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In this paper we address the edge-agreement problem with preserved connectivity for networks of first and second-order systems under proximity constraints and interconnected over a class of directed graphs. We provide a strict Lyapunov function that leads to establishing uniform asymptotic stability of the consensus manifold with guaranteed connectivity preservation. Furthermore, robustness of the edge-agreement protocol, in the sense of input-to-state stability with respect to external input disturbances, is also demonstrated. These results hold for directed-spanning-tree and directed-cycle topologies, which are notably employed, respectively, in leader-follower and cyclic-pursuit control.

Introduction

As it is well-known, the existence of a rooted directed spanning tree is a necessary condition for consensus over directed graphs [START_REF] Ren | On consensus algorithms for double-integrator dynamics[END_REF]). Yet, although necessary, this condition may as well be conservative in some cases. For instance, for networks of autonomous multivehicle systems that (can) communicate only if they are within range. The connectivity-preservation problem is typically addressed using gradient-type consensus algorithms, relying on so-called barrier functions. For undirected graphs see, e.g., [START_REF] Ji | Distributed coordination control of multiagent systems while preserving connectedness[END_REF][START_REF] Boskos | Robustness and invariance of connectivity maintenance control for multiagent systems[END_REF] for the case of firstorder systems and [START_REF] Verginis | Closed-form barrier functions for multi-agent ellipsoidal systems with uncertain lagrangian dynamics[END_REF][START_REF] Sun | Robust finite-time connectivity preserving consensus tracking and formation control for multi-agent systems[END_REF][START_REF] Wen | A connectivity-preserving flocking algorithm for multi-agent dynamical systems with bounded potential function[END_REF], for second-order systems. For systems interacting over directed graphs (digraphs), however, there are far fewer works. In [START_REF] Sabattini | Decentralized Estimation and Control for Preserving the Strong Connectivity of Directed Graphs[END_REF][START_REF] Poonawala | Preserving strong connectivity in directed proximity graphs[END_REF][START_REF] Cai | Distributed global connectivity maintenance and control of multi-robot networks[END_REF] connectivity is achieved, but under somewhat conservative assumptions; it is assumed that the digraph is strongly-connected and, moreover, the controllers proposed therein rely on the estimation of the algebraic connectivity, which is a global parameter. In recent years an alternative, stability-oriented, approach was proposed. This is the so-called edgeagreement representation, which defines the differences between pairs of neighbouring nodes, rather than the values of the nodes themselves, as the states of the resulting dynamical system [START_REF] Zelazo | Agreement via the edge Laplacian[END_REF][START_REF] Mukherjee | Robustness of consensus over weighted digraphs[END_REF][START_REF] Zeng | Edge agreement of second-order multi-agent system with dynamic quantization via the directed edge Laplacian[END_REF]. Within this framework consensus is assessed if the edgestate trajectories converge to zero. More precisely, the agreement problem may be reformulated as one of stabilisation of the origin for a dynamical system whose states represent the interconnection edges, as opposed to the nodes cf. [START_REF] Zeng | Nonlinear consensus under directed graph via the edge Laplacian[END_REF]. This is well-suited for Lyapunov-based control and Lyapunov's direct method of analysis. In [START_REF] Zeng | Nonlinear consensus under directed graph via the edge Laplacian[END_REF] a Lyapunov function is given to establish consensus for quasi-strongly connected digraphs. In [START_REF] Mukherjee | Robustness of consensus over weighted digraphs[END_REF] consensus of first and second-order systems over directed graphs is guaranteed, even in the presence of edge-weight uncertainties, by means of a strict Lyapunov function. In [START_REF] Zeng | Edge agreement of second-order multi-agent system with dynamic quantization via the directed edge Laplacian[END_REF], a strict Lyapunov function is used to establish consensus under dynamic quantisation of the communication, for second-order systems over digraphs. In [START_REF] Zeng | Convergence Analysis using the Edge Laplacian: Robust Consensus of Nonlinear Multi-agent Systems via ISS Method[END_REF], input-to-state stability is established for the edge-agreement algorithm of second-order systems. In (Alvarez-Jarquín and Loría, 2014) consensus is established for the elementary directed-path topology, but under the assumption that it switches and the interconnections are time-varying. In [START_REF] Chowdhury | On the estimation of the consensus rate of convergence in graphs with persistent interconnections[END_REF] a strict Lyapunov function is provided, albeit for undirected graphs with time-varying interconnections. The connectivity problem, however, is not addressed in any of the previous works using the edge-representation framework. Alternatively, it is addressed in the literature within the classical nodes-representation framework and this, most often, for undirected connected graphs or strongly connected digraphs. In this paper we address the consensus problem with preserved connectivity, for a network of first and secondorder systems, using the edge-based representation framework. It is the outgrowth of the conference paper [START_REF] Restrepo | Robust consensus and connectivity-maintenance under edgeagreement-based protocols for directed-spanning tree graph[END_REF], on consensus of first-order systems interconnected over directed spanning trees. We present consensus algorithms for two kinds of digraphs: directed spanning trees and directed cycles. Each of the two topologies studied presents difficulties and practical interests of its own, notably in formation control of autonomous vehicles using a leader-follower configuration [START_REF] Consolini | Leader-follower formation control of nonholonomic mobile robots with input constraints[END_REF][START_REF] Maghenem | Cascadesbased leader-follower formation-tracking and stabilization of multiple nonholonomic vehicles[END_REF] and in the context of cyclic pursuit [START_REF] Marshall | Formations of vehicles in cyclic pursuit[END_REF]. As stressed in [START_REF] Santilli | Distributed connectivity maintenance in multi-agent systems with field of view interactions[END_REF], directed cyclic topologies naturally appear in multi-agent systems of vehicles equipped with field-of-view sensors. Furthermore, we provide strict Lyapunov functions with which we are able to establish both connectivity and strong properties for the closed-loop system, such as uniform asymptotic stability of the consensus equilibrium and input-to-state stability. Now, even though strict Lyapunov functions have been proposed earlier for consensus problems, for edge-based and node-based digraphs of both first and secondorder systems, this is done without addressing the connectivity-preservation requirement, or viceversa. In [START_REF] Santilli | Distributed connectivity maintenance in multi-agent systems with field of view interactions[END_REF], for instance, a non-strict Lyapunov function is provided for first-order systems with fieldof-view constraints, but only boundedness of the trajectories is guaranteed. The difficulty of constructing a strict Lyapunov function is stressed therein. Thus, our main statements potentially serve as basis to the solution of concrete control problems of nonlinear multi-agent systems under realistic constraints (actuator saturation, sensors' capabilities, energetic autonomy) that are required to undertake tasks in aerodynamically perturbed environments.

Model and problem formulation

Notations and preliminaries

We use G = (V, E, W) to denote a weighted digraph defined by a node set V = {1, 2, . . . , n} with cardinality n and corresponding to the agents' states, an edge set E ⊆ V 2 with cardinality m and characterising the information exchange between agents, and a positive diagonal matrix W ∈ R m×m , whose entries represent the weights of the edges. A directed edge, e k , is an ordered pair (i, j) ∈ E if and only if there exists a connection from node i to node j. Fundamental in the edge-based framework is the socalled incidence matrix of a digraph, E(G) ∈ R n×m . This is a matrix with rows indexed by the nodes and columns indexed by the edges. Its (i, k)th entry is defined as follows: [E] ik := -1 if i is the terminal node of edge e k , [E] ik := 1 if i is the initial node of edge e k , and [E] ik := 0 otherwise. We recall from [START_REF] Zeng | Edge agreement of second-order multi-agent system with dynamic quantization via the directed edge Laplacian[END_REF] that the incidence matrix corresponds to the sum of the so-called in-incidence and out-incidence matrices, denoted E (G) ∈ R n×m and E ⊗ (G) ∈ R n×m respectively. That is,

E = E + E ⊗ (1)
and the elements of E and E ⊗ are defined as follows.

[E ] ik := -1 if i is the terminal node of edge e k and [E ] ik := 0 if otherwise, while

[E ⊗ ] ik := 1 if i is the initial node of edge e k and [E ⊗ ] ik := 0 if otherwise.
Then, the weighted Laplacian matrix L(G) ∈ R n×n of a digraph G can be defined in terms of the incidence and the in-incidence matrices, as

L(G) = E (G)WE(G) . (2) 
For digraphs, L(G) has a simple zero eigenvalue and all other non-zero eigenvalues are in the open left-half complex plane, if and only if the digraph contains a spanning tree [START_REF] Ren | On consensus algorithms for double-integrator dynamics[END_REF]. In what follows, the argument G is dropped when clear from the context.

Directed edge-Laplacian and reduced-order system

Using an appropriate labelling of the edges [START_REF] Mukherjee | Robustness of consensus over weighted digraphs[END_REF] the incidence matrix is expressed as

E = [ E t E c ] (3) 
where E t ∈ R n×(n-1) denotes the full-column-rank incidence matrix corresponding to an arbitrary spanning tree G T ⊂ G and E c ∈ R n×(m-n+1) represents the incidence matrix corresponding to the remaining edges not contained in G T . The labelling is as follows: let the root node be labelled "1" and let the remaining nodes be labelled as follows. Any two nodes i and j belonging to a branch b l of the tree are labelled such that if the path length from the root to i is shorter than the path length from the root to j, then i < j. Then, label the n -1 edges such that for any edge e k = (i, j), one has j > k. Furthermore, as observed in [START_REF] Zelazo | Agreement via the edge Laplacian[END_REF], since E t has full column-rank, the incidence matrices satisfy

E t T = E c (4) 
where

T := E t E t -1 E t E c . Thus, defining R := [ I n-1 T ] (5) 
with I n-1 denoting the n-1 identity matrix, one obtains an alternative representation of the incidence matrix of the digraph that is given by

E = E t R. (6) 
The identity ( 6) is useful to derive a reduced-order dynamic model corresponding to the dynamics of a network formed by a spanning-tree G T ⊂ G, which is easier to analyse than the original multi-agent system and for which consensus is achieved if and only if it is also the case for G. For illustration, let us consider a classic weighted consensus protocol for a group of n first-order systems of dimension N ,

ẋi = u i , x i , u i ∈ R N (7) 
where

u i = - n j=1 a ij (x i -x j )
for all i ≤ n corresponds to the control input for each agent and a ij ≥ 0 is strictly positive if and only if the ith and jth nodes are interconnected. In compact form, the systems' states are collected in the vector

x = x 1 , . . . , x n ∈ R nN
and the control input is u = u 1 , . . . , u n ∈ R nN . Then, denoting by I N the N × N identity matrix, the nodes dynamics for this multi-agent system is given by

ẋ = -[L ⊗ I N ]x, x ∈ R nN , (8) 
Now, following [START_REF] Zelazo | Agreement via the edge Laplacian[END_REF] we introduce the following coordinate transformation that maps the nodes' space to that of the edges,

z := [E ⊗ I N ]x, z := [z 1 • • • z k • • • z m ] . (9) 
That is, z k := x i -x j where i, j ∈ V and k ≤ m. Therefore, it follows from ( 9) that the agreement condition

{x i = x j , ∀ (i, j) ∈ V 2 } is equivalent to {z = 0}
. This is significant because in the edge-variables' representation, consensus may be reformulated as a stabilisation problem of the origin for the system

ż = -[E E W ⊗ I N ]z, (10) 
which is obtained by differentiating both sides of (9) and using ( 2) and (8). Eq. ( 10) is defined in function of the so-called edge Laplacian matrix L e (G) ∈ R m×m ,

L e := E E W, (11) 
which lies at the basis of the edge-representation framework. As the dual of L, the edge Laplacian, L e , has the same non-zero eigenvalues as L; hence, rank(L e ) = rank(L) = n -1 -see [START_REF] Zeng | Edge agreement of second-order multi-agent system with dynamic quantization via the directed edge Laplacian[END_REF]. Next, as in the latter, we split the edges' states. Let

z = z t z c , z t ∈ R (n-1)N , z c ∈ R (m-n+1)N (12)
where z t are the state variables corresponding to the edges of an arbitrary directed spanning tree G T and z c denote the state of the remaining edges, ∈ G\G T . Thus, after ( 9), ( 12), and (3), we see that

z t := E t ⊗ I N x. (13) 
Furthermore, after (4) it is readily seen that the states of the arcs not contained in the tree G T , z c , satisfy

z c = T ⊗ I N z t . (14) 
Another useful identity that stems from ( 5) and ( 14) is

z = R ⊗ I N z t (15)
which, together with ( 6) and ( 10), implies that

żt = -E t E WR ⊗ I N z t . (16) 
Even though this equation has a reduced dimension with respect to (10), in view of the presence of R on the righthand side, it also takes into account the effect of the arcs z c onto the states z t , so it captures the behaviour of the overall network. 2018), but rarely with nonlinear interconnections, as in this paper.

Connectivity maintenance

Besides consensus (i.e. z t → 0) in this paper we address the problem of guaranteeing that a graph initially connected remains so. We define such property as follows.

Definition 1 (Connectivity maintenance) For each k ≤ m, let ∆ k > 0 denote the maximal distance between the nodes i and j such that the communication between them, through the arc e k = (i, j), is reliable. We say that the graph's connectivity is maintained (hence, the proximity constraint holds) if the set 

J := z ∈ R mN : |z k | < ∆ k , ∀ k ≤ m , ( 17 
)
where z k = x i -x j , is forward invariant. That is, |z k (0)| < ∆ k implies that z(t) ∈ J
k ≤ m, let B ∆ k := {z k ∈ R N : |z k | < ∆ k }. Let α k : 0, ∆ 2 k → R ≥0 , s → α k (s), be C 1 and non- decreasing on 0, ∆ 2 k , such that α k (s) → ∞ as s → ∆ 2 k , and p k : B ∆ k → R >0 , defined as p k (z k ) := ∂α k ∂s (|z k | 2 ), is also non-decreasing, p(z k ) ≥ p 0 > 0 for all |z k | < ∆ k , and p k (z k ) → ∞ as |z k | → ∆ k . Then, we define the connectivity potential P (z) := diag p k (z k ) ∈ R m×m . Also, we define the Barrier function U k : B ∆ k → R ≥0 as U k (z k ) := α k (|z k | 2 ), ∀ k ≤ m. ( 18 
)
Similarly defined Barrier Lyapunov functions, but taking values in the nodes space, are used e.g., in [START_REF] Ji | Distributed coordination control of multiagent systems while preserving connectedness[END_REF], [START_REF] Boskos | Robustness and invariance of connectivity maintenance control for multiagent systems[END_REF], and [START_REF] Tang | Tangent barrier Lyapunov functions for the control of output-constrained nonlinear systems[END_REF]. In [START_REF] Ji | Distributed coordination control of multiagent systems while preserving connectedness[END_REF]; [START_REF] Boskos | Robustness and invariance of connectivity maintenance control for multiagent systems[END_REF] the so-called "edgetension" function was designed for the consensus with connectivity preservation over undirected graphs.

3 Main results

Consensus of first-order systems

Our first statement, on consensus of first-order systems interconnected over directed spanning-tree graphs, is a foundation block, but it has interest of its own. Consider a network of n dynamical systems, (7), expressed in edge coordinates,

ż = E ⊗ I N u, (19) 
in closed-loop with the gradient control law

u(z) = -c 1 E P (z) ⊗ I N z, (20) 
where c 1 > 0 is the network connectivity strength and the matrix P (z) := diag p k (z k ) models the interconnections -see Definition 2. From this point on it is assumed, without loss of generality, that the weight matrix W = I m . We emphasise that each component of u depends only on local information since E represents the incoming edges on each node, that is, the available information to each agent as defined by the digraph. Replacing ( 20) into ( 19) and, akin to ( 16), we obtain the reduced-dimension closed-loop system

żt = -c 1 E t E P (z t )R ⊗ I N z t , (21) 
where, for consistency in the notation, we introduced P (z t ) := P ( R ⊗ I N z t ), but we stress that P (z t ) ∈ R m×m and P (z) ∈ R m×m are identical. Remark 1 Equation (21) highlights another perk of using the edge-based representation when considering nonlinear interconnections. Note that, from (19)-( 20), the closed-loop system is given by

ż = -c 1 E E P (z) ⊗ I N z =: -c 1 L e P (z) ⊗ I N z,
whereas, in the nodes' representation, the same closedloop system yields,

ẋ = -c 1 E P (x)E ⊗ I N x =: -c 1 L(x) ⊗ I N x.
Note that using the representation in terms of the nodes, the graph Laplacian L(x) is state-dependent. Therefore, one cannot rely on eigenvalue analysis for the stability analysis. On the other hand, using the edge-based representation it is possible to dissociate the interaction topology, represented by the (unweighted) edge Laplacian L e , and the nonlinear interconnections given by the diagonal matrix P (z). Hence, despite the nonlinear weights, it is possible to use the eigenvalue analysis of the edge Laplacian in order to prove asymptotic stability of the consensus manifold with guaranteed connectivity by means of a strict Lyapunov function. This is presented in the proofs of Propositions 1 and 2. Proposition 1 Consider n systems as in (7) with limited communication ranges and interconnected through a digraph G which is either a directed spanning tree or a directed cycle. Then, for any initial conditions satisfying z(0) ∈ J the control law (20) guarantees that z k → 0 for all k ≤ m, and preserves connectivity of G, that is, the set J as defined in (17) is forward invariant for the closed-loop trajectories. Moreover, the function

V (z t ) = k≤m γ k U k (z k ), γ k > 0, ( 22 
)
where U k is defined in (18), is a strict Lyapunov function for the closed-loop system (21) on its domain, which is

J t := z t ∈ R (n-1)N : |z k | < ∆ k , ∀ k ≤ m . Proof. Using ∂U k ∂z k = 2p k (z k )z k
and defining Γ := diag [γ k ] with γ k > 0 yet to be determined, we obtain

∂V ∂z t = 2 RΓ P (z t )R ⊗ I N z t .
Hence, the derivative of V (z t ) along ( 21) is

V (z t ) = -2 c 1 z t R P (z t )ΓR E t E P (z t )R ⊗I N z t . (23) 
The previous equation holds regardless of the graph topology; next, we analyse the two cases under consideration.

Case 1 (Directed spanning tree). We have G = G T . Therefore, z = z t , E = E t , and E = E t . In turn, from the latter and (15), we have R = I n-1 . Now, akin to (11) albeit with an abuse of notation, we define the edge-Laplacian matrix of a directed spanning tree as L et := E t E t I n-1 ∈ R (n-1)×(n-1) . Hence, (23) becomes

V (z t ) = -c 1 z t P (z t ) ΓL et +L et Γ P (z t )⊗I N z t . (24)
Next, we show that for an in-incidence matrix constructed using the labelling approach of Mukherjee and Zelazo (2019) previously mentioned, the right hand side of ( 24) is negative definite. Indeed, in this case,

E t = 0 n-1×1 -I n-1 . (25) 
Then, defining B := -E ⊗t E t and using (1), as well as the fact that from (25) E t E t = I n-1 , we see that the edge Laplacian of a directed spanning tree satisfies

L et = E t E t = E t E t + E ⊗t E t =: I -B. (26) Now, since [E ⊗t ] ij = 1 implies that [E t ] ij = 0 and, in
view of the previously mentioned labelling, [E ⊗t ] ij = 0 for i < j, it follows that B is a lower triangular matrix with zero diagonal and all other elements either equal to 0 or 1. Moreover, for a directed spanning tree, rank(L et ) = n -1 and all the eigenvalues of L et lie on the open left-hand complex plane; indeed, they coincide with the eigenvalues of the graph's Laplacian L. Thus, from the latter and ( 26), we conclude that L et is a non-singular M -matrix [START_REF] Plemmons | M-matrix characterizations.I-nonsingular M-matrices[END_REF], that is, a real matrix with positive diagonal, non-positive off-diagonal elements, and eigenvalues with strictly positive real parts. Now, after [START_REF] Plemmons | M-matrix characterizations.I-nonsingular M-matrices[END_REF], every non-singular M -matrix is diagonally stable, that is, for any Q = Q > 0, L et admits a diagonal solution Γ :=diag γ k , to the Lyapunov inequality

ΓL et + L et Γ ≥ Q. ( 27 
)
Therefore, redefining γ k in ( 22), if necessary, so that ( 27) holds, and since P (z t ) > 0, we have

V (z t ) ≤ -c 1 P (z t ) ⊗ I N z t 2 (28)
where c 1 := c 1 λ min (Q) and λ min ( • ) denotes the smallest eigenvalue of ( • ). Hence, V (z t ) is negative definite on J t .

Case 2 (Directed cycle). Setting γ k = 1 for all k ≤ m, and using (6), equation ( 23) becomes

V (z t ) = -c 1 z t R P (z t ) E E +E E P (z t )R ⊗I N z t .
Then, from (1), we have

E E + E E = E E + E E -E ⊗ E ⊗ (29)
and following the same labelling rules mentioned above, the in-incidence and out-incidence matrices become

E = 0 1×n-1 -1 -I n-1 0 n-1×1 , E ⊗ = I n×n .
Hence, we have E E = I n×n and E ⊗ E ⊗ = I n×n . Consequently, using ( 29) and ( 6), again, we obtain

V (z t ) = -c 1 z t R P (z t )R E t E t R P (z t )R ⊗ I N z t ,
where E t E t is a positive-definite matrix corresponding to the edge Laplacian of an undirected tree [START_REF] Zelazo | Agreement via the edge Laplacian[END_REF]). Then, since R has full row-rank, we have

V (z t ) ≤ -c 1 R P (z t )R ⊗ I N z t 2 (30)
where c 1 := c 1 λ min (E t E t ) with λ min (E t E t ) being the smallest eigenvalue of E t E t , so V (z t ) is negative definite on J t . From ( 28) and ( 30), V as defined in ( 22) is a strict Lyapunov function for ( 21). Now we establish connectivity of the set J . To that end, we remark that z t ∈ J t implies that z ∈ J and we show that J t is forward invariant. We proceed by contradiction. Assume that there exists T > 0 such that for all t ∈ [0, T ), z t (t) ∈ J t and z t (T ) / ∈ J t . More precisely, we have |z k (t)| → ∆ k as t → T for at least one k ≤ m. From the definition of V , this implies that V (z t (t)) → ∞ as t → T which is in contradiction with ( 28) and ( 30). We conclude that V (z t (t)) is bounded, i.e., V (z t (t)) ≤ V (z t (0)) < ∞ for all t ≥ 0. Connectivity preservation follows. It is left to show that the set J corresponds to the domain of attraction for the closed-loop system. This follows by showing that all solutions of (21) starting in J t converge to the origin. To that end, for any ε ∈ (0, ∆ k ), consider a subset J εt ⊂ J t defined as

J εt := {z t ∈ R (n-1)N : |z k | < ∆ k -ε, ∀ k ≤ m}
and let Jεt , denote the closure of J εt . From Definition 2 and ( 18) it follows that V (z t ) is positive definite on Jεt and it satisfies the bounds β|z t | 2 ≤ V (z t ) ≤ h(|z t |), where β > 0 and h(•) is defined and strictly increasing everywhere in Jεt , h(s) > 0 for all s > 0, and h(0) = 0. This means that V (z t ) → 0 as z t → 0. Therefore, from ( 28), ( 30), and standard Lyapunov theory it follows that all trajectories of (21) starting in J εt converge to the origin. The previous arguments hold for any ε → 0, so the origin is attractive for all trajectories z t (t) starting in J t , that is, for all trajectories z(t) starting in J .

Output consensus of second-order systems

The significance of Proposition 1 resides in the potential use of a strict Lyapunov function for other consensus control problems. For instance, V may be used in Lyapunov-based control design, such as backstepping, to achieve output consensus. We illustrate this fact here for second-order systems, but the method extends to higher relative-degree systems. Consider the second-order system

ẋi = v i (31a) vi = u i (31b)
where x i ∈ R N and v i ∈ R N are respectively, the position and the velocity of agent i ≤ n, and u i ∈ R N is the control input. The control goal is to achieve output consensus, where the outputs correspond to the variables x i ; hence, it is required to steer v i → 0 for all i ≤ n.

We collect the states in the vectors

x = x 1 • • • x n ∈ R nN and v = v 1 • • • v n ∈ R nN and the inputs into u = u 1 • u n ∈ R nN .
Then, applying the edge transformation (9), the position consensus problem may be reformulated as the stabilisation of the origin for

ż = E ⊗ I N v (32a) v = u.
(32b) We follow a standard backstepping procedure. First we design a virtual input z → v * (z), satisfying v * (0) = 0, to stabilise the origin for the subsystem (32a). Next, the input u is designed so that v(t) → v * (z(t)) as t → ∞.

The virtual control v * is defined using (20), that is,

v * (z) := -c 1 E P (z) ⊗ I N z. (33) 
Then, we define ṽ := v -v * and we use v = ṽ + v * and ( 33) in (32) to rewrite the latter equations as

ż = -c 1 E E P (z)⊗I N z + E ⊗I N ṽ (34a) v = u + c 1 E P (z)E ⊗I N (ṽ + v * ) + c 1 E Ṗ (z)⊗I N z. (34b) 
Thus, using the feedback-linearizing control law

u(z, ṽ) := -c 1 E P (z)E ⊗ I N (ṽ + v * ) -c 1 E Ṗ (z) ⊗ I N z -c 2 ṽ (35)
with c 2 > 0, we obtain the following.

Proposition 2 Consider n systems as in (31) with limited communication ranges and interconnected through a digraph G which is either a directed spanning tree or a directed cycle. Then, for any initial conditions satisfying z(0) ∈ J the control law (35) guarantees that z k → 0 for all k ≤ m, v i → 0 for all i ≤ n, and preserves the connectivity of G, that is, the set J as defined in (17) is forward invariant. Furthermore the function

V : J t × R nN → R ≥0 , defined as V (z t , ṽ) = 1 2 k≤m γ k U k (z k ) + c 3 2 |ṽ| 2 , ( 36 
)
where γ k > 0 and c 3 > 0 are design parameters, and the functions U k are defined in (18), is a strict Lyapunov function for the closed-loop system (37).

Proof. The closed-loop equation is computed by replacing ( 35) into (34). Now, in view of the tree-cycle dichotomy of ( 12), together with ( 6) and ( 15), we obtain the reduced-order closed-loop dynamics

żt =-c 1 E t E P (z t )R ⊗I N z t + E t ⊗I N ṽ (37a) v =-c 2 ṽ (37b)
where we recall that P (z t ) := P ( R ⊗ I N z t ). Furthermore, in view of (30), the total derivative of V (z t , ṽ) along the trajectories of (37) satisfies

V (z t , ṽ) ≤ -c 1 R P (z t )R ⊗ I N z t 2 -c 2 c 3 |ṽ| 2 + z t R P (z t )ΓR E t ⊗ I N ṽ. ( 38 
)
Note that this bound holds indistinctly for directed-cycle topologies and, with R = I n-1 , for directed-spanningtree graphs. Now, given c 1 , γ max := max k≤m {γ k }, and c 3 , let δ > 0 be such that c 1 := c 1 -1 2 δγ max λ max (E t E t ) and c 2 := c 2 c 3 -1 2δ are positive. Then, after applying Young's inequality to the third term in the right-hand side of (38), we obtain

V (z t , ṽ) ≤ -c 1 R P (z t )R ⊗ I N z t 2 -c 2 |ṽ| 2 . (39)
Thus, V (z t , v) < 0 for all (z t , v) ∈ {J t × R nN }\{(0, 0)} and V in ( 36) is a strict Lyapunov function for (37). Forward invariance of the set J t , hence of J , follows from the same arguments as in the proof of Proposition 1. Consequently, the connectivity of G is preserved for any z(0) ∈ J and for any v(0). Finally, note that

β 1 |z t | 2 + β 2 |ṽ| 2 ≤ V (z t , ṽ) ≤ h(|z t |) + β 3 |ṽ| 2 (40)
where β 1 , β 2 , β 3 are positive constants and h(•) is defined and strictly increasing everywhere in Jεt and satisfies h(0) = 0. Thus, following the same arguments as in the proof of Proposition 1, we have asymptotic stability of the origin for all trajectories starting in J .

Robustness of the edge-consensus algorithm

In this section we use the strict Lyapunov functions previously constructed to analyse the robustness of the edge consensus with connectivity preservation. In particular we establish input-to-state stability with respect to a bounded input perturbation. Consider a multi-agent system with an additive disturbance, that is, in edge-coordinates

ż = E ⊗ I N v (41a) v = u + d (41b)
where d := d 1 , . . . , d n ∈ R nN is the bounded input disturbance. Then defining v * as in (33) and u as ( 35), akin to (37), the reduced-order closed-loop error system takes the form

żt =-c 1 E t E P (z t )R ⊗I N z t + E t ⊗I N ṽ (42a) v =-c 2 ṽ + d. ( 42b 
)
Proposition 3 The multi-agent system (41) under proximity constraints, with a communication topology defined by a digraph G which is either a directed spanning tree or a directed cycle, in closed loop with the controller (35) is input-to-state stable with respect to the disturbance d. Furthermore, the digraph remains connected for all t ≥ 0.

Proof. Take the Lyapunov function defined in (36). Then, from ( 39) and ( 42), we have

V (z t , ṽ) ≤ -c 1 R P (z t )R ⊗I N z t 2 -c 2 |ṽ| 2 +c 3 ṽ d. (43) 
Next, given c 2 and c 3 let δ > 0 be such that c 2 := c 2 -c 3 /(2δ ) > 0. Applying Young's inequality to the third term on the right-hand side of (43), we obtain

V (z t , ṽ) ≤ -c 1 R P (z t )R ⊗I N z t 2 -c 2 |ṽ| 2 + c 3 δ 2 |d| 2 , (44) 
so the system (42) is input-to-state stable.

To assert connectivity preservation in presence of additive disturbances, we show that in the proximity of the limits of the connectivity region the first term on the right-hand side of (44) dominates over the bounded disturbance. To that end, let d := sup t≥0 |d(t)| and let ε ∈ (0, ∆ k ) be a small constant to be determined. Let z t ∈ R N (n-1) be such that for some k ≤ m we have 44), the definition of P (z t ), and Definition 2, we have

|z k | ≥ ∆ k -ε. Then, |z t | ≥ ∆ k -ε, so from (
V (z t , ṽ) ≤ -c 1 ∂α k ∂s [∆ k -ε] 2 [∆ k -ε] 2 -c 2 |ṽ| 2 + c 3 δ 2 d 2 .
Since ∂α k ∂s is continuous, non-decreasing, and ∂α k ∂s (s) → ∞ as s → ∆ 2 k it follows that there exists ε * ( d) such that for all ε ≤ ε * , V (z t , ṽ) < 0. The latter holds along trajectories starting from any initial conditions z(0) ∈ J which implies that z(t) cannot approach the boundary of J so connectivity is preserved for all t ≥ 0. We consider a network of six second-order systems interconnected over the spanning-tree digraph showed in Fig. 1, above. The systems are subject to smooth inverted-step-like vanishing disturbances defined as

d i (t) = -σ(t) [1 1] , where σ(t) = 2.4 tanh(2(t - 15)) -1 -[t + 10] -1 for i ∈ {3, 5}, d 2 (t) = σ(t) [1 1] ,
and d i (t) = 0 for i ∈ {1, 4, 6}. That is, d i takes its maximal value at t = 0 and it smoothly vanishes around t = 15s. The Barrier functions are defined as

U k (z k ) = |z k | 2 + ln ∆ 2 k ∆ 2 k -|z k | 2 .
Consequently, the gradient control law takes the form (35), with c 1 = 3, c 2 = 2.5, and p k (z

k ) = 1 + [∆ 2 k -|z k | 2 ] -1 . The agents' initial positions were set to x 1 (0) = [2.4, 0], x 2 (0) = [-0.58, -0.9], x 3 (0) = [4.5, 2], x 4 (0) = [5, -2],
x 5 (0) = [-4.2, -0.45], and x 6 (0) = [-2, -4.2]; the initial velocities were set to v 1 (0) = [-5, 0], v 2 (0) = [0, 0], v 3 (0) = [3, 0], v 4 (0) = [2, 0], v 5 (0) = [0, 0], and v 6 (0) = [0, 0]. The initial conditions satisfy z(0) ∈ J with the set J given in (17) with the radii of the connectivity regions, ∆ k , set to 2.5, 3.2, 3.8, 3.5, 3.7, and 4 respectively. The simulation results of our proposed control law (35) are depicted in Figs. 2 and3. During the first 15s the perturbation d(t) stymies the achievement of consensus; the systems stabilise with a steady-state error. After 15s, the perturbation vanishes, so the trajectories move from their previous steady state towards the consensus equilibrium. Moreover, the distance constraints (dashed lines) for all initially existing edges are always preserved as can be seen in Fig. 2, implying that the initially connected graph remains so. For comparison, a second scenario was studied taking the same initial conditions satisfying z(0) ∈ J , and the same disturbances acting on the system. For this comparison the controller is an edge-based linear consensus protocol without connectivity maintenance, as proposed in [START_REF] Mukherjee | Robustness of consensus over weighted digraphs[END_REF]. As can be seen in Fig. 4, a linear consensus protocol does not guarantee the respect of the range constraints, thus preventing the multi-agent system from reaching consensus.

Conclusions

The edge-based representation of graphs opens new perspectives for consensus control as it allows to rely on Lyapunov theory. We established uniform asymptotic stability and input-to-state stability of the consensus manifold for first and second-order multi-agent systems subject to proximity constraints by means of the construction of strict Lyapunov functions. Our results, however, apply to specific topologies; the extension to arbitrary directed connected graphs remains an open problem under study. Other application-driven problems under investigation involve consensus control under additional inter-agent constraints such as collision avoidance, input saturation, etc., as well as formation tracking control.
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 34 Fig. 3. Trajectories of the norm of the nodes' velocities.

  In particular, consensus is achieved if and only if z t → 0. This problem, with the weight matrix W = I m and with linear interconnections, has been widely studied in the literature, including using Lyapunov's direct method -see[START_REF] Mukherjee | Robustness of consensus over weighted digraphs[END_REF];[START_REF] Zeng | Edge agreement of second-order multi-agent system with dynamic quantization via the directed edge Laplacian[END_REF];Chowdhury et al. (
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