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2 School of Resource and Environmental Sciences, Wuhan University, Wuhan 430079, China - xiang.zhang@whu.edu.cn

KEY WORDS: Map generalisation, deep learning, Image generation, Urban area, GAN.

ABSTRACT:

This article presents how a generative adversarial network (GAN) can be employed to produce a generalised map that combines
several cartographic themes in the dense context of urban areas. We use as input detailed buildings, roads, and rivers from topo-
graphic datasets produced by the French national mapping agency (IGN), and we expect as output of the GAN a legible map of these
elements at a target scale of 1:50,000. This level of detail requires to reduce the amount of information while preserving patterns;
covering dense inner cities block by a unique polygon is also necessary because these blocks cannot be represented with enlarged
individual buildings. The target map has a style similar to the topographic map produced by IGN. This experiment succeeded in
producing image tiles that look like legible maps. It also highlights the impact of data and representation choices on the quality of
predicted images, and the challenge of learning geographic relationships.

1. INTRODUCTION

The representation of geographic data depends on the scale of
the map. The adaptation of a detailed dataset for a represent-
ation at smaller scales is called map generalisation. In urban
areas, the information is dense, and each map object has many
relations with its neighbours (proximity, orientation, alignments...).
Consequently, the generalization of these areas is a challenging
task (Ruas and Mackaness, 1997). The main elements of those
maps are buildings, roads, and rivers. Usually, roads and rivers
are generalised first, because they partition and structure the
space (Ruas and Mackaness, 1997). Then, the buildings have to
be enlarged and simplified to be legible. As the space in each
block is limited, the buildings also have to be displaced, typ-
ified (density is reduced while preserving patterns), amalgam-
ated... Previous work has demonstrated the potential of deep
learning for the generalisation of two important map elements
in urban areas: buildings (Feng et al., 2019) and roads (Cour-
tial et al., 2020a). These projects used a segmentation convo-
lutional neural network to determine which pixels of the image
belong to a generalised object. However, the amount of object
reduction and relations between objects (e.g., proximity, align-
ment,...) were not considered. The challenges of deep learning-
based generalisation are manifold, but the first step is to address
a more global approach with multiple layers at the same time in
the map. This paper presents some first experiments to test the
suitability of generative adversarial networks (GAN) for this
task. It is a step towards the generation of complete generalized
maps.

In this article, we first present a review of techniques for urban
area generalisation and past experiments on geographic inform-
ation representation using deep neural networks. Then, we present
our use case and experiment settings. The results are presented
in Section 5 and finally we discuss the benefit of our experiment
in Section 6.

∗ Corresponding author

2. RELATIVE WORK

2.1 Building Generalisation in Urban Areas

In this section, we mainly focus on building generalisation. First,
to be legible, buildings have to maintain a minimal size and
their shape needs to be simplified, so many algorithms were
proposed to simplify the shape of buildings since the seminal
building simplification algorithm from Ruas (Ruas, 1988). Some
propose to transform the building into a raster grid (Hui-lian et
al., 2005) to use morphological operators (dilations and erosions)
on pixels. Others use the skeleton of the polygon to gener-
ate a minimal, simplified geometry (Meijers, 2016; Lupa et al.,
2018). Finally others adopted strategies based on optimisation
(Haunert and Wolff, 2010) or machine learning (Cheng et al.,
2013) to find the edges that should be simplified.

Enlarging and simplifying buildings is not enough because these
operations cause many overlaps between the buildings them-
selves, and between buildings and road symbols. The clas-
sical generalisation to solve this problem is the displacement of
buildings. Several algorithms were proposed, with two main
categories: the iterative approaches where buildings are dis-
placed one by one Ruas 1998; Aslan et al. 2012; Liu et al. 2014,
and global approaches where the algorithm searches the optimal
position for all the buildings in a block (Gaffuri, 2009; Ai et al.,
2015; Li et al., 2020).

The main issue in information reduction is to preserve the initial
pattern distribution. A pattern is a set of buildings, it is char-
acterized by its regular repeated arrangement. In urban areas,
the most common are alignments, grid-like patterns, or clusters
characterized by a certain proximity, similarity, and continuity
of buildings. Consequently, most of the approaches for pat-
tern preservation focus on constructing and analysing an ad-
apted proximity structure, and then determine a class for the
building group (Christophe and Ruas, 2002; Zhang et al., 2013;
Wei et al., 2018; Wang et al., 2020). Then, when the pattern
is characterized, typification algorithms can be applied to sim-
plify the pattern while preserving its structure (Regnauld, 2001;
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Burghardt and Cecconi, 2007; Wang and Burghardt, 2019) .
Some other approaches typify buildings without properly defin-
ing patterns (Bader et al., 2005; Basaraner and Selcuk, 2008).
(Deng et al., 2017) carried out a comparative study of several
methods for recognizing building groups, some using proxim-
ity only, and others based on multiple grouping principles, and
the study concludes that (1) when only proximity is considered,
the buffer analysis approach performs significantly better than
other approaches; (2) when multiple grouping principles are
considered, the local constraint-based approach usually performs
better than other approaches; (3) existing approaches that con-
sider similarity and/or continuity improve the performance of
building grouping.

Finally , built-up area polygons can additionally be introduced
to cover areas where solving these constraints is not possible
(Touya and Dumont, 2017). The amalgamation or aggregation
of the building permits to cover several complex buildings with
a simpler one or a global built-up area. While covering simply
uses the geometry of the dense block, some more precise build-
ing amalgamation algorithms were proposed, for instance using
Kohonen self-organising maps (Allouche and Moulin, 2005),
or using morphological dilations and erosions on buildings and
roads (Regnauld and Revell, 2007).

Although all these algorithms are necessary to apply atomic
transformations of the cartographic data, the main issue of the
automated generalisation of urban areas is the orchestration of
these algorithms. Many different generalisation models that try
to combine these algorithms to generalise an urban area, have
been proposed in the past years. Optimisation based models
have been proposed to find the optimal sequence of operations
for a given map, with varying optimisation methods: finite ele-
ments (Hojholt, 2000), least squares (Sester, 2000; Harrie and
Sarjakoski, 2002), simulated annealing (Ware et al., 2003), or
genetic algorithms (Wilson et al., 2003). This orchestration can
also be achieved with multi-agent systems where map features
are autonomous agents (Barrault et al., 2001; Sabo et al., 2008),
but machine learning is also a valid approach (Burghardt and
Neun, 2006), as most urban blocks can be generalised with
the same sequence of algorithms. Finally, purely heuristic ap-
proaches with a workflow of algorithms is sometimes sufficient
(Yu et al., 2021). In this paper, our take on orchestration is
completely different, as GAN are not supposed to learn to the
optimal sequence of algorithms, but to learn how to directly
generate the generalised output.

2.2 Deep Learning and Cartography

Machine learning aims to extract knowledge from examples to
learn a data representation, and deep learning is the current
prominent machine learning technique. So, map generalisation
fulfils two main theoretical conditions to make relevant use of
deep learning (Touya et al., 2019a): (1) it is possible to model
map generalisation as a deep learning problem, (2) the large
amount of maps at several scales guarantees the availability of
training sets . Moreover, deep neural networks succeeded in a
similar task of simplifying the content of an image (Simo-Serra
et al., 2017), consequently we assume that a simplification task
like generalisation could be resolved.

Several objectives can be achieved using deep neural network.
For example, classification networks can contribute to geograph-
ical data enrichment (Touya and Lokhat, 2020), which is usu-
ally the first task of a map generalisation process (Mackaness
and Edwards, 2002). These classification networks can also

be used for the classification of types of maps (Zhou et al.,
2018), or can be used for the selective omission in a road net-
work (Zhou and Li, 2016). Segmentation networks can localize
pixels that belong to a generalised object given the image of
the map before generalisation (Courtial et al., 2020a; Feng et
al., 2019; Jenny et al., 2020; Du et al., 2021). Generative ad-
versarial networks (GANs) are another deep learning architec-
ture that can be interesting for map generalisation, as they have
shown potential for style transfer on maps (Kang et al., 2019),
and were employed for building shape generalisation (Kang et
al., 2020), although the results are not convincing yet. GANs
combine a generator and a discriminator to generate an image
in a target domain from an image in another input domain (Isola
et al., 2017). However, these networks are not specifically de-
signed for geographic data, so adjustments to the default archi-
tectures are required: for instance, constraints to preserve the
shape of the cartographic symbols can be introduced in the loss
function of the network (Fu et al., 2019). Finally, graph convo-
lutional networks can also be employed to learn structures and
patterns in a geographic network: for instance to classify the
building pattern in a block (Yan et al., 2019), or to encode the
shape of a building with a graph made of its vertices (Yan et al.,
2020).

3. USE CASE

3.1 Data-set

Our goal is to generate maps of urban areas at a medium-large
scale. In particular, the input data are detailed maps at 1:25,000,
whereas the target scale is 1:50,000. These maps mainly con-
tain buildings, roads, rivers, and vegetation, and the represent-
ation of these elements should maintain the adequate level of
detail to be legible and prevent symbol overlap. We use as tar-
get two alternative of 1:50,000 scale maps, which are supposed
to be one of the three progressive intermediate representations
between 1:25,000 and 1:100,000 scales, proposed by Touya and
Dumont (2017). the target generalisation is available for an
area of 30* 15 kilometres at the east of Saint-Jean-de-Luz in
the south west of France. One representation is achieved using
an agent-based model (Barrault et al., 2001) and the second by
typification-based method (Burghardt and Cecconi, 2007). A
cartographic vector dataset is first used to generate the images.

3.2 Target style

The target style is adapted from the Plan IGN map presented
in Figure 1. In this map style, the roads are symbolized with
a bordered line with size and color varying according to the
importance, and buildings are represented in brown or gray ac-
cording to their nature. For the sake of simplicity, we decided
to preserve a unique symbol for each road (the yellow one) and
building (the brown one). The covering of dense blocks (or
graying) is done using a light brown in plan IGN, and the same
color is used in our target scale images. Finally, we observe that
the two browns used for buildings and built-up areas are very
close, and first experiments showed that the GAN sometimes
confused both elements. So we decided to enhance the con-
trast between the buildings and the covered blocks, to facilitate
learning. Moreover, the building outlines are not represented in
order to reduce overlaps between symbols.

3.3 Generalisation constraints

The objective of the generalisation can be described using con-
straints (Beard, 1991). Usually, linear elements are generalised
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Figure 1. Extract of Plan IGN, inspiration for our target
representation.

first as they are structuring elements of the urban area. The
generalization for roads and rivers focuses on density reduction
while preserving the road network topology. Then, the build-
ings are generalized, and have to satisfy the following classical
constraints:

• (C1) Buildings should be bigger than a minimum size;

• (C2) the smallest edge of the buildings should be greater
than a minimum value (granularity constraint);

• (C3) The buildings should not be too close to the roads
symbols;

• (C4) The buildings should not be too close to each other;

• (C5) The density of buildings in a block should remain
stable;

• (C6) Building patterns, such as alignments, should be pre-
served;

• (C7) Topological relations have to be preserved, for in-
stance buildings should remain in the same block.

Satisfying all these constraints is often not possible and a good
solution is a balance between preservation and legibility. Both
target datasets (agent-based and typification-based) represent a
certain balance in the resolution of those constraints. But when
it comes to deep learning, these constraints are not specified
during the learning process, but they will be used to assess the
quality of the output of the deep learning models. In this paper,
the constraints will not be automatically assessed (Courtial et
al., 2020b), but we will use them for the visual assessment of
the results.

4. EXPERIMENT

4.1 Tiles Creation

In this section, we present the process we used to create im-
age tiles from vector cartographic databases. The creation of
the training datasets is an important step in deep learning be-
cause it should efficiently illustrate the target knowledge (Touya

et al., 2019b). We created square tiles that represent the input
data (roads, buildings, and rivers) from the 1:25,000 scale map,
with the style of the target 1:50,000 scale map.The output im-
ages cover the same area, with the same style, but we used the
roads, buildings, and rivers from 1:50,000 scale map. This tile
size is 512x512 pixels, which represents 500x500m². These di-
mensions guarantee a legible situation for both input and target
data, and it is small enough to build an example set with around
2.700 images with our test area. We randomly extract 100 tiles
in order to evaluate the model.

First experiments showed that learning the selection of import-
ant roads and rivers was too hard a task for now, so we de-
cided to change the input images, and only include the roads
and rivers from the 1:50,000 data.

4.2 Deep Neural Network

Generative adversarial networks seek to learn to predict an im-
age that ”looks like” a target domain. They combine a generator
that predicts a new image and a discriminator that determines
if the prediction is realistic enough. Both of them work in an
adversarial way to make the prediction more realistic.

GANs can be supervised or unsupervised. In supervised learn-
ing, the training dataset is made of pairs, while in an unsuper-
vised approach, we only need a set of inputs and outputs, and
the network learns how each domain looks like, to perform the
translation. Supervised networks are able to learn more precise
relations between input and output when the domains are sim-
ilar or very close, but when they are too different it is unable to
produce an optimal result. In our case, we believe that the in-
formation preservation should be better learned by supervised
architecture, while the block could imply too important changes
for the supervised network. Finally, we assume that the legibil-
ity increase can be learned from both methods as they only need
to learn how each domain looks like.

We tested one network for each approach to assess their suitab-
ility to urban area generalisation. First, pix2pix is a GAN de-
signed for generic image-to-image translation with paired data
(Isola et al., 2017). Then, CycleGAN is an unsupervised net-
work that learns the transformation from domain B to A, to-
gether with the transformation from domain A to B (Zhu et al.,
2017). We have seen in Section 2 that both architectures have
already been used with images of maps.

5. RESULTS

In this section, we present separately the results for most of
the images, and the results for the images in dense areas where
block covering is necessary, because the expectations and gen-
eralisation mechanisms are really different. We used the de-
fault PyTorch implementation of pix2pix and CycleGAN, and
trained them with default parameters.

5.1 In general case

Some result images for both supervised (pix2pix) and unsuper-
vised (cycleGan) experiments are presented in Figure 2. The
first column presents the input images, the second and third
columns present the predicted image for each approach, and
the last column presents the target generalisation. For the ex-
periments presented in this figure, we use the agent-based gen-
eralisation as the target generalisation to reproduce.
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Figure 2. Examples of results from pix2pix and CycleGAN to
reproduce an agent-based generalisation.

In general, the predicted images do look like the target map, the
style is consistent with our expectations, and the predictions are
credible images of maps. For those situations, without block
covering, supervised (pix2pix) and unsupervised (CycleGAN)
results are really similar in terms of quality.

We can more precisely visually evaluate these results consider-
ing the constraints defined in section 3.3. First, at the individual
building (or micro (Barrault et al., 2001)) level, we observe that
the building size constraint (C1) is always satisfied, buildings
are large enough, even a bit larger than in the reference. But the
granularity constraint (C2) is a little less satisfied: the shape is
simplified, but it is sometimes blurred, which is consistent with
past attempts to generalise buildings with GANs (Feng et al.,
2019; Kang et al., 2020). We can also observe that some rect-
angles can be distorted and have an unrealistic shape. For ex-
ample, in line 5 of Figure 2, the first image predicted by pix2pix
contains an unrealistic triangle building at the bottom left, and
an inconsistent L-shaped building at the top. In the second im-
age predicted by CycleGAN, unexpected courtyard appear in
the large buildings at the top. Moreover, some buildings are
too simplified and lose their distinctive shape: e.g., a T-shaped
building transformed into a rectangle in the prediction of line
3, and a L-shaped building transformed into a rectangle in the
prediction line 1.

The global legibility of images is satisfying: most of the build-
ings are separated enough from the roads (C3) and do not over-
lap each other (C4). Building density is well preserved (C5), as
there are less buildings where enlargement would have caused a
density problem. Remaining overlap problems may be induced
by similar errors in the target images (see for instance the ref-
erence image on the first line of Figure 2). Then, the most im-

portant challenge is the preservation of relations between dif-
ferent geographic objects (C6 and C7). For the road-building
and river-building relations, the relative orientation, topology
most of the time, and proximity are respected. However, we do
observe some building-road overlaps (e.g., at bottom of the pre-
dictions on line 2 and at the top right of the predictions on line
3), and some inclusions in a small block disappear (at the top
of the prediction image on line 1, in the middle of the pix2pix
prediction on line 4).

However, the preservation of building patterns is not correctly
achieved. For instance, the alignment on top of the image pre-
dicted by pix2pix on line 5 disappears. Indeed, structure preser-
vation is not a priority in this agent-based generalisation (Du-
mont, 2018-06-18), so a GAN trained on the tiles produced us-
ing this method is not able to learn the structure preservation
correctly. We verified that GAN can learn this kind of rela-
tion by testing the same experiment on images produced using
a typification algorithm in addition to the individual building
generalisation provided by the AGENT model. This process
focuses on reducing density while preserving structure.

Figure 3 present predictions and targets of the model trained
with the agent-based and the typification-based generalisation
methods. We observe that alignments and other building struc-
tures are better preserved by the typification-based method, how-
ever, the shapes are less regular and the minimum separation
between buildings is more frequently not respected. In map
generalisation, there is often does no unique good solution, as
most of the time it is not possible to satisfy all constraints at
the same time, and compromises are necessary. Different al-
gorithms will focus on resolving different constraints and give
different results. For now, the network learns to reproduce these
strategies and privileges the resolution of the same constraints
as the generalisation used for the target data.

5.2 Cases with Block Covering

The task of transforming dense urban blocks into built-up areas
is an important transformation, and unsupervised learning seems
to be more adapted for this problem (Figure 4). It produces
clear grayed areas while the supervised network tends to erase
most of the buildings, but does not apply gray area in the whole
area. Moreover, for some images, the predicted covering cor-
responds exactly to the target (CycleGAN prediction in line 1
of Figure 4), while for some other examples, unexpected parts
of built-up areas are covered, and some information is lost (pre-
dictions at lines 2 and 3 of Figure 4).

We believe that there are three possible causes for this problem:

1. The image is not sufficient to learn block covering. The
density and shape of the buildings in a block are import-
ant clues for a block covering decision, and both are vis-
ible on the images. However, they may not be the only
factors. For example, on line 3 the central block needs to
be covered while the block up to it has a similar aspect and
does not. The covering decision might be due to touching
blocks outside the image, which are also covered.

2. Image tiles might not show the complete block. The cover-
ing is applied on a complete block but nothing guarantees
that the image shows the complete block. For example, in
line 4 the graying is missed because only a short part of
the expected covered area is visible and this short part is
not really dense.
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Figure 3. Comparison of images generated by pix2pix trained with agent-based generalisation, and typification-based generalisation.

Figure 4. Examples of results from pix2pix and CycleGAN to
reproduce an agent-based generalisation on areas requiring

block covering.

3. There are not enough examples in training set. Our train-
ing set is composed of 2623 images with very few (57) that
contain block covering.

6. DISCUSSION

6.1 How Could We Evaluate the Generated Images of Maps?

The evaluation of GAN results is an important problem in the
deep learning research community, as the pixel accuracy is less
important than the global aspect of images. Moreover, it of-
ten deals with problems where a good solution does not exist
or where the good solution is not unique. This is the case for

map generalisation: several different generalisations can be ac-
ceptable. There is no global measure for generalisation quality
(Touya, 2012), and there is no way to measure how much an
image looks like a real map. In this article, we employ con-
straints to guide the visual evaluation of the generated images.
The definition of constraints is common in map generalisation
(Beard, 1991), but most of the measures of constraint violation
are adapted to vector data (Mackaness and Ruas, 2007-01-01),
and not to raster data. Courtial et al. (2020a) proposed a set
of adapted constraints for road map generalisation using im-
ages, but these methods are only adapted for one theme of the
map. Consequently, a quantitative evaluation of the generalisa-
tion images produced with deep learning is still an issue. As
stated in this recent paper, the usual set of generalisation con-
straints is not enough to assess the images generated by deep
neural networks, and constraints on the realism and credibility
of the images have to be added.

6.2 How to Learn the Preservation of Spatial Relations?

The main limit of our results is the preservation of spatial rela-
tions. Our network fails to select roads while preserving road
network connectivity and to avoid coalescence between roads
and buildings. However, it was able to maintain the relative
orientation between those elements and to preserve most of the
building patterns (when they were presented in the target data).

The main difference between road density reduction and build-
ing density reduction seems to be the scale of the change: eras-
ing a road would impact several tiles, while erasing a building
may only impact a part of a tile. The possible hypothesis for
the fail of the first task would probably be the scale of the tile
that is not adapted to represent the context necessary for road
selection and the absence of attribute information on the road
that is more important for roads than for buildings.

For the road/building proximity problem, a context problem
could also be possible as the tiles often do not represent the
complete partition formed by the road and river and it seems to
be the relevant level of context necessary for relation studying.
However, some more plausible hypotheses would be a quality
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problem in the training data, which makes possible to generate
a building under a road.

Finally, the failure of the generation of images with covered
dense blocks can also be interpreted as a failure to understand
a spatial relation (very high density of buildings inside a small
block), and it is also induced by a lack of context and external
information such as attributes of building, function and admin-
istrative limits.

6.3 Is It Possible to Generate a Complete Generalised Map?

The last and most important question brought by this experi-
ment is the possibility to generalise a complete map using these
networks. We can observe the following guidelines for the use
of GANs for map generalisation:

• Input and target domains have to be not too different with
a supervised architecture. Consequently, we believe that
only a small scale gap is possible.

• Input and target tiles have to be legible, thus the presented
information has to be limited.

• A sufficient context has to be visible in the tile, so the im-
ages scale has to be adapted.

• Different elements on the map have to be represented in a
distinct manner.

These four constraints on task definition and tile creation reduce
the possibility offered by GAN. Moreover, some other tech-
niques like attention based architectures (Vaswani et al., 2017)
may resolve some context relative issues. Finally, it is currently
more reasonable to design a process that learns separately dif-
ferent independent elements of the map, similarly to traditional
generalisation methods that treat roads first and then building in
the fixed generalised road network.

7. CONCLUSION

In conclusion, GANs succeed in generating a topographic map
of urban areas that follows most constraints and preserves struc-
tures, orientation and relative density. We believe that the blurred
and distorted outlines that sometimes occur could be avoided
by changing the parameters of the neural network, and by us-
ing post-processing. However, the topological errors and the
covering operation remain challenging, and are the next issue
to deal with. Graph convolutional networks seem to be able to
encode some spatial relations between geographic objects, to
solve these remaining problems.
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