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Diffusion Magnetic Resonance Imaging (dMRI) is a powerful non-invasive and in-vivo imaging modality for probing brain white matter structure. Convolutional neural networks (CNNs) have been shown to be a powerful tool for many computer vision problems where the signals are acquired on a regular grid and where translational invariance is important. However, as we are considering dMRI signals that are acquired on a sphere, rotational invariance, rather than translational, is desired. In this work, we propose a spherical CNN model with fully spectral domain convolutional and non-linear layers. It provides rotational invariance and is adapted to the real nature of dMRI signals and uniform random distribution of sampling points. The proposed model is positively evaluated on the problem of estimation of neurite orientation dispersion and density imaging (NODDI) parameters on the data from Human Connectome Project (HCP).

Introduction

Diffusion MRI (dMRI) is an imaging modality that exploits the interactions of diffusing water molecules with the surrounding tissue micro-structures to create contrast. As such, it is well suited for in-vivo non-invasive white matter structure imaging. Progress in dMRI acquisition, from diffusion tensor imaging (DTI) [START_REF] Bihan | Diffusion tensor imaging: concepts and applications[END_REF] to high angular resolution diffusion imaging (HARDI), allowed application of more insightful mathematical tools in dMRI analysis. As a consequence, a number of biophysically inspired models which make finer link between underlying tissue microstructures and observed signals have been proposed [2,3,4,5,6]. Several studies have shown that the parameters of these models can be used in the evaluation of several neurological diseases [6,7,8,[START_REF] Broad | Neurite orientation and dispersion density imaging (NODDI) detects cortical and corticospinal tract degeneration in ALS[END_REF]. However, non-linear optimizers employed for the models' parameter estimation, such as Markov chain Monte Carlo (MCMC) [2], Levenberg-Marquardt [3,4], Gauss-Newton [5], exhibit high computational complexity and often require high number of acquisition points [3,4,5], which is not clinically applicable.

Given that a single voxel of dMRI volume contains a high dimensional q-space signal, entire brain scan contains hundreds of thousands dMRI signals. This large quantity of data opens the door to deep learning (DL) approaches for various problems where voxel-wise estimation is required. In [START_REF] Golkov | Q-space deep learning: twelve-fold shorter and model-free diffusion MRI scans[END_REF], a fully connected neural network (FCN) was proposed for the estimation of diffusion kurtosis and microstructure parameters from dMRI data obtained with a significantly reduced acquisition protocol. For a similar problem, a sparse reconstruction framework has been unfolded into a DL approach in [START_REF] Ye | Estimation of tissue microstructure using a deep network inspired by a sparse reconstruction framework[END_REF] and was further improved by incorporating long-short term memory (LSTM) units in [START_REF] Ye | A deep network for tissue microstructure estimation using modified LSTM units[END_REF]. In [START_REF] Faiyaz | DLpN: Single-Shell NODDI Using Deep Learner Estimated Isotropic Volume Fraction[END_REF], a model inspired by [START_REF] Ye | Estimation of tissue microstructure using a deep network inspired by a sparse reconstruction framework[END_REF] was developed for single-shell microstructure estimation. Furthermore, DL was used for learning features related to certain neurological disease. In [START_REF] Banerjee | Dmr-cnn: A cnn tailored for dmr scans with applications to pd classification[END_REF] a CNN model adjusted to the dMRI data domain which combines inter-and intra-voxel features, was proposed for classification into Parkinson disease and control group. Rotation and translation equivariant network was developed and successfully applied on the problem of multiple sclerosis lesion segmentation in [START_REF] Müller | Rotation-Equivariant Deep Learning for Diffusion MRI[END_REF]. Furthermore, as dMRI acquisition protocols significantly vary over different research centers and studies, a comparison of harmonization techniques was conducted and showed potential of deep CNN based approaches over parametric models [START_REF] Ning | Muti-shell diffusion MRI harmonisation and enhancement challenge (MUSHAC): progress and results[END_REF]. A number of approaches was proposed for the estimation of fiber orientation distribution functions (fODF). In [START_REF] Lin | Fast learning of fiber orientation distribution function for MR tractography using convolutional neural network[END_REF][START_REF] Koppers | Direct estimation of fiber orientations using deep learning in diffusion imaging[END_REF], estimation of fODFs was achieved with planar CNNs applied on dMRI data in spectral and signal domain. For the same task, spherical U-nets which exhibit rotational equivariance were proposed in [START_REF] Sedlar | Diffusion MRI fiber orientation distribution function estimation using voxel-wise spherical U-net[END_REF][START_REF] Elaldi | Equivariant Spherical Deconvolution: Learning Sparse Orientation Distribution Functions from Spherical Data[END_REF].

Prior to the models tailored to the spherical nature of dMRI [START_REF] Banerjee | Dmr-cnn: A cnn tailored for dmr scans with applications to pd classification[END_REF][START_REF] Müller | Rotation-Equivariant Deep Learning for Diffusion MRI[END_REF][START_REF] Sedlar | Diffusion MRI fiber orientation distribution function estimation using voxel-wise spherical U-net[END_REF][START_REF] Elaldi | Equivariant Spherical Deconvolution: Learning Sparse Orientation Distribution Functions from Spherical Data[END_REF], a number of rotationally equivariant DL models were proposed for arbitrary S 2 signals. One of the prominent spherical CNNs was proposed in [START_REF] Taco | Spherical CNNs. International Conference on Learning Representations[END_REF], where convolutions are performed in spectral instead of signal domain in order to avoid computationally expensive interpolations. Since convolution of two S 2 signals gives a signal in SO(3) manifold, apart from the first layer, in all the following, convolution is performed between SO(3) signals and kernels [START_REF] Taco | Spherical CNNs. International Conference on Learning Representations[END_REF]. In the same work and in accordance with planar CNNs, non-linearity is applied in signal domain, which requires computationally demanding transformation from Fourier to SO(3) domain. To address this problem, in [START_REF] Esteves | Learning so (3) equivariant representations with spherical cnns[END_REF], a spherical CNN model with zonal kernels was proposed. Another issue that arises from the non-linearity in signal domain is the introduction of high frequency components, which might introduce aliasing. In the work presented by [START_REF] Kondor | Clebsch-gordan nets: a fully fourier space spherical convolutional neural network[END_REF], a fully Fourier space CNN was proposed. This model applies non-linearities of quadratic nature in spectral domain, so it completely eliminates conversions from spectral to signal space and the distortions introduced by aliasing.

In this work, we propose a spherical CNN with rotation equivariant Fourier domain convolutional and non-linear layers, where trainable kernels and biases are represented in Fourier domain of S 2 and SO(3) manifold. Whereas the spherical CNN models proposed in [START_REF] Taco | Spherical CNNs. International Conference on Learning Representations[END_REF][START_REF] Esteves | Learning so (3) equivariant representations with spherical cnns[END_REF][START_REF] Kondor | Clebsch-gordan nets: a fully fourier space spherical convolutional neural network[END_REF] assume that input is bandlimited S 2 signal acquired at equiangular grid as one defined in [START_REF] Driscoll | Computing Fourier transforms and convolutions on the 2-sphere[END_REF], our model is tailored to the spherical dMRI signals acquired at randomly uniformly distributed points [START_REF] Caruyer | Design of multishell sampling schemes with uniform coverage in diffusion MRI[END_REF] and which are affected by significant Rician noise. The proposed model is evaluated on the problem of estimation of neurite orientation dispersion and density imaging (NODDI) [5] parameters from the data from the Human Connectome Project (HCP) [START_REF] Van Essen | The WU-Minn human connectome project: an overview[END_REF].

Theory

In this section, we provide theoretical grounds related to S 2 and SO(3) signals which are used to define our spherical CNN model described in the section Methods. The presented theory is, to a certain extent, common to the multiple rotation equivariant DL models proposed in [START_REF] Taco | Spherical CNNs. International Conference on Learning Representations[END_REF][START_REF] Esteves | Learning so (3) equivariant representations with spherical cnns[END_REF][START_REF] Kondor | Clebsch-gordan nets: a fully fourier space spherical convolutional neural network[END_REF][START_REF] Müller | Rotation-Equivariant Deep Learning for Diffusion MRI[END_REF].

An arbitrary square integrable (L 2 ) bandlimited signal s : S 2 → C can be represented as a linear combination of spherical harmonic (SH) basis elements as

s(r) = B l=0 m=l m=-l ŝm l Y m l (r) (1) 
where

r ∈ R 3 , ||r|| = 1. Y m l : S 2 → C
is the SH basis element of degree l and order m. ŝm l is the corresponding SH coefficient and B is signal's bandwidth. As the SH basis are orthogonal, ŝm l can be obtained as

ŝm l = S 2 s(r)Y m l * (r)dr. (2) 
Given two L 2 signals f, g : S 2 → C of bandwidth B their convolution is defined as

[f * g](R) = S 2 f (r)g * (R -1 r) dr = B l=0 l m=-l l n=-l D mn l (R) f m l ĝn l * , (3) 
where R = R(α, β, γ) ∈ SO(3), f m l and ĝn l are SH coefficients of degree l and orders m and n of the signals f (r) and g(r) [START_REF] Sugiura | Unitary representations and harmonic analysis: an introduction[END_REF]. D mn l : SO(3) → C is an element of Wigner-D matrix of degree l and orders m and n. Consequently, the convolution of two spherical signals results in a signal whose domain is the SO(3) manifold. An arbitrary L 2 bandlimited signal h : SO(3) → C can be represented as a linear combination of the elements of Wigner-D matrices (referred here to as rotational harmonics (RH)) as

h(R) = B l=0 m=l m=-l n=l n=-l Ĥmn l D mn l (R). ( 4 
)
where Ĥmn l is the RH coefficient associated with the element of Wigner-D matrix D mn l (R) and B is signal's bandwidth [START_REF] Sugiura | Unitary representations and harmonic analysis: an introduction[END_REF]. If h(R) = [f * g](R), then from equations 3 and 4, Ĥl = fl ĝH l where fl and ĝl ∈ C 2l+1 contain the SH coefficients of degree l of signals f (r) and g(r). Ĥl ∈ C (2l+1)×(2l+1) contains the RH coefficients of degree l of signal h(R).

Convolution of two L 2 signals f, g : SO(3) → C of bandwidth B, h(R) = [f * g](R), is defined as h(R) = SO(3) f (Q)g * (R -1 Q) dQ = B l=0 8π 2 2l + 1 l m=-l l n=-l D mn l (R) l k=-l F mk l Ĝnk l * ,
(5) where F mk l and Ĝkn l are the RH coefficients of degree l and orders m, k and k, n of signals f (R) and g(R) [START_REF] Sugiura | Unitary representations and harmonic analysis: an introduction[END_REF]. From equations 4 and 5, we have Ĥl =

8π 2 2l+1 Fl ĜH l where Ĥl , Fl , Ĝl ∈ C (2l+1)×(2l+1) contain the RH coefficients of degree l of functions h(R), f (R) and g(R). Product of two L 2 signals f, g : SO(3) → C of bandwidths B f and B g , h(R) = f (R) × g(R), is defined as h(R) = B f l =0 l m =-l l n =-l Bg l =0 l m =-l l n =-l F m n l Ĝm n l D m n l (R)D m n l (R) (6)
where product of elements of Wigner-D matrices can be represented as a linear combination of elements of Wigner-D matrices using Clebsch-Gordan coefficients

< l k l k |lk > which are non-zero only if k = k + k as D m n l (R)D m n l (R) = l +l l=|l -l | < l m l m |lm >< l n l n |ln > D mn l (R) (7) 
where m = m + m and n = n + n [START_REF] Rose | Elementary theory of angular momentum[END_REF]. This means that h(R) is an SO(3) signal of bandwidth B g +B f whose RH coefficients, Ĥl , in vector-matrix notation can be represented as

Ĥl = l ,l C l l ,l T Fl ⊗ Ĝl C l l ,l s.t. |l -l | ≤ l ≤ l + l (8) 
where matrix C l l ,l ∈ R (2l +1)(2l +1)×(2l+1) is a sparse matrix containing Clebsch-Gordan coefficients. As we are dealing with real S 2 signals, we use real SH and Wigner-D basis and accordingly defined Clebsch-Gordan matrices using the unitary matrices as in [START_REF] Homeier | Some properties of the coupling coefficients of real spherical harmonics and their relation to Gaunt coefficients[END_REF].

Methods

Architecture of the model proposed in this work is illustrated in Figure 1. It is composed of denoising layers, S 2 and SO(3) convolutional layers, layers with quadratic non-linearity and fully connected layers at the end. From denoised input signals and each feature map, after non-linearity is applied, rotation invariant power spectrum features are extracted. They are concatenated and fed into fully connected layers which perform final inference. Since dMRI signals used in our experiments are acquired at random uniformly distributed points [START_REF] Caruyer | Design of multishell sampling schemes with uniform coverage in diffusion MRI[END_REF] we cannot use quadrature rule for computation of SH coefficients as in [START_REF] Taco | Spherical CNNs. International Conference on Learning Representations[END_REF][START_REF] Esteves | Learning so (3) equivariant representations with spherical cnns[END_REF][START_REF] Kondor | Clebsch-gordan nets: a fully fourier space spherical convolutional neural network[END_REF]. In addition, the signals are affected by significant Rician noise. As dMRI signals are positive, we define denoising layer as ReLU ((I + λW )s) where I is identity matrix, W are trainable weights, s is input signal and λ is parameter which should ensure that matrix (I + λW ) is not too far from identity matrix.

Convolutional layers

Convolutions are performed in spectral domain as firstly proposed in [START_REF] Taco | Spherical CNNs. International Conference on Learning Representations[END_REF]. Given input denoised dMRI signal of bandwidth L acquired at K shells (channels)

{s k : {(θ i , φ i )} N k i=1 → R} K k=1 , SH coefficients {{ŝ k l ∈ R 2l+1 } L l=0 } K k=1
are estimated using real SH basis [START_REF] Homeier | Some properties of the coupling coefficients of real spherical harmonics and their relation to Gaunt coefficients[END_REF], orthonormalized using Gram-Schmidt process. First convolutional layer contains weights and biases expressed in terms of SH coefficients

{{{ ŵki l ∈ R 2l+1 } L l=0 } K k=1 } M i=1 , { bi ∈ R 1 } M i=1
, where M is the number of output channels. Convolution is given by

F i l = K k=1 ŝk l ŵki l T if l = 0, F i l = K k=1 ŝk l ŵki l T + bi if l = 0 , (9) 
where { F i l ∈ R (2l+1)×(2l+1) } M i=1 are the real RH coefficients of the resulting SO(3) signals. As in [START_REF] Taco | Spherical CNNs. International Conference on Learning Representations[END_REF], all the following convolutional layers contain convolutions between SO(3) feature maps and kernels. For a layer n > 1, weights and biases are expressed in terms of real RH coefficients

{{{ Ŵ pq l ∈ R (2l+1)×(2l+1) } Ln l=0 } P p=1 } Q q=1 , { Bq ∈ R 1 } Q q=1
, where P and Q are the number of input and output channels and L n is bandwidth of input feature maps. Given the RH coefficients of the input feature maps {{ Ŝp l ∈ R (2l+1)×(2l+1) } Ln l=0 } P p=1 convolution is given by

F q l = 8π 2 2l + 1 P p=1 Ŝp l Ŵ pq l T if l = 0, F q l = 8π 2 2l + 1 P p=1 Ŝp l Ŵ pq l T + Bq if l = 0 (10)
where { F q l ∈ R (2l+1)×(2l+1) } Q q=1 are RH coefficients of the resulting SO(3) signals.

Non-linearity and pooling

In the domain of rotation equivariant neural networks, non-linear activations of quadratic nature were firstly introduced in [START_REF] Kondor | Clebsch-gordan nets: a fully fourier space spherical convolutional neural network[END_REF], where Clebsch-Gordan decomposition is used to decompose tensor product of SO(3) covariant vectors into irreducible fragments. In our work, we propose a non-linearity f 2 (R) which is rotationally equivariant and allows to preserve SO(3) feature maps. Given real RH coefficients { F q l } Ln l=0 of feature map f (R) q , using Eq. 8, RH coefficients of h(R) q = f (R) q × f (R) q can be expressed as

Ĥq l = l ,l C l l ,l T F q l ⊗ F q l C l l ,l s.t. |l -l | ≤ l ≤ l + l ( 11 
)
where C l l ,l are corresponding real Clebsch-Gordan matrices [START_REF] Homeier | Some properties of the coupling coefficients of real spherical harmonics and their relation to Gaunt coefficients[END_REF]. Although the bandwidth of the function h(R) q is 2L n to achieve effect of pooling (reducing feature map resolution) RH coefficients of degree higher then some L m (L m ≤ L n ) are discarded as in [START_REF] Taco | Spherical CNNs. International Conference on Learning Representations[END_REF][START_REF] Kondor | Clebsch-gordan nets: a fully fourier space spherical convolutional neural network[END_REF].

Rotation invariant feature vector

As goal of the cascade of convolutional and non-linear layers is to extract rotation invariant features, in [START_REF] Kondor | Clebsch-gordan nets: a fully fourier space spherical convolutional neural network[END_REF] fragments of degree l = 0 at the output of each nonlinear layer are concatenated (including l = 0 fragment of input signals) and represent rotation invariant vector that is further fed to a FCN. In our model, RH coefficients of degree l = 0 are rotation invariant as well. In addition, from the generalization of Parseval's theorem to S 2 and SO(3) signals, we can notice that angular and rotation power spectra defined as

P f f (l) = l m=-l | f m l | 2 and P hh (l) = 8π 2 2l + 1 l m=-l l n=-l | Ĥmn l | 2 (12) 
where f m l and Ĥmn l are SH and RH coefficients of arbitrary L 2 functions f and h on S 2 and SO(3), are rotation invariant as well. Given this, we create rotation invariant feature vectors by concatenating the power spectra values of all degrees l of outputs of each non-linear layer and input signals. As in [START_REF] Kondor | Clebsch-gordan nets: a fully fourier space spherical convolutional neural network[END_REF], they are fed to a FCN which performs the final inference.

Experiments

We used in our experiments real data of 50 subjects from Human Connectome Project (HCP) [START_REF] Van Essen | The WU-Minn human connectome project: an overview[END_REF], 30 for training, 10 for validation and 10 testing. Scans are composed of three shells with b-values of 1000, 2000 and 3000 s/mm 2 , each with 90 gradient directions and 18 b = 0 images. Scans were previously registered to T1w images. To select relevant white matter voxels, brain tissue segmentation computed from T1w images using FAST algorithm [START_REF] Zhang | Segmentation of brain MR images through a hidden Markov random field model and the expectationmaximization algorithm[END_REF] implemented in mrtrix library [START_REF] Tournier | MRtrix3: A fast, flexible and open software framework for medical image processing and visualisation[END_REF] was used. NODDI gold standard parameters, namely intra-axonal volume fraction ν IC , isotropic volume fraction ν iso and orientation dispersion OD, were estimated using brute2fine optimizer from dmipy toolbox on full acquisition scheme, while the methods are compared on significantly downsampled scheme with 30 sampling points per two shells -1000 and 2000 s/mm 2 .

We compared our method with brute2f ine optimizer and two deep learning approaches, a model developed specifically for NODDI parameter estimation MEDN [START_REF] Ye | Estimation of tissue microstructure using a deep network inspired by a sparse reconstruction framework[END_REF] and a FCN which was initially used for microstructure parameter estimation in [START_REF] Golkov | Q-space deep learning: twelve-fold shorter and model-free diffusion MRI scans[END_REF]. Our model is composed of: (1) two denoising layers of size 60×60, (2) three convolutional layers of bandwidths 6, 4 and 2 with convolutional kernels of sizes 2 × 8 × 28, 8 × 16 × 165, 16 × 32 × 35, followed by quadratic non-linearity, and (3) four fully connected layers of sizes 128 × 128, 128 × 64, 64 × 32, 32 × 3 , followed by ReLU, except the last one which is followed by sigmoid activation. FCN model has seven fully connected layers of size 60 × 256, 256 × 192, 192 × 128, 128 × 64, 64 × 32, 32 × 16 and 16 × 3. All models are trained over 200 epochs. In each epoch 12 800 dMRI signals were randomly selected from white matter region from each of 10 randomly selected training subjects. Models are trained in a way that they see same amount of data during training. For all three DL approaches, loss function is defined as mean squared error (MSE). For MEDN and FCN initial learning rate is 0.0001 and for our model it is 0.001, after 50 epochs they are reduced by factor 5 and after 100 by factor 10 of initial values. Batch size is 128. Total number of trainable parameters is 100 579, 109 865 and 73 691 for FCN, MEDN and our model respectively. Codes and trained models are provided at https://gitlab.inria.fr/ssedlar/fourier_s2cnn.

Results and conclusions

We compared results in terms of mean absolute value and its standard deviation over 10 testing subjects. Quantitative comparison of the results is given in Table 1, where we can see that our proposed approach yields lower average errors. In Figure 2, qualitative comparison between methods is provided for one axial slice of a testing subject. Whereas, the differences between brute2fine and DL approaches are noticeable, some differences between DL approaches can be seen in OD estimation, where MEDN and FCN tend to overestimate OD values. Furthermore, to investigate rotation invariance of DL approaches, we have trained models on data whose diffusion tensor fit direction is in range [0, π 6 ) (or ( 5π 6 , π)) and the quantitative results of the experiments are provided in Table 2 clearly indicating rotation invariance of our model.

In this work we have proposed a rotation invariant model for signals acquired at randomly distributed points on sphere and affected by considerable noise such as dMRI signals. We have demonstrated that the proposed model can be used successfully in the domain of dMRI analysis such as microstructure parameter estimation. In the future work we will investigate how computational complexity of quadratic activation function can be decreased and how the model performance can be improved by incorporating neighbourhood information. 
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 1 Fig. 1: Illustration of proposed spherical CNN architecture

Fig. 2 :

 2 Fig. 2: Qualitative comparison of NODDI parameter estimation and differences with respect to gold standard. Red color indicates underestimation and blue color overestimation.
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Table 1 :

 1 Mean absolute error and std over 10 testing subjects

	Model	νIC	νISO	OD
	brute2fine (5.06 ±0.36) × 10 -2 (3.87 ±0.24) × 10 -2 (2.97 ±0.27) × 10 -2
	FCN (3.86 ±0.28) × 10 -2 (3.14 ±0.21) × 10 -2 (2.26 ±0.15) × 10 -2
	MEDN (3.81 ±0.28) × 10 -2 (3.16 ±0.20) × 10 -2 (2.17 ±0.16) × 10 -2
	Ours (3.77 ±0.28) × 10 -2 (3.00 ±0.21) × 10 -2 (2.08 ±0.16) × 10 -2

Table 2 :

 2 Mean absolute error and std over 10 testing subjects with direction restricted training ±0.16) × 10 -2 (3.43 ±0.18) × 10 -2 (18.31 ±0.77) × 10 -2 MEDN (5.09 ±0.21) × 10 -2 (3.76 ±0.19) × 10 -2 (13.46 ±0.50) × 10 -2 Ours (3.99 ±0.31) × 10 -2 (3.19 ±0.20) × 10 -2 (4.10 ±0.15) × 10 -2

	Model	νIC	νISO	OD
	FCN (4.73			
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