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SUMMARY

Seismic sources are mostly modelled as point sources: moment tensors associated with

the gradient of a Dirac distribution. Such sources contain an infinite range of scales and

induce a discontinuity in the displacement wavefield. This makes the near-source wave-

field expensive to model and the event location complex to invert, in particular for large

events for which many point sources are required. In this work, we propose to apply the

non-periodic two-scale homogenization method to the wave equation source term for both

force and couple-sources. We show it is possible to replace the Dirac point source with

a smooth source term, valid in a given seismic signal frequency band. The discontinuous

wavefield near-source wavefield can be recovered using a corrector that needs to be added

to the solution obtained solving the wave equation with the smooth source term. We show

that, compared to classical applications of the two-scale homogenization method to het-

erogeneous media, the source term homogenization has some interesting particularities:

for couple-sources, the leading term of the homogenization asymptotic expansion is de-

pendent on the fine spatial scale, depending on the source type, only one or two first terms

of the expansion are non-zero and there is no periodic case equivalent (the source term

cannot be made spatially periodic). For heterogeneous media, two options are developed.

In the first one, only the source is homogenized while the medium itself remains the same,



2 Y. CAPDEVILLE

including its discontinuities. In the second one, both the source and the medium are ho-

mogenized successively: first the medium and then the source. We present a set of tests in

1-D and 2-D, showing accurate results both in the far-source and near-source wavefields,

before discussing the interest of this work in the forward and inverse problem contexts.

keywords: Theoretical seismology; Computational seismology; Earthquake ground motions; Wave

propagation; Numerical modelling.

1 INTRODUCTION

Seismic waves are excited by atmospheric turbulences, landslides, meteorite impacts, natural and arti-

ficial explosions and earthquakes. Most of these sources include complex processes but they are often

mathematically represented by simple point sources (Aki and Richards 1980). This approximation is

widely used in seismology and is valid as long as the minimum wavelength is large compared to the

spatial extent of the event. Two types of point sources are commonly used:

• single force:

f(x, t) = Fδ(x− x0)g(t) (1)

• double-couple:

f(x, t) = −M ·∇δ(x− x0)g(t) (2)

where f is the force vector to be used in the wave equation, δ(x − x0) the is Dirac distribution

centered on x0, F is a force vector, M the moment tensor density, ∇ the gradient operator and g(t)

the source time function. Classical earthquakes correspond to double-couple sources and more exotic

sources, such as landslides, to single force sources. More complex sources can also be treated in that

framework using a sum over many point sources, with the notion of moment tensor density (Aki and

Richards 1980; Madariaga 2015):

f(x, t) =

∫
S

m(x′, t) ·∇δ(x− x′) dx′ , (3)

where S is the fault surface and m is the moment tensor density on the fault. The moment tensor

density can be related to the displacement jump through the fault [u] using the following relation

mij(x, t) = cklijnk[ul](x, t) , (4)

where c is the elastic tensor and n is normal vector to the fault surface. Using a numerical quadrature,

the integral in (3) can be expressed as a sum over many points, leading to a sum over distributed point

sources.
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The spatial extent of these point sources is assumed to be infinitely small compared to the far-

field minimum wavelength associated with the maximum frequency of the source wavelet g(t). This

difference of spatial scales between the source size and minimum wavelength of the wavefield is often

not considered as a serious difficulty for both forward and inverse problems in seismology. Source

implementation is not difficult for most forward modelling solvers and source inversions are routinely

done by most seismological observatories. However, as we are about to show, this requires a closer

look.

In the following, we use the notion of near-source field and far-source field. The near-source field

is here the displacement field, solution of the wave equation, close to the point source location within

a distance smaller than a fraction of the minimum wavelength. It is different from the near-field as

defined by Aki and Richards (1980) which is the static part of the soil response to the source. The

near-field is not necessarily near the source. The two fields have nevertheless a connection as the

near-source field is dominated by the near-field part of the wave equation solution.

In the forward modelling context, to discuss the implementation of point sources, we need to

first distinguish strong-form from weak-form of the wave equation. For methods based the strong-

form of the wave equation, such as the finite difference (FD) method, point sources are problematic.

This difficulty comes from the fact that point sources are defined with a Dirac distribution. Here, the

mathematical specificity of distributions is important: Dirac distributions are generalized functions

that only make sense once integrated against any regular function (a test function). Nevertheless, for

most strong-form methods, the point source is seen as a regular function. If the source is located

on a grid point, this has little consequences and the source force is added to the stress only at this

specific grid point (Alterman and Aboudi 1970; Virieux 1986; Coutant et al. 1995). This solution is

not available when the source is not located on a grid point, or when the mechanical properties at the

source location are heterogeneous. For the issue related to the source location, a classical solution is to

use initial conditions computed from an analytical solution in a small area around the source (Alterman

and Karal Jr 1968). This method suffers from several issues: the source cannot be located too close

to material discontinuities and an analytical solution must exist, limiting this solution to very simple

media in the source area. Moreover, backscattered energy passing through the source region can also

be a problem. Nevertheless, when this solution is possible, it has the advantage to be accurate also near

the source and not only in the far-field. The other solution is to extend the spatial extent of the source

to several grid points (Mittet and Arntsen 2000; Hicks 2002), basically by spatially low-pass filtering

the Dirac distribution. This solution also requires the medium mechanical properties to be smoothly

varying near the source and the wavefield is only accurate in the far-field.

For methods based on the weak-form of the wave equation, such as, for example, the normal
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mode summations method (NMS) (Gilbert and Dziewonski 1975) or the spectral element method

(SEM) (Komatitsch and Vilotte 1998; Chaljub et al. 2007), point sources are less of a problem. For

such methods, the source term contributes through the integral of the product of test functions with the

point source. In this case, the Dirac distribution is used as it should be, i.e. integrated against a smooth

function. The source term can therefore easily and naturally implemented into any weak-form method.

Nevertheless, it has been observed that, while the solution is accurate in the far-field, it is not the case

near the source. For the NMS, for example, the test functions are based on spherical harmonics and

have a global support at the whole earth scale. NMS is truncated based on the maximum frequency

of the source, making it possible to accurately compute the far-field for a low numerical cost. But in

the near-source field, the solution is not accurate. Depending on how the truncation is performed, the

source can spread all over the sphere and damage the solution for the source duration time because the

test functions are global. Similarly, for the SEM, it is been observed that, in the source element, the

discretized source term spreads all over the element, leading to an inaccurate solution in this element

(Faccioli et al. 1997; Chaljub 2000; Nissen-Meyer et al. 2007; Fichtner 2010; Igel 2017). This effect is

often explained by the fact that the Dirac source cannot be accurately represented on the test function

basis, and consequently leads to a source that is not a point source in practice. However, it is rather the

wavefield that cannot be represented on the test function basis near the source. Indeed, the wavefield

is singular at the source location and test functions do not allow such a discontinuity. Interestingly,

the missing near-source field part does not carry energy and this problem does not impact the solution

away from the source point. If one needs an accurate solution near the source, the solution is to use a

denser mesh (for SEM) or a higher spherical harmonic angular order truncation (for NMS), keeping

in mind the solution will still be inaccurate close to the source, but in a smaller region. The drawback

of such a solution is a higher numerical cost. In the end, for both forms, a point source is a difficulty

to which we look for a general solution.

The inverse problem for point sources is also a very important topic in seismology. The centroid

moment tensor (CMT) is obtained with such an inverse problem (Dziewonski et al. 1981). If the

moment tensor inversion is not a problem, the inversion of the event location is: it is strongly non-linear

and a good initial guess is necessary. For large sources, the point source approximation is challenged

and the extension from a point source to something more general is not trivial. The existing solutions,

such as higher order moment tensors (Clévédé et al. 2004; Jordan and Juarez 2018) or finite source

inversions (Mai et al. 2016), are difficult to implement in tomographic full waveform inversion in a

automated way for example.

These difficulties in forward and inverse problems related to point sources are similar to the diffi-

culties encountered for small-scale present in the earth model: inhomogeneities of size much smaller
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than the minimum wavelength make the forward modelling very expensive and the inverse problem

unstable when we attempt to retrieve them from seismic data. These can be addressed with the notion

of effective media and homogenization for both the forward (Capdeville et al. 2010b) and the inverse

problem (Capdeville and Métivier 2018). In the context of the homogenization technique, the seismic

point source interaction with nearby small-scale heterogeneities has been dealt with in previous works

(Capdeville et al. 2010b; Burgos et al. 2016) but without homogenizing the source. Indeed, in those

works, the effect of homogenizing the media on the point source is accounted for through an effective

moment tensor but the source is still a point source. The idea of present work is to apply the non-

periodic homogenization method to point sources, allowing one to find an equivalent smooth effective

source and a local corrector to model the sharp near-source field, both valid for a limited frequency

band. An effective source replacing a point source, or an ensemble of point sources of an extended

fault system, would solve all the difficulties mentioned above, both in the forward modeling and the

inverse problem contexts.

The paper is organized as follows: in the first part, the theory and examples are developed in 1-D.

In the second part, the higher dimension theory is given and some examples in 2-D are shown. We

then discuss the results and conclude our observations.

2 1-D THEORETICAL DEVELOPMENT

In this part, we consider a wave in a 1-D elastic bar of length L with free boundaries at both ends. The

displacement along the bar u(x, t) is driven by the equations

ρ∂ttu− ∂xσ = f , (5)

σ = E∂xu− τ , (6)

where x is the position in the bar, ρ(x) is the density along the bar, E(x) the elastic property, and

σ(x, t) the stress. ρ and E are both positive quantities. The free stress boundary condition at both ends

imply ∂xu(0, t) = ∂xu(L, t) = 0. The wave speed in the bar is α(x) =
√
E(x)/ρ(x). The source

terms f(x, t) and τ(x, t) are point sources:

• single force:

f(x, t) = Fδ(x− x0)g(t) , (7)

• couple-force or stress-source:

τ(x, t) = Mδ(x− x0)g(t) , (8)
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where F and M are scalars related to the amplitude of the source. Note that the stress source term is

often inputted in the dynamic equations (5) using a force term fτ (x, t) = −∂xτ(x, t) such that

ρ∂ttu− ∂xσ = f − ∂xτ(x, t) , (9)

σ = E∂xu , (10)

2.1 Numerical preliminary observations

Before starting the core theoretical development of this paper, it is useful to visualize some examples

of wavefields in the vicinity of a point source. To do so, we choose a very heterogeneous bar of length

40 m made up of 1000 material pieces of constant velocity and density materials. In each piece, the

mechanical properties are generated randomly (but only once). A sample of the velocities in the bar

is displayed in Fig. 1a. The source time function g(t) is a Ricker wavelet (second derivative of a

Gaussian) with a central frequency of 0.5 kHhz (maximum frequency about 1.5 kHz) leading to an

averaged minimum wavelength (λmin) of 3.3 m in the far-field. This wavelength is much larger than

the individual bar pieces, which are of length 0.04 m. The source position is x0 = 15 m. We solve the

wave equation (5-6) numerically using SEM. To obtain an accurate solution, each velocity and density

discontinuity is honored by an edge of an element mesh. Doing so, the mesh is very fine compared

to a mesh that would otherwise be used in a homogeneous bar. With such a mesh, the solution can

be considered as a reference solution everywhere except at the element containing the source. If the

source is near an element edge, the solution can also be less accurate in the element right next to it.

This is expected: knowing that the solution u has an order 0 or 1 discontinuity (depending on the type

of source), it cannot be accurately represented on the SEM Lagrange polynomial basis. Interestingly,

as mentioned in the introduction, the fact that the solution is not accurate in the element of the source

does not harm the quality of the solution in the other elements. This is one of the interesting properties

of SEM (and any weak-form numerical method): because it is based on an energy formulation, the

wavefield is accurately computed almost-everywhere, even if it is not true in the element containing

the source.

For the couple-source (8), Fig. 1b displays the snapshot for displacement response u(x, t) at a

time t taken just after the source time function wavelet g maximum. It shows a sharp discontinuity at

the source position and a smooth variation otherwise. As expected, the displacement is discontinuous

at the source location. Of course, a real discontinuity cannot be accommodated by SEM (the dis-

placement is explicitly continuous in the method formulation) and this creates an error in the element

containing the source. This error is poorly visible at the scale of the plot, but a small glitch can be
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Figure 1. Solution of the wave equation (5-6) computed in a heterogeneous bar, for the couple (8) and single

force (7) point sources located in x0 = 15 m. The source time function g is a Ricker of maximum frequency

1.5 kHz corresponding to a minimum wavelength λmin of approximately 3.3 m. Panel a: wave velocity in the

elastic bar around the source position x0. b: normalized displacement snapshot around the source position at t =

1.5 ms after the Ricker central time for the couple-source. c: corresponding strain. d: normalized displacement

snapshot around the source position at t = 1.5 ms after the Ricker central time for the single force source. e:

corresponding strain. The absolute value of the maximum amplitudes of each displacement snapshots have been

normalized to 1.

observed at the lower part of the displacement curve at x = 15 m. The corresponding strain (Fig. 1c)

shows a singularity at the source location. The imprint of the elastic structure is visible, as expected

(the strain is discontinuous in discontinuous models (Capdeville et al. 2020)).

For the single force (7), Fig. 1d displays the displacement response just after the source wavelet

maximum. It shows a kink (discontinuity in the derivative) at the source position and a smooth vari-

ation otherwise. The corresponding strain (Fig. 1e) shows a step function at the source location. The

imprint of the elastic structure is once again clearly visible.
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From the point of view of numerical modelling, this example shows two difficulties: the small size

of heterogeneities and the discontinuity of the solution at the source. The size of the heterogeneities

is a problem because it implies a fine mesh, here about 90 elements per λmin where, in a smooth

medium, a single degree 5 element would have been enough. This leads to a high numerical cost.

Removing the small-scale using homogenization is a solution to this difficulty. The homogenization

technique is presented in the next section. For weak-form methods, the point source discontinuity is

not seen as difficulty (because it does not need any specific treatment), unless one is interested in the

solution very close to the source. In this case, the only option so far is to have a fine mesh near the

source, also leading to a high numerical cost. In the following, we will show that the source can also

be homogenized and this can help remove this difficulty.

2.2 Two-scale homogenization of the mechanical properties with no scale separation

Two-scale homogenization is a good mathematical framework to deal with scale problems. It has

been developed for periodic and stochastic problems (Sanchez-Palencia 1980) and has been extended

to multi-scale heterogeneous media for wave propagation (Capdeville et al. 2010b; Cupillard and

Capdeville 2018). In this section, we summarize the results of Capdeville et al. (2010a) on the two-

scale homogenization method applied to the elastic wave equation when the mechanical property

heterogeneities do not present any natural scale separation. Many mathematical subtleties have been

omitted here but can be found in Capdeville et al. (2010a) and Capdeville et al. (2020).

Two-scale homogenization is a mathematical process that makes it possible to explicitly extract

large-scale (effective) effects from small-scale ones. It is an asymptotic theory based on a small pa-

rameter

ε0 =
λ0

λmin
, (11)

where λmin is the minimum wavelength and λ0 is a scale below which scales in the medium are

considered as small. The 0 underscore of ε0 is meant to differentiate it from the ε of classical periodic

two-scale homogenization which is tied to the periodicity of the heterogeneities. In the general case,

where periodicity is not assumed, λ0 is a user-defined scale, usually set to be smaller than λmin. To

separate the scales, a low-pass filter Fε0 is introduced. In 1-D, when applied to a function h, it can be

expressed as a convolution with the filtering wavelet wε0 ,

Fε0(h) =

∫
R
h(x′)wε0(x− x′) dx′ . (12)

Fε0 is a linear spatial filter designed to mute spatial frequencies larger than (ε0λ0)−1 of the space

function it is applied to, to zero. The design of the waveletwε0 is not unique. It is built as a compromise
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between a spatial extent support as small as possible and a spatial frequency cut-off as sharp as possible

while keeping low-spatial frequencies intact. In the present work, we use simple cosine taper filters.

Note that we assume here that λmin remains roughly spatially constant through the domain. This is

often not the case in practice as wave-speeds strongly vary with space in geological media, at least with

depth. In such cases, one can always use the smallest available λmin, but it is not optimal and allowing

changes in λ0 through space might be desirable. A solution toward this possibility valid for layered

media is given in Capdeville et al. (2013), appendix B. For 2-D and 3-D smooth variations, a simple

variable filtering according to a assumed smooth variation of the dominant minimum wavelength is

often good enough. Nevertheless, a complete work giving a general solution to this limitation has yet

to be written.

Two-scale homogenization relies on the introduction of two space variables instead of one: x for

the large-scale variations and y for small-scale variations. y is defined as

y =
x

ε0
. (13)

In the following, x and y are mathematically treated as independent variables. Knowing the y definition

above, making x and y independent can be surprising. Nevertheless, the two-scale problem based on

these two variables that we are about to describe can be shown to converge to the effective one scale

problem, at least in the periodic case (Sanchez-Palencia 1980; Allaire 1992).

Because of the definition of y (13), any partial derivative with respect to the space variable needs

to be changed according to:

∂x → ∂x +
1

ε0
∂y . (14)

Before going further, we need to introduce F , the same low-pass filter than Fε0 but applied to the

variable y instead of x. It means that, for any function h(x) and h̄(y) = h(ε0y), we have

Fε0(h)(x) = F(h̄)(x/ε0) . (15)

F wavenumber cutoff is always 1/λmin. More details about this technical aspect can be found in

Capdeville et al. (2020), section 2.3.

The last part of the two-scale homogenization is the asymptotic expansion of the wave equation

solution as a power series of ε0:

u(x, t) = u0(x, y, t) + ε0u
1(x, y, t) + ε2

0u
2(x, y, t) + ... (16)

σ(x, t) = σ0(x, y, t) + ε0σ
1(x, y, t) + ε2

0σ
2(x, y, t) + ... (17)

An important constraint on ui, σi is that they must contain only small-scale variations on the y axis.

This translates into the fact that if we apply F to any coefficients ui, σi, we obtain constants in y. This
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can mathematically expressed as ui, σi must belong to the space V , defined as

V = {h(x, y), Y − periodic in y such that F(h)(x, y) = 〈h〉 (x)} , (18)

where for any function h(x, y)

〈h〉 (x) =
1

Y

∫ Y

0
h(x, y)dy , (19)

and Y is segment along the y axis, wide enough to fit the spatial support of F . In the following, we

will make use of V∗, a variant of V defined as

V∗ = {h(x, y), Y − periodic in y such that F(h)(x, y) = 0} . (20)

The next step is, starting from ρ and E, to build quantities ρε0(x, y), Eε0(x, y) such that the coeffi-

cients ui, σi exist in V . This is the main difficulty of the two-scale homogenization when the periodic-

ity assumption is not made. The complete procedure to do so is described in Capdeville et al. (2010a,

Capdeville et al. (2010b).

Introducing (14) and (16-17) in (5-6), we find the equations driving the expansion coefficients ui, σi:

ρε0(x, y)∂ttu
i(x, y, t)− ∂xσi(x, y, t)− ∂yσi+1(x, y, t) = fδi,0 , (21)

σi(x, y, t) = Eε0(x, y)(∂xu
i(x, y, t) + ∂yu

i+1(x, y, t)) . (22)

We have two types of boundary conditions: the boundary condition along the x axis which, for each i,

σi(0, y, t) = σi(L, y, t) = 0, and periodic boundary conditions for any equation along the y axis.

Solving (21-22) for consequent indices i up to the order 1, displacement can be found to be written

as

u(x, t) = u0(x, t) + ε0χ
ε0(x, y)∂xu

0(x) +O(ε2
0) , (23)

where y = x/ε0 (it has only one value here). To the leading order, the strain is

ε(x, t) = ∂xu(x, t) = (1 + ∂yχ
ε0(x, y)) ∂xu

0(x, t) +O(ε0) . (24)

It can be noted that displacement to the leading order, u0, does not depend on the small-scale vari-

able y. It can also be shown that σ0 does not depend upon y. χε0 is the first order corrector, solution

of the cell problem

∂y [Eε0(1 + ∂yχ
ε0)] = 0 (25)

on Y with periodic boundary conditions. u0, σ0 are solutions of the order 0 effective wave equation:

ρ∗,ε0∂ttu
0 − ∂xσ0 = f , (26)

σ0 = E∗,ε0∂xu
0 , (27)
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where ρ∗,ε0 = 〈ρε0〉 and

E∗,ε0(x) = 〈Eε0(1 + ∂yχ
ε0)〉 (x) . (28)

Luckily, it can be seen that the effective equation is still a classical wave equation. We can therefore

still use our favorite wave equation solver to get a solution to this wave equation. Moreover, the

effective parameters are free of small-scale, which makes the space discretization simple.

In the 1-D case, there is an analytical solution to the cell problem (25), that makes it possible to

show that

E∗,ε0(x) =

(
Fε0

(
1

E

))−1

(x) . (29)

Moreover, ρ∗,ε0(x) = Fε0(ρ)(x).

Nothing has been done yet about the source term. It is usually ignored in the homogenization

development and introduced back a posteriori, using an energy argument. It can be shown that, to

the leading order, for a point single force, the source term can be used without any change and, for a

couple-source, it needs to be modified according to

f(x, t) = M

[
1 + ∂yχ

ε0

(
x0

ε0

)]
∂xδ(x− x0)g(t) . (30)

In this 1-D case, due to the analytical solution for the cell equation, the couple-source force correction

reduces to

f(x, t) = M
E∗,ε0

E
(x0)∂xδ(x− x0)g(t) . (31)

In both cases, the source term still involves a Dirac function and therefore is not free of small-scale.

2.3 Two-scale homogenization for the source term only

As shown in Capdeville et al. (2010a, Capdeville et al. (2010b), it is often very useful to introduce

the concept of homogenization through the periodic case. This helps to better understand the homoge-

nization process and grasp its concepts. Then, the more difficult non-periodic case can be considered.

Unfortunately, while homogenization of the mechanical properties can be derived both in periodic and

non-periodic cases, this is not the case for the homogenization of the source term. Indeed, the seismic

source is intrinsically non-periodic: there is usually only one or a few earthquakes at the same time.

Moreover, building an artificial problem with finely space sources paving the bar makes no sense.

In this section, we assume that only the source term f contains small-scale that need to be homog-

enized. This assumption can be made if the mechanical properties (ρ(x), E(x)) are free of small-scale

(if they are constant or smooth) but it can also be made if they contain small scales such as discontinu-

ities. In the latter case, this assumption means we choose to homogenize the small-scale of the source



12 Y. CAPDEVILLE

while leaving those from the mechanical properties unchanged. This means that the small scales from

the mechanical properties will remain and will have to be accounted for with a dense mesh while

solving the wave equation with the effective source. This non-intuitive choice can be useful in situa-

tions where small-scale need to be kept in an earth model. For example, some medium can be simple

to mesh but still have small-scale such as discontinuities. Layered media such as PREM are a good

example of such models. In such cases, one might want to avoid having to homogenize the whole

model to input an effective source. In those situations, the possibility to homogenize the source while

keeping the fine-scale structures of the medium might be desirable. The more general case where both

the source and the mechanical properties are homogenized is treated in section Sec. 2.4.

To obtain the effective source and the near-source field corrector, we follow the same procedure

as the one used to homogenize the wave equation in the non-periodic heterogeneous mechanical prop-

erties case. It consists of three steps:

(i) build the homogenized equations;

(ii) solve the homogenized equations, order by order, assuming it is possible to build the source

expansion coefficients such that the expansion coefficients of (16) and (17) belong to V∗;
(iii) build the two-scale expansion coefficients of the source term based on the conditions derived

from the previous step.

We begin with the assumption that the two types of sources can be expanded as

f(x, t) =
1

ε0
f−1(x, y)g(t) + f0(x)g(t) , (32)

τ(x, t) =
1

ε0
τ−1(x, y)g(t) + τ0(x)g(t) , (33)

where −1 here means index i = −1 and where y is taken equal to x/ε0. This assumption comes from

the idea the a Dirac can be decomposed into a smooth and high wavenumber parts:

δ(x) = Fε0(δ)(x) + (I −Fε0)(δ)(x) , (34)

which, using (15), can also be written:

δ(x) = Fε0(δ)(x) + (I −F)(δ)(ε0y) . (35)

Then, using the property

δ(ε0y) =
1

ε0
δ(y) , (36)

a Dirac function can therefore be decomposed as

δ(x) =
1

ε0
(I −F)(δ)(y) + Fε0(δ)(x) . (37)
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The Dirac expansion series has therefore two terms, one in (ε0)−1 and one in (ε0)0. The fact that the

two different types of sources contain a Dirac distribution naturally leads to (32) and (33). Note that

we have assumed that τ0 and f0 depend only on x. This assumption will be proved by construction

in Sec. 2.3.3. The expansion (37) of the Dirac distribution is the basis of the homogenized solution

presented in this paper.

At this stage, we do not know yet how to build the coefficients f i and τ i. This will be done a

posteriori.

The homogenized equations to be solved are therefore

ρ(x)∂ttu
i(x, y, t)− ∂xσi(x, y, t)− ∂yσi+1(x, y, t) = f i(x, y)g(t) , (38)

σi(x, y, t) = E(x)(∂xu
i(x, y, t) + ∂yu

i+1(x, y, t))− τ i(x, y)g(t) . (39)

The boundary conditions are the same as for the homogenization of the mechanical properties.

In the following, for the sake of simplicity, the couple and single-force cases are solved separately.

2.3.1 Resolution for the couple-source case

We assume that the source is a couple-source force, f(x, t) = −∂xτ(x)g(t). We solve the homoge-

nized equations (38-39) one by one:

• Eqs (38) for i = −2 and (39) for i = −1 give

∂yσ
−1 = 0 , (40)

σ−1 = E∂yu
0 − τ−1 . (41)

Combining the last two equations, we have

∂yE∂yu
0 = ∂yτ

−1 . (42)

We define the leading order corrector θτ as

u0(x, y, t) =
〈
u0
〉

(x, t) + θτ (y)g(t) . (43)

From the last equation, we see that having θτ ∈ V∗ is a necessary and sufficient condition to have

u0 ∈ V . Using (43) in (42) we find that θτ is solution of the following cell problem on Y :

E(x)∂2
yθτ (y) = ∂yτ

−1(x, y) , (44)

with periodic boundary conditions. As it will be seen in Sec. 2.3.3, θτ is independent of x by construc-

tion. Moreover, from (41) and by construction of τ−1 (see Sec. 2.3.3, Eq. 74), we have

σ−1 = 0 . (45)
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It is interesting to note that, unlike most homogenization problems, the leading order of displacement

u0 depends on y.

• Eqs (38) for i = −1, (39) for i = 0 and (45) give

∂yσ
0 = 0 , (46)

σ0 = E(∂xu
0 + ∂yu

1)− τ0 . (47)

Using (43) in (47), knowing that θτ only depends on y, we have

σ0 = E(∂x
〈
u0
〉

+ ∂yu
1)− τ0 . (48)

Taking the cell average of the last equation and using the fact that

〈∂yh〉 = 0 for any function h(x, y) , (49)

we find the order 0 effective constitutive equation:

〈
σ0
〉

= E∂x
〈
u0
〉
−
〈
τ0
〉
. (50)

• Eqs (38) for i = 0 gives

ρ(x)∂ttu
0 − ∂xσ0 − ∂yσ1 = 0 , (51)

Taking the cell average of the last equation and using the property (49), we obtain the order 0 dynamic

equation:

ρ(x)∂tt
〈
u0
〉
− ∂x

〈
σ0
〉

= 0 , (52)

At this stage, the order 0 homogenized solution u0 is found solving (50) and (52).

• going further in the order, for i > 0, taking the cell average of (38-39) and using the property

(49) we find

ρ∂tt
〈
ui
〉
− ∂x

〈
σi
〉

= 0 , (53)〈
σi
〉

= E(x)∂x
〈
ui
〉
. (54)

These equations have a unique solution that is
〈
ui
〉

=
〈
σi
〉

= 0. All the expansion coefficients larger

than i = 0 are therefore null. This remarkable result is very different from the elastic homogenization

for which only the order 1 solution is null. Its practical consequence on the convergence rate from the

homogenized solution to the true solution as a function of ε0 is shown in Sec. 2.5.1, in a homogeneous

bar example.
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To summarize, to obtain the order 0 solution, one need to solve

ρ(x)∂tt
〈
u0
〉
− ∂x

〈
σ0
〉

= 0 , (55)〈
σ0
〉

= E∂x
〈
u0
〉
−
〈
τ0
〉
, (56)

To obtain the order 1, we have

u(x, t) =
〈
u0
〉

(x) + θτ (y)g(t) , (57)

where all the expressions are evaluated for y = x/ε0. Note that no O(ε2
0) is present in these expres-

sions: this relation is valid for all orders.

For the order 0 strain, we have

ε(x, t) =
1

ε0
∂yθτ (y)g(t) + ∂xu

0(x, t) . (58)

The order 0 corrector is solution of the cell equation on Y ,

E(x)∂2
yθτ (y) = ∂yτ

−1(x, y) , (59)

with periodic boundary condition.

We still need to define τ−1 and τ0 so that the solutions to the above cell problem exist and belong

to V∗. This is the purpose of section 2.3.3 .

2.3.2 Resolution for the single force case

The resolution of the single force case is similar to the couple case presented in the previous section.

The details are given in Appendix A. We find the following order 0 effective wave equation:

ρ(x)∂ttu
0 − ∂x

〈
σ0
〉

=
〈
f0
〉
, (60)〈

σ0
〉

= E∂xu
0 . (61)

In contrast to the couple-source case, there is no corrector for the order 0 displacement (it only depends

on x):

u0(x, y) =
〈
u0
〉

(x) . (62)

Adding the order 1 corrector the order 0 solution, we have:

u(x) =
〈
u0
〉

(x) + ε0θf (y) , (63)

where all the expressions are evaluated for y = x/ε0. The corrector is solution of

E(x)∂2
yθf (y) = f−1(x, y) , (64)
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on Y with periodic boundary conditions.

Similarly to the previous section, we can show that all the higher-order solution coefficients are

null.

We still need to define f−1 and f0 so that the solutions to the above cell problem exist and belong

to V∗. That is the purpose of section 2.3.3 .

2.3.3 Construction of source expansion coefficients

We need to build the source expansion coefficients such that the displacement and stress expansion

coefficients ui, σi belong to V . In order to achieve this, the following sufficient conditions must be

met:

(i) θτ and θf must be in V∗ (from Eqs. (43) and (A10));

(ii) the expansion (32) and (33) must be satisfied.

We follow a similar procedure to the one used for the mechanical properties (Capdeville et al. 2010a):

we first assume that all spatial variations are small-scale and then use the filter F to separate the scales

on the correctors. Setting M = 1 and F = 1 in (7) and (8) respectively, omitting the source time

dependence for now and transforming δ(x) in the small-scale variable domain using (36), we have

f−1,s(y) = δ(y) , (65)

f0,s(x) = 0 , (66)

and

τ−1,s(y) = δ(y) , (67)

τ0,s(x) = 0 . (68)

We then solve a small-scale only version of the cell problems (44) and (64) on Y with periodic bound-

ary conditions, assuming the variation of the elastic parameters are also on y, to obtain the starting

correctors θsf and θsτ :

∂yĒ(y)∂yθ
s
σ(y) = ∂yτ

−1,s(y) , (69)

∂yĒ(y)∂yθ
s
f (y) = f−1,s(y) , (70)

where Ē(y) = E(ε0y). We then separate the scales to obtain the final correctors

θi(y) = (I −F)(θsi )(y) , i ∈ {f, τ} . (71)

At this stage, by construction, both correctors θi belong to V∗, satisfying then condition (i). Moreover,

both correctors only depend on y by construction.
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We also define the order 0 source potential from the smooth part of the starting correctors:

ψi(x) = F(θsi )(x/ε0) , i ∈ {f, τ} . (72)

The order −1 source terms are then built as

f−1(x, y) = E(x)∂2
yθf (y) , (73)

τ−1(x, y) = E(x)∂yθτ (y) . (74)

The last equation justifies (45). Finally, the large-scale variations of the correctors is used to define the

order 0 source terms:

f0(x) = ∂xE(x)∂xψf (x) , (75)

τ0(x) = E(x)∂xψτ (x) . (76)

The last equations also show that, by construction, f0 and τ0 can indeed be built as independent of y.

Next, we can check that the condition (ii) is satisfied. For the case of couple-source, from (74) and

(76), for y = x
ε0

, using ∂y = ε0∂x we have

1

ε0
τ−1 + τ0 =

E(x)

ε0
∂yθτ (y) + E(x)∂xψτ (x) , (77)

=
E(x)

ε0
∂yθτ (y) + E(x)∂x(F)(θsτ )(x/ε0) , (78)

=
E(x)

ε0
(∂yθτ (y) + ∂y(F)(θsτ )(y)) (79)

=
Ē(y)

ε0
(∂y(I −F)(θsσ)(y) + ∂y(F)(θsτ )(y)) (80)

=
Ē(y)

ε0
∂yθ

s
σ(y) . (81)

Using (67), (69) and the cell problem boundary condition in the last equation, we obtain

1

ε0
τ−1 + τ0 =

δ(y)

ε0
, (82)

and therefore, using (36)

1

ε0
τ−1 + τ0 = δ(x) , (83)

which is the wanted result. Verifying (33) can also be done following a similar development.

Solving (69) and (70) in practice is not completely trivial. Indeed, the solutions strongly depend

on the size of the domain Y and on the boundary conditions, which is unusual for a homogenization

problem. This happens because the Dirac sources have a low-wave number content that makes the

solution have a non-compact support. This problem can be efficiently fixed by removing the low-
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frequency content on the source and adding it back a posteriori. This solution also makes the cell

problem solution independent of the boundary conditions. It is described in Appendix B.

To summarize, to obtain the effective force term and the corrector (here for the couple-source),

one needs to follow three steps:

(i) solve the cell problem (44) with the starting source term (67);

(ii) remove the low-wavenumber content of the obtained corrector with (71) to obtain the final

corrector;

(iii) build the smooth source term with (76).

As mentioned above, there is a technical extra step which is explained in Appendix B. Examples of

these different steps are shown in Fig. A2 and commented in Appendix B.

2.4 Combined homogenization of the source and mechanical properties

In many situations, it can be necessary to homogenize both the mechanical properties and the source.

Two ways can be used to do so. The first way is to consider the homogenization problem of the source

and the structure as a single problem. The second way is to proceed as two successive homogeniza-

tion problems: first homogenizing the mechanical properties and then homogenizing the source. The

first option is mathematically non-trivial. Furthermore, it can be interesting to have the option to use

different values for ε0 for the elastic properties and for the source, which cannot be done in that case.

Thus, we rely on the successive homogenization approach.

The idea is simple: we first homogenize the elastic properties following the procedure described

in Sec. 2.2 to obtain the order 0 solution using ε0 = εe. It is the solution of the effective wave equation

(26-27) based on the effective elastic parameters ρ∗,εe , E∗,εe . At this point the source is still a point

source, but modified according to (31). We then apply the source homogenization procedure described

in Sec. 2.3, but to u0,e and to the effective properties obtained from the elastic homogenization step.

For this second step, we use ε0 = εs where εs can be different from εe. Limiting our discussion to the

couple-source case, using (23), we have, in the first step:

u(x, t) = u0,e(x, t) + εeχ
εe(x, y)∂xu

0,e(x) +O(ε2
e) . (84)

Following (57), we then apply the source homogenization to u0,e to obtain

u0,e(x, t) = u0(x) + θτ (y)g(t) (85)

∂xu
0,e(x, t) =

1

εs
∂yθτ (y)g(t) + ∂xu

0(x, t) . (86)

In these last equations, u0 is the solution obtained using the effective wave equation and the effective
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source, itself obtained in the effective medium. Combining (84) and (85–86) together, assuming εs/εe

behaves like 1, we obtain, to the leading order:

u(x, t) = u0(x, t) + θτ (y)g(t) + ∂yθτ (y)χε0(x, y)g(t) +O(ε0) , (87)

∂xu(x, t) =
(
ε0
−1∂yθτ (y)g(t) + ∂xu

0(x, t)
)

(1 + ∂yχ
ε0(y)) +O(ε0) (88)

Here, ε0 is either εs or εe: it does not matter because we have assumed their ratio behaves like 1. This,

however, is not a necessity as we shall see another choice in 2-D.

So, in practice, to apply successively the two homogenizations, the following steps are required:

(i) compute the effective properties and the corrector χε0 as described in Sec. 2.2;

(ii) compute the effective source and the corrector θτ or θf as described in Sec. 2.3 using the

effective properties and not the original elastic properties. The point source needs to be corrected

according to (31) ;

(iii) solve the effective wave equation using the effective properties obtained in (i) and using the

effective source obtained in (ii) to obtain the leading order displacement u0;

(iv) apply the correctors following (87-88).

2.4.1 Implementation of the effective source in SEM

Once the effective source term is known, implementing it in SEM is trivial. We typically have to

compute source terms, which are, for example in the couple-source case,

(w, f) = −
∫

Ω
w(x)∂xτ

0(x) dx , (89)

where w is a test function. The last integral can be computed by parts or not, it has no real influence.

In the heterogeneous case, we have a practical extra term that needs to be taken into account (see

Appendix B), but it does not add any further difficulty to the SEM. Because the source term is smooth,

we know that the solution u0 does not present any discontinuity, and therefore, we can be sure that the

solution is correctly computed everywhere, including at the source origin. Once u0 is computed, the

discontinuous near-source field is recovered by adding the corrector term θτ (x/ε0)g(t) to it.

2.5 Numerical tests

2.5.1 Homogeneous bar

In Fig. 2, we perform a numerical test in a homogeneous bar (with α = 5 km/s), the source being a

couple-force (8) at x0 = 15 m. The source details are the same as the one used Sec. 3.1. The reference

solution is obtained with SEM, using a dense mesh, however, without explicitly meshing the source
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Figure 2. Homogeneous bar tests. Displacement (left panels) and strain (rigth panels) snapshots for t = 2 ms

(top panels) and t = 4 ms (bottom panels) for the reference solution (black lines), the effective solution u0

(green lines, left panels) and ∂xu0 (green lines, right panels) without the corrector and the effective solution

u0 +θτ (red lines, left panels) and 1/ε0∂yθτ +∂xu
0 (red lines, right panels). The residual difference (magnified

×10) between the reference solution and the effective solution plus corrector is potted in grey line. ε0 = 0.5 has

been used. The displacement amplitudes are normalized with respect to the maximum displacement amplitude

for t = 4 ms.

discontinuity. This implies that the reference solution is not accurate in the element containing the

source. Nevertheless, at the scale of the plots, it is barely visible (a small glitch can still be seen

on the displacement snapshot for x = 15 m). We compute the effective source with ε0 = 0.5 and

use it in SEM to obtain the effective solution u0. Comparing the reference solution with the order 0

effective solution, both for the displacement u0 and the strain ∂xu0, we can see that the reference

solution and the effective solution match perfectly everywhere, except near the source, for distances

below λmin from the source location. Near the source, the difference in two solutions is significant.

Nevertheless, once the corrector is added, the effective solution and the reference solution match very

well everywhere, including in the near-source field, both for the displacement and the strain. The

effective source τ0 and corrector θτ used in this example are displayed in Fig. A2, left panels.

Defining the error as

error(xr, ε0) =

∫ T
0

(
u0(xr, t)− uref(xr, t)

)2
dt∫ T

0 (uref)2(xr, t) dt
, (90)

where uref is the reference solution, in Fig. 3, we measure the error as a function of ε0, for a receiver
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Figure 3. Log-log plot of the error, defined in (90), for xr = 3200 m, as a function of ε0 (solid line) for the

homogeneous 1-D case defined in Sec. 2.5.1. y = ε20 is also plotted for reference (dash line).

position xr in the far-source-field (we use here xr = 3200 m). Starting from large ε0, the error is first

flat until ε0 ' 3 and it then decays towards zero quickly until it reaches the numerical error level of

the reference solution. This decay of the error as ε0 becomes smaller is much faster than the decay

in ε2
0 observed when homogenizing the elastic properties (Capdeville et al. 2010a). This observation

is consistent with the fact that the only non-zero term in the homogenization asymptotic expansion is

the one in order 0: the convergence of the error towards zero as ε0 becomes smaller is theoretically

instantaneous. In practice, because of various numerical errors, the convergence with ε0 is not exactly

instantaneous but still much faster than the ε2
0 convergence classically observed.

2.5.2 Heterogeneous bar, homogenization of the source only

In Fig. 4, we perform the same test as in the previous section but we use the heterogeneous bar, the

one already used in Sec. 3.1. In this example, only the source is homogenized and not the mechanical

heterogeneities in the bar. This implies that for computing the effective solution, once the effective

source term is obtained, we still need a fine mesh to honor the mechanical discontinuities. This may

seem not very useful but we will see in the discussion that this may be necessary for some situations.

We compare the reference solution with the order 0 effective solution once again, both for the dis-

placement u0 and the strain ∂xu0, obtained with ε0 = 0.5. We can see that, a few meters away from

the source location (about one λmin), the reference solution and the effective solution match perfectly.

For the strain, the imprint of the heterogeneous model is clear and is well captured in the far-field by

the effective solution. Similar to the homogeneous bar test, for distances to the source below one λmin,

the difference between the reference solution is significant. Once the zero-order corrector is added,
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Figure 4. Heterogeneous bar test. The displacement (left panels) and strain (rigth panels) snapshots for t = 2 ms

(top panels) and t = 4 ms (bottom panels) for the reference solution (black lines), the effective solution u0

(green lines, left panels) and ∂xu0 (green lines, right panels) without the corrector and the effective solution

u0 + θτ (red lines, left panels) and 1/ε0∂yθτ + ∂xu
0 (red lines, right panels) are shown. The residual difference

(magnified ×10) between the reference solution and the effective solution plus corrector is potted in grey line.

ε0 = 0.5 has been used and only the source has been homogenized, not the mechanical properties (there is no

effective media).

the effective solution and the reference solution match very well in the near-source field, both for the

displacement and the strain. Interestingly, the fine-scale mechanical heterogeneity effects are also cap-

tured in the near-source field thanks to the corrector. The effective source and corrector used in this

example are displayed in Fig. A2, right panels.

2.5.3 Heterogeneous bar, successive homogenization for source and mechanical properties

We finally test the successive homogenization in the same numerical experiment framework as in

the previous section. This case is probably the most common in realistic situations where reducing

the numerical cost is the objective. We first homogenize the heterogeneous bar to obtain the effec-



Effective seismic sources 23

10 15 20
x (m)

5

6

v
el

o
ci

ty
 (

k
m

/s
)

Figure 5. Original velocity α(x) (black line) and the corresponding effective velocity α∗,ε0(x) (red line) for a

sample of the bar used for the test in Sec. 2.5.3. ε0 = 0.5 for a λmin ' 3.3 m has been used.

tive mechanical properties ρ∗,ε0 , E∗,ε0 and the first order corrector χε0 , using ε0 = εe = 0.5. The

corresponding effective velocity α∗,ε0 =
√
E∗,ε0/ρ∗,ε0 is shown in Fig. 5. We then compute the ef-

fective source and the source corrector θτ according to (76), solving (69) but use E∗,ε0 instead of the

original E, once again using ε0 = εs = 0.5 (note that we could have used a different value here).

Finally, we solve the wave equation using (ρ∗,ε0 , E∗,ε0) and the effective source in SEM to obtain

the effective solution u0. In Fig. 6a and 6b, comparisons between snapshots of the reference solution

and the effective solution for both the displacement and the strain are shown. It can be seen that the

far-field displacement is already well captured. This implies that for most situations, where only the

far-field displacement is needed, u0 is good enough. Nevertheless, the strain is missing the observed

small-scale variations and both strain and displacement are missing the near-source field. If we add the

source corrector to the displacement (u0 + θτg, Fig. 6c) and to the strain (∂yθτg/ε0 + ∂xu
0, Fig. 6d),

we see that the near-source field is recovered. The small scale variations are still missing on the strain.

They are also missing on the displacement, but they have a small amplitude and are not visible at

this scale. Finally, we apply the full combined correctors according to (87-88) in Fig. 6e and 6f. The

small-scale variations are then recovered.

3 2-D AND 3-D THEORETICAL DEVELOPMENTS

We now consider waves in a 2-D/3-D elastic body Ω with free boundary conditions on ∂Ω. The elastic

wave equation is

ρ∂ttu−∇ · σ = f , (91)

σ = c : ∇u− τ , (92)



24 Y. CAPDEVILLE

10 20
-1

0

1

displacement

10 20

0

strain

10 20
-1

0

1

10 20

0

10 20
x (m)

-1

0

1

10 20
x (m)

0

a b

c d

e f

Figure 6. Displacement (left column panels) and strain (rigth column panels) snapshots for t = 4 ms obtained

for a couple-source and in the heterogeneous bar (see Fig. 3.1) for the reference solution (black line) and the

successive homogenization schemes (red lines). a: u0, b: ∂xu0, c: u0 + θτg, d: ∂yθτg/ε0 + ∂xu
0, e: u0 + θτg+

θτχg, f: (∂yθτg/ε0 + ∂xu
0)(1 + ∂yχ). For panels e and f, the difference, magnified by a factor 10, between the

reference solution and the effective solution plus corrector is also plotted (grey line).

where ρ(x) is the density, c(x) the elastic tensor, u(x, t) the displacement vector and σ(x, t) the stress

tensor. The source terms f(x, t) and τ (x, t) are point sources:

• single force:

f(x, t) = Fδ(x− x0)g(t) , (93)

• couple-force or stress-source:

τ (x, t) = Mδ(x− x0)g(t) , (94)

where F is a vector and M the moment tensor.

Once again, the stress source term is often inputted in the dynamic equations (91) using the fol-

lowing force term: f(x, t) = −∇ · τ (x, t).
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3.1 Preliminary numerical observations

In Fig. 7, we use a simple homogeneous domain Ω of size 40 × 40 km2 in which the mechanical

properties are such VP = 1.8 km/s, VS = 1.0 km/s with ρ = 1000 kgm−2. The source is a point mo-

ment tensor whose mechanism is shown in Fig. 7e. As g(t), we use a Ricker with a central frequency

f0 = 0.33 Hz (fmax ' 1Hz), such that λmin = 1 km. The central time of the Ricker is t0 = 4 s. Two

receivers are used, one very close to the source (receiver 1, at a distance of 100 m from the source

location) and one in the far-field (receiver 2). We use SEM to solve the wave equation with PML ab-

sorbing boundaries around Ω (Festa and Vilotte 2005). We use two meshes: one trivial regular mesh

(mesh (a), see Fig. 7a) and one unstructured mesh with smaller elements near the source (mesh (b),

see Fig. 7b). For mesh (a), the element edges are of length 1 km and the polynomial degree in each

element in each tensorial direction is 5. For such a simple medium, this trivial regular mesh is usually

enough to obtain accurate seismograms for receivers not located in the element containing the source,

such as receiver 2. Nevertheless, for a receiver close to the source origin, such as receiver 1, we need

a denser mesh near the source, such as mesh (b), making sure the receiver is not in the element con-

taining the source. As can be seen in Figs. 7c and 7d, the solutions obtained using the two meshes

match very well away from the source location, but near the source, they differ significantly. Even

though the solution in the dense mesh can be considered as the reference solution near the source, it is

still not accurate for the element containing the source. For SEM point source case, ’near’ the source

approximately means in the element of the source but elements right next to it may also be affected

(see Appendix C). Interestingly and as it is well known for SEM, the fact that for the coarse mesh (a),

the solution is not accurate in the element containing the source does not prevent the solution to be

accurate for all the other elements (see, Figs. 7c and 7d for receiver 2).

As expected and similar to the 1-D case, the wavefield near the source appears to be discontinuous

and a cross-section through the source shows a jump in the displacement (Fig. 7c). Of course, the

SEM formulation does not allow a real jump, but the dense mesh clearly shows the expected jump at

the figure scale (a zoom in the element containing the source would show the field is continuous, but

it is an artifact of the formulation which does not make field discontinuities possible).

This simple test leads to the same conclusion as for the 1-D case: obtaining an accurate solution

near the source requires a dense mesh. This mesh is potentially difficult to design when mixed with

mechanical discontinuities, especially in 3-D, and leads to a high numerical cost. Once again, as we

will see in the following sections, homogenization offers a solution to these technical difficulties and

an interesting insight into the physical and mathematical processes involved.
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Figure 7. SEM wavefield modelling for the seismic point source moment tensor (e) propagating in a homoge-

neous medium Ω using a regular mesh (a) and a mesh with smaller elements near the source (b). In (a) and

(b), a snapshot of the energy density of the propagating wavefield for t = 10 s (background color), the mesh

(gray lines), the source (blue star) and the receiver (red diamonds) positions are plotted. (c): cross-sections in the

velocity wavefield vertical component u̇z for t = 5.5 s along the dashed line shown in (a) and (b) for the regular

mesh (black line) and the dense mesh (red line) modelling. (d): vertical velocity trace for receivers 1 and 2, for

the regular mesh (black line) and the dense mesh (red line) modeling. The amplitudes have been normalized by

the maximum amplitude for receiver 1.

3.2 Two-scale homogenization of the mechanical properties

The two-scale homogenization of the mechanical properties in 2-D en 3-D can be found in Capdeville,

Guillot, and Marigo (2010b) and Cupillard and Capdeville (2018). While the 2-D or 3-D homogeniza-

tion has many similarities with the 1-D case, it also has important differences. In dimensions higher

than one, the order 0 stress σ0 depends on y and, more importantly, there is no analytical solution

to the cell problem, preventing an explicit formula such as (29). We therefore always need to use

numerical solutions to obtain the effective media and the correctors.
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3.3 Two-scale homogenization of the source

We directly jump to the generalization of Sec. 2.3: the homogenization of the source term in 2-D.

Here, we only solve the case of the double-couple source, but the case of a single force source can be

solved similarly without any specific difficulty.

The equations to solve are:

ρ∂ttu
i −∇x · σi −∇y · σi+1 = 0 , (95)

σi = c :
(
εx
(
ui
)

+ εy
(
ui+1

))
− τ i , (96)

where we have assumed that it is possible to find an expansion

τ (x, t) =
1

ε0
τ−1(x,y)g(t) + τ 0(x)g(t) , (97)

such that ui and σi belong to V , the higher dimension generalization of V (see Capdeville et al.

(2010b) for more details). We have once again assumed that τ 0 is independent of y which, as we shall

show later, is possible to achieve by construction.

3.3.1 Resolution of the homogenized equations

• Eqs (95) for i = −2 and (96) for i = −1 give

∇y · σ−1 = 0 , (98)

σ−1 = c : εy(u0)− τ−1 . (99)

Combining the last two equations, we have

∇y · c : εy(u0) = ∇y · τ−1 . (100)

We define the leading order corrector θτ as

u0(x,y, t) =
〈
u0
〉

(x, t) + θτ (y)g(t) . (101)

From the last equation, we see that having θτ ∈ V∗ is a necessary and sufficient condition to have

u0 ∈ V . Using (101) in (100) we find that θτ is solution of the following cell problem on Y:

∇y · c(x) : εy(θτ )(y) = ∇y · τ−1(x,y) , (102)

with periodic boundary conditions on Y. The cell problem (102) is a static elasticity loading problem,

the same as that found in the classical elastic-property homogenization. Only the source term is differ-

ent. It can only be solved numerically either with a classical finite element tool (such as the one used

in Capdeville et al. 2010b) or with an iterative FFT scheme (Moulinec and Suquet 1998; Capdeville

et al. 2015). In the following, we use a finite element tool based on triangular elements.
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As it is seen in Sec. 3.3.2, θτ only depends on y by construction.

Using (101) and (99), we have

σ−1 = c : εy(θy)− τ−1 , (103)

which, by construction (see Sec. 3.3.2, Eq. 116), leads to

σ−1 = 0 . (104)

• Eqs. (95) for i = −1 and (96) for i = 0, using (104), give

∇y · σ0 = 0 , (105)

σ0 = c : (εx(u0) + εy(u1))− τ 0 . (106)

Taking the cell average of the last equation, using the fact that for any vector v, 〈εy(v)〉 = 0, we

obtain the order 0 effective constitutive relation:〈
σ0
〉

= c : εx
(〈

u0
〉)
−
〈
τ 0
〉
. (107)

• Eq. (95) for i = 0

ρ∂ttu
0 −∇x · σ0 −∇y · σ1 = 0 , (108)

which, taking the cell average leads to effective dynamic equation

ρ∂tt
〈
u0
〉
−∇x ·

〈
σ0
〉

= 0 . (109)

At this stage, the equation driving
〈
u0
〉

are known and are (107) and (109). We can access u0 by

adding the corrector in (101). Similarly to the 1-D case, because all the higher order coefficients of the

expansion can be shown to be null, we also have u(x, t) = u0(x,x/ε0, t). Moreover, knowing that

εx(θτ ) = 0 (because θτ only depends on y by construction) and that u1 = 0, from (106) we have

σ0(x) = c(x) : εx
(〈

u0
〉)

(x)− τ 0(x) . (110)

We conclude that σ0 only depends upon x and therefore that σ0 =
〈
σ0
〉
. This is different from the

homogenization of the mechanical properties where σ0 depends on y. In that case, a small-scale cor-

rector is required to access σ0 from
〈
σ0
〉
. This leads to a complication for the boundary conditions,

typically for the free surface. A boundary layer appears below the free surface and Dirichlet to Neu-

mann operator for the boundary condition is necessary to go beyond the leading order (Capdeville and

Marigo 2008; Capdeville and Marigo 2013). Here, for the homogenization of the source, the fact that

σ0 only depends on x implies that we do not expect a boundary layer near the free surface and that

dealing with boundary conditions are simple, which is an important simplification compared to the

homogenization of the mechanical properties case.
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3.3.2 Construction of source expansion coefficients

We need to build the source expansion such that the displacement and stress expansion coefficients

ui,σi belong to V . For that, the following sufficient conditions must be met:

(i) θτ must be in V∗ (from Eqs. (101) and (A10));

(ii) the expansion (97) must be satisfied.

We follow the same procedure as for the 1-D case: we first assume that all spatial variations are small-

scale and then use the filter F to separate the scales on the correctors:

τ−1,s(y) = Mδ(y) , (111)

τ 0,s(x) = 0 . (112)

We then solve the y scale version of the cell problem (102) on Y with periodic boundary conditions,

assuming the variation of the elastic tensor are also on y, and obtain the starting corrector θsτ :

∇y · c̄(y) : ∇y θ
s
σ(y) = ∇y · τ−1,s(y) , (113)

where c̄(y) = c(ε0y). We then separate the scales to obtain the final correctors

θτ (y) = (I −F)(θsτ )(y) . (114)

At this stage, θτ belongs to V∗ by construction, and satisfy condition (i). Moreover, it only depends

on y, also by construction.

We define the order 0 source potential from the smooth part of the starting corrector,

ψτ (x) = F(θsτ )(x/ε0) . (115)

The order −1 source term is then built as

τ−1(x,y) = c(x) : εy(θτ )(y) . (116)

The last equation also justifies (104). Finally, the large-scale variations of the correctors is used to

define the order 0 source terms:

τ 0(x) = c(x) : εx(ψτ )(x) . (117)

We finally could check that the condition (ii) is satisfied following the same procedure as for the 1-D

case.

Similar to the 1-D case, solving (113) in practice is not completely trivial for the same reason. The

same solution, but generalized to the higher dimensions, can be used and is described in Appendix B.
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3.4 Combined homogenization for source and mechanical properties for 2-D and 3-D cases

The principle to homogenize the medium first and then the source in 2-D is the same as in 1-D

(see Sec. 2.4). Once the medium is homogenized with an ε0 = εe to obtain the effective properties

(ρ∗,εe , c∗,εe), the original moment tensor M is modified according to

M∗ = TGεe : M , (118)

where Gεe is the strain corrector (the equivalent of the 1-D ’1 + ∂yχ
ε0’ term in (30)) and T the

transpose operator. More details can be found in Capdeville et al. (2010b).

Next, the point source is homogenized with ε0 = εs, using the effective medium and the effective

moment tensor M∗. Then, the leading order solution u0 solution is obtained solving the wave equation

with SEM using the effective medium and the effective source. Finally, the correctors are added to

obtain

ui = u0
i + θτ,i g +

εe
εs
χεeijk∂yjθτ,k g + εeχ

εe
ijk∂xju

0
k +O(εe) , (119)

∂xiuj = Gεeklij
(
εs
−1∂ykθτ,l g + ∂ku

0
l

)
+O(εe) , (120)

where Gεe is the same strain corrector as for (118) but taken at the receiver location. Note that (119)

is in O(εe) and not in O(ε2
e) as it is often the case for the displacement. This is because only the

leading order correction is accounted for the point source in (118), and therefore, the whole process is

in O(εe).

3.5 Extended sources

Once the point source case is solved, it is not difficult to treat the extended source. Starting from (3),

discretizing the fault system S with an appropriate quadrature, we have

f(x, t) =
∑
i∈Sd

m(xi, t) ·∇δ(x− xi) dSi , (121)

where Sd is the set of integration points and dSi is the integration weight associated with each integra-

tion point. Then, for each integration point in Sd, assuming a separation of time and space variables

for the moment tensor density (m(xi, t) = m(xi)gi(t)), we solve the cell problem (113) using the

moment tensor m(xi)dSi in (111). Doing so, we obtain a set of source potentials ψiτ and correctors

θiτ associated with each integration points xi. Finally, the effective stress source is

τ 0(x, t) =
∑
i∈Sd

c(x) : εx
(
ψiτ
)

(x)gi(t) , (122)



Effective seismic sources 31

and the corrector

θτ (x) =
∑
i∈Sd

θiτ (x/ε0)gi(t) . (123)

The τ 0 above is the effective source that can be used in the wave equation to obtain the effective

wavefield u0 that accounts for all the source complexity in the far-field. To obtain an accurate near-

source field, we just need to add the corrector to the effective solution, as it is done for the case of the

point source.

Finally, let us mention that, if the time-space variable separation assumption of the moment tensor

density is not met, the problem remains similar. The difference is that the cell problem has to be solved

for each time step of the discretized time history of each m(xi, t).

3.6 2-D numerical tests

3.6.1 Homogeneous domain

Here, we use the same setting as for the homogeneous domain Ω presented in Sec. 3.1 and Fig. 7. We

follow the procedure presented in Sec. 3.3.2 to obtain the corrector θτ and the source potential ψτ .

θτ and f∗ = ∇ · c : εx(ψτ ) are shown in Fig. 8. ε0 = 0.5 has been used. f∗ is smooth and therefore

very simple to implement in SEM as an external source term, making it possible to obtain u0 using

the simple mesh (a) (see Fig. 7a). The corrector θτ g can be added to u0 a posteriori to obtain the

corrected effective solution. The results are displayed in Fig. 9. Once again, the solution in the dense

mesh is used as a reference solution, which is a good assumption except in the element containing the

source. At the scale of the plot, this element has the size of the line thickness. One can see that u0 does

not present the typical SEM Lagrange polynomial oscillation in the element containing the source as

observed in Fig. 7c for the classical point source implementation. This is because the solution u0 is

smooth, in contrast to u. As expected, u0 has a very good match with the reference solution except

in the vicinity of the source. Once the correction θτ g is added, the match near the source is also very

good. Depending on the element size of the mesh used to compute θτ near the source, the effective

solution can be even more accurate than the solution in the dense mesh at no extra numerical cost for

the SEM modelling.

3.6.2 Heterogeneous domain, homogenization of the source only

We now present a numerical test in a heterogeneous domain. In this test, only the source will be

homogenized, not the medium. A test where both the medium and the source are homogenized is

presented in the next section. The heterogeneous model P wave velocity is presented in Fig. 10, left
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Figure 8. (a) and (b): effective source force f∗ = ∇ · c : εx(ψτ ) in the homogeneous case used in Sec. 3.6.1.

(c) and (d): x and z components of the corrector θτ , respectively. Each quantity amplitude has been normalized

to 1.

unit VP (km/s) VS (km/s) ρ (103kg/m3)

pink 1.8 1 2

blue 2.4 1.4 2.4

red 1.4 0.8 1.8

Table 1. Velocities and densities used in the 2-D heterogenous test defined by their color as shown in Fig. 10

panel. The velocities and densities used for this test are given in Tab. 1. Like in the previous test, two

SEM meshes are used: one standard mesh (Fig. 10, middle panel) and one with smaller elements near

the source locations (Fig. 10, right panel). In that heterogeneous case, the standard SEM mesh not

trivial but unstructured because mechanical discontinuities need to be honored by element boundaries.

The point source has the same moment tensor as in the previous test and is located near the tip of the

heterogeneous wedge. Compared to the homogeneous case, this leads to strong waveform distortions

as can be seen on the energy density snapshot (Fig. 10, middle and right panels). We follow the

procedure presented in Sec. 3.3.2 to obtain the corrector θτ and the source potential ψτ using ε0 =

0.5. θτ and f∗ = ∇ · c : εx(ψτ ) are shown in Fig. 11. Compared to the homogeneous case presented

in the previous section, f∗ is not smooth. This is because c is discontinuous. Nevertheless, this is not

an issue for a SEM implementation. Indeed, the mesh already honors the mechanical interfaces and

this implies that the presence of the discontinuous c is not a difficulty. Moreover, ψτ is smooth (and

εx(ψτ ) as well), therefore, computing the SEM source term with f∗ can be done easily and accurately

after being integrated by parts. Compared to the homogeneous case, it can be seen that f∗ is rotated and

distorted. Using the homogenization procedure (Capdeville et al. 2010b), we can show the interaction
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Figure 9. Left: cross-section in u̇z for t = 5.5 s in the homogeneous case used in Sec. 3.6.1 for the dense

mesh (reference, red line), the order 0 effective solution u̇0z (black line) and the order 0 effective solution plus

corrector u̇0z + ġθz (green line). The amplitudes have been normalized by the maximum amplitude of the u̇0z
cross-section. Right: vertical component displacement traces for receivers 1 and 2 for u0z (black line) and the

order 0 effective solution plus corrector u0z + gθz (green line). The amplitudes have been normalized by the

maximum amplitude for receiver 1.
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Figure 10. Left: domain Ω for the 2-D heterogeneous tests. The background colors represent VP and the dash

line box the zoomed area used for the two right panels. Middle: zoom on the standard mesh used to solve the

wave equation, designed to match the mechanical discontinuities. The background color represents an energy

density snapshot for the source located at the blue star and t = 5.5 s. Note that the seismic phase seen for this

time is mostly the main S wave. The receiver positions are indicated with red diamonds. Rigth: same as the

middle plot, but for the mesh with fine elements near the source (the “dense” mesh)

with heterogeneous structure leads to an apparent moment tensor displayed in Fig 11d. This apparent

moment tensor is visually consistent with the shape of f∗ and the energy density snapshot (mostly

showing the S wave radiation for this time-step).

In Fig. 12, we compare the SEM solution in the dense mesh with the effective solution without
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Figure 11. (a) and (b): effective source force f∗ = ∇ · c : εx(ψτ ), for the heterogeneous test case, used in

Sec. 3.6.2, with an amplitude normalized to 1. The green star show the original point source position. (c) true

moment tensor. (d) apparent moment tensor due to the interaction of the true moment tensor and the heteroge-

neous elastic properties.

correction u0 and the effective solution with correction u0 +gθ. One can see that the near-source field

is correctly captured by the the effective solution with correction.

3.6.3 Successive homogenization for source and mechanical properties

Finally, using the same 2-D setting as in the previous section, we test the successive homogenization

procedure. We first homogenize the elastic properties to obtain the effective medium (ρ∗,εe , c∗,εe).

In Fig. 13, some of its components are shown, where εe = 0.5 has been used. The effective elastic

tensor is anisotopic, and we choose to represent V ∗,iso
P , the P -wave velocity computed with the nearest

isotropic elastic tensor projection c∗,iso of c∗,εe , and the ’total anisotropy’ measured as the matrix

distance between c∗,εe and c∗,iso (see Capdeville and Métivier (2018) for more details).

The source is also homogenized using another ε0 = εs = 1, using the effective medium ρ∗,εe , c∗,εe

to solve the cell problem (113). The resulting effective force vector f∗ is shown in Fig. 14.

Finally, we solve the wave equation using the effective model ρ∗,εe , c∗,εe and the effective source

to obtain u0. Both the medium and the source are smooth, thus a trivial regular SEM mesh can be used.

A sample of this mesh is shown in Fig. 13, left panel. This simple mesh is finer than what it would

be in an homogeneous medium in order to account for the oscillations of the effective medium and

effective source (for more details about the mesh element size as a function of ε0, see Capdeville et al.

(2015), Eq. 18). The different correctors are added to u0 a posteriori following (119). The left panel
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Figure 12. Left: cross-section in u̇z for t = 5.5 s, for the heterogeneous test case, used in Sec. 3.6.2 for the

dense mesh (reference, black line), the order 0 effective solution u̇0z (red line) and the order 0 effective solution

plus corrector u̇0z + ġθz (green line). The amplitudes have been normalized by the maximum amplitude of the

u̇0z cross-section. Right: vertical component traces for receivers 1 and 2 for the reference solution (black line),

u0z (red line) and the order 0 effective solution plus corrector u0z + gθz (green line). The amplitudes have been

normalized by the maximum amplitude for receiver 1.
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Figure 13. Left: nearest isotropic P-wave velocity V ∗,iso
P in the effective medium computed from the 2-D het-

erogeneous medium shown in Fig. 7, using εe = 0.5, plotted for a part of Ω around the source location. The

overlapping gray grid is the regular SEM mesh used to solve the wave equations in this model. Middle: total

anisotropy in the same effective medium. Right: cross-sections along the x axis for z = 26 km in V ∗,iso
P and

V ∗,iso
S

in Fig. 15 shows a cross-section in u̇z for the reference solution, in u̇0
z + ġθτ,z using εe = 0.5 and in

u̇0
z + ġθz +χzkl(∂yjθτ,kġ+∂xj u̇

0
k) using εe = 0.125. The comparison shows that the both the far-field

and the near field are accurately recovered with εe = 0.5 using only the near-source field corrector.

Nevertheless, to model fine details of the near-source field (e.g. near x = 23.9 km) accurately, using

a smaller εe (here εe = 0.125) and the structure corrector (χεe) are necessary. The same observation



36 Y. CAPDEVILLE

(a)
f ∗

x

27 km

28 km

23 km 24 km

(b)
f ∗

z

27 km

28 km

23 km 24 km

−1

0

1

Figure 14. (a) and (b): effective source force f∗ = ∇ · c∗,εe : εx(ψτ ), for the heterogeneous test case,

computed with the successive homogenization (see Sec. 3.6.3). εe = 0.5 and εs = 1 have been used. Each

quantity amplitude has been normalized to 1.

is made for traces (Fig. 15, right panels): in the near-source field, for the receiver 1, only 100 m away

from the source location x0, a small εe (0.25) and the the 3 corrector terms of Eq. 119 are necessary to

obtain an accurate result. In the far-field, for receiver 2, εe = 0.5 (still with εs = 1) and no corrector

is enough to obtain an accurate solution.

In the end, this example shows that we can obtain an accurate solution using a simple regular mesh

both in the near-source field and the far-source field and for both a complex source and a point source.

Knowing that a more complex source can be seen as a sum over many point sources, it is easy to see

how such a source could be accurately handled on the same trivial regular mesh.

4 DISCUSSION AND CONCLUSION

We used the non-periodic two-scale homogenization method to homogenize classical seismic point

sources. The result is that, for a given frequency band, and therefore a given minimum wavelength, a

point source can be replaced by a smooth effective source term. In the far-field, the wavefield generated

by the effective source is the same as the true wavefield, up to the desired accuracy. In the near-source

field, a corrector needs to be added to the effective wavefield to be accurately recovered.

For a media with fine-scale heterogeneities, we have shown two possibilities. In the first one, we

just homogenize the source while keeping the medium unchanged. In this case, one still needs to mesh

the medium discontinuities to obtain an accurate solution. In the second solution, we homogenize

both the medium and then the source in a successive manner. This option makes it possible to use a

simple mesh for both the medium and the source. Although it may seem that the second possibility is

the only useful one, in some situations, one might want to keep the fine-scale medium. For example,

some medium can be simple to mesh but still have small-scale such as discontinuities. Layered media
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Figure 15. Successive homogenization results, where both the source and the medium are homogenized. Left:

cross-section in u̇z for t = 5.5 s in the heterogeneous case used in Sec. 3.6.2 for the dense mesh (reference,

black line), the order 0 effective solution u̇0z + ġθτ,z using εe = 0.5 (red line) and the order 0 effective solution

plus successive corrector u̇0z + ġθz +χzkl(∂yjθτ,kġ+ ∂xj
u̇0k) for εe = 0.125 (green line). The amplitudes have

been normalized by the maximum amplitude of the u̇0z cross-section (not shown). Right: vertical component

traces for receivers 1 and 2 for the reference solution (black line), the order 0 effective solution plus corrector

u0z + gθz for εe = 0.5 (red line) and u0z + gθz + χzkl(∂yjθτ,kg + ∂xju
0
k) for εe = 0.25 (green line). For the

effective source, εs = 1 has been used for each plot. The amplitudes have been normalized by the maximum

amplitude for receiver 1.

such as PREM are a good example of such models. In such cases, one might want to avoid having

to homogenize the whole model to input an effective source. In those situations, the possibility to

homogenize the source while keeping the small-scale structures of the medium might be desirable.

Regarding the classical two-scale homogenization technique, the homogenization of the source

term in the wave equation presented here has some interesting and unusual aspects. Among them, we

note that this case has no periodic equivalent. Indeed, for the homogenization of elastic media, it is

always possible to use periodic heterogeneities, for which classical periodic two-scale homogenization

is valid, to guide our intuition and test our results. Here, it is not possible to pave the elastic domain

with periodically finely spaced sources: no propagating wavefield would result from such a source. The

problem is therefore intrinsically non-periodic, which makes it unusual. Another aspect is that, for a

couple-source term, the leading order solution has a corrector and therefore depends on the fine-scale

y. This is different from most homogenization problems where the leading order solution is usually

independent of the small-scale y. Lastly, the homogenization series is very short: depending on the

source type, only one (for a single force) or two terms (for a couple) of the series are non-zero. This
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makes the convergence with ε0 very fast, which is once again different from many homogenization

problems.

The point source homogenization gives an interesting perspective on the fact, that, for SEM, the

solution is inaccurate in the source element does not prevent the solution from being accurate anywhere

else. On the one hand, the effective source τ 0 is enough to model the far-field, leading to a smooth

wavefield, including at the source origin. On the other hand, the corrector θτ is discontinuous: it

cannot be accurately represented on the SEM polynomial basis but it has a zero average and it does

not propagate energy. It is just the high wavenumber part of the static response of the medium to the

point source. SEM is not able to accurately compute θτ in the element containing the source, but

it does not affect the far-field results because θτ doesn’t propagate energy and weak-form methods

explicitly ensure energy conservation.

The interest of our work depends on the context of its application. In a forward modelling context,

for weak-form methods such as SEM, the interest is a lower numerical cost only if one is interested in

the near-source field. Indeed, for the far-field, classical direct implementation of point sources perform

very well and there is no need for an alternate solution. Nevertheless, if one needs to model the near-

source field, especially for complex-fault systems, homogenized sources present a clear interest and

make this possible based on a mesh that can ignore the fault complexity. It can also useful if one wishes

to take advantage of large very high degree SEM elements, for which the probability to have a receiver

in the element of the source is significant (Lyu et al. 2020). For strong-form numerical solvers such

as FD, this work is interesting even for the far-field: it gives a rigorous solution to obtain a distributed

force map for the source, including in the case of a complex heterogeneous medium around the source.

In an inverse problem context, this work has interesting perspectives that need to be studied in

future work. Indeed, while inverting for a moment tensor is a simple linear problem, inverting for its

position is a strongly non-linear problem. Moreover, if the point source approximation is not valid

anymore, there is no simple way to go beyond it. With that perspective, inverting for a smooth source

potential ψτ is appealing because knowing an approximate location of the source, the associated

inverse problem is linear for everything, including the source position or its complexity. However, this

idea remains to be studied and checked for feasibility.
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APPENDIX A: RESOLUTION FOR THE SINGLE FORCE 1-D CASE

We assume in this appendix that

f(x, t) = δ(x− x0)g(t) . (A1)

• Eqs (38) for i = −2 and (39) for i = −1 give

∂yσ
−1 = 0 , (A2)

σ−1 = E∂yu
0 , (A3)

which imply

E∂2
yu

0 = 0 . (A4)

Knowing that E is positive, the last equation implies that ∂yu0 = 0 (see Capdeville et al. 2010a) and

therefore,

u0(x, y) =
〈
u0
〉

(x) , (A5)

σ−1 = 0 . (A6)

This result is, unlike for the couple-source case, similar to the homogenization of mechanical param-

eters: the order 0 solution does not depend on the small-scale variable y.

• Eqs (38) for i = −1 and (39) for i = 0 give

∂yσ
0 = f−1 , (A7)

σ0 = E(∂xu
0 + ∂yu

1) . (A8)

Combining the two last equations, we have

∂yE∂yu
1 = −f−1 (A9)

We introduce the order 1 corrector θf ∈ V∗

u1(x, y) =
〈
u1
〉

(x) + θf (y) (A10)

solution of

∂yE∂yθf = f−1 . (A11)

In the 1-D case, we can show that
〈
u1
〉

= 0 (Capdeville et al. 2010a). In the end,

σ0 = E∂x
〈
u0
〉

+ E∂yθf (A12)
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Figure A1. Left panel: corrector θsτ computed with using (69) with wεr = 0 (red line) and with wεr 6= 0 using

(B3) (black line), both computed in a constant elastic model for a couple-source located in x0 = 15 m. Rigth

panel: wεr function used to obtain the black line corrector in the left panel.

and, taking the cell average of the last equation, we obtain the order 1 constitutive relation:〈
σ0
〉

= E∂xu
0 . (A13)

Taking the average of (38) for i = 0, we obtain the order 0 dynamic equation:

ρ(x)∂ttu
0 − ∂x

〈
σ0
〉

=
〈
f0
〉
, (A14)

At this stage, we have found the order 0 homogenized solution. Going further, we find that all the

higher-order terms of the homogenization expansion are zero.

APPENDIX B: PRACTICAL MATTERS TO SOLVE THE SOURCE CELL PROBLEM

As mentioned in Sec. 2.3.3 and Sec. 3.3.2, solving the source cell problem (44) and (64) in 1-D and

(102) in 2-D leads to some difficulties. Indeed, the solution to the cell equations is not localized near

the source and extends to the boundaries of the domain, leading to difficulties in filtering and separating

the scales (see Fig. A1, left panel). In particular, it can lead to an effective source that extends to the

whole domain, which is not optimal once introduced in the wave equation solver. Here, we propose a

practical solution that localizes the solution around the source location and eliminates its dependency

on the boundary conditions.

B1 1-D case, couple-source

The main idea is to have a smooth source term which, when used in the cell problem, gives a solution

that behaves similar to the true solution (with the true source) source far away from its origin x0 and
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then to remove it from the true source term. We first define a smooth space wavelet

wεr(x) = Fεr(δ(x− x0))(x) , (B1)

where εr can be different from ε0. We also define w̄εr(y) = ε0w
εr(ε0y), the same wavelet defined on

the y axis. We then replace the Diract source term in (65) and (67) by

f−1,s(y) = δ(y)− αf w̄εr(y) , (B2)

τ−1,s(y) = δ(y)− ατ w̄εr(y) , (B3)

where αf and ατ are coefficients designed to make sure that θf and θτ , solutions of (69) and (70)

respectively, quickly go to zero away from the source origin. These two coefficients can be determined

numerically, but an educated guess also performs very well. It E(x) is smooth with respect to λmin,

αf = ατ = 1 is sufficient. If E(x) is not smooth, αf = 1 is still good enough, but for the couple-

source, we can use

ατ =
E∗,εr

E
(x0) , (B4)

and obtain a very good result.E∗,εr is the effective coefficient defined in (29). One can see the relation

between the last equation and the effective source term in (31). One example of the effect of wεr on

θsτ is given in A1: as it can be seen, it removes the large-scales of the solution, allowing θsτ to have a

more compact support and to gently tends toward zero away from the source location.

We then follow the procedure described in Sec. 2.3.3, modifying (75-76) for

f0(x) = ∂xE(x)∂xψf (x) + αfw
εr(x) , (B5)

τ0(x) = E(x)∂xψτ (x) + ατw
εr(x) . (B6)

The choice of the εr value is up to the user and has a little impact on the final results. Choosing an εr

smaller than ε0 leads to an effective source narrower than what is wanted with ε0. Thus, it is a good

idea to choose εr somewhat larger than ε0. Interestingly, ifE(x) is not smooth, the choice of εr affects

τ0 (or f0) and the correctors, but once combined into the final result u0, it does not affect the solution.

Two examples of the different steps of the procedure are given in Fig. A2 for the couple-source

case: one in a homogeneous bar and one in a heterogeneous bar (the same one as in Fig. 1). For

this example, we use ε0 = 0.5 and εr = 2 (εr = 4ε0). The corresponding wavelet wεr function is

shown in Fig. A1. We use (B3) with αf = 1 in the homogeneous case and ατ computed following

(B4) in the heterogeneous case. Even if the cell problems can be solved analytically in this simple

1-D case, we use a finite element method to solve (69). The starting corrector θsτ (Fig. A2, top panel)

is, as expected, a step function with missing low-wavenumbers. One can note that the finite element
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Figure A2. Different steps used to build the effective source and corrector in two cases, in an homogeneous

elastic bar (left column) and in the same heterogeneous bar as the one used in Sec. 3.1 (right column). The

source is a couple-source with same properties as for Sec. 3.1. In the first row are shown the starting correctors

θsτ obtained solving (70) using (B3) with εr = 4ε0 (the corresponding wεr function is shown in Fig. A1), right

panel). The middle plot row shows the final corrector θs, obtained in (71) with ε0 = 0.5. In the bottom plot

raw are show the final effective source τ0, obtained in (B6). The four top graph amplitudes are normalized with

respect to the maximum amplitude of the homogeneous case θsτ .

methods introduce some error (oscillations) in the element to which belongs the source position x0

and that the step function is approximate. Nevertheless, the element size can be as small as needed

and this is not a problem as it has no impact on the wave propagation. The final corrector θτ (Fig.

A2, middle panels) shows only small-scale variations. The order 0 source expansion term τ0 (Fig. A2,

bottom panels) has no more singularities. In the heterogeneous case (right panel), it has discontinuities

because of the choice to keep the elastic model discontinuity in the modelling. It would be completely

smooth if the model was also homogenized or smooth from the start.

B2 2-D case, double-couple source

For the higher dimension case, the recipe is similar. We only develop the double-couple source case.

We first define a smooth space wavelet

wεr(x) = Fεr(δ(x− x0))(x) . (B7)
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We also define w̄εr(y) = ε0w
εr(ε0y), the same wavelet defined on the y domain. We then replace the

Dirac source term in (111) by

τ−1,s(y) = Mδ(y)−ατ w̄
εr(y) , (B8)

where ατ is a tensor coefficient designed to make sure that θτ components quickly go to zero away

from the source origin. This tensor can be determined numerically, but an educated guess also performs

very well. It c(x) is smooth with respect to λmin, ατ = M is sufficient. If c(x) is not smooth we can

use

ατ = TGεr(x0,x0/εr) : M , (B9)

where Gεr is the strain corrector obtained for ε0 = εr and T the transpose operator.

We then follow the procedure described in Sec. 2.3.3, modifying (117) for

τ 0(x) = c(x) : εx(ψτ )(x) +ατw
εr(x) . (B10)

APPENDIX C: ELEMENTS NEAR THE SOURCE FOR WHICH THE SOLUTION IS NOT

ACCURATE

When using SEM, the solution in the element containing the source is known to be inaccurate. It is not

limited to the element of the source and can concern neighboring elements, as mentioned by Nissen-

Meyer et al. (2007). We here show a simple example of such a case. Based on the homogeneous case

in using in Sec. 3.1, we use the source and receivers geometry presented in Fig. A3. Comparing the

wavefield uz cross-sections computed using the coarse regular mesh and the dense mesh (see Figs. 7a

and 7b) in Fig. A3, we see that the two solutions obviously do not match in the element of the source

but also in the elements right next to it. The four traces presented in Fig. A4 confirm this observation.
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