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Dans ce travail, nous introduisons une méthode non paramétrique de balayage pour des données fonctionnelles indexées dans l'espace. Nous présentons une statistique de balayage construite en utilisant la statistique de test de Wilcoxon-Mann-Whitney pour des données de dimension infinie. Cette dernière est totalement non paramétrique car elle ne suppose aucune distribution concernant les marques fonctionnelles. Ce test de balayage semble puissant contre toute alternative d'agrégation. Nous appliquons cette méthode à un ensemble de données pour extraire des caractéristiques de l'évolution démographique de provinces espagnoles.

Introduction

Cluster detection has become a fruitful area of statistics that has particulary expanded in recent decades. It is used to identify aggregations of events in time and/or space. One of the most popular cluster detection technique is the scan statistic which was firstly introduced by [START_REF] Naus | Clustering of random points in the line and plane[END_REF]. These scan statistics are used to decide whether exceptional or not observing a cluster of events. During the last decades, [START_REF] Kulldorff | Spatial disease clusters: detection and inference[END_REF] and [START_REF] Kulldorff | A spatial scan statistic[END_REF] proposed spatial scan statistics based on Bernouilli and Poisson models. They presented a method based on the likelihood ratio and they tested the clusters' statistical significance via a Monte-Carlo procedure. In the multivariate case, scan statistics based on likelihood ratio were recently tackled by [START_REF] Shen | Multivariate normal spatial scan statistic for detecting the most severe cluster of a disease[END_REF] and [START_REF] Cucala | A Multivariate Gaussian scan statistic for spatial data[END_REF]. However, in these latter, the likelihood ratio used to construct the scan statistics are computed when the data follow a Gaussian model. A natural question arises: how can we detect a spatial cluster when the data are not Gaussian? In order to overcome this problem, researchers consider the nonparametric procedures which are applicable in many cases where the data are not drawn from a population with a specific distribution. In the last few years, [START_REF] Jung | A nonparametric spatial scan statistic for continuous data[END_REF] and [START_REF] Cucala | A Mann-Whitney scan statistic for continuous data[END_REF] proposed separately a nonparametric spatial scan statistic. In their works, they introduced a scan statistic in the univariate setting which is based on the Wilcoxon-Mann-Whitney test. Very recently, [START_REF] Cucala | A Multivariate nonparametric scan statistic for spatial data[END_REF] proposed a nonparametric scan statistic in the multivariate setting using the Wilcoxon-Mann-Whitney test introduced by [START_REF] Oja | Multivariate nonparametric tests[END_REF]. Currently, the development of the sensoring allows us to work with huge datasets. Hence, we have more and more access to functional data coming from various fields of applications like environmetrics, medecine and econometrics (see, [START_REF] Ramsay | Functional Data Analysis[END_REF], [START_REF] Ferraty | Nonparametric Functional Data Analysis (Theory and practice)[END_REF]). In the present work, we develop a nonparametric spatial scan statistic for functional data. In Section 2, we explain how the use of the Wilcoxon-Mann-Whitney statistic proposed by [START_REF] Chakraborty | A Wilcoxon-Mann-Whitney type test for infinite-dimensional data[END_REF] can give birth to a scan statistic. Then, to evaluate its statistical significance, we introduce a test procedure based on permutations. In section 3, we apply the spatial scan statistic to simulated and real datasets.

2 Nonparametric spatial scan statistic in functional data

Statistic construction

Consider X a random element in a separable Hilbert space χ. We denote by . χ a norm on χ. Let X 1 , . . . , X n be observations of X measured in n different spatial locations s 1 , . . . , s n included in D ⊂ R 2 . Following the terminology of point process theory, D is the observation domain and X i is the mark associated to location s i , for all i = 1, . . . , n. Our goal is to detect a cluster of unusual marks, i.e. a spatial zone Z ⊂ D in which the marks are abnormally higher or abnormally lower than elsewhere. In order to do that, we will construct a scan statistic which is usually defined to be the maximum of a concentration index observed in a collection of potential clusters using a variable window (see, [START_REF] Nagarwalla | A scan statistic with a variable window[END_REF]). In this work, without loss of generality, we consider the circular clusters introduced by [START_REF] Kulldorff | A spatial scan statistic[END_REF]. Hence, the set of potential clusters S is defined as follows:

S = {D i,j , 1 ≤ i ≤ n, 1 ≤ j ≤ n},
where D i,j is the disc centred on s i and passing through s j . Recently, [START_REF] Chakraborty | A Wilcoxon-Mann-Whitney type test for infinite-dimensional data[END_REF] proposed an extension of the Wilcoxon-Mann-Whitney test in the functional case using a spatial sign function defined as SGN x = x/ x χ for any non zero x ∈ χ and SGN x = 0 if x = 0. Now, we suppose that X 1 , . . . , X n are independent observations of X (this is a classical assumption in scan statistics). Let Z ∈ S be any potential cluster of size n Z , where

n Z = n i=1 1(s i ∈ Z) and Z c its complement of size n Z c = n -n Z .
Assume that the marks in Z and Z c respectively follow probability measures P and Q on χ. We suppose that P and Q differ by a shift ∆ ∈ χ in the location. For testing the hypothesis H 0 : ∆ = 0 against H 1 : ∆ = 0, a Wilcoxon-Mann-Whitney test statistic extension in such space is defined as:

T WMW = 1 n Z n Z c {i:s i ∈Z} {j:s j ∈Z c } SGN {X j -X i } = 1 n Z n Z c {i:s i ∈Z} {j:s j ∈Z c } X j -X i X j -X i χ .
Chakraborty and Chaudhuri (2015) studied the asymptotic distribution of T WMW and proved the following convergence theorem :

under H 0 , if n Z /n → γ ∈ (0, 1) as n Z , n Z c → ∞, then (n Z n Z c /n) 1/2 (T WMW ) converges weakly to G(0, Γ),
where G(m, C) is the distribution of a Gaussian random element in χ with mean m ∈ χ and covariance C. Since the covariance function Γ does not depend on n Z and n Z c , we can use

U(Z) := (n Z n Z c /n) 1/2 T WMW
as a concentration index to compare potential clusters having different population sizes. Thus, the nonparametric functional scan statistic (NPFSS) is

Λ NPFSS = max Z∈S U(Z) χ
and the potential cluster detected, for which Λ NPFSS is obtained, is

Ĉ = arg max Z∈S U(Z) χ .
It is named the most likely cluster (MLC).

Rule of decision

After computing the scan statistic Λ NPFSS and the most likely cluster Ĉ, it is necessary to evaluate its significance. However, the distribution, under H 0 , of a variable window scan statistic has no analytical form. To overcome this problem, we used a strategy called "random labelling", which was already used in numerous scan methods (see for example, [START_REF] Cucala | A Multivariate nonparametric scan statistic for spatial data[END_REF], [START_REF] Cucala | A Multivariate Gaussian scan statistic for spatial data[END_REF]). This method is based on random permutations and leads to an unbiased estimation of the significance value, whatever the distribution of the data.

Application

Simulation study

In this section, we compared Λ NPFSS with the univariate spatial scan statistic introduced by Cucala (2016), denoted by Λ NPUSS , which is applied to the mean values of the curves. Artificial datasets were generated by using the geographic locations of the 94 french administrative areas named as "départements". Each location associated to each "département" was defined as its administrative center. The true cluster, denoted by C, is a set of 8 "départements" in the Parisian area. We set χ = L 2 [0, 1]. For all i ∈ [1, 94], the functional marks X i are generated using the Karhunen-Loève decomposition and they are measured at 101 equispaced points in [0, 1]. We have considered two different cases: (i) a Gaussian distribution N (0, 1) and (ii) a Student distribution t(5). The probability measures of the marks inside and outside the cluster C differ by a shift ∆(t) = ct, c ≥ 0 for all t ∈ [0, 1].

We generated 100 simulated datasets to see the performance of Λ NPFSS and Λ NPUSS and we computed three distinct criteria: the power to detect a significant cluster, the true positive (TP) rate and the false positive (FP) rate where a type I error equal to 5% was condidered for the rejection of H 0 . The following Table 1 gives the results obtained. As expected, both methods perform better when the cluster intensity c becomes larger and our functional scan statistic gives better results since it exploits the whole information contained in the curves (not only the mean values).

Application to real data

Here, we numerically illustrate how our scan statistic model can be applied to real data.

In particular, we considered data for extracting features in Spanish province population growth presented in the study of [START_REF] Cronie | Functional marked point processes-A natural structure to unify spatio-temporal frameworks and to analyse dependent functional data[END_REF]. We considered the demographical evolution of the Spanish province population provided by the Spanish Institute of Statistics (www.ine.es). The boundary and centre coordinate data of the 47 provinces of Spain are obtained from the R package raster .

Our objective here is to detect a spatial area where the demographic evolution would be significantly higher or lower. In order to identify such a cluster, we computed the functional scan statistic on this dataset: Λ NPFSS = 2.72025. Based on T = 999 permutations, this value is highly significant and Ĉ is plotted in Figure 1A.

We can see the demographic evolution curves associated to Ĉ in the Figure 1B. We remark that the MLC includes 13 locations in the west of Spain (Asturias, Galicia, Extremadura and the west of Castilla y León) in which the marks are significantly lower than in the rest of the geographical area studied. We can see that this cluster includes the provinces which have the lowest demographic evolution compared to the other provinces of Spain. This can be explained by a higher mortality rate and a lower birth rate in these regions which have been highly affected by the economic crisis.

Conclusion

In this work, we have proposed a nonparametric spatial scan statistic using the Wilcoxon-Mann-Whitney two-sample test for functional data (see, [START_REF] Chakraborty | A Wilcoxon-Mann-Whitney type test for infinite-dimensional data[END_REF]). This scan statistic allows to detect clusters in functional data indexed by space without assuming anything about their distribution.

To do that, we decided to construct a nonparametric spatial scan statistic in the functional case, similar to the one proposed by [START_REF] Cucala | A Mann-Whitney scan statistic for continuous data[END_REF] in the univariate case and the one introduced by [START_REF] Cucala | A Multivariate nonparametric scan statistic for spatial data[END_REF] in the multivariate case. First, we proposed a nonparametric scan statistic for functional data in Hilbert space. Second, we defined how to compute its significance using a Monte-Carlo procedure which provides an approximation to the null distribution. Then, we used artificial and real datasets to see the performance of this scan test.

Recently, [START_REF] Frévent | Detecting spatial clusters on functional data: a parametric scan statistic approach[END_REF] proposed a parametric spatial scan statistic, denoted by Λ PFSS , which is derived from the functional ANOVA test. In their work, they compared Λ NPFSS with their statistic. They conclude, with simulation studies, that the nonparametric methods performs better against non Gaussian data.

Figure 1 :

 1 Figure 1: A) : The MLC is presented in red. B) : The demographic evolution curves (from 1998 to 2019) in each province are presented. In red : curves correspond to provinces inside the MLC. In black : curves correspond to provinces outside the MLC.

Table 1 :

 1 Power, %TP and %FP results of Λ NPFSS and Λ NPUSS when ∆(t) = ct in the cases (i)

		Normal distribution	Student distribution
	c	Λ NPFSS	Λ NPUSS	Λ NPFSS	Λ NPUSS
	0.0 Power 0.060	0.060	0.040	0.040
	%TP	0.500	0.500	0.750	0.750
	%FP	0.475	0.508	0.512	0.689
	1.0 Power 0.210	0.180	0.170	0.150
	%TP	0.810	0.799	0.743	0.725
	%FP	0.259	0.307	0.276	0.300
	2.0 Power 0.800	0.720	0.580	0.440
	%TP	0.975	0.951	0.940	0.920
	%FP	0.072	0.078	0.110	0.115
	3.0 Power 1.000	0.980	0.929	0.880
	%TP	0.995	0.989	0.977	0.964
	%FP	0.021	0.051	0.047	0.065

and (ii).