stress is dominant at low / and high St whereas the
collisional contribution dominates at high /. The agreement
is also good with the appropriate theoretical prediction
(ignited or quenched regime).

The effective viscosity of the solid phase can be calcu-
lated from the two shear stress components. The kinetic con-
tribution to momentum transfer can be interpreted as a ki-
netic viscosity. Rearranging T12 (Eq. 8b), the expression of
the kinetic viscosity lkins ¼ �qp/T12/c can be written in
terms of the different time scales and the anisotropy coeffi-
cient as follows:

lkins

qp/ca2
¼ T

c2a2
2

csp
þ rc
csc


 ��1

ð1þ/g0/cÞ�
a11
2

1þ8

5
/g0g


 �� �
(20)

where /c ¼ 2
5
ð1þ eÞð3e� 1Þ and rc ¼ 1

5
ð1þ eÞð3� eÞ.

Similarly, the collisional particulate viscosity lcolls ¼
�y12/c comes from the collisional shear stress component
y12 and is given by:

lcolls

qp/ca2
¼ 8

5
/g0ð1þ eÞ lkins

qp/ca2
þ 2ffiffiffi

p
p

ffiffiffi
T

p

ca

!
(21)

Finally, the total suspension viscosity may be deduced by
summing both the kinetic and collisional contributions:

ls ¼ lkins þ lcolls (22)

Based on similar assumptions, a simplified model for the
effective viscosity has been proposed by Balzer et al.32 to
carry out Eulerian simulations of dense fluidized beds.33

Using the so-called Boussinesq assumption Tij ¼ Tdij � lkins

cij, their model (Eq. 23) considers that the normal stress
components are equal and that the anisotropic part of the ki-
netic stress tensor is proportional to the shear rate. It is clear
from Figure 8 that the simplified model predicts accurately
the simulation results in the highly agitated regime where
the collisions are driving the flow and the anisotropy is
weak. In these situations, the additional term a11 included in
Eq. 20 may be omitted.

Figure 7. The diagonal terms of the tensor aij vs. the
solid volume fractions.

Figure a) is for St ¼ 1 and figure b) for St ¼ 5. Symbols:
numerical results (l, ~, and n are, respectively, for the
flow, shear, and spanwise directions). Solid lines: theoretical
predictions [Eqs. (8a)] of highly agitated suspensions (the
positive line is for a11 and the negative lines for a22 and
a33). The dotted, dashed, and dotted-dashed lines corre-
spond, respectively, to the flow, shear, and spanwise direc-
tions predicted by the quenched theory [Eqs. (11a) to (11c)]
for weakly agitated suspensions.



lkinmod

qp/ca2
¼ T

c2a2
2

csp
þ rc
csc


 ��1

ð1þ /g0/cÞ (23)

Equations 20 and 21 indicate that both the kinetic and colli-
sional contributions to the viscosity do not depend directly on
the magnitude of the shear rate, but indirectly through the par-
ticle agitation generated by particle encounters. The weight of
each contribution evolves with concentration. In dilute
regimes, the kinetic viscosity is very high because momentum
transfer occurs due to high fluctuation energy of the particles.
The role of collisions appears in both contributions through
the product /g0 which increases sharply for dense suspen-
sions. Figure 9 shows the evolution of the total particulate vis-
cosity. We can see that in dense suspensions, the kinetic vis-
cosity alone is far from predicting the total suspension viscos-
ity as the contribution of the collisions becomes dominant at
high concentration. We note that the trend at low concentra-
tion is very different for ignited or quenched suspensions.

Effect of the Restitution Coefficient

In the previous section, we discussed the macroscopic
behavior of suspensions, where the drag is the only mecha-
nism of energy dissipation. Actually, other physical mecha-
nisms of dissipation may exist: local hydrodynamic interac-
tions (and possibly multibody for dense suspensions), film
drainage during a collision event, short-range surface forces,
and inelastic deformation of the particles. All these phenom-
ena will modify the energy budget and may induce a signifi-
cant reduction of the particle agitation. According to Wylie
et al.,27 the viscous dissipation is dominant on the inelastic-
ity effect in liquid–solid suspension rather than in gas–solid
suspensions for low to moderately concentrated suspensions.

However, the viscous dissipation can be dominant in gas–
solid suspensions at high solid volume fractions.

In configurations where the viscous dissipation may be
neglected, the influence of the inelasticity effect on the macro-
scopic behavior of an agitated granular material (without drag)
was investigated in many works.34,35 A restitution coefficient
lower than 1 (even slightly, (1 � e)\\ 1) reduces consider-
ably the agitation level of the suspension. In a dry granular
material where the drag force is neglected, the dissipation due
to inelastic effects is the only dissipative mechanism. There-
fore, the equilibrium state is achieved under the balance of
shear induced agitation due to collisions and inelastic dissipa-
tion. When the collision inelasticity is supplemented by a sec-
ond energy dissipation mechanism, the agitation level in the
suspension is even lower.

In addition to the drag and collision dissipation mecha-
nisms, Sangani et al.17 took into account the local hydrody-
namic interactions in the energy conservation equation in the
limit of vanishing Reynolds number and moderate to high
Stokes number. The authors showed that the effect of hydro-
dynamic interactions can be simply modeled by a corrective
function Rdiss(/) applied to the Stokes drag on each particle
trajectory. They compared favorably this model with simula-
tions accounting for hydrodynamic interactions through the
Stokesian Dynamics approach. Using this correction, prefac-
tor is similar to a reduction of the overall Stokes number of
the suspension flow.

In this section, we aim at investigating the respective
influence of inelastic collisions, lubrication effects, Stokes
drag, and solid volume fraction on the behavior of the sus-
pension. First, the case of constant restitution coefficient is
considered. This coefficient is generally related to the loss of
energy due to the surface contact. Second, we introduce a
model for including the lubrication effects in a restitution
coefficient based on the correlation of Ref. 36. In all cases,
the existence and the range of parameters leading to
quenched or ignited state will be compared with the refer-
ence case of perfectly elastic particles.

Figure 8. Comparison between the particulate kinetic
viscosity |T12|/(ca)

2 obtained by solving the
complete kinetic stress transport equations
(solid lines) and the kinetic viscosity obtained
by the model with the Boussinesq assump-
tion (dashed lines).

The prediction of the quenched theory is also represented
via the dotted-dashed lines. Symbols refer to the same
Stokes numbers as in Figure 3.

Figure 9. Total viscosities ls/(qp/ca
2) vs. concentration.

The solid lines and the symbols are for the total viscosity
(they refer to the same Stokes numbers as Figure 3). The
dotted and dotted-dashed lines are, respectively, for the ki-
netic lkins /(qp/ca

2) and collisional lcolls /(qp/ca
2) viscosities

of the particulate phase.



Constant restitution coefficient

We carried out some simulations combining finite drag and
inelastic collisions (with constant restitution coefficient) by
decreasing the restitution coefficient for fixed St and /. At St
¼ 5 and / ¼ 15%, the flow regime of the suspension is ignited
for perfectly elastic collisions. When the restitution coefficient
varies from 1 to 0.5, the particle agitation decreases roughly
by an order of magnitude (see Figure 10). We observed that
the velocity distribution is still very close to a Maxwellian
function. The anistropy of the suspension is more pronounced
as the effect of inelastic collisions is increased (see Figure 11).
In the case of a suspension with St ¼ 1 and / ¼ 15%, the ve-
locity variance is almost independent of the collision inelastic-
ity and is fairly well-predicted by the theory using the
quenched state with e ¼ 1. We can conclude that highly agi-
tated suspensions are very sensitive to the inelasticity of colli-
sions whereas suspensions flowing under the quenched regime
are almost unaffected by the value of the restitution because
collisions events are less frequent.

The dissipation of kinetic energy during a single binary colli-
sion between two particles A and B is: DE ¼
� 1

4
ð1� e2ÞðvA � vBÞ2. The global energy dissipation due to

inelasticity over the whole suspension can be calculated from
ðvðmc2Þ ¼ vii ¼ �ð1� e2Þqp/ T

sc
Þ which corresponds to the av-

erage energy loss for each collision multiplied by the collision
frequency. Including the effect of drag, the ratio (sp/sc)(1 � e2)/2
compares the typical rate of energy dissipation due to the drag 1/
sp to the energy loss during inelastic collisions ((1� e2)/2sc).

Figure 12 shows the evolution of the particle agitation for
St ¼ 5 as a function of (sp/sc)(1 � e2)/2 which is the dissi-
pation ratio between collision and drag effects. The collision
time is evaluated using Eq. 13 where T is the real particle
agitation obtained in the simulations. The numerical results
are compared with the prediction of the theory based on an
ignited state. The shape of this curve is not intuitive because
sc varies with the particle agitation leading to a nonmono-
tonic evolution of the dissipation ratio when the restitution
coefficient decreases. The simulation results and the theory
agree well for e[ 0.9. The dominant contribution to the dis-

sipation is due to the drag while (sp/sc)(1 � e2)/2 is less
than 1. For e\ 0.9, the dissipation related to all the inelastic
particle collisions becomes dominant. The dissipation ratio
starts to decrease for e \ 0.6, indicating that although the
ignited theory is still valid, the drag overcomes the dissipa-
tion by inelastic collisions at low particle agitation.

The discrepancy observed in Figure 12 between the theory
and the simulations at low restitution coefficients is related
to the poor prediction of the ignited theory for weakly agi-
tated systems. In those cases of low restitution coefficients,
we observe frequent particle clustering. This phenomenon
has been often observed in sheared inelastic granular materi-
als. The clusters show a preferential orientation along the
compression axis of the flow along which shear-induced col-
lisions are the most frequent.37,38

Restitution coefficient including hydrodynamic effects

Local hydrodynamic interactions occuring during a colli-
sion lead to significant reduction of the particle relative ve-
locity before and after impact on a length scale of the same
order or shorter than the particle radius (see experiments for
particles in glycerol solution39,40 or drops in water36). Lubri-
cation forces during the film drainage delay the physical
contact and induce a strong dissipation of the kinetic energy
of the particles involved in the collision. This can be viewed
as an effective restitution coefficient related to the real
inelasticity of the particle material supplemented by the local
dissipation of the particle kinetic energy by the surrounding
fluid. Legendre et al.36 proposed an empirical law for the
effective coefficient of restitution for a particle-wall collision
epw ¼ e0 expð� b

St1
Þ, where V1 is the velocity of the particle

before its interaction with the wall and St1 ¼ mpV1
6pla2 is the

corresponding Stokes number (note that, unlike the standard
definition used in the previous sections, St1 depends on the
impact velocity of each individual collision). e0 is the maxi-
mum restitution coefficient obtained in a dry collision and b
an empirical parameter equal to 35.36

Figure 10. Particle agitation T/(ca)2 vs. the restitution
coefficient.

Circles and dotted line: simulations and quenched theory
for the case St ¼ 1 and / ¼ 5%. Squares and solid line:
simulations and ignited theory for St ¼ 5 and / ¼ 15%.

Figure 11. Normal stress difference (Tij 2 Tdij)/T vs. the
restitution coefficient for St 5 5 and / 5
15%.

The lines are obtained from the ignited theory. The solid
line and squares stand for anisotropy in the flow direction.
The circles, triangles, and dashed line stand for the anisot-
ropy in the shear and spanwise directions.



In the case of a collision of two identical particles, Yang and
Hunt40 found that the evolution of the restitution coefficient fol-
lows the same trend as for particle-wall collisions with a Stokes
number based on a reduced particle mass m* and radius a* (m*
¼ mp and a* ¼ a for particle-wall collisions whereas m* ¼ mp/2
and a* ¼ a/2 for two-particle collisions). The effective particle–
particle restitution coefficient epp depends on impact parameters
and particle characteristics (24).

epp ¼ e0 exp � Vb

Vr;1


 �
(24)

where Vb ¼ b
2
a
sp

and Vr,1 is the relative velocity of the two
particles before collision.

The particle–fluid interaction can be modeled by two con-
tributions: the standard drag force when particles are far
apart from each others, and the direct hydrodynamic interac-
tion (or lubrication effect) taken into account through the
modification of the restitution coefficient (Eq. 24). Using this
approach for pairwise hydrodynamic effect is only valid
when the time scale of the drag force sp is much larger than
the time scale of the lubrication forces sL.

In the ignited regime, the lubrication time scale can be esti-
mated by sL ¼ a

2

ffiffiffi
p
T

p
as lubrication effects occur on a distance

typically O(2a)36 with a mean relative velocity Oð
ffiffiffiffi
24
p

q
TÞ. The

condition sp � sL is then satisfied when T/(c
2a2)� p/(4St2).

In the quenched state, the typical particle–particle relative
velocity can be estimated by ca, therefore the condition sp
� sL leads to St � 1 in contradiction with the moderate
particle inertia assumption. Consequently, the application of
the proposed approach for direct hydrodynamic interaction
modeling should be restricted to the ignited regime

Based on similar assumptions which were used in the
higly agitated regime for the velocity distribution function
(‘‘Overview of Existing Theories’’ section), we obtain the
distribution function of the relative velocity at impact g.k.
Then, using Eq. 24 with Vr,1 ¼g.k, we can deduce the dis-
tribution of the restitution coefficient f(e*), with e* ¼ epp/e0:

f ðe�Þ ¼ � 1

Tb

1

e� ln3ðe�Þ exp � 1

4 Tb ln2ðe�Þ

 �

(25)

where Tb ¼ T
V2
b
¼ 4

b2
St2 T

c2a2. The average restitution coefficient
is obtained by integrating

\epp>¼ e0

Z1
0

e� f ðe�Þ de� ¼ 2 e0

Zþ1
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u e�u2 e�1=ð2 T
1=2

b uÞ du

(26)

Assuming that Tb � 1, which is a reliable assumption for
high Stokes numbers, an analytic expression for \epp[ is
obtained by a Taylor expansion:

\epp> ’ e0 1� 1

2

ffiffiffiffiffi
p
Tb

r
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(27)

The validation of the theoretical expression of the restitution
coefficient distribution Eq. 25 has been achieved by numerical
simulations using a restitution coefficient depending on the rela-
tive velocities at impact (Eq. 24). We varied the Stokes number
St ¼ [5,10,50] and selected two volumetric concentrations of
solid particles / ¼ [5,15]%. For all the simulations, the maxi-
mum restitution coefficient is e0 ¼ 1. Figure 13 compares the
distribution functions of the restitution coefficient predicted by
Eq. 25 with distributions obtained from simulations at / ¼ 5%
for St ¼ 5, 10, and 50. On one hand, a very good agreement is
achieved for both cases St ¼ 10 and 50. On the other hand, large
discrepancies are found for St¼ 5 which shows that the assump-
tion of an ignited regime does not apply at this moderate Stokes
number. When the Stokes number decreases, the particle agita-
tion decreases, leading to a significant reduction of the mean res-
titution coefficient. The Figure 14 shows the effect of increasing
the solid volume fraction on the distribution function of the resti-
tution coefficient for St ¼ 10. When the solid volume fraction
increases the particle agitation decreases, leading to a decrease
of the mean restitution coefficient, as predicted by Eq. 27.

Furthermore, we accounted for the dependance of the res-
titution coefficient on the relative velocity in the transport
equations of agitation and kinetic stresses (in both the
quenched and agitated regimes). In the ignited regime, this
leads to the modification of the collisional terms vij and yij,
where the coefficient of restitution has to be multiplied by
correction prefactors Rnp defined by:

Rnp ¼ 1

In

Zþ1

0

e�p=ð2 T
1=2

b uÞ un e�u2 du

0
@

1
A

1
p

(28)

with In are constants defined by In ¼
Rþ1

0

une�u2du
The overall energy dissipation induced by the particle col-

lisions is:

vii
2

¼ � T

2

/ qp
sc

1� ðR32 e0Þ2
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(29)

Assuming that Rnp has an exponential form, a first-order
Taylor expansion of Eq. 28 yields Rnp ^ e�In�1/(2InT

1=2
b Þ ¼ Rn.

Therefore, the energy dissipation can be approximated by
Eq. 30. For more details of the modification of the ignited
theory the reader is referred to Appendix.

Figure 12. Granular temperature vs. the energy dissipa-
tion ratio (collisions/drag dissipations) for St
5 5 and / 5 15%.

The solid line is obtained from the ignited theory. The
arrows indicate the path corresponding to a reduction of
the restitution coefficient from 1 to 0.1. The squares corre-
spond to the simulations with e ¼ 1, 0.9, 0.7, 0.6, 0.5
from top to bottom.
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The equations governing the quenched regime can also be
extended following the same approach. In this case, the par-
ticle agitation is given by the following equation:

T

c2a2
¼ 1

6
St Cii � 1

6
St2 C12 þ 1

12
St3C22 (31)

where the terms Cij denote the collisional terms equal to:

Cij ¼ � 6

p
/g0 Iij 1þ 2 QijðStÞ e0 þ QijðSt=2Þ e20

� �
(32)

where Iij is constant defined by Iij ¼ $kxky \0 (kx ky)
3 ki kj dk

and Qij is obtained by:

Qij ¼ 1

Iij

Z
kxky\0
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b

4 St kxky
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ðkxkyÞ3 kikj dk (33)

Assuming Qij ’ expð� b
4

aij
StÞ, a first-order Taylor expansion

yields an analytic expression for the symmetric tensor aij in
Qij (a11 ¼ a22 ¼ 27p

32
; a33 ¼ 9p

8
; a12 ¼ 8

p and a13 ¼ a23 ¼ 0).
Finally, the collisional terms are obtained by:

Cij ’ � 6

p
/g0 Iij 1þ QijðStÞ e0

� �2
(34)

Figure 15 shows the evolution of the particle agitation
with concentration for St ¼ 5, 10, and 50. The numerical
results are compared with the corresponding modified theory.
A very good agreement is obtained for St ¼ 50 for any con-
centration and for St ¼ 5 and 10 at low concentration (i.e.,
/ ¼ 5%). Figure 15 also shows the theoretical predictions
for perfectly elastic collisions e ¼ 1. Compared with the ref-
erence case e ¼ 1, the level of particle agitation is signifi-
cantly reduced when the restitution coefficient is dynami-
cally evaluated: for instance when St ¼ 50, the level of agi-
tation is reduced by a factor of 4 and 25 for / ¼ 5% and /
¼ 15%, respectively.

Figure 16 shows the dependence of the effective restitu-
tion coefficient R3 e0 (appearing in vii, Eq. 30) on the Stokes
number for several particle concentrations. At large Stokes
number, the effecive restitution coefficient tends asymptoti-
cally toward e0. For St ¼ 50, the effective restitution
coefficient is equal to 0.995 e0 and 0.98 e0, respectively, for
/ ¼ 5% and / ¼ 15%.

A comparison of the energy dissipation ratio (collision/drag
dissipations) is presented in Figure 17 for the standard (constant
restitution coefficient) and extended ignited theory (i.e., variable
restitution coefficient). For / ¼ 5%, we considered particularly
two cases corresponding to maximum restitution coefficients e0
¼ 1 and e0 ¼ 0.9. In the case e0 ¼ 1, St ¼ 50, and / ¼ 5%, both
dissipation mechanisms (inelastic collisions and drag) are of the

Figure 13. Probability density function of the restitution
coefficient depending on the impact veloc-
ities for / 5 5%.

The solids lines are obtained from Eq. 25. *, D, and *
correspond to numerical simulations for St ¼ 50, 10, and
5, respectively.

Figure 14. Probability density functions of the restitu-
tion coefficient depending on the impact
velocities for St 5 10.

The solids lines are obtained from Eq. 25. * and h corre-
spond to numerical simulations for / ¼ 5% and 15%,
respectively.

Figure 15. Particle agitation vs. concentration for dif-
ferent Stokes numbers.

Symbols (*, D, and * correspond, respectively, to St ¼
50, 10, and 5) stand for the numerical results with b ¼ 35.
Solid lines (from top to bottom: St ¼ 50, 10, and 5) corre-
spond to the theoritical prediction of the standard ignited
theory. Dashed lines (from top to bottom: St ¼ 50, 10,
and 5) correspond to the theoritical prediction of the modi-
fied ignited theory for St ¼ 50 and St ¼ 10 and of the
modified quenched theory for St ¼ 5.



same magnitude. This explains why a very weak variation of the
effective restitution coefficient (i.e., 0.5% for that case) has a
dramatic effect on the particle agitation (reduced by a factor of 4
compared with the reference case). However when e0 ¼ 0.9, the
trend of the dissipation ratio increase is similar when the restitu-
tion coefficient is constant or varies with the impact parameters
(at St ¼ 50 there is only a 10% difference). This means that the
modeling of direct hydrodynamic interactions has a weak influ-
ence on the particle agitation for inelastic particles.

Unexpectedly, when e0 ¼ 1 the energy dissipation ratio is
constant when St [ 10. Assuming that Tb � 1, the ratio of
energy dissipation can be expressed as:

1

2

sp
sc

1� ðR32 e0Þ2
� �

’ 1

2

sp
sc

ð1� e20Þ þ
3

2
/ g0 e

2
0 b (35)

Equation 35 shows that in the particular case of e0 ¼ 1 the
dissipation ratio is asymptotically independent of St. However,
the magnitude of the dissipation ration is proportional to /g0
which accounts for the effect of dense suspensions.

Conclusion

The dynamics of a suspension composed by particles with fi-
nite inertia suspended in a sheared viscous fluid flow has been
investigated. We assumed that Brownian motion and fluid inertia
effects were negligible. Typical suspensions satisfying such con-
ditions consist in solid millimetric particles [a ¼ O(0.1 � 1)mm]
embedded in a gas flow. The prediction of the bulk properties
needs a fundamental understanding of the interaction between
the solid and the fluid phases. The simple configuration of a pure
linear shear flow has been chosen as a prototype configuration
involving a velocity gradient. Although the gravity effect is pres-
ent in real situations, we neglected the mean settling of the par-
ticles to emphasize the shear induced interactions. Hindering
effect due to local hydrodynamic interactions between neighbor-
ing particles has been also neglected but may be easily modeled
by an effective drag coefficient17). We proposed an alternative
modeling based on an effective restitution coefficient accounting

for the presence of the interstitial fluid. The suspension inertia is
characterized by a macroscopic Stokes number, which is the ra-
tio of the characteristic times related to the particulate viscous
relaxation and to the shear rate of the flow. Discrete particle sim-
ulations were carried out for testing theory prediction (a statisti-
cal approach based on the kinetic theory of granular flow).

First, we investigated the macroscopic behavior of suspen-
sions with perfectly elastic rebounds. The dynamic equilibrium
results from a balance between the energy input by the shear and
the drag force dissipation. The simulations performed for St ¼ 1
to 10 showed that in this range of moderate particle inertia the
suspension dynamics was extremely rich evolving from a
quenched to a highly agitated regime. For a fixed concentration,
the particle agitation increases dramatically with the Stokes
number. For inertial particles or moderate concentration, the ve-
locity distributions were found to follow a deviated Maxwellian
shape, leading to an excellent agreement between the simula-
tions and the theory which is an extension of the classical kinetic
theory8 including drag dissipation.17–19 In that case, momentum
transfer is driven by successive collisions of the particles. How-
ever, for low particle inertia and dilute suspension, the velocity
distributions of the velocity fluctuations are highly peaked
around zero, indicating that most collisions are shear-induced.
The particle recovers the fluid streamline on a short time after
the collision. In this limit, the particle agitation tensor was found
to follow the so-called quenched theory developed by Tsao and
Koch19 based on an assumption of a Dirac function for the ve-
locity distribution. A general solution could be envisaged as a
gradual combination of the two theories (Dirac function and
deviated Maxwellian function) for intermediate regimes.

Both kinetic and collisional contributions to the stress
were computed in the normal and shear directions. The
appropriate theory for predicting the particle agitation leads
in most of the cases to a very accurate estimate. All the
stress contributions were found to increase with concentra-
tion in the quenched regime. The high anisotropy found in
the quenched regime (significant normal stress difference
(T11 � T)/T � 1) decreased strongly when the collision
effects become dominant over the drag contribution.

Figure 16. Effective coefficient of restitution R3 e0 vs.
Stokes number for different particle concen-
trations for e0 5 1.

The solid, dashed, and dash-dotted lines correspond to /
¼ 5, 10, and 15%, respectively.

Figure 17. Ratio of the two mechanisms of energy dis-
sipation (collision/drag) vs. Stokes number
for / 5 5%.

The solid line corresponds to the standard ignited theory
with e ¼ 0.9. Dashed lines (from top to bottom: e0 ¼ 0.9
and e0 ¼ 1) correspond to the modified ignited theory.



Concentrated suspensions were found to always behave as a
dry granular material where most of the momentum transfer
occurs through collisions. The effective viscosity deduced
from the shear stress contributions was compared with a vis-
cosity model commonly used for gas–solid suspension flows.
The agreement was very good in highly agitated suspensions
where an assumption of weak anisotropy is valid. But this
model may be flawed for the quenched regime of sheared
suspensions (low Stokes and concentration).

The sensitivity of the results to inelasticity was evaluated by
simulations with constant particle inertia and varying restitution
coefficient. A significant modification of the macroscopic behav-
ior of highly inertial particles appeared when the restitution coef-
ficient decreased from 1 to 0.5 (for St ¼ 5, the particle agitation
was decreased roughly by one order of magnitude), whereas no
significant variation was observed for weakly inertial particles.
Additionally, we propose a simple modeling of local hydrody-
namic interactions occuring during each binary collision. We
modeled the damping effect of the fluid drainage by an equiva-
lent restitution coefficient which depends on the instantaneous
particle impact velocities. The instantaneous restitution coeffi-
cient is related to the binary Stokes number based on impact pa-
rameters (Legendre et al.36, Yang and Hunt40). The predictions
based on the kinetic theory for the ignited and quenched states
were extended to take into account this effect. We have found a
very good agreement with numerical simulations at low concen-
tration (i.e., / ¼ 5%). At moderate concentration (i.e., / ¼
15%), the theory is very efficient for high Stokes number. The
distribution of the restitution coefficient was compared with the
assumption used in the theory as a validation step. This helps to
limit the range of accuracy of our statistical approach. At high
Stokes numbers, the effective restitution coefficient is slightly
different from the reference case. Including the effect of binary
hydrodynamic interactions leads to more pronounced effects at
moderately concentrated to dense suspensions or moderate
Stokes numbers.
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Appendix

Modified ignited theory

In the framework proposed by Jenkins and Richman,15 the
collisional terms can be written as:

CðWÞ ¼ vðWÞ � @

@xj
HjðWÞ (A1)

v(W) and yk(W) are defined by:

vðWÞ ¼ 2 a2g0
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HjðWÞ ¼ �4 a3g0
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with D(W) the variation of W during the collision of two par-
ticles and d(W1) the variation ofW for the particle of velocity c1.
Then, vij and Hij are defined by:

vij ¼ vðmpcicjÞ (A4)

Hij ¼ HjðmpciÞ (A5)

Based on the simple laws for a binary collision, we
obtain:

dðmp c1Þ ¼ � 1

2
ð1þ eppÞ g � kð Þ k (A6)

Dðmp ci ciÞ ¼ 1

2
ð1þ eppÞ ð1þ eppÞ g � kð Þ kikj � ðkigj þ kjgiÞ

� �
(A7)

with g ¼c1 � c2 and k ¼ x2 � x1. We can then derive the
expressions for vij and Hij. The only modification of the
study of Jenkins and Richman15 is that epp is now a function
of (g � k):

epp ¼ e0 exp � Vb

g � k

 �

(A8)

where Vb ¼ b
2
a
sp
. Integrating the collisional terms vii, v22, v12,

H22, and H12 gives:
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where D̂p;ij the anisotropic part of the tensor Dp;ij ¼
1
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where Tb ¼ T
V2
b
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