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We present a two-phase methodology to address the problem of optimally de-
ploying indoor wireless local area networks. In the first phase, we use Helmholtz’s
equation to simulate electromagnetic fields in a typical environment such as an
office floor. The linear system which results from the discretization of this par-
tial differential equation is solved with a state-of-the-art library for sparse linear
algebra. In the second phase, we formulate the network deployment problem in
the setting of Binary Linear Programming. This formulation employs the sim-
ulator output as input parameters, and jointly optimizes the number of Access
Points, their locations, and their emission channels. We prove that this optimiza-
tion problem is NP-Hard, and use mathematical programming based techniques
and heuristics to solve it. We present numerical experiments on medium-sized
buildings.

1 Introduction

Optimization problems related to Wireless Networks deployment have attracted
considerable interest in the Operations Research (OR) and Mathematical Pro-
gramming (MP) literature, especially since the 1990s. A particularly important
problem, that of optimally deploying a Wireless Local Area Network (WLAN) in
indoor environments, was mostly studied in the literature from the more tech-
nological point of view of computer networks, rather than using the algorithmic
approaches afforded by OR/MP methods. This paper intends to bring the ben-
efits of OR/MP to the OpTIMAL WLAN DEPLOYMENT (OWLD) problem. We
note that the input data for the OWLD should be a precise description of the
electromagnetic field at every point of the volume of interest. The approach pro-
posed in this paper estimates the field intensity from a solution of the differential
equations of the field.

1.1 OR methods in wireless networks

We first provide a minimal survey of the impact of the OR/MP culture in some
optimization problems related to wireless networks. The earliest models for radio
network planning were related to the MINIMUM DOMINATING SET (MDS) prob-
lem [1]. More realistic and application-specific models followed, opening different
research subdomains depending on the targeted application.
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e Wireless Sensor Networks (WSN) are a set of spatially distributed sensors
collecting and exchanging data and recording physical conditions [2]. The
RELAY NODE PLACEMENT (RNP) problem is one of the major questions
arising in the design of WSN. Connectivity being necessary for flow routing,
RNPs are related to fondamental problems such as MINIMUM CONNECTED
DOMINATING SET (MCDS) [3], MiNniMUM STEINER TREE (MST) [4, 5],
and their variants [6, 7, 8]. In particular, finding the maximal data-rate
of wireless connections subject to edge capacities leads to the EDGE CA-
PACITED MST [9]. More technological and applied works focus on deploy-
ment processes improving network performance [10], lifetime [11, 12], and
energy-efficiency [13].

e The FREQUENCY ASSIGNMENT PROBLEM (FAP) is the problem of assigning
a frequency to each emitter of a wireless network while maximizing the
Quality of Service (QoS) [14]. According to [15], “the FAP is probably the
telecommunication application which has attracted the largest attention in
the OR literature, both for its practical relevance and for its immediate
relation to classical combinatorial optimization problems". Depending on
technological objective and constraints, the FAP may assume very different
forms. The main variants of this problem are MAXIMUM SERVICE FAP,
the MINIMUM ORDER FAP, the MINIMUM SPAN FAP, and the MINIMUM
INTERFERENCE FAP [14].

e The Universal Mobile Telecommunications System (UMTS) is a mobile cel-
lular system for networks based on the GSM standard. Due to the large
operational cost for the mobile service operators, there is a huge need of
optimizing at regional scale the base stations locations and configurations.
This requires solving problems related to frequency assignment, emission
power, antenna height /tilt /orientation, and more. The first models were
simplified and based on the MDS [1| and the CAPACITATED FAcCILITY LoO-
CATION (CFL) [16] problems. In the 2000s, much work has been carried
out in order to jointly optimize the location and configuration of the base
stations using MP tools |17, 18, 19, 20, 21, 22|. The overall model pre-
sented in [15] takes into account numerous technological constraints, such
as uplink and downlink minimal Signal-to-Interference Ratio (SIR), maxi-
mum emission power, antenna height constraints, antenna tilt and assumes
a SIR-based power control mechanism.

e The importance of the OWLD problem arises with the deployment of large-
scale public and private WLANS, such as in aiports, hotels or other build-
ings. This problem is related to the UMTS planning problem because (a)
the location and the configuration of the Access Points (APs) may be opti-
mized jointly and (b) interferences impact on the QoS. WLAN deployment,
however, differs from UTMS planning in the following ways.

— The configuration possibilities are more limited for WLAN deployment
than UTMS.

— The number of available frequencies is more limited for WLAN deploy-
ment [14]: this is why interference constraints are even more important.

— The communication protocols used are different.

— Indoor radio propagation is far more difficult to predict than outdoor
and long-range propagation of GSM frequencies: in a building sev-




eral physical effects, such as, e.g., reflections, diffractions, and self-
interference, may impact the radio propagation. Hence, computing the
electromagnetic field generated by an emitter in a building requires ad-
vanced simulators, based on the precise knowledge of the building’s ar-
chitecture.

The last point is a possible explanation as to why WLAN deployment prob-
lems have not been extensively studied from the point of view of OR/MP
methods. Most of works devoted to optimize WLAN deployments appear to
have been proposed by researchers in computer networking.

In this paper, we propose a global approach for the deployment of a WLAN
network, which combines simulation and optimization. First, we provide a math-
ematical model for radio propagation in a building floor in order to perform
accurate predictions via simulation. We overcome some remarkable theoretical
and computational obstacles posed by the indoor environments, which possess a
very high number of reflection and diffraction sources. The precision of the model
and the corresponding simulation is critical for OWLD, since optimization using
wrong input data would obviously yield wrong solutions. Based on the qualita-
tive input data provided by the simulation tool, we then propose an optimization
model for the OWLD problem, which brings together the most important features
found in the literature.

1.2 The state of the art on the OWLD problem

Many different approaches exist in order to streamline WLAN deployment pro-
cesses in indoor space. In this subsection we try to summarize the main ingredi-
ents in optimizing WLAN deployments: decision variables, input data, optimiza-
tion criteria, constraints, and algorithmic approaches.

1.2.1 Decision variables

The decisions involved in deploying a WLAN are:
e AP positions, either from a continuous or discrete optimization point of view;
e AP antenna orientation;
e AP emission power;
e AP emission frequencies.

The simultaneous decision of AP placement and frequency assignment is discussed
in the literature to some extent [23, 24, 25, 26]. Depending on the approach, the
spatial network coverage may be given or subject to optimization.

1.2.2 Simulating indoor radio-wave propagation

Optimizing any wireless network, and particularly a WLAN infrastructure in a
building, requires a detailed knowledge of the way the electromagnetic waves
propagate in the building, so as to predict the coverage area of each AP. Since
there is an uncountable number of spatial point in a Euclidean space model of a
building, it is obviously impossible to obtain such knowledge through empirical
measurements. This is why it is necessary to have a reliable model to predict how
electromagnetic waves propagate in a complex indoor environment. This step is




crucial since it will be the input of the optimization problem. For more details,
the strong impact of the Physical Layer (PHY) modeling on network performance
prediction is illustrated in [27].

Next, we briefly discuss some relevant propagation models for WLAN signals
in building floors consisting of rooms and aisles.

o Empirical approaches. These are based on statistical models of propagation
[28, 29, 30]; they predict the average behavior of waves in typical environ-
ments, but fail to provide accurate predictions in each room of the WLAN
coverage area. Such approaches are widely used in network design because
of their low computational requirements. They model the path-loss L (in
dB) between emitter e and receiver r, which is equivalent to the power gain
ratio expressed in logarithmic scale: L = 1010g(%), where P, is the power
emitted by e and P, the power received by r, both expressed in watts (W).

— One-slope model. The path-loss L (in dB) is simply a function of the
distance d between transmitter and receiver antennas:

L(d) = Lo + 10nlog(d),

where Ly (in dB) is a reference loss value for a unit (1m) distance, n is a
power decay factor, and d is a distance (expressed in m). Lo and n are
empirical parameters for a given environment, which fully control the
prediction. In a barrier-free environment, theoretical values of Ly and n
can be determined for a given wavelength. In practice, there are always
obstacles to signal propagation and there is then no other way to choose
values for Ly and n than calibration from measured data, using linear
regression such that the difference between the measured and estimated
path losses is minimized in a mean square error sense [31].

— Multi-wall model. A semi-empirical multi-wall model provides much bet-
ter accuracy than the one-slope model, and the results are more site-
specific. The path-loss L (in dB) is a function of the distance between
transmitter and receiver antennas but also of simple architectural prop-
erties. We have

N
L(d) = Lo + 10nlog(d) + Z kiL; + kgAy,
i=1

where k; is the number of walls of type ¢ (for ¢ ranging over all considered
wall types) between transmitter and receiver antennas, L; (in dB) is the
attenuation factor for the i-th wall type, N is the number of wall types,
k¢ is the number of floors between transmitter and receiver, and Ay (in
dB) is the floor attenuation factor. There are also no universal values
for the parameters L; and Ay, which have to be calibrated by means of
a measurement campaign.

These models are easy to use and can produce their output quickly. However,
their accuracy is limited. The loss of accuracy is mostly due to the lack of
architecture details they take into account; specifically, they neglect the
physical effects of diffraction, self-interference, and so on.

o Geometrical optics based modelling. Ray-tracing techniques are among the
most popular methodologies for indoor radiowave propagation simulation




[32, 33, 34, 35]. Ray-tracing simulations describe the physical wave prop-
agation process, based on geometrical optics and the uniform geometrical
theory of diffraction. Using Fermat’s least time principle, a ray-tracing sim-
ulation determines a ray’s trajectory between source point and some given
field locations, which yields the propagation loss at these locations. Unlike
empirical approaches, ray-tracing simulations take physical effects and in-
door architecture into account, thus giving more precise results. Yet, their
computational complexity is proportional to the number of rays launched by
the source and grows exponentially with the number of reflections each ray
undergoes. Therefore, the number of simulated reflections is usually limited.
This leads to some undesirable effects due to the angular discretization. An
attempt to decrease these effects, proposed by [34], consists in simulating
“tubes" rather than “rays". Geometrical optic based methods are often pre-
sented in a three-dimensional (3D) setting; it turns out, however, that it
is just as accurate, but more computationally efficient, to work with mul-
tiple two-dimensional (2D) simulations [36]. Most of the works in the field
of geometrical optic based simulation are dedicated to the reduction of the
computational complexity by designing efficient structures to represent the
physical environment, so as to speed-up the computation of ray intersections
[37, 38].

Finite differences modelling. There exists a family of propagation models
based on Maxwell’s equations. The first indoor radio propagation simula-
tions with finite differences were been proposed in [39, 40|. Another discrete
approach, called “ParFlow”, based on the cellular automaton formalism, and
applied to urban micro-cellular GSM simulations, was proposed in [41]. The
main advantage of such methods is to naturally model all propagation ef-
fects including reflection and diffraction. The price to pay is a high compu-
tational load, specially in a 3D setting. However, as explained in [42], such
approaches appear to be well-suited to indoor environments since their com-
putational complexity does not depend on the number of objects and reflec-
tions. Moreover, they can handle any shape of obstacle. In [42, 43, 44|, the
ParFlow theory is transposed to the frequency domain in order to compute
steady-state propagation; the Multi-Resolution Frequency Domain ParFlow
(MR-FDPF) algorithm allows the efficient solution of the associated linear
system of equations. This method is presented either in a 2D or 3D setting;
a so-called “2.5D" variant proposed in [43]| enables the efficient simulation
of radio propagation in multi-floor buildings. MR-FDPF was the first finite
differences method capable of simulating electromagnetic fields in realistic
buildings, with a prediction accuracy assessed by measurement campaigns
[44].

1.2.3 Deployment optimization criteria

There is a large variety of WLAN deployment quality evaluation functions in
the literature. These functions are sometimes used as optimization criteria, and
sometimes they are imposed as constraints to be satisfied.

o (Cost criteria. A first optimization criterion for the deployment of a wireless
network is naturally the economic cost, which mainly depends on the number
of APs used and site-specific installation costs [46, 47].




e (Coverage criteria. This family of criteria, which is very common in the
literature on WLAN optimization, includes indicators that describe how
well the network can cover the target area in terms of space and signal
strength. One can mention the covered surface criterion or the numbers of
covered clients [49]. The “hard cover” constraint refers to the fact that each
client must receive a signal with an intensity higher than a given threshold
[23, 46, 47, 50, 51|. An optimization objective used in [50, 52] is the sum of
power received by each client from the best AP server, whereas authors in
[49, 52] use the min - max criterion of received power from the best server
at the worse client location.

e Interference and Quality of Service criteria. Another family of criteria fo-
cuses on the QoS for the clients rather than the absolute strength of the
received signal. The QoS mainly depends on the signal strength but also on
the interference sources, this is why the SIR or the Signal Interference-plus-
Noise Ratio (SINR) are often used. These criteria are either involved as a
hard QoS constraint to enable data rate guarantee for every or are used as an
aggregated criteria (average). Some articles distinguish uplink and downlink
SIR [46, 47, 51]. Another QoS metric is the Maximum of Channel Utiliza-
tion, which designates the maximum traffic loads assigned to an AP. This is
a practical metric for the wireless network performance, because it explains
qualitatively its congestion [23]. More sophisticated approaches use simu-
lation tools to compute QoS metrics depending on the selected networking
protocol [53].

o (lient positioning accuracy criterion. In some cases, a deployment criterion
may be the ability of the system to locate client devices by a triangulation
process based on Wi-Fi communication protocol [54].

o Multiobjective approach and aggregate criteria. Some authors are interested
in finding deployment solutions with balanced characteristics between differ-
ent criteria among those mentioned above. In [55], a multiobjective approach
is implemented to obtain such a balanced solution. Other approaches use
aggregated criteria, which often are a linear combination of some of the
above-mentioned criteria [49, 52, 53|. The weights before each criterion are
often chosen heuristically.

1.2.4 Solution methods

The diversity of criteria yields a corresponding diversity of discrete, continuous,
convex, and non-convex problems, as well as solution methods. Some approaches
use Binary Linear Programming (BLP) or Mixed Integer Linear Programming
(MILP) formulations and employ standard branch-and-bound solvers |23, 46, 50],
or propose dedicated Dantzig-Wolfe decompositions [56]. Other approaches use
convex optimization techniques, such as the Simplex Algorithm [52], the Bundle
Methods [49], the Nelder-Mead Algorithm [49], the Quasi-Newton BFGS Algo-
rithm and the conjugate gradient search procedure [52, 57]. A wide range of
metaheuristics are also used in the literature of WLAN deployment optimization:
genetic algorithms [49, 52, 58|, Simulated Annealing [52|, Large-Neighbourhood
and Tabu Searchs [47], Termite Colony Algorithm [48] or Particle Swarm Op-
timization [59, 60|. Finally, a few authors use techniques from Constraint Pro-
gramming [51, 61] and Black-Box Optimization [53, 62].




1.3 Positioning in relation with the state of the art

In this paper we propose an integrated approach in two phases: in the first phase
we estimate the force of the magnetic field generate by a source in the building
floor by solving the Helmholtz differential equations. In the second phase we
formulate the OWLD optimization problem using input from the first phase, and
we solve it using a number of exact and heuristic techniques based on MP. The
approaches found in the literature to address the OWLD differ in either the first
or the second phase or both. An integrated approach was never proposed so far
to the best of our knowledge.

1.3.1 Simulation methodology

The main goal of the project that motivated this paper was to find a site-specific
procedure that could take into account the shape of the building hosting the
wireless network. We were looking for a simulation methodology more realistic
than an empirical model; we were interested in approaches based on Maxwell’s
equations [39, 40, 41, 42, 43, 44] because they appeared to be the canonical point
of view in physics. They took into account the physical effects of interest, i.e.
reflections, diffraction, self-interference or corridor effect. The alternative point of
view, provided by geometrical optics, appeared more complicated to implement.
Inspired by the MR-FDPF method [42, 43, 44|, we also chose to work in the
Fourier domain in order to obtain a partial differential equation (PDE) without
time dependence and with uncoupled frequencies: the Helmholtz equation. We
therefore solved this PDE using simple finite difference schema by a state-of-
the-art sparse linear solving library [63]. This way, we obtained a similar time
complexity as the MR-FDPF method, with an easier implementation.

1.3.2 Modelling the deployment problem
In this section we list the techniques on which our methodology is based.

e We use Binary Linear Programming as in [23, 46, 50| to model the overall
decision problem, which employes elements from facility location, frequency
assignment and knapsack.

e We optimize jointly over client positions, AP positions and channel assign-
ment.

— (Clients: we consider a certain number of given positions to place clients
at. In the case of a corporate building for instance, these positions would
correspond to workstations for employees, needing a WiFi connection.
Each client requires a certain uploading and downloading data rate. For
linear modelling purposes, we consider only two possible alternatives for
a client: it is either connected and receives the demanded data rates or
is disconnected.

— Access points placement: we consider also a list of predetermined avail-
able locations to place APs. A specific cost corresponds to each of these
locations, describing the installation and maintenance costs. We con-
sider APs of only one type. We chose not to consider repeaters, which
are rarely used in large-scale deployment project due to their lack of
reliability.




— Available channels and interference: we consider a set C of available
communication channels (i.e. frequencies) at our disposal for the WiFi
network deployment. The IEEE 802.11 WLAN standard defines a fixed
number of channels for use by APs and mobile users. A total of 13 fre-
quencies is available but these channels are overlapping. In practice only
3 frequencies can be used in the same physical neighborhood simulta-
neously without causing interference [14]. Therefore we considered here
to have three available non-interfering channels: |C| = 3.

e Abandonment of the APs orientation variables: after exchanging with net-
work experts [45], we thought it was not realistic to optimize in such a level of
detail because the impact of the antennas orientation is negligible compared
to impredictable perturbation sources such as moving obstacles.

e Presence of extra noise: our model involves an ambient noise that repre-
sents the thermal noise and the presence of perturbation sources from the
surrounding environment. Taking into account ambient noise leads to more
robust solutions.

e Impact of the interference and of the noise on the QoS: it is well known that
the interference between devices impacts the data communication rate. We
use the Shannon-Hartley theorem to express channel capacity as a function
of noise and interference levels as in [46, 47, 51|, for uplink and downlink
connections. The theoretical capacity of a wireless channel is given by Shan-
non’s law:

S
C =Bl 1+ — 1
om(1+ ) 1)
where B is the available bandwidth in Hz (Hertz), S the signal strength
and N the interference-plus-noise level in W (Watts). For fixed bandwidth
B and signal strength values C' and 5, the maximal interference-plus-noise
level compatible with datarate C' is thus:

S

Nmax(c, B, S) - W

(2)
The presence of an ambient noise implies that any connection in our de-
ployment will comply not only with a minimum SINR ratio but also with a
minimum signal strength in absolute value.

e Communication protocol: an important modeling issue is the role of the
communication protocol, which greatly impacts the data communication
rate in practice. In particular, the main issue is the interaction of multiple
client devices connected to a same AP. In this article, we refer to the Carrier
Sense Multiple Access with Collision Avoidance (CSMA/CA) method used
in the IEEE 802.11 standard, which is the most common WLAN protocol
[64]. The CSMA/CA method uses a collision avoidance mechanism based
on a principle of prior negotiation and reciprocal acknowledgements between
sender and receiver. The station wishing to transmit listens to the network.
If the network is busy, the transmission is delayed. Otherwise, if the media
is free for a given time then the station can transmit. No two clients may
emit at the same time. Hence, we can assume that clients connected to the
same AP do not interfere. We denote the set of any AP and its connected




clients as cluster. Inside a cluster, every device is tuned to the same channel.
The maximal data rate implied by CSMA/CA mode for each cluster will
be taken into account as a capacity v for each AP. Two clusters tuned to
different channels are assumed not to interfere with each other. By contrast,
two clusters tuned to the same channel do interfere: more explicitly, in
Shannon’s law Eq. (1) the variable N is a sum of a ambient noise § and
of all signals received from other clusters on the same channel, i.e. all the
interfering signals.

e Economic objective: we study the trade-off between installation and main-
tenance costs, and the total data-rate that the infrastructure can provide, as
in the UMTS network planning problem presented in [15]. We penalize each
data-flow unit that is requested by a client but not provided by the network
as deployed, at a cost p.

1.4 OQutline of the article

The rest of this article is organized as follows: Section 2 presents our methodology
for simulating the propagation of electromagnetic waves in an indoor environment,
which is based on a finite-difference scheme of the Helmholtz PDE; Section 3
introduces a BLP formulation for the OWLD problem based on the output from
the simulator, and another BLP formulation for a natural relaxation of OWLD
problem; Section 4 states that the OWLD problem and its relaxation are both
strongly NP-hard; Section 5 proposes heuristic algorithms to try to find better
solutions in case an exact algorithm would fail to close the optimality gap; Finally,
Section 6 presents our numerical experiments and the results obtained.

2 Solving the Helmholtz equations

In this section, we introduce a numerical methodology used to predict radio prop-
agation in any building whose shape and materials are known precisely, as detailed
below. Our approach is freely inspired by the MR-FDPF method of Gorce et al.
[42, 43, 44] but it leads to an easier implementation based on the sparse linear
algebra library SuperLU [63]. It is a simple finite difference schema to simulate
Helmholtz equation, a PDE defined on complex numbers which is the transposi-
tion of the classic wave equation in frequency domain.

2.1  Why the Helmholtz equation?
2.1.1 The classical wave equation

Following the same modelling simplifications from [41] and [65], for instance, we
consider a 2D environment and a transverse electromagnetic field, enabling us to
model it as scalar wave. We start from the following classical two-dimensional
wave equation in an heterogeneous medium:

Au(z,y,t) — pedfu(z, y,t) = —s(,y,t) 3)

where u(z, y,t) is the unknown real-valued function reprensenting the scalar wave,
s(z,y,t) is a source term, €(x,y) is the local electric permittivity and u(z,y) the
local permeability. The physical values € and p depend on the material: they
represent the architecture of the floor.




2.1.2  The frequency domain

In order to eliminate the time differential, the Fourier transform is applied to the
wave equation (3), which gives the Helmholtz equation:

AV (z,y,w) + wpel(z,y,w) = —S(z, y,w) (4)

where W is the Fourier transform of v and S is the Fourier transform of s. The
main advantage of this wave equation in the frequency domain is the absence
of partial derivative with respect to w, the angular frequency variable: every
frequency can be studied independently, leading to the case of one single harmonic
source. In the following, we assume that the source signal is only made of its
carrier frequency f., which corresponds to the angular frequency w. = 27w f.. The
Helmholtz equation can thus be written:

AU(z,y) + wope¥(z,y) = —S(z,y,w). (5)

The scalar field ¥ represents the intensity of the electromagnetic field in the
steady state corresponding to frequency f.. In such a steady state there is no
propagation anymore. We let ¢y denote the light speed in vacuum and A\, = £

denotes the carrier wavelength. ‘

2.2 Boundary conditions and the additional diffusive term
2.2.1 Boundary conditions

In any PDE, it is crucial to set the boundary conditions of the equation in order to
define the problem exactly. Here we impose a Dirichlet condition: the definition
domain is a rectangle [0, L] x [0, /] and ¥ has to be null on the boundary. However,
setting a null field value on the boundary creates fictitious reflections in the
simulation. Indeed this Dirichlet condition corresponds to a situation where the
boundary is a perfectly reflecting material: no outgoing energy transfer.

2.2.2 Avoiding spurious reflections

In preliminary simulations, fictitious patterns of interference were observed: the
reflections on the walls and on the boundary were overestimated. A solution
employed in [43] consists in adding a diffusive term in the boundary, in the walls.
This diffusive term models walls energy absorption and the energy transfer to the
outside. Helmholtz equation (5) can now be written:

AU (z,y) + p(w,y) (w2e(@,y) — iweo(z,y)) U(w,y) = =S(z,9,w)  (6)

where o(z,y) is a fictive electric conductivity that is strictly positive in the walls
and in the boundary (see Assumption 1). The complex two-dimensional equation
(6) is the ultimate PDE that we simulate.

2.3 Finite difference approach

2.3.1 Discretization

The rectangle [0, L] x [0, ¢] is discretized into a grid {0,..., N, —1} x{0,..., N, —
1}, using the same step h > 0 for both dimensions. We let d denote the integer
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NNy and index the grid by the set {0,...,d —1}. We assume that N, > 3. We
will discretize the field ¥ so that, for any (p,¢) € {0,..., N, —1}x{0,..., N, —1}
the scalar W;y, 4, is an approximation of W(hp, hq). We define G = ({0,...d —
1},&) the unoriented graph associated to grid {0,...,N; — 1} x {0,..., Ny —
1}. The classic discretization of Laplacian operator in (6) leads to the following
equation:

Vk €{0,...,d -1}, S U+ (Bnf — 4 —ihweon) V= Fr (7)

with the following conventions:

e normalization constant: 3 = “<k

e diffusive term: V(p,q) € {0,..., Ny — 1} x {0,..., Ny, — 1}, agn,4p =
p(hp, hq) o(hp, hq)
e refractive index: V(p,q) € {0,..., N, — 1} x {0,..., N, — 1}, ngn,4p =
co\/pu(hp, hq) e(hp, hq)
e source term: V(p,q) € {0,...,N,—1}x{0,...,Ny,—1}, Fyn,1p = —h?S(hp, hq,w).
We define the matrix U € R%? as the adjacency matrix associated to the grid
graph G and let L = 41;— U, where I; is the d x d identity matrix. We also define
the diagonal matrix D € R%*? associated to vector (5271% — ih?wea)o<k<d—1-

Defining also A = D — L € R%? the problem to be solved can be cast as
following linear system

AV =F, WecR% (8)

Broadly speaking, the A matrix represents the architecture of the building while
F represents the intensities and source positions. In the application cases we
present here, we have to calculate the electromagnetic field produced from each
source points, whose set is designated by V' C {0,...,d — 1}. For each source
point ¢ € V we need to solve a linear system with the same system matrix A
but with specific right-hand side (RHS) member F' = Pie; € R? where P, € R
is the power of device i and e; € R? is the canonical basis vector associated to
. In practice, P; has only two possible values in our experiments, depending on
whether i is a client device (Pgjient) or a candidate point to host an AP (P4p).
The electromagnetic field generated by ¢ € V' is the solution of linear system (8)
with F' = F? ; this solution is denoted W¢. For any (i,7) € V x V, the power
pij € Ry received by j from emitter i is:

pij = 5]

where W' is the solution of (8) associated to F?. The matrix p = (p;;) provides
the input to the optimization problem introduced in Sect. 3. Before proving the
invertibility of the system to be solved, we make a modeling assumption. This
numerical condition avoids spurious reflections (see Sect. 2.2) and is useful to
prove the invertibility.

Assumption 1. For any cell (p,q) such that p € {0,1, N, —2,N, — 1} or q €
{0,1, N, — 2, N, — 1}, we have agn,+p > 0.

Proposition 1. Under Assumption 1, the system matriz A is invertible.
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Proof. We take any complex vector ¥ € C?% such that AV = 0, and we are going
to prove that W = 0. This will prove the proposition since A is a square matrix.

1. First, we prove that for any k € {0,...,d — 1} such that aj > 0, we have
U, = 0. Decomposing matrix D = R — iJ, where R is the diagonal matrix
associated to vector (Ban)ogkgd—l and J the diagonal matrix associated to
vector (thcak)ogkgd,l, matrix A can be written as A = R—1iJ — L. Since
AW = 0, the following holds

U*RY — i(U*JT) — WXL = 0 (9)

Since matrices R, J, and L are real symmetric matrices, we know that
(U*RY, U* JU, U* L) € R3. Hence, we can deduce from (9) that U*J¥ =
0, by unicity of the imaginary part. Reformulating this, we have that
h2w, Zi;é ai|¥i|? = 0. Dividing by h?w. > 0, we have Zg;é ap|Vi? = 0.
Since a|Px|? > 0 for all k € {0,...,d — 1}, we deduce that ag|¥|> = 0
and thus (a; > 0) = (¥}, =0).

2. Based on this first point and using Assumption 1, we deduce that ¥ n, 4, =
0 for all (p, ¢) such that p € {0,1, N,—2, N, —1} or ¢ € {0,1, Ny—2, N, —1}.
This means that field vector ¥ is null in the proximity of boundaries.

3. We are now going to prove by finite strong induction over k € {0, 1,...,d—1}

that \I/k =0.
o Initialization: in the second argumentation point above, we proved that
Ty = 0.

e Induction step: we take k € {0,...d—2} and we assume that ¥; = 0 for
all | € {0,...k}. We decompose k as ¢N, + p. In a first case, we have
that p € {0,1, N, —2,N, — 1} or ¢ € {0,1, N, — 2, N, — 1}, and thus
Uy, = 0 (see second argumentation point). In a second case, we have
that (p,q) € {2,... Ny —3} x{2,... N, —3}. We apply then the system
equation (7) with a null RHS member and for index k = k + 1 — N,
which gives

Upio N, +Uhn, + Ui + Uiy on, + (8202 — 4 — ih*wear)Uhig N, = 0.
(10)

We recall that N, > 3 by assumption, thus the integers &k +2 — N, k —
Ng,k+1—2N,;, k41— N, are less than or equal to k. Using the strong
induction hypothesis, we know that ¥y o N, = Vi_n, = Yrt1-2n, =
Uyi1-n, = 0. Hence, equation (10) gives that ¥, = 0.

By strong induction, we proved that W, =0 for all k=0,...,d — 1.

2.3.2  Solution algorithm and time complexity

We need to solve |V| linear systems sharing the same matrix A € R%*? but
corresponding to different RHS member F € R%. Hence, it is worth computing the
LU factorization of this matrix as a first step in order to speed up the solution time
of every single linear system thereafter, see the next paragraph for the complexity
details. One can benefit from the non-zero structure of the entries of A by ordering
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the eliminations such that as few non-zeros as possible are generated in L and U,
because the number of non-zeros determines the storage and time complexities of
the triangular solves |66, 67|. For a 2-D regular grid like matrix A, we need O(d%)
floating point operations for a sparse factorization, and the L,U factors one obtains
have O(dlog d) non-zeros, see [68, 69]. Hence, based on the LU decomposition, a
system is solved in O(dlogd) floating point operations. Considering that N, >
Ny, the time complexity of the two algorithmic steps are thus the following:

e O(N2) for the LU factorization of the system
e O(N2log N,) to compute the system solution based on the LU factorization.

Since we want to compute the electromagnetic field generated by |V different
sources, we can see that the preliminar factorization enables to achieve it in
O(N3 + |V|N2log N,.) instead of O(|[V|N2). The resulting time complexity is
similar to the complexity of 2D MR-FDPF claimed in [42] but our approach lead
to a more direct implementation by using a state-of-the-art linear algebra library.

2.4 The “2.5-th” dimension

To make the model fit reality, it is crucial to model indoor radio wave propagation
in 3D environment. Transposing this finite-difference method in 3D would yield an
excessive increase of the time required to solve the systems. Instead, we consider
the 2.5D empirical approach presented in [43], which relies on the projections of
the field in the floor K — 1 and k + 1 to compute the field in the floor k, using one
of these alternatives:

e Flield Projecting models the 3D propagation by projecting the field map (of
the floor £ —1 and k+1) through the ceilings with an attenuation coefficient
depending on the nature of the ceilings.

e Source Projecting consists in projecting the sources (on floors £ — 1 and
k + 1) in floor k£ with an attenuation factor and then in computing the 2D
propagation in floor k from this virtual source.

e A linear combination thereof.

3  Optimal WLAN deployment: MP formulations

In this section, we introduce a new WLAN deployment optimization problem
that addresses many of the challenges that we found in the literature. We also
introduce a simple relaxation of this deployment problem and we prove that both
the problem and this relaxation are strongly NP-hard. Finally, we introduce in
this section several solution algorithms.

3.1 Binary linear programming formulation

We denote by (P) the BLP formulation introduced in this subsection. This is the
OWLD problem.

Sets of points We consider subsets of a 2D or 3D simulation grid:

e [ defines the set of users (clients) to be covered.
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e J defines the set of eligible positions for APs. A point which has to be
covered and which is also a potential AP position is duplicated. We can
therefore assume that I N J = (.

e V=J1UJ.
Set of channels C denotes the set of available frequencies.

Parameters Table lintroduces the parameters involved in our BLP formula-
tion. We make two assumptions: (a) the data flows u; and d; are scaled by the
available bandwidth, which is known to be the same for every channel; (b) the
different channel carrier frequencies are distinct enough not to interfere, but close
enough to assume that the signal strength p;; does not depend on the channel.
These assumptions are verified for any 3-frequency deployments with channels 1,
7, 13 of the 802.11g protocol [14]. Moreover, the fact that the signal strength
does not significantly depend on the channel can be numerically checked with
the simulation tool. Finally the last parameter of this optimization problem is a
“big-M" constant defined as M = 0 + 3=; ) cy2 Dij-

Notation | Index set ‘ Meaning

pij € Ry V x V| Signal emitted by ¢ and received by j computed with
methodology presented in Sect. 2
c; € Ry J AP installation cost at position j
u; € Ry I Data flow (normalised by the bandwith) client ¢ wants to upload
d; € Ry I Data flow (normalised by the bandwith) client ¢ wants to download
K e Ry IxJ Maximal interference-plus-noise level at ¢ for uplink connection
between client 7 and AP j
K% e Ry IxJ Maximal interference-plus-noise level at j for downlink connection
between client ¢ and AP j
vyeRy Flow capacity of any AP
0 eRy Ambient noise level
peRL Marginal penalty cost for non-provided flow unit

Set of edges

Table 1: Parameters

Given an ambient noise level 6 > 0, the set

Eg={(i,j) €I xJ| (0 <K A(@O <KL}

is the set of potential wireless connections, i.e. the set of all the user-AP pairs
such that the signal strengh is strong enough to enable uplink and downlink flow
in spite of the ambient noise. We actually consider the undirected graph induced
by G = (V, Ey), which we denote in the same way with a slight abuse of notation.
This undirected graph is bipartite.

Decision variables Table 2introduces the decision variables of our BLP for-
mulation. Having x; = 1 means that device ¢ is on, w;. = 1 means that device
¢ is tuned on channel ¢ and y;; = 1 describes that client ¢ is served by the AP
j on channel c¢. In this BLP problem, the total number of decision variables is
(L+1Cl) x V] +1C] x |Bgl.
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’ Notation ‘ Indices set ‘ Meaning

z; € {0,1} Vv Device i is on/off

w;e € {0,1} VxcC Device i emits on channel ¢

ys; € {0,1} Eyp x C | Client ¢ communicates with AP j on channel ¢

Table 2: Decision variables

Objective Minimize the sum of the device installation costs, and the cost for
not covering some of the clients:

Z cjxj + pZ(di +wi)(1 — ;).

jeJ iel

Constraints One coupling constraint:

e Fach device is tuned to a unique channel:

VieV, Zwic =x;
ceC

The other constraints are channel dependant (uncoupled):

e FEach client communicates with one AP:

Veel, Viel, Z Yi; = Wic
JjEJ
(i,5)€EEg
e Maximal capacity of an AP:
YeeC, Vj e J, Z (di + ui)yi; < ywje
(e,
e A client can communicate with an AP only if both are tuned to the same
channel:

Ve e C, V(i,j) € Ep, yj; < wic
Ve e C, \V/(Z,j) S Eg, yfj < Wije
e Interference-plus-noise constraints at clients, to enable downlink flow:

YeeC, V(i,j) € Eyp, 0+ E pki(wkc—ygj)—i— E PriWke < Kflj—i-M(l—inj)
kel keJ
ki k#j

(11)

e Interference-plus-noise constraints at candidates, to enable uplink flow:

VeeC, V(i,j) € Ey, 0+ E pkj(wkc—yij)—i— E pkjwkCSK?j—i—M(l—yicj).
kel keJ
ki k#j

(12)
Constraints (11) enable to certify that, if yf; = 1 i.e. if client i is connected to
AP j on channel ¢, the sum of the ambient noise and the interference from other
clusters tuned on the same channel will not exceed the maximal bearable level
K % On the contrary if yj; = 0, this constraint is necessarily satisfied by definition
of constant M. Constraints (12) are similar to constraints (11) but looking at
the maximal interference-plus-noise level at APs so as to make the uplink flows
possible.
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3.2 Relaxing the interference-plus-noise constraints

In the case where the number of available channels is large (i.e. greater than
the number of deployed APs), there is no interference problem between “clusters"
anymore since each used channel is assigned to a unique AP. In such a case one
can model the problem with less variables. We let (R) be the relaxation of (P)
obtained by removing the channel bound constraints.

Decision variables Table 3introduces the decision variables of this relaxed
problem.

’ Notation ‘ Indices set ‘ Meaning ‘
x; € {0,1} Vv Device i is on/off
yi; € {0,1} Ey Client ¢ communicates with AP j

Table 3: Decision variables

Objective Minimize the sum of the installation and penalty cost:

Z Ty + pZ(di + u) (1 — x;).

jeJ iel

Constraints

e Fach client communicates with one AP:

Viel, Z Yij = T
jeJ
(i,4)EEg

e Maximal capacity of an AP:

Vied, > (di+u)yy <7y,
(i,;)eeIEg

e A client can communicate with an AP only if both are on:

V(Z,j) € E@v Yij <
V(Z7]) € E@a Yij < Zj.

We underline that the problem (R) depends on signal strength data computed
with the simulator and on the parameters K%, K,fg through the definition of the
set of edges Fy. This relaxation has the advantage of providing a better lower
bound than the continuous relaxation. Admittedly, we will show in the Sect. 4
that this optimization problem is NP-hard, but in practice it is easier to solve than
the initial problem. Hence, we use this relaxation to build heuristic algorithms,

see Sect. 5.
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4 Complexity results

4.1 Complexity of the interference-free relaxation
Proposition 2. The decision problem associated with (R) is strongly NP-complete.

Proof. Table 4introduces (Rp), the decision problem associated with (R), whereas
Table 5introduces the classic (BinPacking) problem, which is known to be strongly
NP-complete [70]. We now show a polynomial reduction of (BinPacking) to prob-

Problem: (Rp)

Instance: Sets I, J
Rational numbers pij;, ¢;, ui, di, Kjj, Kl-dj,’y, 0, p as detailed in Table 1
Rational number @
Question: Does there exist a feasible solution of (R) with cost less than or equal to Q7

Table 4: Decision problem (Rp)

Problem: (BinPacking)
Instance: Positive integers N, K with K < N
Positive integers si1,...,sn, L
Question: Can we pack N objects of size s1,...,sy in K boxes of capacity L7

Table 5: Decision problem (BinPacking)

lem (Rp), which prove the proposition since (Rp), as a BLP feasibility problem,
is in NP. For any instance Z = (N, K, s1,...,sn, L) of (BinPacking), we define
an instance ®(Z) of (Rp) as:

e Sets: I ={1,...,N} (clients), J={N+1,..., N+ K} (APs), V=1UJ
e Parameters:

- V(i,j) € V2, py =1

- Vjed, Cj:()

-vViel, ui=d; =%

—V(i,j) e IxJ, K = K =1

—~v=1L
-60=0
—p=1

In such an instance, the graph Gy is the complete bipartite graph associated
to sets I and J.

e Level parameter Q =0

With such a definition, it is clear that Z is a YES instance of (BinPacking) if and
only if ®(Z) is a YES instance of (Rp):

e If 7 is a YES instance of (BinPacking), we can define the binaries y;; asso-
ciated to the presence of object ¢ in box j. We also define x; = 1 for all
i€ V. Since Y ey siyij < L for all j € J, we have >;c;(ui + di)yij < vz
for all j € J. Hence, (x,y) is a feasible solution of problem (R) associated
to parameters of instance ®(Z), and has an objective value equal to 0 < Q.
This is why (x,y) certifies that ®(Z) is a YES instance of (Rp).
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o If &(7) is a YES instance of (Rp), it exists (x,y) feasible in (Rp) and with
value equal to zero. This means, in particular, that

—wxi=1and ) c;yi; =1foralliel

— Yier(ui + di)yiy = Yieq siyij < Ly for all j € J
Thus, the vector y is an explicit allocation of N objects of size s1,..., sy in
K boxes of capacity L, and certifies that Z is a YES instance of (BinPacking).

Moreover, ®(Z) is computable with a time complexity polynomial in N and, thus,
polynomial in the coding size of Z, since N < |Z|. O
4.2 Complexity of the OWLD problem

From the previous complexity result, the complexity of the OWLD problem can
now be addressed.

Corollary 3. The decision problem associated with (P) is strongly NP-complete.

Proof. Table 6introduces (Pp), the decision problem associated with (P). We
are going to show a polynomial reduction of (Rp) to problem (Pp), which will
prove the proposition since (Pp), as a BLP feasibility problem, is in NP.

Problem: (Pp)

Instance: Sets I, J, C
Rational numbers p;j, ¢;, ui, di, K5, Kl-dj, v, 0, p as detailed in Table 1
Rational number Q
Question: Does there exist a feasible solution of (P) with cost less than or equal to Q7

Table 6: Decision problem (Pp)
For any instance 7 = (I7 J7 Pij, Cj, Us, di7 KZ"MW KZ: Y, 97 Py Q) of (RD)') we define an
instance ¥(Z) of (Pp) with same coefficients and C = J. With such a definition,
it is clear that Z is a YES instance of (Rp) if and only if ¥(Z) is a YES instance
of (PD)I

e If Tis a YES instance of (Rp), it exists a solution (x,y) € {0,1}V x {0, 1}
feasible for this instance of problem (Rp) and with value less than or equal
to @. In order to construct a feasible solution of (P), each cluster will

be assigned its own channel. Formally, we define the binary vectors ¥y €
{0,1}F0%C and w € {0,1}V*C as follow:

— §§; = yijdjc for all (i, j) € Ey and c € C, where §;c denotes the Kronecker
product between j and ¢
— Wi, = x;0;. forall i € Jand c € C
— Wie = Z Usj foralli e I and c € C.
()€ Fy
By construction (x,¥,w) is feasible for the instance ®(Z) of problem (P)
and has value > ¢y ¢;xj + p > e (di + ;i) (1 — ;) which is lower or equal to
@ by definition of (x,y). It certifies that ®(Z) is a YES instance of (Pp).
o If &(Z) is a YES instance of (Pp), it exists then a solution (x,¥,w) €

0,1}V x {0, 1}F6XC x {0, 1}V*C of this instance of problem (Pp) with value
less than or equal to Q. We define then vector y € {0,1}% as: Yij =
> cec Yi; for all (i, j) € Ep. By construction, (x,y) is feasible for the instance
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T of problem (R), and has value 3¢ ;c;jxj + p> e (di + ui)(1 — ;) which
is lower or equal to Q. It certifies that Z is a YES instance of (Rp).

Moreover the time complexity to compute W(Z) is clearly polynomial in coding
size of instance 7. O

One can legitimately question the interest of introducing relaxation (R) which
is NP-hard, as the original problem (P) is. In fact, we will see in in Sect. 6 that
the commercial branch-and-bound algorithm that we used solves this relaxation
considerably faster than (P), due to its smaller size and due to the absence of
“big-M” constant in (R). This provides good and fast lower bounds on the value
of problem (P).

5 Solution algorithms

To solve problem (P), we first used a standard MILP solver implementation (see
Sect. 6). It turns out, however, that this commercial solver cannot solve all the
tested instances to optimality with a practically reasonable time limit. This is
why we also propose several heuristic algorithms, in order to find better solutions
for the cases where the MILP solver does not close the optimality gap in due
time.

5.1 Greedy heuristics

The two first heuristic algorithms proposed here are based on a greedy approach.
The second algorithm is a “multi-start" variant of the first one.

5.1.1 First greedy heuristic

This algorithm sequentially treats the different available frequencies. For a given
frequency, the following steps are repeated as long it is possible to generate a new
cluster with a positive score:

e For each AP that is not turned-on yet, the clients that can be associated
with it are selected in a greedy way. The construction of each potential
cluster must respect the bandwith limitation of the AP, and the interfence
caused by these new devices must not prevent pre-existing connections on
the same frequency. A score is assigned to each potential cluster, made of
gains of connecting the selected clients minus the AP cost.

e The cluster with highest score is selected, the corresponding devices are
turned-on if and only if the score is nonnegative. If the score is negative,
the channel is considered “full".

When the channel is “full", all devices switched on this channel are filtered out
and the process is repeated for a new channel. In order to present a pseudo-code
of this first greedy heuristic, we need to introduce three auxiliary procedures. In
all these procedures, the variable ChannelEnv stands for “channel environment"
and designates the set of APs already selected and switched on this channel,
jointly with the client devices connected to them. Given a device index k € V
and a “channel environment", i.e. a set of pairs (client, AP), the first auxiliary
procedure (Algorithm 1) aims at checking if turning-on device k is possible in
the sense that it does not hinder a connection present in the environment. Given
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Algorithm 1 Procedure CompatibleDevice
1: procedure COMPATIBLEDEVICE(k, ChannelEnv)

2: for each pair (7, j) of client-AP connection in ChannelEnv do

3: Let Ny, be the interference-plus-noise level for uplink connection (4,j) in
ChannelEnv

4: Let Ngown be the interference-plus-noise level for downlink connection (7, ) in
ChannelEnv

5: if Nyp +pi; > K then > If the AP k hinders the (i,j) uplink connection.

6: return FALSE

7 end if

8: if Ngown + Pri > K% then > If the AP k hinders the (i,j) downlink connection.

9: return FALSE

10: end if

11: end for

12: return TRUE
13: end procedure

an AP that we denote by a, given a set of possible client devices and a “channel
environment", the second auxiliary procedure (Algorithm 2) aims at checking
if AP a may be turned-on without impacting the existing connections already
set on this channel, and then compute a set of client devices (a cluster) in a
greedy approach, knowing that the connection possibilities also depend on the
“channel environment". This procedure returns the “score" of this cluster, i.e. its
contribution to the objective function.

Thanks to the ScoreCluster procedure, the third auxiliary procedure (Algorithm
3) tests all the possible new clusters to add on a current channel and select the
“best" one, in a greedy approach too. With this auxiliary procedures, we can
now introduce the pseudo-code of the greedy heuristic (Algorithm 4). In this
algorithm, the size of array patterns is |C|, the number of available channels. At
the end of the algorithm, patterns[i] contains the list of (client, AP) pairs set on
this channel.

5.1.2 Multistart greedy heuristic

The idea of this second algorithm comes from the observation that the first se-
lected AP in the previous greedy heuristic highly influences the final results.
Hence, it is relevant to run several times the greedy heuristic with a different AP
selected first in the process (Algorithm 5).

5.2 Relaxation-based heuristics

We now present two heuristic algorithms based on the fact that the interference-
free relaxation problem (R) presented in Sect. 3.2 is more efficiently solved by the
used MILP solver than the original problem (P).

5.2.1 First relaxation-based heuristic

The principle of this algorithm is to use the solution of the interference-free relax-
ation (R) to build a solution of the original problem (P), by assigning a channel to
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Algorithm 2 Procedure ScoreCluster
1: procedure SCORECLUSTER(a, I, ChannelEnv)
2 if compatible-device(a, ChannelEnv) then
3 Sort clients by decreasing order of d; + u;
4: S <« ¢,
5: ChannelEnv2 <— ChannelEnv U {a}
6
7
8
9

I~
for ¢in I do > Loop adding client devices in the cluster.
if d; + u; < T' A CompatibleDevice(i, env2) then
Let Nyp be the interference-plus-noise level for the (i,a) uplink connec-
tion in env?2

10: Let Ngown be the interference-plus-noise level for the (i, a) downlink con-
nection in env2

11: if Nyp < K5 A Ngown < ng then > If the connection (i,a) is possible.

12: S+ S— p(dl -+ Ul)

13: F<—F—(di+ui)

14: ChannelEnv2 <— ChannelEnv2 U {i}

15: end if

16: end if

17: end for

18: return S, ChannelEnv2

19: else

20: return 0, ChannelEnv

21: end if

22: end procedure

Algorithm 3 Procedure ClusterSelection
1: procedure CLUSTERSELECTION(/, J, ChannelEnv)
2 S+ 0
3 ChannelEnv2 « ChannelEnv
4 for ain J do
5: Sauz, ChannelEnvAux <— ScoreCluster(a, I, ChannelEnv)
6
7
8
9

if Sgue < S then
S Sauac
ChannelEnv2 < ChannelEnvAux
end if
10: end for
11: return S, ChannelEnv2
12: end procedure

each cluster and possibly switching off the devices to make the solution feasible.
Thus, this heuristic consists in successively solving two easier BLP problems:

1. Positioning step: Choose the AP-hosting candidate points, select the client
devices to serve, and design “clusters" (set of client devices connected to a
same AP) by solving the interference-free relaxation (R). This allows us to
obtain a solution (X,¥) € {0,1}V x {0,1}¥¢ that represents clusters.

2. Frequency assignment step: Assigning channels to clusters and poten-
tially turning-off devices if needed. We define this frequency assignment
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Algorithm 4 Procedure GreedyHeuristicl (GH1)

1: procedure GREEDYHEURISTICL(], J,C)

2 val <= p> icr(di + u;)

3 Declare patterns as an array indexed by C

4 for cin C do > Loop over the channels.
5: ChannelEnv < ()

6 S, ChannelEnv < ClusterSelection(Z, J, ChannelEnv)

7 while S < 0 do

8 val <~ val+ S

9: patterns[c| <— ChannelEnv
10: I < I\clients(ChannelEnv)
11: J < J\APs(ChannelEnv)
12: S, ChannelEnv <— ClusterSelection(7, J, ChannelEnv)
13: end while
14: end for
15: return val, patterns

16: end procedure

Algorithm 5 Procedure GreedyHeuristic2 (GH2)

1: procedure GREEDYHEURISTIC2(, J,C, triesNb)

2: TabuList < []

3: fori=1,...,triesNb do

4: Run GreedyHeuristic(Z, J,C), but forbidding the APs in the TabuList for the

first AP selection of the first channel.

5 A + the first selected AP in the computed solution

6 Append Tabulist with A
7 end for
8
9

return Best encountered solution
: end procedure

problem as the initial problem (P) with the (x,y)-based additional con-
straints:

Vi e ‘/a x; < T,

These constraints reduce the combinatorial nature of the problem by speci-
fying that only devices and connections existing in (X,y) may be used in the
final deployment. Introducing the set of allowable edges E(y) = {(4,j) €
Ey : y;j = 1}, this frequency assignment problem (Pky) can be written in a
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Algorithm 6 Procedure RelaxHeuristicl (RH1)

1: procedure RELAXHEURISTIC1(I, J,C)

2 Solve interference-free relaxation (R).

3 Let (x,y) be an optimal solution of the relaxation.
4: Solve the frequency assignment problem Pk y.
5
6
I

Let sol be the optimal solution found and val be its value.
return val, sol
end procedure

compact way:
min Y c;xy + pd (di 4+ ug) (1 — ;)
jeJ iel
st. VieV, x; <
VieV, Y wi=x;
ceC
Ve € C,V(Z,]) S E(S’)? Wie < Wije

V(i,j) € E(y),Ve €C, 0+ 3 priwpe+ X priwke < K5+ M(1 — wic)

(k,))EE(Y) ii.]
1] 2
V(i,j) € E(y),Vc €C, 0+ > prjwre + X prjwre < Kjj + M(1 — wic)
(- EE) e
#J

x € {0,1}V, w € {0,1}V>C.

This optimization problem has a number of variables and constraints linear
in |C| x |V|. Indeed we have |E(y)| < V. We underline that problem (Pk )
does not only aim at assigning frequencies to each device of the relaxation
solution (X,y), but also at turning off devices to get a feasible solution of (P).
From any (x,w) solution of (Pky), one can deduce a solution (x,y) of (P)
by setting yj; = yijwic. This property is used in the following algorithms:
for a matter of simplicity, we consider (x,w) and (x,y) as being equivalent,
if the definition of g is unambiguous.

With those definitions, we may now introduce the pseudocode of this first relaxation-
based heuristic (Algorithm 6).

5.2.2 Second relaxation-based heuristic

We introduce an iterative variant of the relaxation-based heuristic consisting in
repeating positioning step and frequency assignment step alternately. The APs
and clients positioning step is modified to benefit from the feedback of the fre-
quency assignment step. We assume we have a threshold value 7 € Ry and a
non-negative vector ¢ € RK and we are looking for a solution (x,y) of the re-
laxation problem (R) whose objective value is lower than 7 and with minimal

score
> ¢ > Ppji (13)

iev jev
z;=1 -3HeF(y) i,jeH

where F(y) denotes the set of clusters associated to deployment y. We recall
that a cluster is a set gathering an AP and all clients connected to it. Hence, the
set F(y) is formally defined as

Fly)={{ivliellyy=1}|je Jaj=1}. (14)
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The objective function (13) is chosen to come up with solution of the relaxation
that avoid the overlapping of clusters. The problem of looking such a solution

can be formulated as a BLP problem:

min Z d)ml
eV

st Y cjT; +p>(di +ui)(1—ay) <7
jeJ iel

Viel, Z Yij = Ty
JeJ|(3,5)EE,

Vied, ¥ (di+u)yi; <z
i€l|(i,5)€ g

V(i,j) € Ey, yij < 2

Vied, ¥ piwi+ Zpi(r;—yi) <ni+ M(1— ;)
jer

jeTj#i

Viel, ZJPji(%’ —vij)+ X pii(Yik — yik) <ni+ M(1— )
JE j

(]7k)€E9
x € {0,1}V,y € {0,1}F¢, n e RY

In this BLP model, the variable n; represents the sum of the signal powers received
by ¢ and emitted by devices j that are not in the same cluster as i. Now that
problem (R.,) is defined, we are able to present the second relaxation-based
heuristic (Algorithm 7), that depends on two parameters: a parameter nb it
denoting a maximal number of iterations and a multplicative factor » > 1 to
increase the penalty associated to a node that is turned off during the frequency
assignement step. During this process, the parameter 7 stores the current target

Algorithm 7 Procedure RelaxHeuristic2 (RH2)

1:
2:
3:
4:

©

10:

11:
12:
13:
14:
15:
16:
17:
18:

procedure RELAXHEURISTIC2(I, J,C,nb__it,r)
Solve interference-free (and channel free) relaxation (R).
Let (x,y) be the optimal solution found and 7 be its value.

Solve the frequency assignment problem Pk y associated with (X,y) and let (

be its optimal solution found and v be its value.
Gap <~ v — 7, d < Gap/nb__it, ¢ + 1
if Gap =0 then
return v, (X,¥)
end if
fori=1,...nb_it do
Solve (R, ;) and let (X,y) be the optimal solution found.

X

)

y

)

Solve the frequency assignment problem Py gy associated with (X,y) and let

(X,¥) be its optimal solution found and v be its value.
if v <7 then return v, (x,y)
else
T+ T4+9
For any ¢ € V such that z; =1 and &; =0, ¢; < r¢;
end if
end for
return Best encountered solution (X,y) and its value.
end procedure

for a solution value.
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6 Computational experiments

This last section is dedicated to computational experiments that we led to assess
the proposed methodology. We present the numerical setup for the simulation
and the optimization parts, as well as the performance of both algorithmic steps.

6.1 Instances generation

6.1.1 Map generation and simulation

The first experimental step was to design building plans. The solution we chose to
produce examples for the moment was to design building maps with a graphical
raster editor. Table 7introduces the physical coefficients for the simulation, that
we used for all the maps. We produced 6 different types of floors. The dimensions

Parameter fc h Qlajr Omur Nair | Mmur 5 Pap Pejient
Maps 1,2 and 4 | 24 GHz | 3cm | 0s/m? | 15s/m? | 1 4 |1[2W]01W
Maps 3,5and 6 | 24 GHz | 3cm | 0s/m? | 10s/m? | 1 3 |[1|2W|[01W

Table 7: Simulation parameters

of such 2D maps are detailed in the Sect. 6.2. For each floor, we produce a one-
level, a two-level and a three-level building based on this (duplicated) floor: we
come up with 18 different buildings. In order to calculate the field generated by
devices on another floor, we use the field projection method (see Sect. 2.4) with
an attenuation gain of -15 dB per floor. For each building, the client and APs
positions (2D coordinates and floor) are chosen at random. The choice of the
discretization step h is consistent with the common knowledge in simulation, of
using a step smaller than a quarter wavelength.

6.1.2 Parameters of the optimization problems

We produced instances with uniform AP costs (¢; = 10) and uniform clients
uplink and downlink normalised demanded data rates (u; = d; = 0.5). The
maximum data rate that a AP can process is set to v = 8. For each client, it
corresponds to a balanced situation between uplink and downlink flow with a total
data flow equals to the bandwidth. According to Shannon’s law (see Sect. 1.3)
and using notations introduced in (2), the parameters Kj; and Kidj are taken in
accordance to the normalised data rates and the signal strengths:

K;L = Nmax(ui7 17pij) = %7
KZ] - Nmax(diu 17p]1) - 251]:1'

(15)

Each of the 3 sets of parameters presented in Table 8was tested for the 18 building
configurations, giving us a total of 54 cases. We now discuss the implementation
and the results of the simulations in Sect. 6.2 and then the optimization algorithms
in Sect. 6.3.

6.2 Simulation experiments

6.2.1 Implementation

The numerical experiments presented here were ran on a computer with following
characteristics:
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’ Set of parameters ‘ 0 ‘ p ‘

Set 0 0.0001 | 100
Set 1 0.0001 | 10
Set 2 0.001 | 100

Table 8: Sets of parameters

e CentOS Linux 7 operating system;
e 32 processors Intel(R) Xeon(R) CPU E5-2620 v4 @ 2.10GHz;
e 64 GB of RAM.

The LU factorization is computed with a variant of the Gilbert and Peierls al-
gorithm for sparse gaussian elimination, implemented in the SuperLU library
[63]. Based on this LU factorization, the linear systems are solved with the same
library. This library is accessed through the Scipy wrapper [71]| for Python.

6.2.2 Results

In the following table, the columns “LLU time" and “Average solution time" corre-
spond respectively to the LU factorization time and the average system solution
time for one source and for a given floor. The average time for the projection step
on an other floor (see Sect. 2.4) is presented in the column “Average projection
time".

Floor type | Ground surface | N, | Ny | LU time Average Average
solution time | projection time
Map 1 153 m? 523 | 325 | 106.5 s 0.13 s 0.04 s
Map 2 293 m? 1000 | 325 | 177.6 s 0.25 s 0.08 s
Map 3 472 m? 898 | 584 | 2404 s 0.41 s 0.13 s
Map 4 683 m? 1200 | 632 | 198.6 s 0.59 s 0.18 s
Map 5 593 m? 1067 | 618 | 92.2's 0.47 s 0.15 s
Map 6 817 m? 1230 | 738 | 102.1s 0.72 s 0.21s

Table 9: Simulation results

The calculation times displayed here correspond to sequential computations:
in the implementation of the SuperLU library that we used, the multiple pro-
cessors of the machine are not exploited. A direct way to exploit multithreading
would be, given the LU decomposition, to run parallel processes to compute prop-
agation for different sources. The largest building treated here (Map 6 duplicated
on three floors) corresponds to an office building of intermediate size.

6.3 Optimization experiments
6.3.1 Implementation

All the optimization algorithms have been implemented in the C++ programming
langage and ran on the same machine that the one used for the simulation ex-
periments. We used a commercial MILP solver, namely IBM ILOG CPLEX 12.8
[72] that we called through the Concert Technology API for C-+-+. In practise, we
did not use the “big-M" constant in MILP problems (P), (Pk,y) and (R;4) but
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a dedicated CPLEX feature to handle such constraints. At most 16 processors
were allocated to CPLEX, and we set a time limit of 600 seconds.

6.3.2 CPLEX performance

CPLEX was able to solve 72% of the instances to optimality within the time
frame of 600s per instance. For the instances that CPLEX solved within 600s,
the Figure 1shows an exponential relationship between the solution time and the
total number of clients and candidates. The computation time and the lower and
upper bounds for each instance are given in the Appendix. Of the 15 cases that
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Figure 1: Performance of CPLEX's branch-and-bound solver: solution time

were not solved to optimality by CPLEX, the optimality gap is greater than 20%
in 8 cases. Figure 2illustrates that the largest instances show a high optimality
gap of more than 80% for 4 cases. These very large gaps illustrate the difficulty
of the OWLD problem, even for relatively small instances; therefore it calls for
heuristic algorithms.
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Figure 2: Performance of CPLEX's branch-and-bound solver: optimality gap within 600 sec
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6.3.3 Heuristics performance

The performance of the heuristic algorithms are presented in comparison with
the time and solution results of CPLEX branch-and-bound algorithm. Detailed
results for each instance are presented in the Appendix. Figure 3is a performance
profile, plotting in the x-axis the CPU time ratio compared to CPLEX’s CPU
time and in the y-axis the % of instances for which the heuristic does better than
this ratio. For example, GH1’s CPU time is 1000 times shorter than CPLEX’s
for 55% of the instances. According to this same figure, the two greedy heuristics
are significantly faster than other algorithms. Both relaxation-based heuristics
have generally shorter computation times than CPLEX, but in a significant part
of the cases they are longer. The parameters used for the iterative versions of

100 4

—— GreedyHeuristicl
—== GreedyHeuristic2
—— RelaxHeuristicl
——- RelaxHeuristic2

Proportion of instances below threshold (%)

T T
107 1073 1072 1071 10 10!
Time ratio compared to CPLEX

Figure 3: Performance of heuristic algorithms: solution time compared to CPLEX

greedy and relaxation-based heuristics are the following:
e (GH2) triesNb = 10
e (RH2) r=1,if |[V| <70, nb_it=15else nb_it =5.

For both type of heuristics, greedy (GH) and relaxation-based (RH), it appears
that the iterative version of the heuristic has a longer computing time but finds
much better solutions: the performance profile is improved. Globally, all heuris-
tics present a certain lack of robustness in that extent that, in 10% to 20% of
the instances depending on the heuristic, they failed to find a solution under
a +100% quality gap compared to CPLEX’s solution. The iterative relaxation-
based heuristic presents the best rate (63%) of instances where the solution found
is as good as the solution found by CPLEX or better. In this perspective, it is the
most robust heuristic. However, the multistart greedy heuristic clearly outpasses
all other heuristic algorithms in term of solution quality for big instances, as Table
10shows. It greatly outperforms the CPLEX solution for 3 of these 6 instances.
To that extent, the multistart greedy heuristic is more complementary to the
exact branch-and-bound algorithm than the iterative relaxation-based heuristic.
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Figure 4: Performance of heuristic algorithms: solution quality compared to CPLEX

Instance name Il | |J] Solution Value Lower bound
B&B | GH1 | GH2 | RH1 | RH2 | (B&B)
Instance. MAP6_1 1 | 155 | 112 | 440 490 | 480 | 500 | 440 430
Instance. MAP6_1 2 | 155 | 112 | 2570 | 3710 | 3060 | 4390 | 3500 2570
Instance. MAP6_1_3 | 155 | 112 | 7690 | 850 | 850 | 3140 | 1960 676.25
Instance. MAP6_ 2 1 | 175 | 181 | 1810 | 780 | 550 | 660 | 660 342.50
Instance. MAP6_2 2 | 175 | 181 | 4070 | 5160 | 4230 | 6790 | 5420 2350
Instance. MAP6_2 3 | 175 | 181 | 14490 | 8660 | 5890 | 7180 | 7180 1221.25

Table 10: Performance of B&B and heuristics on the six largest instances

7 Conclusion

We proposed a protocol to optimize the deployment of a WLAN, taking full ac-
count of the building’s architecture, which we tested on mid-size buildings with
a floor area of up to 1000m? and several floors. The strength of our approach is
a sophisticated but fast to code simulator that is based on the physical equations
of radio wave propagation. This simulator allows us to calculate the electromag-
netic field produced by any source in the building. We then introduce a stylized
network deployment optimization problem, which consists of optimizing the posi-
tioning and frequency assignment of the APs to provide WiFi access to customers
whose positions are given. This problem, which is formulated as a BLP, has the
particularity of fully exploiting the data produced by the radio propagation sim-
ulator. We show that this problem is strongly NP-difficult, and the numerical
experiments that we have carried out with a standard MILP solver implemen-
tation have confirmed the difficulty of the problem. This commercial solver was
typically able to solve instances within ten minutes, if the combined number of
clients and APs is about 100. Within this time limit, the optimality gap could
exceed 80% for the largest instances encountered, with more than 300 nodes. This
is the reason why we also proposed several heuristic algorithms: a greedy heuris-
tic and its iterative variant; and another heuristic based on a natural relaxation
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of the original problem, and its iterative variant. Although not the most robust
heuristic among the four, the iterative variant of the greedy heuristic turned out
to be the most attractive as it allowed to find significantly better solutions than
the solver for some of the largest instances. From this perspective, it is the most
complementary to the exact approach.

In future work we will be able to test our simulator for even larger buildings,
albeit at the cost of longer computation times. Future work will also consist of
testing the different optimization algorithms, exact or heuristic, for even larger
instances so as to get closer to the thousand, regarding the cumulated number of
clients and APs. It is likely that such cases would clearly demonstrate the rele-
vance of using heuristic algorithms. Another future research line is to implement
an exact approach that can better scale, as a column-generation algorithm for
instance. Finally, we also plan to propose a stochastic or robust variant of this
optimization problem to take into account several scenarios concerning the use of
the network or the presence of moving obstacles in the building.
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Appendix

Instance name [I] | |J| | Solution | Lower | Optimality | Computation
Value | Bound | Gap (in %) | Time (in s)
Instance. MAP1 0 1 13 19 30 30 0 0.1
Instance. MAP1_0_ 2 13 19 50 50 0 0.2
Instance. MAP1_0 3 13 19 30 30 0 2.3
Instance. MAP1 1 1 | 23 13 20 20 0 0.6
Instance. MAP1_1 2 23 13 50 50 0 0.2
Instance. MAP1 1 3 23 13 20 20 0 2.0
Instance. MAP1 2 1 | 24 30 40 40 0 5.0
Instance. MAP1_2 2 24 30 190 190 0 0.8
Instance. MAP1_2 3 | 24 30 40 40 0 12.7
Instance. MAP2 0 1 | 24 22 40 40 0 1.0
Instance. MAP2 0 2 24 22 310 310 0 0.2
Instance. MAP2 0 3 24 22 30 30 0 4.3
Instance. MAP2 1 1 | 35 39 80 80 0 3.4
Instance. MAP2 1 2 35 39 490 490 0 0.8
Instance. MAP2_1_3 | 35 39 60 60 0 16.8
Instance. MAP2 2 1 | 56 47 80 80 0 14.4
Instance. MAP2 2 2 56 47 510 510 0 4.0
Instance. MAP2_2 3 | 56 47 60 60 0 41.4
Instance. MAP3 0 1 | 25 18 30 30 0 0.9
Instance. MAP3_ 0 2 25 18 170 170 0 0.3
Instance. MAP3_0_3 | 25 18 30 30 0 2.3
Instance. MAP3 1 1 | 40 45 60 60 0 42.6
Instance. MAP3 1 2 | 40 45 730 730 0 49.7
Instance. MAP3_1_3 | 40 45 60 60 0 98.9
Instance. MAP3 2 1 62 73 180 115.0 36.1 603.4
Instance. MAP3_2 2 | 62 73 1770 1055.7 40.4 600.9
Instance. MAP3_2 3 | 62 73 620 105.0 83.1 606.1
Instance. MAP4 0 1 | 38 26 50 50 0 1.6
Instance. MAP4_0_ 2 38 26 190 190 0 0.8
Instance. MAP4_0_3 | 38 26 40 40 0 11.3
Instance. MAP4 1 1 36 41 150 150 0 1.7
Instance. MAP4 1 2 36 41 1360 1360 0 0.4
Instance. MAP4_1_3 | 36 41 380 380 0 5.5
Instance. MAP4 2 1 41 56 210 210 0 3.2
Instance. MAP4 2 2 | 41 56 1890 1890 0 0.4
Instance. MAP4_2 3 | 41 56 100 100 0 40.7
Instance. MAP5 0 1 | 39 45 130 130 0 7.8
Instance. MAP5_ 0 2 39 45 630 630 0 2.3
Instance. MAP5_0_3 | 39 45 570 557.5 2.2 600.6
Instance. MAP5 1 1 70 78 150 123.8 17.5 602.9
Instance. MAP5 1 2 | 70 78 440 440 0 29.6
Instance. MAP5_1_3 | 70 78 110 110 0 448.0
Instance. MAP5 2 1 | 115 | 101 210 197.5 6.0 608.5
Instance. MAP5 2 2 | 115 | 101 550 455.0 17.3 603.3
Instance. MAP5_2 3 | 115 | 101 170 170 0 597.5
Instance. MAP6_0 1 84 92 170 156.3 8.1 604.6
Instance. MAP6_0 2 | 84 92 1740 1640 5.7 601.2
Instance. MAP6_0_3 | 84 92 340 218.8 35.7 608.4
Instance. MAP6_1 1 | 155 | 112 440 430 2.3 612.3
Instance. MAP6_1 2 | 155 | 112 2570 2570 0 49.5
Instance. MAP6_1_3 | 155 | 112 7690 676.2 91.2 628.5
Instance. MAP6_2 1 | 175 | 181 1810 342.5 81.1 647.2
Instance. MAP6_2 2 | 175 | 181 4070 2350 42.3 613.6
Instance. MAP6 2 3 | 175 | 181 14490 1221.2 91.6 602.5

Table 11: CPLEX 12.8 branch-and-bound algorithm: optimality gap and solution time
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Instance name 1l | |J] GH1 GH2 GH1 GH2
Solution Value | Solution Value | Time (in s) | Time (in s)
Instance. MAP1 0 1 13 19 30 30 0.01 0.01
Instance. MAP1_0_2 13 19 50 50 < 0.01 0.01
Instance. MAP1_0_3 | 13 19 30 30 <0.01 0.01
Instance. MAP1 1 1 | 23 13 30 30 < 0.01 0.01
Instance. MAP1_1 2 23 13 60 60 < 0.01 0.01
Instance. MAP1_1_3 | 23 13 20 20 < 0.01 0.01
Instance. MAP1 2 1 | 24 30 60 50 < 0.01 0.02
Instance. MAP1 2 2 24 30 210 200 < 0.01 0.03
Instance. MAP1_2_3 | 24 30 60 40 < 0.01 0.03
Instance. MAP2 0 1 | 24 22 50 50 < 0.01 0.02
Instance. MAP2_ 0 2 24 22 390 310 < 0.01 0.03
Instance. MAP2 0 3 24 22 40 30 < 0.01 0.02
Instance. MAP2 1 1 | 35 39 110 90 < 0.01 0.06
Instance. MAP2 1 2 35 39 680 590 0.01 0.08
Instance. MAP2_1_3 | 35 39 170 70 < 0.01 0.05
Instance. MAP2 2 1 | 56 47 120 90 0.01 0.13
Instance MAP2 2 2 56 47 880 700 0.02 0.21
Instance. MAP2_2 3 | 56 47 70 70 0.01 0.12
Instance. MAP3 0 1 25 18 50 30 < 0.01 0.02
Instance. MAP3 0 2 25 18 270 180 < 0.01 0.02
Instance. MAP3_0_3 | 25 18 30 30 < 0.01 0.01
Instance. MAP3 1 1 40 45 110 100 0.01 0.08
Instance. MAP3 1 2 40 45 1480 1090 0.01 0.10
Instance. MAP3_1_3 | 40 45 1740 560 0.01 0.08
Instance. MAP3 2 1 | 62 73 310 250 0.02 0.21
Instance. MAP3 2 2 | 62 73 2700 2220 0.02 0.24
Instance. MAP3_2_ 3 | 62 73 2870 2080 0.02 0.20
Instance. MAP4 0 1 38 26 70 60 < 0.01 0.04
Instance. MAP4_0_2 | 38 26 200 200 < 0.01 0.06
Instance. MAP4_0_3 | 38 26 50 40 < 0.01 0.04
Instance. MAP4 1 1 | 36 41 170 160 0.01 0.07
Instance. MAP4 1 2 36 41 1370 1360 0.01 0.11
Instance. MAP4 1 3 | 36 41 410 390 0.01 0.06
Instance. MAP4 2 1 41 56 240 210 0.01 0.15
Instance. MAP4 2 2 | 41 56 1900 1900 0.02 0.20
Instance. MAP4 2 3 41 56 240 120 0.01 0.11
Instance. MAP5 0 1 39 45 150 130 0.01 0.08
Instance. MAP5_0_2 | 39 45 720 630 0.01 0.09
Instance. MAP5 0 3 39 45 580 570 0.01 0.07
Instance. MAP5 1 1 70 78 160 150 0.03 0.33
Instance. MAP5_ 1 2 | 70 78 730 640 0.03 0.40
Instance. MAP5 1 3 70 78 310 130 0.03 0.31
Instance. MAP5 2 1 | 115 | 101 230 230 0.09 1.00
Instance. MAP5 2 2 | 115 | 101 1290 930 0.10 1.25
Instance. MAP5 2 3 | 115 | 101 290 200 0.08 0.93
Instance. MAP6_0 1 84 92 290 220 0.04 0.49
Instance. MAP6 0 2 84 92 2240 2120 0.06 0.64
Instance. MAP6 0 3 84 92 2320 1550 0.04 0.41
Instance. MAP6_1 1 | 155 | 112 490 480 0.13 1.57
Instance. MAP6 1 2 | 155 | 112 3710 3060 0.20 2.52
Instance. MAP6 1 3 | 155 | 112 850 850 0.12 1.21
Instance. MAP6_2 1 | 175 | 181 780 550 0.25 2.72
Instance. MAP6 2 2 | 175 | 181 5160 4230 0.33 4.11
Instance. MAP6 2 3 | 175 | 181 8660 5890 0.18 2.26

Table 12: Greedy heuristics: solution value and computation time
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Instance name 1l | |J] RH1 RH2 RH1 RH2
Solution Value | Solution Value | Time (in s) | Time (in s)
Instance. MAP1 0 1 13 19 30 30 0.1 0.1
Instance. MAP1_0_2 13 19 50 50 0.0 0.0
Instance. MAP1_0_3 | 13 19 30 30 0.0 0.0
Instance. MAP1 1 1 | 23 13 20 20 0.0 0.0
Instance. MAP1 1 2 23 13 50 50 0.0 0.0
Instance. MAP1 1 3 23 13 20 20 0.0 0.0
Instance. MAP1 2 1 | 24 30 40 40 0.5 0.5
Instance. MAP1 2 2 24 30 290 200 0.1 3.0
Instance. MAP1 2 3 24 30 340 40 0.1 1.2
Instance. MAP2 0 1 | 24 22 40 40 0.0 0.0
Instance. MAP2_ 0 2 24 22 650 390 0.0 0.6
Instance. MAP2_0_3 | 24 22 30 30 0.0 0.0
Instance. MAP2 1 1 | 35 39 80 80 0.1 0.1
Instance. MAP2 1 2 35 39 1120 690 0.1 2.8
Instance. MAP2_1_3 | 35 39 460 60 0.4 2.0
Instance. MAP2 2 1 | 56 47 80 80 0.1 0.1
Instance. MAP2_ 2 2 56 47 960 600 0.3 12.7
Instance. MAP2_2 3 | 56 47 460 60 1.0 6.3
Instance. MAP3 0 1 | 25 18 30 30 0.0 0.0
Instance. MAP3 0 2 25 18 260 170 0.0 0.1
Instance. MAP3_0_3 | 25 18 30 30 0.0 0.0
Instance. MAP3 1 1 | 40 45 120 90 0.7 20.7
Instance. MAP3 1 2 | 40 45 1300 920 0.6 7.0
Instance. MAP3_1_3 | 40 45 1750 550 0.8 27.1
Instance. MAP3 2 1 | 62 73 320 290 2.3 120.5
Instance. MAP3_2 2 | 62 73 3530 2150 15.3 81.1
Instance. MAP3_2_ 3 | 62 73 2880 2880 9.0 248.3
Instance. MAP4 0 1 | 38 26 50 50 0.1 0.1
Instance. MAP4_0_2 | 38 26 190 190 0.6 0.6
Instance. MAP4 0 3 | 38 26 40 40 0.6 0.6
Instance. MAP4 1 1 | 36 41 150 150 0.8 0.8
Instance. MAP4 1 2 36 41 1720 1360 0.6 1.5
Instance. MAP4 1 3 36 41 470 380 2.3 4.9
Instance. MAP4 2 1 41 56 240 210 1.0 4.9
Instance. MAP4 2 2 | 41 56 2160 1980 0.6 6.3
Instance. MAP4 2 3 | 41 56 280 90 2.0 6.7
Instance. MAP5 0 1 39 45 130 130 0.3 0.3
Instance. MAP5_ 0 2 39 45 810 630 0.5 6.5
Instance. MAP5 0 3 39 45 660 570 3.8 43.0
Instance. MAP5 1 1 70 78 160 150 1.4 21.6
Instance. MAP5_ 1 2 | 70 78 1400 910 15.2 106.8
Instance. MAP5 1 3 70 78 600 600 8.5 186.3
Instance. MAP5 2 1 | 115 | 101 220 220 2.5 374.3
Instance. MAP5 2 2 | 115 | 101 1780 1650 5.3 189.2
Instance. MAP5 2 3 | 115 | 101 550 170 23.4 254.2
Instance. MAP6_0 1 84 92 270 250 23.8 269.8
Instance. MAP6 0 2 84 92 2520 2140 14.5 82.2
Instance. MAP6 0 3 84 92 2210 2210 12.3 219.1
Instance. MAP6_1 1 | 155 | 112 500 440 7.2 431.3
Instance. MAP6_1 2 | 155 | 112 4390 3500 9.9 321.8
Instance. MAP6 1 3 | 155 | 112 3140 1960 25.6 671.3
Instance. MAP6_2 1 | 175 | 181 660 660 21.1 719.2
Instance. MAP6_2 2 | 175 | 181 6790 5420 16.1 995.3
Instance. MAP6 2 3 | 175 | 181 7180 7180 20.8 1701.8

Table 13: Relaxation-based heuristics: solution value and computation time
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