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Abstract

In this paper we address the edge-agreement problem with preserved connectivity for networks of first and second-order
systems under proximity constraints and interconnected over a class of directed graphs. We provide a strict Lyapunov function
that leads to establishing uniform asymptotic stability of the consensus manifold with guaranteed connectivity preservation.
Furthermore, robustness of the edge-agreement protocol, in the sense of input-to-state stability with respect to external input
disturbances, is also demonstrated. These results hold for directed-spanning-tree and directed-cycle topologies, which are
notably employed, respectively, in leader-follower and cyclic-pursuit control.
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1 Introduction
As it is well-known, the existence of a rooted directed
spanning tree is a necessary condition for consensus over
directed graphs (Ren, 2008). Yet, although necessary,
this condition may as well be conservative in some
cases. For instance, for networks of autonomous multi-
vehicle systems that (can) communicate only if they are
within range. The connectivity-preservation problem
is typically addressed using gradient-type consensus
algorithms, relying on so-called barrier functions. For
undirected graphs see, e.g., (Ji and Egerstedt, 2007;
Boskos and Dimarogonas, 2017) for the case of first-
order systems and (Verginis and Dimarogonas, 2019;
Sun et al., 2017; Wen et al., 2012), for second-order
systems. For systems interacting over directed graphs
(digraphs), however, there are far fewer works. In
(Sabattini et al., 2015; Poonawala and Spong, 2017;
Cai et al., 2017) connectivity is achieved, but under
somewhat conservative assumptions; it is assumed that
the digraph is strongly-connected and, moreover, the
controllers proposed therein rely on the estimation of
the algebraic connectivity, which is a global parameter.
In recent years an alternative, stability-oriented,
approach was proposed. This is the so-called edge-
agreement representation, which defines the differences
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between pairs of neighbouring nodes, rather than
the values of the nodes themselves, as the states of
the resulting dynamical system (Zelazo et al., 2007;
Mukherjee and Zelazo, 2019; Zeng et al., 2017). Within
this framework consensus is assessed if the edge-
state trajectories converge to zero. More precisely, the
agreement problem may be reformulated as one of
stabilisation of the origin for a dynamical system whose
states represent the interconnection edges, as opposed
to the nodes cf. Zeng et al. (2014).
This is well-suited for Lyapunov-based control and
Lyapunov’s direct method of analysis. In (Zeng et al.,
2014) a Lyapunov function is given to establish
consensus for quasi-strongly connected digraphs. In
(Mukherjee and Zelazo, 2019) consensus of first and
second-order systems over directed graphs is guaranteed,
even in the presence of edge-weight uncertainties,
by means of a strict Lyapunov function. In (Zeng
et al., 2017), a strict Lyapunov function is used to
establish consensus under dynamic quantisation of
the communication, for second-order systems over
digraphs. In (Zeng et al., 2016), input-to-state stability
is established for the edge-agreement algorithm of
second-order systems. In (Alvarez-Jarquín and Loría,
2014) consensus is established for the elementary
directed-path topology, but under the assumption that
it switches and the interconnections are time-varying. In
(Chowdhury et al., 2018) a strict Lyapunov function is
provided, albeit for undirected graphs with time-varying
interconnections.
The connectivity problem, however, is not addressed in
any of the previous works using the edge-representation
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framework. Alternatively, it is addressed in the literature
within the classical nodes-representation framework and
this, most often, for undirected connected graphs or
strongly connected digraphs.
In this paper we address the consensus problem with
preserved connectivity, for a network of first and second-
order systems, using the edge-based representation
framework. It is the outgrowth of the conference paper
(Restrepo et al., 2020), on consensus of first-order
systems interconnected over directed spanning trees.
We present consensus algorithms for two kinds of
digraphs: directed spanning trees and directed cycles.
Each of the two topologies studied presents difficulties
and practical interests of its own, notably in formation
control of autonomous vehicles using a leader-follower
configuration (Consolini et al., 2008; Maghenem et al.,
2020) and in the context of cyclic pursuit (Marshall et al.,
2004). As stressed in Santilli et al. (2019), directed cyclic
topologies naturally appear in multi-agent systems of
vehicles equipped with field-of-view sensors.
Furthermore, we provide strict Lyapunov functions
with which we are able to establish both connectivity
and strong properties for the closed-loop system,
such as uniform asymptotic stability of the consensus
equilibrium and input-to-state stability.
Now, even though strict Lyapunov functions have been
proposed earlier for consensus problems, for edge-based
and node-based digraphs of both first and second-
order systems, this is done without addressing the
connectivity-preservation requirement, or viceversa. In
Santilli et al. (2019), for instance, a non-strict Lyapunov
function is provided for first-order systems with field-
of-view constraints, but only boundedness of the
trajectories is guaranteed. The difficulty of constructing
a strict Lyapunov function is stressed therein.
Thus, our main statements potentially serve as
basis to the solution of concrete control problems
of nonlinear multi-agent systems under realistic
constraints (actuator saturation, sensors’ capabilities,
energetic autonomy) that are required to undertake
tasks in aerodynamically perturbed environments.

2 Model and problem formulation
2.1 Notations and preliminaries
We use G = (V, E ,W) to denote a weighted digraph
defined by a node set V = {1, 2, . . . , n} with cardinality
n and corresponding to the agents’ states, an edge
set E ⊆ V2 with cardinality m and characterising the
information exchange between agents, and a positive
diagonal matrix W ∈ Rm×m, whose entries represent
the weights of the edges. A directed edge, ek, is an
ordered pair (i, j) ∈ E if and only if there exists a
connection from node i to node j.
Fundamental in the edge-based framework is the so-
called incidence matrix of a digraph, E(G) ∈ Rn×m.
This is a matrix with rows indexed by the nodes and
columns indexed by the edges. Its (i, k)th entry is defined

as follows: [E]ik := −1 if i is the terminal node of edge
ek, [E]ik := 1 if i is the initial node of edge ek, and
[E]ik := 0 otherwise.
We recall from Zeng et al. (2017) that the incidence
matrix corresponds to the sum of the so-called
in-incidence and out-incidence matrices, denoted
E�(G) ∈ Rn×m and E⊗(G) ∈ Rn×m respectively. That
is,

E = E� + E⊗ (1)

and the elements of E� and E⊗ are defined as follows.
[E�]ik := −1 if i is the terminal node of edge ek and
[E�]ik := 0 if otherwise, while [E⊗]ik := 1 if i is the
initial node of edge ek and [E⊗]ik := 0 if otherwise.
Then, the weighted Laplacian matrix L(G) ∈ Rn×n of a
digraph G can be defined in terms of the incidence and
the in-incidence matrices, as

L(G) = E�(G)WE(G)>. (2)

For digraphs, L(G) has a simple zero eigenvalue and
all other non-zero eigenvalues are in the open left-half
complex plane, if and only if the digraph contains a
spanning tree (Ren, 2008). In what follows, the argument
G is dropped when clear from the context.

2.2 Directed edge-Laplacian and reduced-order system
Using an appropriate labelling of the edges (Mukherjee
and Zelazo, 2019) the incidence matrix is expressed as

E = [ Et Ec ] (3)

where Et ∈ Rn×(n−1) denotes the full-column-rank
incidence matrix corresponding to an arbitrary spanning
tree GT ⊂ G and Ec ∈ Rn×(m−n+1) represents the
incidence matrix corresponding to the remaining edges
not contained in GT . The labelling is as follows: let the
root node be labelled “1” and let the remaining nodes be
labelled as follows. Any two nodes i and j belonging to
a branch bl of the tree are labelled such that if the path
length from the root to i is shorter than the path length
from the root to j, then i < j. Then, label the n − 1
edges such that for any edge ek = (i, j), one has j > k.
Furthermore, as observed in (Zelazo et al., 2007), since
Et has full column-rank, the incidence matrices satisfy

EtT = Ec (4)

where T :=
(
E>

t Et

)−1
E>

t Ec. Thus, defining

R := [ In−1 T ] (5)

with In−1 denoting the n−1 identity matrix, one obtains
an alternative representation of the incidence matrix of
the digraph that is given by

E = EtR. (6)

The identity (6) is useful to derive a reduced-order
dynamic model corresponding to the dynamics of a
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network formed by a spanning-tree GT ⊂ G, which is
easier to analyse than the original multi-agent system
and for which consensus is achieved if and only if it
is also the case for G. For illustration, let us consider
a classic weighted consensus protocol for a group of n
first-order systems of dimension N ,

ẋi = ui, xi, ui ∈ RN (7)

where ui = −
∑n

j=1 aij(xi−xj) for all i ≤ n corresponds
to the control input for each agent and aij ≥ 0 is
strictly positive if and only if the ith and jth nodes are
interconnected. In compact form, the systems’ states
are collected in the vector x =

[
x>
1 , . . . , x

>
n

]> ∈ RnN

and the control input is u =
[
u>
1 , . . . , u

>
n

]> ∈ RnN .
Then, denoting by IN the N × N identity matrix, the
nodes dynamics for this multi-agent system is given by

ẋ = −[L⊗ IN ]x, x ∈ RnN , (8)

Now, following Zelazo et al. (2007) we introduce the
following coordinate transformation that maps the
nodes’ space to that of the edges,

z := [E> ⊗ IN ]x, z := [z>1 · · · z>k · · · z>m]>. (9)

That is, zk := xi − xj where i, j ∈ V and k ≤ m.
Therefore, it follows from (9) that the agreement
condition {xi = xj , ∀ (i, j) ∈ V2} is equivalent to
{z = 0}. This is significant because in the edge-variables’
representation, consensus may be reformulated as a
stabilisation problem of the origin for the system

ż = −[E>E�W ⊗ IN ]z, (10)

which is obtained by differentiating both sides of (9) and
using (2) and (8). Eq. (10) is defined in function of the
so-called edge Laplacian matrix Le(G) ∈ Rm×m,

Le := E>E�W, (11)

which lies at the basis of the edge-representation
framework. As the dual of L, the edge Laplacian,
Le, has the same non-zero eigenvalues as L; hence,
rank(Le) = rank(L) = n− 1 —see (Zeng et al., 2017).
Next, as in the latter, we split the edges’ states. Let

z =
[
z>t z>c

]>
, zt ∈ R(n−1)N , zc ∈ R(m−n+1)N (12)

where zt are the state variables corresponding to the
edges of an arbitrary directed spanning tree GT and zc
denote the state of the remaining edges, ∈ G\GT . Thus,
after (9), (12), and (3), we see that

zt :=
[
E>

t ⊗ IN
]
x. (13)

Furthermore, after (4) it is readily seen that the states
of the arcs not contained in the tree GT , zc, satisfy

zc =
[
T> ⊗ IN

]
zt. (14)

Another useful identity that stems from (5) and (14) is

z =
[
R> ⊗ IN

]
zt (15)

which, together with (6) and (10), implies that

żt = −
[
E>

t E�WR> ⊗ IN
]
zt. (16)

Even though this equation has a reduced dimension with
respect to (10), in view of the presence of R on the right-
hand side, it also takes into account the effect of the
arcs zc onto the states zt, so it captures the behaviour of
the overall network. In particular, consensus is achieved
if and only if zt → 0. This problem, with the weight
matrix W = Im and with linear interconnections, has
been widely studied in the literature, including using
Lyapunov’s direct method —see Mukherjee and Zelazo
(2019); Zeng et al. (2017); Chowdhury et al. (2018), but
rarely with nonlinear interconnections, as in this paper.

2.3 Connectivity maintenance
Besides consensus (i.e. zt → 0) in this paper we address
the problem of guaranteeing that a graph initially
connected remains so. We define such property as
follows.
Definition 1 (Connectivity maintenance) For
each k ≤ m, let ∆k > 0 denote the maximal distance
between the nodes i and j such that the communication
between them, through the arc ek = (i, j), is reliable. We
say that the graph’s connectivity is maintained (hence,
the proximity constraint holds) if the set

J :=
{
z ∈ RmN : |zk| < ∆k, ∀ k ≤ m

}
, (17)

where zk = xi − xj, is forward invariant. That is,
|zk(0)| < ∆k implies that z(t) ∈ J for all t ≥ 0.
The controller guaranteeing connectivity maintenance
is designed as a gradient law based on so-called Barrier
Lyapunov functions. These are reminiscent of Lyapunov
functions taking values in open subsets of the Euclidean
space and such that they grow unboundedly as zk
approaches the border of the open set. The control
law induces a nonlinear connectivity potential thereby
rendering the interconnections nonlinear.
Definition 2 (Connectivity potential) Let p0 ∈ R
and, for each k ≤ m, let B∆k

:= {zk ∈ RN : |zk| < ∆k}.
Let αk :

[
0,∆2

k

)
→ R≥0, s 7→ αk(s), be C1 and non-

decreasing on
[
0,∆2

k

)
, such that αk(s) → ∞ as s → ∆2

k,
and pk : B∆k

→ R>0, defined as

pk(zk) :=
∂αk

∂s
(|zk|2),

is also non-decreasing, p(zk) ≥ p0 > 0 for all |zk| < ∆k,
and pk(zk) → ∞ as |zk| → ∆k. Then, we define the
connectivity potential P (z) := diag

[
pk(zk)

]
∈ Rm×m.

Also, we define the Barrier function Uk : B∆k
→ R≥0 as

Uk(zk) := αk(|zk|2), ∀ k ≤ m. (18)
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Similarly defined Barrier Lyapunov functions, but
taking values in the nodes space, are used e.g., in Ji
and Egerstedt (2007), Boskos and Dimarogonas (2017),
and Tang et al. (2013). In Ji and Egerstedt (2007);
Boskos and Dimarogonas (2017) the so-called “edge-
tension” function was designed for the consensus with
connectivity preservation over undirected graphs.

3 Main results
3.1 Consensus of first-order systems
Our first statement, on consensus of first-order systems
interconnected over directed spanning-tree graphs, is a
foundation block, but it has interest of its own. Consider
a network of n dynamical systems, (7), expressed in edge
coordinates,

ż =
[
E> ⊗ IN

]
u, (19)

in closed-loop with the gradient control law

u(z) = −c1
[
E�P (z)⊗ IN

]
z, (20)

where c1 > 0 is the network connectivity strength
and the matrix P (z) := diag

[
pk(zk)

]
models the

interconnections —see Definition 2. From this point on
it is assumed, without loss of generality, that the weight
matrix W = Im. We emphasise that each component of
u depends only on local information since E� represents
the incoming edges on each node, that is, the available
information to each agent as defined by the digraph.
Replacing (20) into (19) and, akin to (16), we obtain the
reduced-dimension closed-loop system

żt = −c1
[
E>

t E�P̃ (zt)R
> ⊗ IN

]
zt, (21)

where, for consistency in the notation, we introduced
P̃ (zt) := P (

[
R> ⊗ IN

]
zt), but we stress that P̃ (zt) ∈

Rm×m and P (z) ∈ Rm×m are identical.
Remark 1 Equation (21) highlights another perk of
using the edge-based representation when considering
nonlinear interconnections. Note that, from (19)-(20),
the closed-loop system is given by

ż = −c1
[
E>E�P (z)⊗ IN

]
z =: −c1

[
LeP (z)⊗ IN

]
z,

whereas, in the nodes’ representation, the same closed-
loop system yields,

ẋ = −c1
[
E�P (x)E> ⊗ IN

]
x =: −c1

[
L(x)⊗ IN

]
x.

Note that using the representation in terms of the nodes,
the graph Laplacian L(x) is state-dependent. Therefore,
one cannot rely on eigenvalue analysis for the stability
analysis. On the other hand, using the edge-based
representation it is possible to dissociate the interaction
topology, represented by the (unweighted) edge Laplacian
Le, and the nonlinear interconnections given by the
diagonal matrix P (z). Hence, despite the nonlinear
weights, it is possible to use the eigenvalue analysis of the
edge Laplacian in order to prove asymptotic stability of

the consensus manifold with guaranteed connectivity by
means of a strict Lyapunov function. This is presented
in the proofs of Propositions 1 and 2.
Proposition 1 Consider n systems as in (7) with
limited communication ranges and interconnected
through a digraph G which is either a directed spanning
tree or a directed cycle. Then, for any initial conditions
satisfying z(0) ∈ J the control law (20) guarantees that
zk → 0 for all k ≤ m, and preserves connectivity of G,
that is, the set J as defined in (17) is forward invariant
for the closed-loop trajectories. Moreover, the function

V (zt) =
∑
k≤m

γkUk(zk), γk > 0, (22)

where Uk is defined in (18), is a strict Lyapunov function
for the closed-loop system (21) on its domain, which is

Jt :=
{
zt ∈ R(n−1)N : |zk| < ∆k, ∀ k ≤ m

}
.

Proof. Using
∂Uk

∂zk
= 2pk(zk)zk

and defining Γ := diag [γk] with γk > 0 yet to be
determined, we obtain

∂V

∂zt
= 2

[
RΓP̃ (zt)R

> ⊗ IN
]
zt.

Hence, the derivative of V (zt) along (21) is

V̇ (zt) = −2 c1 z
>
t

[
RP̃ (zt)ΓR

>E>
t E�P̃ (zt)R

>⊗IN
]
zt.

(23)

The previous equation holds regardless of the graph
topology; next, we analyse the two cases under
consideration.
Case 1 (Directed spanning tree). We have G = GT .
Therefore, z = zt, E = Et, and E� = E�t. In turn,
from the latter and (15), we have R = In−1. Now,
akin to (11) albeit with an abuse of notation, we define
the edge-Laplacian matrix of a directed spanning tree
as Let := E>

t E�tIn−1 ∈ R(n−1)×(n−1). Hence, (23)
becomes

V̇ (zt) = −c1 z
>
t

[
P̃ (zt)

(
ΓLet+L>

etΓ
)
P̃ (zt)⊗IN

]
zt. (24)

Next, we show that for an in-incidence matrix constructed
using the labelling approach of Mukherjee and Zelazo
(2019) previously mentioned, the right hand side of (24)
is negative definite. Indeed, in this case,

E�t =
[
0n−1×1 − In−1

]>
. (25)

Then, defining B := −E>
⊗tE�t and using (1), as well as

the fact that from (25) E>
�tE�t = In−1, we see that the

edge Laplacian of a directed spanning tree satisfies

Let = E>
t E�t = E>

�tE�t + E>
⊗tE�t =: I −B. (26)

Now, since [E⊗t]ij = 1 implies that [E�t]ij = 0 and, in
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view of the previously mentioned labelling, [E>
⊗t]ij = 0

for i < j, it follows that B is a lower triangular matrix
with zero diagonal and all other elements either equal
to 0 or 1. Moreover, for a directed spanning tree,
rank(Let) = n − 1 and all the eigenvalues of Let lie
on the open left-hand complex plane; indeed, they
coincide with the eigenvalues of the graph’s Laplacian
L. Thus, from the latter and (26), we conclude that
Let is a non-singular M -matrix (Plemmons, 1977), that
is, a real matrix with positive diagonal, non-positive
off-diagonal elements, and eigenvalues with strictly
positive real parts. Now, after Plemmons (1977), every
non-singular M -matrix is diagonally stable, that is,
for any Q = Q> > 0, Let admits a diagonal solution
Γ :=diag

[
γk

]
, to the Lyapunov inequality

ΓLet + L>
etΓ ≥ Q. (27)

Therefore, redefining γk in (22), if necessary, so that (27)
holds, and since P̃ (zt) > 0, we have

V̇ (zt) ≤ −c′1
∣∣[P̃ (zt)⊗ IN

]
zt
∣∣2 (28)

where c′1 := c1 λmin(Q) and λmin( · ) denotes the
smallest eigenvalue of ( · ). Hence, V̇ (zt) is negative
definite on Jt.
Case 2 (Directed cycle). Setting γk = 1 for all k ≤ m,
and using (6), equation (23) becomes

V̇ (zt) = −c1z
>
t

[
RP̃ (zt)

(
E>E�+E>

�E
)
P̃ (zt)R

>⊗IN
]
zt.

Then, from (1), we have

E>E� + E>
�E = E>E + E>

�E� − E>
⊗E⊗ (29)

and following the same labelling rules mentioned above,
the in-incidence and out-incidence matrices become

E� =

[
01×n−1 −1

−In−1 0n−1×1

]
, E⊗ = In×n.

Hence, we have E>
�E� = In×n and E>

⊗E⊗ = In×n.
Consequently, using (29) and (6), again, we obtain

V̇ (zt) = −c1 z>t
[
RP̃ (zt)R

>E>
t EtRP̃ (zt)R

>⊗IN
]
zt,

where E>
t Et is a positive-definite matrix corresponding

to the edge Laplacian of an undirected tree (Zelazo et al.
(2007)). Then, since R has full row-rank, we have

V̇ (zt) ≤ −c′1
∣∣[RP̃ (zt)R

> ⊗ IN
]
zt
∣∣2 (30)

where c′1 := c1 λmin(E
>
t Et) with λmin(E

>
t Et) being the

smallest eigenvalue of E>
t Et, so V̇ (zt) is negative definite

on Jt. From (28) and (30), V as defined in (22) is a strict
Lyapunov function for (21).
Now we establish connectivity of the set J . To that
end, we remark that zt ∈ Jt implies that z ∈ J and
we show that Jt is forward invariant. We proceed by

contradiction. Assume that there exists T > 0 such that
for all t ∈ [0, T ), zt(t) ∈ Jt and zt(T ) /∈ Jt. More
precisely, we have |zk(t)| → ∆k as t → T for at least
one k ≤ m. From the definition of V , this implies that
V (zt(t)) → ∞ as t → T which is in contradiction with
(28) and (30). We conclude that V (zt(t)) is bounded,
i.e., V (zt(t)) ≤ V (zt(0)) < ∞ for all t ≥ 0. Connectivity
preservation follows.
It is left to show that the set J corresponds to the
domain of attraction for the closed-loop system. This
follows by showing that all solutions of (21) starting inJt

converge to the origin. To that end, for any ε ∈ (0,∆k),
consider a subset Jεt ⊂ Jt defined as Jεt := {zt ∈
R(n−1)N : |zk| < ∆k − ε, ∀ k ≤ m} and let J̄εt, denote
the closure of Jεt. From Definition 2 and (18) it follows
that V (zt) is positive definite on J̄εt and it satisfies
the bounds β|zt|2 ≤ V (zt) ≤ h(|zt|), where β > 0
and h(·) is defined and strictly increasing everywhere
in J̄εt, h(s) > 0 for all s > 0, and h(0) = 0. This
means that V (zt) → 0 as zt → 0. Therefore, from (28),
(30), and standard Lyapunov theory it follows that all
trajectories of (21) starting in Jεt converge to the origin.
The previous arguments hold for any ε → 0, so the origin
is attractive for all trajectories zt(t) starting in Jt, that
is, for all trajectories z(t) starting in J . �

3.2 Output consensus of second-order systems
The significance of Proposition 1 resides in the potential
use of a strict Lyapunov function for other consensus
control problems. For instance, V may be used in
Lyapunov-based control design, such as backstepping,
to achieve output consensus. We illustrate this fact here
for second-order systems, but the method extends to
higher relative-degree systems.
Consider the second-order system

ẋi = vi (31a)
v̇i = ui (31b)

where xi ∈ RN and vi ∈ RN are respectively, the
position and the velocity of agent i ≤ n, and ui ∈ RN

is the control input. The control goal is to achieve
output consensus, where the outputs correspond to the
variables xi; hence, it is required to steer vi → 0 for all
i ≤ n.
We collect the states in the vectors x =

[
x>
1 · · · x>

n

]>
∈ RnN and v =

[
v>1 · · · v>n

]> ∈ RnN and the inputs
into u =

[
u>
1 · u>

n

]> ∈ RnN . Then, applying the edge
transformation (9), the position consensus problem may
be reformulated as the stabilisation of the origin for

ż =
[
E> ⊗ IN

]
v (32a)

v̇ = u. (32b)
We follow a standard backstepping procedure. First we
design a virtual input z 7→ v∗(z), satisfying v∗(0) = 0,
to stabilise the origin for the subsystem (32a). Next, the
input u is designed so that v(t) → v∗(z(t)) as t → ∞.
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The virtual control v∗ is defined using (20), that is,

v∗(z) := −c1
[
E�P (z)⊗ IN

]
z. (33)

Then, we define ṽ := v − v∗ and we use v = ṽ + v∗ and
(33) in (32) to rewrite the latter equations as

ż = − c1
[
E>E�P (z)⊗IN

]
z +

[
E>⊗IN

]
ṽ (34a)

˙̃v = u+ c1
[
E�P (z)E>⊗IN

]
(ṽ + v∗)

+ c1
[
E�Ṗ (z)⊗IN

]
z. (34b)

Thus, using the feedback-linearizing control law

u(z, ṽ) :=− c1
[
E�P (z)E> ⊗ IN

]
(ṽ + v∗)

− c1
[
E�Ṗ (z)⊗ IN

]
z − c2ṽ (35)

with c2 > 0, we obtain the following.
Proposition 2 Consider n systems as in (31) with
limited communication ranges and interconnected
through a digraph G which is either a directed spanning
tree or a directed cycle. Then, for any initial conditions
satisfying z(0) ∈ J the control law (35) guarantees that
zk → 0 for all k ≤ m, vi → 0 for all i ≤ n, and preserves
the connectivity of G, that is, the set J as defined in
(17) is forward invariant. Furthermore the function
V : Jt × RnN → R≥0, defined as

V (zt, ṽ) =
1

2

∑
k≤m

γkUk(zk) +
c3
2
|ṽ|2, (36)

where γk > 0 and c3 > 0 are design parameters, and the
functions Uk are defined in (18), is a strict Lyapunov
function for the closed-loop system (37). �

Proof. The closed-loop equation is computed by
replacing (35) into (34). Now, in view of the tree-cycle
dichotomy of (12), together with (6) and (15), we obtain
the reduced-order closed-loop dynamics

żt =− c1
[
E>

t E�P̃ (zt)R
>⊗IN

]
zt +

[
E>

t ⊗IN
]
ṽ (37a)

˙̃v =− c2ṽ (37b)

where we recall that P̃ (zt) := P (
[
R> ⊗ IN

]
zt).

Furthermore, in view of (30), the total derivative of
V (zt, ṽ) along the trajectories of (37) satisfies

V̇ (zt, ṽ) ≤− c′1
∣∣[RP̃ (zt)R

> ⊗ IN
]
zt
∣∣2 − c2c3|ṽ|2

+ z>t
[
RP̃ (zt)ΓR

>E>
t ⊗ IN

]
ṽ. (38)

Note that this bound holds indistinctly for directed-cycle
topologies and, with R = In−1, for directed-spanning-
tree graphs.
Now, given c′1, γmax := maxk≤m{γk}, and c3, let δ > 0
be such that c′′1 := c′1 − 1

2δγmaxλmax(E
>
t Et) and c′2 :=

c2c3 − 1
2δ are positive. Then, after applying Young’s

inequality to the third term in the right-hand side of
(38), we obtain

V̇ (zt, ṽ) ≤ −c′′1
∣∣[RP̃ (zt)R

> ⊗ IN
]
zt
∣∣2 − c′2|ṽ|2. (39)

Thus, V̇ (zt, v) < 0 for all (zt, v) ∈ {Jt × RnN}\{(0, 0)}
and V in (36) is a strict Lyapunov function for (37).
Forward invariance of the setJt, hence ofJ , follows from
the same arguments as in the proof of Proposition 1.
Consequently, the connectivity of G is preserved for any
z(0) ∈ J and for any v(0). Finally, note that

β1|zt|2 + β2|ṽ|2 ≤ V (zt, ṽ) ≤ h(|zt|) + β3|ṽ|2 (40)

where β1, β2, β3 are positive constants and h(·) is defined
and strictly increasing everywhere in J̄εt and satisfies
h(0) = 0. Thus, following the same arguments as in the
proof of Proposition 1, we have asymptotic stability of
the origin for all trajectories starting in J . �

3.3 Robustness of the edge-consensus algorithm
In this section we use the strict Lyapunov functions
previously constructed to analyse the robustness of
the edge consensus with connectivity preservation. In
particular we establish input-to-state stability with
respect to a bounded input perturbation.
Consider a multi-agent system with an additive
disturbance, that is, in edge-coordinates

ż =
[
E> ⊗ IN

]
v (41a)

v̇ = u+ d (41b)

where d :=
[
d>1 , . . . , d

>
n

]> ∈ RnN is the bounded input
disturbance. Then defining v∗ as in (33) and u as (35),
akin to (37), the reduced-order closed-loop error system
takes the form

żt =− c1
[
E>

t E�P̃ (zt)R
>⊗IN

]
zt +

[
E>

t ⊗IN
]
ṽ (42a)

˙̃v =− c2ṽ + d. (42b)

Proposition 3 The multi-agent system (41) under
proximity constraints, with a communication topology
defined by a digraph G which is either a directed spanning
tree or a directed cycle, in closed loop with the controller
(35) is input-to-state stable with respect to the disturbance
d. Furthermore, the digraph remains connected for all
t ≥ 0. �

Proof. Take the Lyapunov function defined in (36). Then,
from (39) and (42), we have

V̇ (zt, ṽ) ≤ −c′′1
∣∣[RP̃ (zt)R

>⊗IN
]
zt
∣∣2−c′2|ṽ|2+c3ṽ

>d.

(43)

Next, given c′2 and c3 let δ′ > 0 be such that c′′2 :=
c′2 − c3/(2δ

′) > 0. Applying Young’s inequality to the
third term on the right-hand side of (43), we obtain

V̇ (zt, ṽ) ≤ − c′′1
∣∣[RP̃ (zt)R

>⊗IN
]
zt
∣∣2−c′′2 |ṽ|2+

c3δ
′

2
|d|2,

(44)

so the system (42) is input-to-state stable.
To assert connectivity preservation in presence of
additive disturbances, we show that in the proximity of
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the limits of the connectivity region the first term on
the right-hand side of (44) dominates over the bounded
disturbance. To that end, let d̄ := supt≥0 |d(t)| and let
ε ∈ (0,∆k) be a small constant to be determined. Let
zt ∈ RN(n−1) be such that for some k ≤ m we have
|zk| ≥ ∆k − ε. Then, |zt| ≥ ∆k − ε, so from (44), the
definition of P̃ (zt), and Definition 2, we have

V̇ (zt, ṽ) ≤ −c′′1
∂αk

∂s

(
[∆k−ε]2

)
[∆k−ε]2−c′′2 |ṽ|2+

c3δ
′

2
d̄ 2.

Since ∂αk

∂s is continuous, non-decreasing, and ∂αk

∂s (s) →
∞ as s → ∆2

k it follows that there exists ε∗(d̄) such
that for all ε ≤ ε∗, V̇ (zt, ṽ) < 0. The latter holds along
trajectories starting from any initial conditions z(0) ∈ J
which implies that z(t) cannot approach the boundary
of J so connectivity is preserved for all t ≥ 0. �

4 Numerical example

1 2

3

4

5

6

e2

e3

e1
e4

e5
E�t =

[
01×(n−1)

−In−1

]

Fig. 1. Directed spanning tree for 6 agents

We consider a network of six second-order systems
interconnected over the spanning-tree digraph showed
in Fig. 1, above. The systems are subject to smooth
inverted-step-like vanishing disturbances defined as
di(t) = −σ(t) [1 1]

>, where σ(t) = 2.4
[
tanh(2(t −

15))− 1
]
− [t+ 10]−1 for i ∈ {3, 5}, d2(t) = σ(t) [1 1]

>,
and di(t) = 0 for i ∈ {1, 4, 6}. That is, di takes its
maximal value at t = 0 and it smoothly vanishes
around t = 15s. The Barrier functions are defined
as Uk(zk) = |zk|2 + ln

(
∆2

k

∆2
k
−|zk|2

)
. Consequently, the

gradient control law takes the form (35), with c1 = 3,
c2 = 2.5, and pk(zk) = 1 + [∆2

k − |zk|2]−1.

The agents’ initial positions were set to x1(0) = [2.4, 0],
x2(0) = [−0.58, −0.9], x3(0) = [4.5, 2], x4(0) = [5, −2],
x5(0) = [−4.2, −0.45], and x6(0) = [−2, −4.2]; the
initial velocities were set to v1(0) = [−5, 0], v2(0) = [0, 0],
v3(0) = [3, 0], v4(0) = [2, 0], v5(0) = [0, 0], and v6(0) =
[0, 0]. The initial conditions satisfy z(0) ∈ J with the set
J given in (17) with the radii of the connectivity regions,
∆k, set to 2.5, 3.2, 3.8, 3.5, 3.7, and 4 respectively.

0 5 10 15 20 25
0

1

2

3

4

t [s]

|z
k
|[

m
]

Fig. 2. Trajectories of the norm of the edges’ states. Dashed
lines: distance constraints.
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Fig. 3. Trajectories of the norm of the nodes’ velocities.
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Fig. 4. Trajectories of the norm of the edges’ states for a
linear controller without guarantee of connectivity. Dashed
lines: distance constraints.

The simulation results of our proposed control law (35)
are depicted in Figs. 2 and 3. During the first 15s the
perturbation d(t) stymies the achievement of consensus;
the systems stabilise with a steady-state error. After
15s, the perturbation vanishes, so the trajectories move
from their previous steady state towards the consensus
equilibrium. Moreover, the distance constraints (dashed
lines) for all initially existing edges are always preserved
as can be seen in Fig. 2, implying that the initially
connected graph remains so.
For comparison, a second scenario was studied taking
the same initial conditions satisfying z(0) ∈ J , and
the same disturbances acting on the system. For this
comparison the controller is an edge-based linear
consensus protocol without connectivity maintenance,
as proposed in Mukherjee and Zelazo (2019). As can
be seen in Fig. 4, a linear consensus protocol does
not guarantee the respect of the range constraints,
thus preventing the multi-agent system from reaching
consensus.

5 Conclusions
The edge-based representation of graphs opens new
perspectives for consensus control as it allows to rely on
Lyapunov theory. We established uniform asymptotic
stability and input-to-state stability of the consensus
manifold for first and second-order multi-agent systems
subject to proximity constraints by means of the
construction of strict Lyapunov functions. Our results,
however, apply to specific topologies; the extension
to arbitrary directed connected graphs remains an
open problem under study. Other application-driven
problems under investigation involve consensus control
under additional inter-agent constraints such as collision
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avoidance, input saturation, etc., as well as formation
tracking control.
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