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Abstract. Diffusion Magnetic Resonance Imaging (dMRI) is a powerful
non-invasive and in-vivo imaging modality for probing brain white mat-
ter structure. Convolutional neural networks (CNNs) have been shown to
be a powerful tool for many computer vision problems where the signals
are acquired on a regular grid and where translational invariance is im-
portant. However, as we are considering dMRI signals that are acquired
on a sphere, rotational invariance, rather than translational, is desired. In
this work, we propose a spherical CNN model with fully spectral domain
convolutional and non-linear layers. It provides rotational invariance and
is adapted to the real nature of dMRI signals and uniform random dis-
tribution of sampling points. The proposed model is positively evaluated
on the problem of estimation of neurite orientation dispersion and den-
sity imaging (NODDI) parameters on the data from Human Connectome
Project (HCP).
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1 Introduction

Diffusion MRI (dMRI) is an imaging modality that exploits the interactions of
diffusing water molecules with the surrounding tissue micro-structures to create
contrast. As such, it is well suited for in-vivo non-invasive white matter structure
imaging. Progress in dMRI acquisition, from diffusion tensor imaging (DTI) [1]
to high angular resolution diffusion imaging (HARDI), allowed application of
more insightful mathematical tools in dMRI analysis. As a consequence, a num-
ber of biophysically inspired models which make finer link between underlying
tissue microstructures and observed signals have been proposed [2,3,4,5,6]. Sev-
eral studies have shown that the parameters of these models can be used in the
evaluation of several neurological diseases [6,7,8,9]. However, non-linear optimiz-
ers employed for the models’ parameter estimation, such as Markov chain Monte
Carlo (MCMC) [2], Levenberg–Marquardt [3,4], Gauss-Newton [5], exhibit high
computational complexity and often require high number of acquisition points
[3,4,5], which is not clinically applicable.

Given that a single voxel of dMRI volume contains a high dimensional q-space
signal, entire brain scan contains hundreds of thousands dMRI signals. This large
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quantity of data opens the door to deep learning (DL) approaches for various
problems where voxel-wise estimation is required. In [10], a fully connected neural
network (FCN) was proposed for the estimation of diffusion kurtosis and micro-
structure parameters from dMRI data obtained with a significantly reduced ac-
quisition protocol. For a similar problem, a sparse reconstruction framework has
been unfolded into a DL approach in [11] and was further improved by incorpo-
rating long-short term memory (LSTM) units in [12]. In [13], a model inspired
by [11] was developed for single-shell microstructure estimation. Furthermore,
DL was used for learning features related to certain neurological disease. In [14]
a CNN model adjusted to the dMRI data domain which combines inter- and
intra-voxel features, was proposed for classification into Parkinson disease and
control group. Rotation and translation equivariant network was developed and
successfully applied on the problem of multiple sclerosis lesion segmentation in
[15]. Furthermore, as dMRI acquisition protocols significantly vary over differ-
ent research centers and studies, a comparison of harmonization techniques was
conducted and showed potential of deep CNN based approaches over parametric
models [16]. A number of approaches was proposed for the estimation of fiber
orientation distribution functions (fODF). In [17,18], estimation of fODFs was
achieved with planar CNNs applied on dMRI data in spectral and signal domain.
For the same task, spherical U-nets which exhibit rotational equivariance were
proposed in [19,20].

Prior to the models tailored to the spherical nature of dMRI [14,15,19,20],
a number of rotationally equivariant DL models were proposed for arbitrary
S2 signals. One of the prominent spherical CNNs was proposed in [21], where
convolutions are performed in spectral instead of signal domain in order to avoid
computationally expensive interpolations. Since convolution of two S2 signals
gives a signal in SO(3) manifold, apart from the first layer, in all the following,
convolution is performed between SO(3) signals and kernels [21]. In the same
work and in accordance with planar CNNs, non-linearity is applied in signal
domain, which requires computationally demanding transformation from Fourier
to SO(3) domain. To address this problem, in [22], a spherical CNN model with
zonal kernels was proposed. Another issue that arises from the non-linearity in
signal domain is the introduction of high frequency components, which might
introduce aliasing. In the work presented by [23], a fully Fourier space CNN
was proposed. This model applies non-linearities of quadratic nature in spectral
domain, so it completely eliminates conversions from spectral to signal space
and the distortions introduced by aliasing.

In this work, we propose a spherical CNN with rotation equivariant Fourier
domain convolutional and non-linear layers, where trainable kernels and biases
are represented in Fourier domain of S2 and SO(3) manifold. Whereas the spher-
ical CNN models proposed in [21,22,23] assume that input is bandlimited S2

signal acquired at equiangular grid as one defined in [27], our model is tailored
to the spherical dMRI signals acquired at randomly uniformly distributed points
[28] and which are affected by significant Rician noise. The proposed model is
evaluated on the problem of estimation of neurite orientation dispersion and
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density imaging (NODDI) [5] parameters from the data from the Human Con-
nectome Project (HCP) [29].

2 Theory

In this section, we provide theoretical grounds related to S2 and SO(3) signals
which are used to define our spherical CNN model described in the section
Methods. The presented theory is, to a certain extent, common to the multiple
rotation equivariant DL models proposed in [21,22,23,15].

An arbitrary square integrable (L2) bandlimited signal s : S2 → C can be
represented as a linear combination of spherical harmonic (SH) basis elements
as

s(r) =

B∑
l=0

m=l∑
m=−l

ŝml Y
m
l (r) (1)

where r ∈ R3, ||r|| = 1. Y ml : S2 → C is the SH basis element of degree l and
order m. ŝml is the corresponding SH coefficient and B is signal’s bandwidth. As
the SH basis are orthogonal, ŝml can be obtained as

ŝml =

∫
S2

s(r)Y ml
∗(r)dr. (2)

Given two L2 signals f, g : S2 → C of bandwidth B their convolution is defined
as

[f ∗ g](R) =

∫
S2

f(r)g∗(R−1r) dr =

B∑
l=0

l∑
m=−l

l∑
n=−l

Dmn
l (R)f̂ml ĝ

n
l
∗ , (3)

where R = R(α, β, γ) ∈ SO(3), f̂ml and ĝnl are SH coefficients of degree l and
orders m and n of the signals f(r) and g(r) [24]. Dmn

l : SO(3) → C is an
element of Wigner-D matrix of degree l and orders m and n. Consequently, the
convolution of two spherical signals results in a signal whose domain is the SO(3)
manifold. An arbitrary L2 bandlimited signal h : SO(3)→ C can be represented
as a linear combination of the elements of Wigner-D matrices (referred here to
as rotational harmonics (RH)) as

h(R) =

B∑
l=0

m=l∑
m=−l

n=l∑
n=−l

Ĥmn
l Dmn

l (R). (4)

where Ĥmn
l is the RH coefficient associated with the element of Wigner-D matrix

Dmn
l (R) and B is signal’s bandwidth [24]. If h(R) = [f ∗ g](R), then from equa-

tions 3 and 4, Ĥl = f̂l ĝ
H
l where f̂l and ĝl ∈ C2l+1 contain the SH coefficients of

degree l of signals f(r) and g(r). Ĥl ∈ C(2l+1)×(2l+1) contains the RH coefficients
of degree l of signal h(R). Convolution of two L2 signals f, g : SO(3) → C of
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bandwidth B, h(R) = [f ∗ g](R), is defined as

h(R) =

∫
SO(3)

f(Q)g∗(R−1Q) dQ =

B∑
l=0

8π2

2l + 1

l∑
m=−l

l∑
n=−l

Dmn
l (R)

l∑
k=−l

F̂mkl Ĝnkl
∗ ,

(5)
where F̂mkl and Ĝknl are the RH coefficients of degree l and orders m, k and

k, n of signals f(R) and g(R) [24]. From equations 4 and 5, we have Ĥl =
8π2

2l+1 F̂lĜ
H
l where Ĥl, F̂l, Ĝl ∈ C(2l+1)×(2l+1) contain the RH coefficients of degree

l of functions h(R), f(R) and g(R). Product of two L2 signals f, g : SO(3)→ C
of bandwidths Bf and Bg, h(R) = f(R)× g(R), is defined as

h(R) =

Bf∑
l′=0

l′∑
m′=−l′

l′∑
n′=−l′

Bg∑
l′′=0

l′′∑
m′′=−l′′

l′′∑
n′′=−l′′

F̂m
′n′

l′ Ĝm
′′n′′

l′′ Dm′n′

l′ (R)Dm′′n′′

l′′ (R)

(6)
where product of elements of Wigner-D matrices can be represented as a linear
combination of elements of Wigner-D matrices using Clebsch-Gordan coefficients
< l′k′l′′k′′|lk > which are non-zero only if k = k′ + k′′ as

Dm′n′

l′ (R)Dm′′n′′

l′′ (R) =

l′+l′′∑
l=|l′−l′′|

< l′m′l′′m′′|lm >< l′n′l′′n′′|ln > Dmn
l (R) (7)

where m = m′ + m′′ and n = n′ + n′′ [26]. This means that h(R) is an SO(3)
signal of bandwidth Bg+Bf whose RH coefficients, Ĥl, in vector-matrix notation
can be represented as

Ĥl =
∑
l′,l′′

Cll′,l′′
T
[
F̂l′ ⊗ Ĝl′′

]
Cll′,l′′ s.t. |l′ − l′′| ≤ l ≤ l′ + l′′ (8)

where matrix Cll′,l′′ ∈ R(2l′+1)(2l′′+1)×(2l+1) is a sparse matrix containing Clebsch-

Gordan coefficients. As we are dealing with real S2 signals, we use real SH and
Wigner-D basis and accordingly defined Clebsch-Gordan matrices using the uni-
tary matrices as in [25].

3 Methods

Architecture of the model proposed in this work is illustrated in Figure 1. It
is composed of denoising layers, S2 and SO(3) convolutional layers, layers with
quadratic non-linearity and fully connected layers at the end. From denoised
input signals and each feature map, after non-linearity is applied, rotation in-
variant power spectrum features are extracted. They are concatenated and fed
into fully connected layers which perform final inference.
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Fig. 1: Illustration of proposed spherical CNN architecture

3.1 Denoising layers

Since dMRI signals used in our experiments are acquired at random uniformly
distributed points [28] we cannot use quadrature rule for computation of SH coef-
ficients as in [21,22,23]. In addition, the signals are affected by significant Rician
noise. As dMRI signals are positive, we define denoising layer as ReLU((I +
λW )s) where I is identity matrix, W are trainable weights, s is input signal and
λ is parameter which should ensure that matrix (I + λW ) is not too far from
identity matrix.

3.2 Convolutional layers

Convolutions are performed in spectral domain as firstly proposed in [21]. Given
input denoised dMRI signal of bandwidth L acquired at K shells (channels)
{sk : {(θi, φi)}Nk

i=1 → R}Kk=1, SH coefficients {{ŝkl ∈ R2l+1}Ll=0}Kk=1 are estimated
using real SH basis [25], orthonormalized using Gram-Schmidt process. First
convolutional layer contains weights and biases expressed in terms of SH coef-
ficients {{{ŵki

l ∈ R2l+1}Ll=0}Kk=1}Mi=1, {b̂i ∈ R1}Mi=1, where M is the number of
output channels. Convolution is given by

F̂ il =

K∑
k=1

ŝkl ŵ
ki
l
T if l 6= 0, F̂ il =

K∑
k=1

ŝkl ŵ
ki
l
T + b̂i if l = 0 , (9)

where {F̂ il ∈ R(2l+1)×(2l+1)}Mi=1 are the real RH coefficients of the resulting
SO(3) signals. As in [21], all the following convolutional layers contain convolu-
tions between SO(3) feature maps and kernels. For a layer n > 1, weights and bi-

ases are expressed in terms of real RH coefficients {{{Ŵ pq
l ∈ R(2l+1)×(2l+1)}Ln

l=0}Pp=1}
Q
q=1,

{B̂q ∈ R1}Qq=1, where P and Q are the number of input and output channels and
Ln is bandwidth of input feature maps. Given the RH coefficients of the input
feature maps {{Ŝpl ∈ R(2l+1)×(2l+1)}Ln

l=0}Pp=1 convolution is given by

F̂ ql =
8π2

2l + 1

P∑
p=1

Ŝpl Ŵ
pq
l
T if l 6= 0, F̂ ql =

8π2

2l + 1

P∑
p=1

Ŝpl Ŵ
pq
l
T +B̂q if l = 0

(10)
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where {F̂ ql ∈ R(2l+1)×(2l+1)}Qq=1 are RH coefficients of the resulting SO(3) sig-
nals.

3.3 Non-linearity and pooling

In the domain of rotation equivariant neural networks, non-linear activations of
quadratic nature were firstly introduced in [23], where Clebsch-Gordan decom-
position is used to decompose tensor product of SO(3) covariant vectors into
irreducible fragments. In our work, we propose a non-linearity f2(R) which is
rotationally equivariant and allows to preserve SO(3) feature maps. Given real
RH coefficients {F̂ ql }

Ln

l=0 of feature map f(R)q, using Eq. 8, RH coefficients of
h(R)q = f(R)q × f(R)q can be expressed as

Ĥq
l =

∑
l′,l′′

Cll′,l′′T
[
F̂ ql′ ⊗ F̂

q
l′′

]
Cll′,l′′ s.t. |l′ − l′′| ≤ l ≤ l′ + l′′ (11)

where Cll′,l′′ are corresponding real Clebsch-Gordan matrices [25]. Although the
bandwidth of the function h(R)q is 2Ln to achieve effect of pooling (reducing
feature map resolution) RH coefficients of degree higher then some Lm (Lm ≤
Ln) are discarded as in [21,23].

3.4 Rotation invariant feature vector

As goal of the cascade of convolutional and non-linear layers is to extract rotation
invariant features, in [23] fragments of degree l = 0 at the output of each non-
linear layer are concatenated (including l = 0 fragment of input signals) and
represent rotation invariant vector that is further fed to a FCN. In our model,
RH coefficients of degree l = 0 are rotation invariant as well. In addition, from
the generalization of Parseval’s theorem to S2 and SO(3) signals, we can notice
that angular and rotation power spectra defined as

Pff (l) =

l∑
m=−l

|f̂ml |2 and Phh(l) =
8π2

2l + 1

l∑
m=−l

l∑
n=−l

|Ĥmn
l |2 (12)

where f̂ml and Ĥmn
l are SH and RH coefficients of arbitrary L2 functions f and

h on S2 and SO(3), are rotation invariant as well. Given this, we create rotation
invariant feature vectors by concatenating the power spectra values of all degrees
l of outputs of each non-linear layer and input signals. As in [23], they are fed
to a FCN which performs the final inference.

4 Experiments

We used in our experiments real data of 50 subjects from Human Connectome
Project (HCP) [29], 30 for training, 10 for validation and 10 testing. Scans are
composed of three shells with b-values of 1000, 2000 and 3000 s/mm2, each with
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90 gradient directions and 18 b = 0 images. Scans were previously registered to
T1w images. To select relevant white matter voxels, brain tissue segmentation
computed from T1w images using FAST algorithm [31] implemented in mrtrix
library [32] was used. NODDI gold standard parameters, namely intra-axonal
volume fraction νIC , isotropic volume fraction νiso and orientation dispersion
OD, were estimated using brute2fine optimizer from dmipy toolbox on full ac-
quisition scheme, while the methods are compared on significantly downsampled
scheme with 30 sampling points per two shells - 1000 and 2000 s/mm2.

We compared our method with brute2fine optimizer and two deep learning
approaches, a model developed specifically for NODDI parameter estimation
MEDN [11] and a FCN which was initially used for microstructure parameter
estimation in [10]. Our model is composed of: (1) two denoising layers of size
60×60, (2) three convolutional layers of bandwidths 6, 4 and 2 with convolutional
kernels of sizes 2 × 8 × 28, 8 × 16 × 165, 16 × 32 × 35, followed by quadratic
non-linearity, and (3) four fully connected layers of sizes 128 × 128, 128 × 64,
64 × 32, 32 × 3 , followed by ReLU, except the last one which is followed by
sigmoid activation. FCN model has seven fully connected layers of size 60× 256,
256×192, 192×128, 128×64, 64×32, 32×16 and 16×3. All models are trained
over 200 epochs. In each epoch 12 800 dMRI signals were randomly selected from
white matter region from each of 10 randomly selected training subjects. Models
are trained in a way that they see same amount of data during training. For all
three DL approaches, loss function is defined as mean squared error (MSE). For
MEDN and FCN initial learning rate is 0.0001 and for our model it is 0.001,
after 50 epochs they are reduced by factor 5 and after 100 by factor 10 of initial
values. Batch size is 128. Total number of trainable parameters is 100 579, 109
865 and 73 691 for FCN, MEDN and our model respectively. Codes and trained
models are provided at https://gitlab.inria.fr/ssedlar/fourier_s2cnn.

5 Results and conclusions

We compared results in terms of mean absolute value and its standard deviation
over 10 testing subjects. Quantitative comparison of the results is given in Ta-
ble 1, where we can see that our proposed approach yields lower average errors.
In Figure 2, qualitative comparison between methods is provided for one axial
slice of a testing subject. Whereas, the differences between brute2fine and DL
approaches are noticeable, some differences between DL approaches can be seen
in OD estimation, where MEDN and FCN tend to overestimate OD values. Fur-
thermore, to investigate rotation invariance of DL approaches, we have trained
models on data whose diffusion tensor fit direction is in range [0, π6 ) (or ( 5π

6 , π))
and the quantitative results of the experiments are provided in Table 2 clearly
indicating rotation invariance of our model.

In this work we have proposed a rotation invariant model for signals ac-
quired at randomly distributed points on sphere and affected by considerable
noise such as dMRI signals. We have demonstrated that the proposed model
can be used successfully in the domain of dMRI analysis such as microstructure

https://gitlab.inria.fr/ssedlar/fourier_s2cnn
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Table 1: Mean absolute error and std over 10 testing subjects
Model νIC νISO OD

brute2fine (5.06 ±0.36)× 10−2 (3.87 ±0.24)× 10−2 (2.97 ±0.27)× 10−2

FCN (3.86 ±0.28)× 10−2 (3.14 ±0.21)× 10−2 (2.26 ±0.15)× 10−2

MEDN (3.81 ±0.28)× 10−2 (3.16 ±0.20)× 10−2 (2.17 ±0.16)× 10−2

Ours (3.77 ±0.28)× 10−2 (3.00 ±0.21)× 10−2 (2.08 ±0.16)× 10−2

Table 2: Mean absolute error and std over 10 testing subjects with direction
restricted training

Model νIC νISO OD

FCN (4.73 ±0.16)× 10−2 (3.43 ±0.18)× 10−2 (18.31 ±0.77)× 10−2

MEDN (5.09 ±0.21)× 10−2 (3.76 ±0.19)× 10−2 (13.46 ±0.50)× 10−2

Ours (3.99 ±0.31)× 10−2 (3.19 ±0.20)× 10−2 (4.10 ±0.15)× 10−2

parameter estimation. In the future work we will investigate how computational
complexity of quadratic activation function can be decreased and how the model
performance can be improved by incorporating neighbourhood information.
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