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SUMMARY

In the context of seismic imaging, full waveform inversion (FWI) is increasingly

popular. Because of its lower numerical cost, the acoustic approximation is often

used, especially at the exploration geophysics scale, both for tests and for real data.

Moreover, some research domains such as helioseismology face true acoustic media

for which FWI can be useful. In this work, an argument that combines particle

relabelling and homogenization is used to show that the general acoustic inverse

problem based on band-limited data is intrinsically non-unique. It follows that the

results of such inversions should be interpreted with caution. To illustrate these

ideas, we consider 2-D numerical FWI examples based on a Gauss-Newton itera-

tive inversion scheme, and demonstrate effects of this non-uniqueness in the local

optimization context.

keywords: Inverse theory; Waveform inversion; Theoretical seismology; Computational

seismology; Numerical modelling; Seismic anisotropy.
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1 INTRODUCTION

Full Waveform Inversion (FWI) is increasingly used in seismic exploration and seismology to

image the Earth interior at a wide range of scales (Virieux & Operto. 2009). FWI methods are

based on a classical data-fitting approach to inverse problems, with the data comprising the

observed waveforms. For most applications it is necessary to consider wave propagation in an

elastic medium, though acoustic waves are relevant in some areas including helioseismology.

Moreover, the acoustic approximation of the elastic problem is numerically cheaper, and is

frequently used in exploration geophysics for both tests and real applications.

FWI is numerically very challenging, with global methods based on Monte-Carlo inversion

being typically infeasible. Local optimization approaches are, therefore, almost always the

only option available. Such local methods can only find one “best” solution while, potentially,

allowing for uncertainty quantification in a linearised sense. Moreover, for all practical FWI

methods, the properties of seismic waves along with the numerical cost of including higher

frequencies means that only a limited frequency band can be used, and this places an upper

bound on the spatial resolution obtainable within inversions.

An important question for FWI, and for inverse problems in general, is if the solutions

obtained are unique or, speaking more practically, whether a model that fits the data accept-

ably is necessarily close to the truth? As noted above, the band limited nature of FWI studies

places an upper limit on model resolution, while a lack of data coverage is a further source

of uncertainty. In principle, however, both these effects can be mitigated against, though at

a perhaps substantial cost. It might reasonably be asked whether these are the only sources

of uncertainty, or if there is a more fundamental problem that must be confronted. For a

very limited range of theoretical cases, the uniqueness of FWI can be mathematically demon-

strated, but only in situations with highly-idealised data (e.g. Nakamura & Uhlmann 1994). In

other equally idealised situations, however, FWI can be shown to have generally non-unique

solutions. In particular, this is the case for a simple 1-D inversion where it can be shown that

only the impedance can be recovered from boundary measurements, while the density-acoustic

parameter couple is out of reach (Bamberger et al. 1979). Building on this example, the aim

of this article is to explore another potential source of non-uniqueness within FWI based on

the idea of “particle relabelling” which may be seen as a higher-dimensional generalization of

Bamberger et al. 1979’s work.

Before going further, we need to say a few words about the elastic and acoustic wave equa-

tions and the mechanical properties involved. For the elastic wave equation, the constitutive

relation linearly linking the stress and the strain involves the elastic tensor c, a fourth-order
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tensor (Aki & Richards 1980). It has a major (cijkl = cklij) and minor (cijkl = cjikl = cijlk)

symmetries, reducing its number of independent parameters from 81 to 21 in 3-D. Further

symmetries can reduce this number of parameters. For example, an isotropic medium implies

only 2 independent parameters. The acoustic wave equation can be solved using the pressure

formulation (Komatitsch et al. 2000). In that case, the constitutive relation links the velocity

with the pressure gradient through the inverse of the density. This is for classical isotropic

fluids. This formulation can be extended to anisotropic fluids with the introduction of the

inverse density tensor (Cance & Capdeville 2015). It plays the same role as the elastic tensor

but is only an order 2 tensor with one major symmetry. This unusual aspect of the acoustic

wave equation is discussed further in this paper.

The particle relabeling method (Al-Attar & Crawford 2016) shows that the interior prop-

erties of an elastic or acoustic medium can be transformed in such a way that the surface

waveforms are not changed. This is accomplished by the introduction of a smooth and in-

vertible mapping of the body into itself that leaves the surface fixed. Using this mapping,

the original material parameters are transformed in a specific manner such that the surface

wavefield remains the same. Particle relabeling is, therefore, an ostensibly strong source of

non-uniqueness within FWI. Nevertheless, in the elastic case, it is found that the elastic tensor

loses its minor symmetries under such a relabelling transformation. These minor symmetries

are physically required, reflecting the invariance of the elastic potential energy under rigid

rotations, and hence particle relabelling does not lead to non-uniqueness in the elastic FWI

problem since such non-physical models are precluded. The acoustic case is different, however,

with the required symmetry of the density tensor being preserved under a relabelling trans-

formation. Nevertheless, if density isotropy can be enforced, this source of non-uniqueness is

removed because a relabelling transformation necessarily leads to an anisotropic density.

Homogenization (Capdeville et al. 2010; Capdeville et al. 2020) is a process that determines

a smooth effective medium from a rough one such that the limited frequency band waveforms

computed in the true and the effective media are the same up to a controlled error. It is

a generalization of the Backus long-wavelength equivalent models valid for layered models

(Backus 1962). One effect of the homogenization is to introduce apparent anisotropy: the

effective medium is in general anisotropic even if the true medium is isotropic. For every

FWI, data are used in a limited frequency band: this implies a minimum wavelength and

a limited resolution. Because of this limited resolution, the FWI result is always at best the

homogenized true model and not the true model (Capdeville & Métivier 2018). It follows that,

for a fine scale true medium, even if it is isotropic, the solution of a FWI is often anisotropic:
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elastic tensor anisotropy in the elastic case and density anisotropy in the acoustic case. As

a consequence, allowing anisotropy in the parametrization of the FWI is often necessary for

both acoustic and elastic media. Thus in the case of acoustic FWI, unless the true medium

is smooth (without sub-wavelength structure) and isotropic, the intrinsic non-uniqueness due

to particle relabelling cannot be ruled out by insisting the density must be isotropic.

The objective of this work is to show, through examples, that

• an elastic FWI is immune from a potential non-uniqueness due to particle relabelling;

• an acoustic FWI is immune from a potential non-uniqueness due to particle relabelling

if isotropy is enforced;

• there is a non-unique solution to an acoustic FWI in general because of particle relabelling

and anisotropy induced by homogenization.

The paper is organized as follows: we first detail the theoretical arguments and we then show

some numerical examples of the effect of the particle relabelling non-uniqueness.

2 THEORETICAL ARGUMENTS

In this section, we develop the arguments leading to the conclusion that an acoustic FWI

is in general intrinsically non-unique. To this end, we need to introduce the elastic and the

acoustic wave equations, the notions of particle relabelling and of homogenization.

We consider a domain Ω in which a set of receivers and a set of seismic sources are placed

(see Fig. 1). Within Ω we can consider either elastic or an acoustic wave propagation.

2.1 The elastic and acoustic wave equations

In the elastic case, the particle displacement u(x, t) with respect to a reference position is

governed by the following elastic wave equation,

ρ∂ttu−∇ · c : ∇u = f , (1)

where ρ(x) is the density, c(x) is the 4th order elastic tensor, f represents the seismic source,

and, using the Einstein repeated indices summation convention, [c : ∇u]ij = cijkl∂kul.

In the acoustic case, the velocity potential q(x, t) is defined such that ∂tu = (1/ρ)∇q, and

is governed by the acoustic wave equation,

1

κ
∂ttq −∇ · L · ∇q = g , (2)

where κ(x) is the acoustic bulk modulus, L(x) is the inverse density tensor and g is the acoustic
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source. q can be related to fluid pressure p with p = q̇. The matrix form of the inverse density

is not common is geophysics and, for a classical isotropic fluid, we have Lij = ρ−1δij , where

δij is the Kronecker delta. Unlike solids, a fluid cannot be anisotropic at the material fabric

scale. Nevertheless, an acoustic wave propagating in a fluid with heterogeneous structures of a

much smaller scale than the minimum wavelength can have an anisotropic behavior. For such

cases, to model the effective acoustic wave, (2) needs to be introduced. It is a generalization of

the classical acoustic wave equation where anisotropy is allowed (Cance & Capdeville 2015).

For example, for a fluid with a 2-D thin horizontally periodic stratified structure, two effective

densities are required and we have Lxx = 〈1/ρ〉, Lzz = 1/〈ρ〉 and Lxz = Lzx = 0, where 〈 . 〉 is

the periodic vertical average. It is worth emphasising that, in the acoustic case, the anisotropy

is carried by the inverse density tensor while it is associated with the elastic tensor in the

elastic problem.

Note that the acoustic anisotropy we are referring to here is very different from the acoustic

anisotropy often used in exploration geophysics as introduced by Alkhalifah (2000). The latter

is designed such that acoustic waves can have a similar propagation pattern as P-waves in

transversely isotropic solid media. Alkhalifah (2000) qualifies his anisotropy as being non-

physical and it can lead to spurious waves, particularly near to the source (Grechka et al.

2004). Nevertheless, it is useful to model elastic P-waves at a low numerical cost. The physical

anisotropy of (2) that arises through homogenization is of different nature, and it could not

be used to approximate anisotropic P-wave propagation in solids (Cance & Capdeville 2015).

2.2 Full Waveform Inversion

The objective of a Full Waveform Inversion (FWI) is to retrieve some information about the

mechanical properties in Ω using the waveform signal recorded at the receivers from a set of

sources. There are many ways to do this and, here, we consider the minimization of the squared

differences between data and synthetic seismograms obtained by solving the wave equations

(1) or (2). For example, in the elastic case, the objective is to find models m = (ρ, c) that

minimize

E(m) =
∑
r,s

∫ T

0
[ds(xr, t)− u(xr, t; m)]2 dt , (3)

where r and s are the receivers and sources indices, d is the recorded data of duration T

and u the displacement obtained by solving (1) using the model parameter m. An important

point for our discussion is that, in practice and because of limitations in both data collection

and computing power, FWI can only be solved with limited frequency band data and syn-
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ξ

Ω Ω̃

Figure 1. Original domain (Ω) and deformed domain (Ω̃) for an example of particle relabeling mapping

ξ. This particular example leaves the position of the sources (red stars) and receivers (blue stars)

unchanged.

thetics. This implies that we always have a known maximum signal frequency and, therefore,

a wavefield minimum wavelength λmin.

2.3 Particle relabeling transformations

Building on earlier studies including Woodhouse (1976), Al-Attar & Crawford (2016) intro-

duced the notion of particle relabeling in seismology. Considering ξ, a smooth mapping from

Ω̃ to Ω with a smooth inverse (see Fig. 1), Al-Attar & Crawford (2016) showed that:

• in the elastic case, the displacement in the transformed domain is defined by ũ(x, t) =

u[ξ(x), t] and is the solution of

ρ̃∂ttũ− ∇̃ · c̃ : ∇ũ = f̃ , (4)

with

ρ̃(x) = Jξ(x) ρ[ξ(x)] , (5)

c̃ijkl(x) = Jξ(x) [Fξ(x)−1]jm[Fξ(x)−1]ln cimkn[ξ(x)] , (6)

where Fξ = (∇ξ)T , Jξ = det(Fξ), and the summation convention has been applied;

• in the acoustic case, the velocity potential in the transformed domain is defined by

q̃(x, t) = q[ξ(x), t], and is the solution of

1

κ̃
∂ttq̃ −∇ · L̃ · ∇q̃ = g̃ , (7)

where

κ̃(x) = J−1
ξ (x)κ[ξ(x)] , (8)

L̃(x) = Jξ(x) Fξ(x)−1L[ξ(x)]Fξ(x)−T . (9)
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An important point within this theory concerns the symmetries of the transformed tensors.

The elastic tensor, in the original domain has a major symmetry, cijkl = cklij and two mi-

nor symmetries cijkl = cjikl = cijlk. Following the transformation however the result c̃ only

possesses the major symmetry while the minor symmetries have been lost. By contrast, the

acoustic density tensor is of second-order and has only one major symmetry Lij = Lji that

remains after the relabelling transformation is performed.

2.4 Homogenization

For a given elastic medium (ρ, c) and a maximum signal frequency fmax, it is possible to

compute an effective medium (ρ∗, c∗) such that the waveforms computed in (ρ, c) and (ρ∗, c∗)

are the same, up to a given accuracy. (ρ∗, c∗) can be obtained thanks to the homogenization

operator, (ρ∗, c∗) = Hkmax(ρ, c) where kmax = 1/λmin (Capdeville et al. 2010). This is also true

for acoustic media (Cance & Capdeville 2015). The operator Hkmax is a non-linear operator

that, in general, requires the solution of a set of partial differential equations. If the original

medium contains small scales, which is very often the case in realistic situations, the effective

medium is free of small scales but is not constant: it is just smoother.

For the present work, the homogenization matters for two reasons:

• it can be shown, at least numerically, that the solution of an FWI is, at best, the homog-

enized effective medium and not the true medium (Capdeville & Métivier 2018);

• even if the fine scale medium is isotropic, the effective medium is almost always anisotropic

(Backus 1962; Capdeville et al. 2010).

To represent such anisotropic effective models in figures, we often choose to compute and plot

the nearest isotropic average. In the 2-D acoustic case it is computed as 1/ρ∗iso = (L∗
11 +

L∗
22)/2 and the corresponding V ∗iso

P =
√
κ∗/ρ∗iso. In the following, we use the notion of total

anisotropy, which measure, in the acoustic case for example, the matrix distance between L∗

and L∗iso (Capdeville & Métivier 2018). The same is also done for the elastic case, using the

nearest isotropic elastic tensor c∗iso (see Capdeville & Métivier (2018) for a more detailed

description of such a representation).

2.5 Consequences of the homogenization and particle relabelling for the

uniqueness of the FWI problem

As discussed in Al-Attar & Crawford (2016), particle relabelling can be used to demonstrate

non-uniqueness for a certain class of inverse problems. Indeed, as shown in Fig. 1, we can find
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non-trivial mapping ξ, such that ξ is the identity near the sources and receivers and non-

trivial elsewhere. In such cases, the model (ρ̃, c̃), respectively (κ̃, L̃), produced via relabelling

would explain the data the same way as the original media (ρ, c), respectively (κ,L), does. It

is therefore also a solution of an inverse problem based on those data.

In the elastic case, this is not a real problem in practice. Indeed, as we have seen in the

previous section, the transformed elastic tensor c̃ lacks physically required symmetries. When

the inverse problem is set up, these physical symmetries are always enforced, and hence the

non-uniqueness associated with particle relabelling is eliminated.

In the acoustic case, things can be more problematic because the required symmetry of L is

preserved under a particle relabeling transformation. We might think that, as with the elastic

case, this would not be an issue. Indeed, most of the time, only isotropic density acoustic

media are inverted. In the isotropic density case, L is proportional to the identity, but under

any non-trivial transformation L̃ is not. Therefore, forcing an isotropic density removes this

source of non-uniqueness within the inverse problem.

This is where homogenization comes in. In the case of FWI, we necessarily work with

limited frequency band data. As mentioned in section 2.4, if the real model is not smooth,

which is very often the case in practice, then the FWI can, at best, recover an effective

homogenized version of the true model. It follows that, even if the true model is isotropic,

we almost always need to invert for an anisotropic medium in either the elastic or acoustic

cases. As a result, we should not enforce acoustic isotropy and hence must expect acoustic

FWI with limited frequency band data to be fundamentally non-unique.

In the next section, we numerically test this idea in a simple 2-D setting.

3 NUMERICAL EXPERIMENTS

3.1 Inversion design

There are many ways to solve the FWI problem in practice. Here, we choose a simple iterative

local optimization scheme: the Gauss-Newton scheme (Pratt et al. 1998). Such methods are

very efficient for determining the nearest local minimum to the starting model. They are

therefore able to find the global minimum only if it is sufficiently close to the starting model.

To parameterize the inversion, to describe the inverted model quantities such as (κ,L) for

example, we use a simple polynomial per piece expansion: the inverted domain is meshed of

square elements and a polynomial expansion is used in each element. As shown by Capdeville

& Métivier 2018, to compare the inverted model and target model, they both need to be
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Table 1. Mechanical properties of the different models used to generate data and their respective

effective versions (with a ∗). V 0
P , V 0

S and ρ0 are the properties of background model and δln(VP ),

δln(VS) and δln(ρ) the maximum contrast with respect to these background properties. The anisotropy

(aniso) is the total anisotropy discussed in Sec. 2.4

V 0
P V 0

S ρ0 δln(VP ) δln(VS) δln(ρ) aniso

models km/s km/s 103kgm−3 % % % %

Elastic Gaussian 5.7 3.2 2.6 [-33;50] -[29;40] [-20;25] 0.

Elastic Gaussian∗ 5.7 3.2 2.6 [-33;50] [-29;40] [-20;25] 0.

Acoustic Gaussian 3.2 0. 2.6 [-20;25] 0. [-11;12] 0.

Acoustic Gaussian∗ 3.2 0. 2.6 [-22;36] 0. [-13;16] 0.1

Faulted Layered 3.2 0. 2.6 [-19;17] 0. [-5.7;9.6] 0.

Faulted Layered∗ 3.2 0. 2.6 [-12.1;1.3] 0. [-7.1;1.6] 6.4

homogenized. To perform the following tests, we generate synthetic data using the spectral

element method (SEM, Komatitsch & Vilotte 1998) in the target model. The data are then

inverted also with SEM used to solve the wave equation, but using a different mesh from the

one used to generate the data, making sure to avoid an inversion crime. The mesh used to

generate the data is fine, unstructured, and honoring the mechanical discontinuities of the

target model (if any). The mesh used for the inversion is a simple regular mesh. Even in

the smooth target model case, both meshes are different. A more detailed description of this

inversion process can be found in Capdeville & Métivier 2018.

3.2 Smooth model elastic test

The first test is done with data generated in a smooth elastic model. The target model is

shown in Fig. 2(a) and described in detail in Table 1. Its homogenized version is shown in

Fig. 2(b), and, because it is a smooth model, there is little difference with the true model (a).

We perform two inversions using two different inhomogeneous starting models (Fig. 2(c) and

(f)). The data are generated using vertical point forces at each source location, successively.

We use a Ricker wavelet (second derivative of Gaussian) source time function with a max-

imum frequency (considered as three times the central frequency of the Ricker) such that

the wavefield has a λmin minimum wavelength in the background model. In what follows,

all lengths have been non-dimensionalised relative to λmin. We perform the two inversions

using an anisotropic parameterization, inverting for (ρ, c), enforcing the elastic tensor minor

symmetries. The nearest isotropic P-wave velocity V iso
P raw results of the FWI are shown in
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Fig. 2(d) and (g) for the two starting models (c) and (f) respectively. They clearly show an

imprint of the starting models and of the spatial parameterization mesh (shown in Fig. 2(a));

they compare poorly to the target model. Nevertheless, once homogenized, the two inverted

(Fig. 2(e) and (h) respectively) models are indistinguishable from the target homogenized

model and are independent of the starting models. No anisotropy is found in the inversion

homogenized results (not shown in Fig. 2).

While this result does not prove that such inversions have a unique solution in general,

the results are consistent with the theoretical arguments developed above, with, in particular,

there being no problems linked to particle relabelling.

3.3 Smooth model acoustic test

We now perform a similar test to the previous one but for the acoustic smooth target model

shown in Fig. 3(a) and Tab. 1. We perform four inversions, two enforcing isotropy (inverting for

(1/κ, 1/ρ)), and two releasing anisotropy (inverting for (1/κ,L)), using two different starting

models. The homogenized inverted models are shown in Fig. 3.(e) (i) (l) and (c) for V iso
P and in

Fig. 3.(f) (j) (m) and (p) for the corresponding total anisotropy. Each model explains equally

well the data. The isotropic inversions have found the correct model, independently of the

starting model. Nevertheless, the anisotropic inversions have not and the results depend on

the starting model.

These results are consistent with the theory: the acoustic case is not immune against

particle relabelling non-uniqueness as soon as anisotropy is possible in the parameterization.

Nevertheless, in the case where we know the medium is smooth and hence has no anisotropy

once homogenised, it is not a problem as isotropy can safely be explicitly imposed in the

parameterization of the inversion.

3.4 Rough model acoustic test

Finally, we present a test in a rough acoustic target model (see Fig. 4 and Tab. 1). It is a simple

layered medium with a fault going through the layers (Fig. 4(a)). Once homogenized, the

medium is strongly anisotropic; the corresponding nearest isotropic V ∗iso
P and total anisotropy

are plotted in Fig. 4(b) and (c) respectively. In this case, it is found that an isotropic inversion

leads to a result that, while not so bad visually (Fig. 4(d)), is certainly not as good as should

be expected with such favourable data coverage. Indeed, anisotropy is necessary to explain

the data Fig. 4(d) and a full convergence of the inverse problem is not possible without it.

Moreover, the lack of information about anisotropy is a problem for identifying the presence of
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faulting, with such features being associated with significant anisotropic signatures (Capdeville

& Métivier 2018). Similarly to the previous test, the anisotropic inversion, here starting from

a homogeneous model, is carried out. It gives a result very different from the homogenized

target model (Fig. 4(e) and (f)). Nevertheless, this strange model explains very well the

data. Moreover, if we place a new source and a new receiver outside the inversion area, the

traces computed in the homogenized and in the target models match very well (Fig. 5(a)). If,

however, the location of the new receiver is inside the inversion area, the traces do not match

anymore (Fig. 5(b)). These results can be interpreted with reference to the particle relabelling

theory: hidden below this particular inversion there is probably an unknown ξ transformation

which is different from the identity only in the inversion area which would map the true model

into the recovered one. Therefore, for the receiver (A), the transformation leaves the receiver

where it is and the match is very good. For the receiver (B), inside the inversion area, ξ is

different from the identity and the receiver is moved: the traces do not match. Nevertheless,

there must be a location xb′ = ξ−1(xb) such that the trace computed in the inverted model

for a receiver in xb′ match the trace computed in the target model for a receiver computed in

xb. It is worth emphasising that the existence of a transformation ξ here is only conjectured,

and there might be some other additional source of non-uniqueness. A number of closely

related inverse problems have, however, been studied within the mathematics literature, with

uniqueness there being established precisely up to the action of such a transformation (Lee &

Uhlmann 1989; Stefanov & Uhlmann 2005). In the absence of better arguments we think it

reasonable to suppose that the same will hold in this case.

Finally, let us mention that the same inversion performed in the elastic case works well

as shown in Capdeville & Métivier (2018) and, as expected, presents no particle relabelling

issues.

4 DISCUSSION

Our numerical tests confirm that the solution of a general acoustic FWI with limited frequency

band data is intrinsically non-unique. There is no cure against such non-uniqueness. Paving

the domain with receivers could work but it is in general not an option in 3-D. But is it a

problem in practice? Fortunately, rough acoustic domains able to produce effective anisotropy

are not very common in nature, and it is probably safe to impose isotropy in most situations.

Nevertheless, they are cases where the inverse problem solution non-uniqueness related to

particle relabelling should be kept in mind. Acoustic imaging in Helioseismology is one of

them. Another potentially problematic situation can be found in the field of exploration
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geophysics where the acoustic approximation is often used to test ideas and FWI schemes.

Pushing those tests further with target models containing subwavelengh geological structures

could lead to the non-uniqueness problem studied here.

Outside planetary science and geophysics, another potential field of applications concerned

by the particle relabelling non-uniqueness is fluid metamaterial design. It has been shown that,

with some specific arrangements of subwavelength inclusions embedded in a fluid, it is possible

to obtain a metalfuid with an anisotropic dynamic mass (Popa & Cummer 2009; Gumen et al.

2011). Such metafluids can have unusual properties such as negative refraction index and can

be used to design cloaking devices (Cheng et al. 2008). Using FWI in such a metafluid would

lead to a strongly non-unique solution, as explained in this paper. One could imagine using

this fact to make the acoustic location and imaging of an object embedded in such a metafluid

difficult or impossible.

It is worth emphasising that though the elastic and isotropic acoustic FWI problems

should not display a non-uniqueness due to particle relabelling, this does not mean that there

might not be other sources of non-uniqueness in addition to those related to data coverage

and the use of band-limited data. Finally, if for some reasons someone were to try an elastic

FWI without enforcing the elastic tensor’s minor symmetries, they should be expected that

the same non-uniqueness problem would be seen as for the general acoustic case.

5 CONCLUSION

We have proposed that particle relabelling can be a strong source of non-uniqueness for a

general acoustic FWI based on limited frequency band data and our numerical tests have

confirmed this idea, even if we didn’t provide a mathematical proof.
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Figure 2. Smooth elastic FWI tests. (a) P wave velocities (VP ) for the target model ; (b) homogenized

target model nearest isotropic P-wave velocity V iso
P ; (c) and (f) two starting models VP ; (d) and (g) raw

inverted models V iso
P for the starting models (c) and (f) respectively; (e) and (h) homogenized inverted

models V iso
P for the starting models (c) and (f) respectively; For each panel, only VP is represented,

but the other mechanical properties have the same shape. In (a) the red stars represent the position

of the sources and the black triangles represent the position of the receivers. The black square is the

area where the model parameters are inverted and the inside mesh is the inversion mesh.
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Figure 3. Smooth acoustic FWI tests. On the first line is plotted the VP maps for target model (a)

and the homogenized target model (b) as well as a measure of its anisotropy (c) ; In (d), (h) (k) and (n)

are plotted VP for the two starting models used here ((d) and (k) are identical as well as (h) and (n));

In (e) and (i) are plotted the V ∗iso
P maps of the isotropic acoustic inversion homogenized results as well

as the corresponding total anisotropy (in (f) and (j) respectively) for the starting models (d) and (h)

respectively. In (l) and (o) are plotted the V ∗iso
P from the anisotropic acoustic inversion homogenized

results as well as the corresponding total anisotropy (in (m) and (p) respectively) for the starting

models (k) and (n) respectively.
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Figure 4. (a): faulted layered target model sketch. This model is acoustic and isotropic. (b) and (c):

V ∗iso
P of the homogenized target model and the corresponding total anisotropy, respectively. (d): V ∗iso

P

homogenized result for an isotropic inversion. (e) and (f): V ∗iso
P and, respectively, the corresponding

total anisotropy for a anisotropic inversion homogenized result. In panel (e), (A), (B) and (S) are the

receivers and source positions used in Fig .5
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Figure 5. (a) ”inv -homo” trace (red line): difference between pressure traces computed in the inverted

model and in an homogeneous model for receiver (A) and source (S); ”raw-homo” trace (blue dashed):

difference between pressure traces computed in the target model and an homogeneous model for receiver

(A) and source (S). (b) same as (a) but for receiver (B). The homogeneous model has the same elastic

properties as one used outside of the inversion domain. (A), (B) and (S) positions are shown in Fig. 4(e)


