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Evry-Courcouronnes, France

Abstract

This paper exposes full analytical solutions of a plane, quasi-static but large transformation of a Timoshenko
beam. The problem is first re-formulated in the form of a Cauchy initial value problem where load (force
and moment) is prescribed at one-end and kinematics (translation, rotation) at the other one. With such
formalism solutions are explicit for any load and existence, unicity and regularity of the solution of the
problem are proven. Therefore analytical post-buckling solutions were found with different regimes driven
explicitly by two invariants of the problem. The paper presents how these solutions of a Cauchy initial
value problem may help tackle (1) boundary problem, where physical quantities (of load, position or section
orientation) are prescribed at both ends (2) problem of quasi-static instabilities. In particular several
problems of bifurcation are explicitly formulated in case of buckling or catastrophe.

Keywords: Timoshenko beam, Large transformation, Boundary/Cauchy value problem, Dead and follower
loads, Quasi static perturbation, Bifurcation and catastrophe

1. Introduction

The study of deformation of beams has started in the 18th century with Euler and Bernoulli’s classical
beam theory [1]. This standard theory provides reasonable approximations for many problems especially for
slender structure. This model uses kinematical hypotheses : cross-section remaining normal to the center-line
and sometimes inextensibility of the center-line. Large transformation of Euler-Bernoulli beam was already5

addressed in Euler’s work at 1744. However such kinematical hypotheses are not easily justified under such
transformations. Additionally Lagrange multipliers may increase the difficulty to formulate the non-linear
problem [2]. Later on, Timoshenko relaxes the kinematical hypotheses introducing stress-strain relations for
all degrees of freedom [3, 4]. In the linear case the Timoshenko model allows the consideration of shorter
beam and less-standard material [5]. Moreover it provides an adapted formulation for large transformation10

where non-linear coupling between several strains intervenes.
Among others, Mohyeddin and Fereidoon [6] offered analytical solutions for the large deflection of a simply
supported Timoshenko beam. Li investigated a closed problem both analytically and numerically [7]. Even
if these works offer analytical expressions, such formulation cannot be extended easily to more general prob-
lems as their formulations are not covariant. Indeed a geometrical-material language is more adapted.15

In such point of view the Timoshenko beam can be seen as a one-dimensional Cosserat body [8]. Following
this approach it is possible to extend the Timoshenko initially linearized theory to large transformations [9].
Accordingly Antman developed non-linear theory of elastic bodies such as strings, rods, beams [10]. Reissner
adopted the same formulation to give the principle of virtual work leading to constitutive and equilibrium
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equations [11]. Following the same approach, Simo examined a numerical formulation of a finite strain beam20

theory and gave a stress-strain relation [12]. Later on, these results where expanded by Rakotomanana who
regarded waves and vibrations of strings, beams and shells [13]. Henceforth, Le Marrec et al. gave an exact
theory of Timoshenko beam undergoing three-dimensional finite transformation and subjected to dynamical
perturbations [14] .
Stability of the equilibrium solutions is of crucial importance under such large transformations (e.g. [15]).25

Buckling of straight beam was extended to ring by Reissner [16]. Bažant and Cedolic investigated stabil-
ity of elastic structures using energy methods [17]. The link with incremental equilibrium equations was
investigated in [18] where an example of flexure and shear of a Timoshenko beam is presented. However
energetic approach is not the unique approach. For example the numerical solutions of the extensible Tim-
oshenko beam model under distributed load performed in [19] motivates Corte et al. to identify sequences30

of equilibria among which two at most are stable [20].
In the previous mentioned works analytical expression of a solution is not the main objective. In practice
such analytical solutions mainly invoque Jacobian elliptic functions. These functions appear as solutions
of many important problems in classical mechanics. Mathematical background can be found in [21, 22]
(among others) and fundamental relations are reported in [23]. Ohtsuki [24] gave analytical and numerical35

solutions for large deflections of a symmetric three point bending of a simply supported beam subjected
to a central concentrated load. Chucheespakul et al. [25] set up Euler-Bernoulli elastica for pinned-pinned
beam. Whereas Magnusson et al. provided the behaviour of the extensible elastica solution for an Euler-
Bernoulli beam [26]. The Timoshenko beam was treated by Humer who adapted Reissner’s beam approach
and gave buckling and postbuckling solutions for cantilever beam subjected to follower force [27, 28]. In40

pursuit Batista specified analytical solutions of cantilever beam [29, 30]. Other boundary conditions were
presented in [31] but no general formulation was presented for general boundary conditions.
In this paper, we are interested in straight Timoshenko beam supporting a large and quasi-static plane
transformation. The hypotheses are the following: the beam is elastic, isotropic, homogenous and has linear
constitutive relation, lastly loading is imposed only at the boundaries. General problem under these hy-45

potheses is presented in a dimensionless form in the first section. In order to embrace wide applications the
situations for quasi-static follower or dead load is examined and domain of variation of each dimensionless
parameters is examined in the second section. In the third section, our approach leads to a Cauchy initial
problem on contrary to most previously conducted studies (based on boundary value problem). This im-
poses a meticulous analysis (values, variation domain) of each component of the problem. Two invariants50

of the problem are exhibited. Existence and unicity of the solution for a prescribed load is addressed in the
same section. The next section focuses on explicit and analytical solutions of the problem for any given load
(force and moment) at one end. The problem of regularity of these solutions in regards to a smooth (and
quasi-static) evolution of the load at one end is tackled through a deep analysis of the analytical expres-
sions. After an illustrating example (sec-6) the problem of a pure-shear follower load is presented and shows55

how asymptotic solutions can be recovered through Taylor expansion of the attainable expression. In the
following section the problem of quasi-static stability problem is addressed as a driven parametric oscillator
in a general situation. At last the section 7 shows how the proposed approach is able to face problem of
quasi-static instability more general than bifurcation (buckling) as catastrophe. The conclusion underlines
the main points of the work and proposes some further considerations.60

2. Problem statements

2.1. Cosserat formulation

A Cosserat beam model is used [12]. A material curve C lying in the Euclidian space corresponds to the
positions of the center of mass G of each section S. The reference configuration corresponds a stress-free state
for which C is a straight segment of length L. A fixed origin O and a Cartesian frame {ei} := (ex, ey, ez)65

is chosen such that OG = Sez in the reference configuration. Here S ∈ [0, L] is a material curvilinear
coordinate of C. After transformation, the placement of G is defined by the map S → ϕ(S) := OG(S) from
[0, L] to the Euclidian space. Note that the material coordinate S always belongs to [0, L] even if the true
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length of C is changed.
The sections S of the beam are supposed to be rigid and normal to C in the reference configuration. Sections70

are supposed to be uniform (same size and shape). For such a Cosserat-like structure the orientation of the
section is prescribed by a moving orthonormal frame {di} := (d1,d2,d3) for which d3 is always normal to the
section. In the reference configuration {di} coincides with the Cartesian frame {ei} and after transformation
the directors di(S) do not depend on the placement of C : in contrary to Euler-Bernoulli model d3 is not
necessarily tangent to the material curve.75

All along the paper, plane motion in (ex, ez)-plane is considered. Hence for any transformation d1 and d3

lie in (ex, ez)-plane and d2 = ey.

2.2. Curvature and strains

A rotation R(S) relates each director to the reference one: di(S) = R(S)ei. For this plane motion

R =




cos θ 0 sin θ
0 1 0

− sin θ 0 cos θ


 (1)

where the angle θ(S) = �ez,d3 = �ex,d1 measures in a trigonometric way the rotation of the section around
d2. Spatial derivation of directors is obtained through (e.g [14]):

∂di

∂S
= κ× di (2)

where the twist vector (or generalized curvature) κ is:

κ(S) = κ2d2 , with κ2(S) =
∂θ

∂S
. (3)

According to [12], the strain measures of the beam are the curvature κ and the generalized strain:

�(S) :=
∂ϕ

∂S
− d3 (4)

The directors components of this strain have distinct physical meanings: � · d1 is the shear strain whereas
� · d3 is the normal strain (by construction � · d2 = 0). For later convenience, let us introduce

ε(S) :=
∂ϕ

∂S
= �+ d3 (5)

Introducing directors components ϕi = ϕ · di (of course ϕ2 = 0) straight forward computations show that
the components of ε in the moving directors frame are:

ε1(S) =
∂ϕ1

∂S
+ ϕ3κ2, ε2(S) = 0, ε3(S) =

∂ϕ3

∂S
− ϕ1κ2 (6)

2.3. Internal energy, forces and moments, equilibrium relations

A Kirchhoff-Saint Venant model of isotropic material is used for which the Helmholtz free energy per
unit length is quadratic with regard to strain measures:

Ψ =
1

2
AGε21 +

1

2
AE(ε3 − 1)2 +

1

2
EIκ2

2 (7)
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Hence, the stress resultants depend linearly on the conjugate strains:

N1 = GA ε1 shear force
N3 = EA (ε3 − 1) normal force
M2 = EI κ2 bending moment

(8)

Where A and I are the area and the quadratic moment of the section, E and G are the Young modulus and
shear modulus G (including eventually a shear correction factor [32]) of the beam material. In the directors
frame, force and moment vectors are:

N(S) = N1d1 +N3d3, M(S) = M2d2.

Equilibrium relations are (e.g. [14]):
∂N

∂S
= 0

∂M

∂S
+ ε×N = 0

(9)

Using (2) and projecting the first equation onto d1 and d3 and the seconds onto d2 one obtains respectively:

GA
∂ε1
∂S

+ EA(ε3 − 1)κ2 = 0

EA
∂ε3
∂S

−GAε1κ2 = 0

EI
∂κ2

∂S
− EAε1(ε3 − 1) +GAε1ε3 = 0

(10)

where (8) has been used.80

2.4. Dimensionless form

Dimensionless formulation of the problem is performed by defining first a dimensionless bulk-shear ratio
g and the gyration radius of the beam � [33, 34]:

g =
E

G
, � =

�
I

A
(11)

As g � 2(1 + ν) where ν is the Poisson’s ratio, 2 � g � 3 for standard material. The gyration radius �
has a dimension of a length, in term of magnitude � = O(R), where R is a typical size of the section. The
dimensionless curvilinear abscissa and length (slenderness ratio) are:

s =
S

�
, � =

L

�
(12)

By convention let us denote any physical variables previously mentioned v(S) for which a dimensionless
companion v(s) can be associated as follow:

εi(s) = εi(S), κi(s) = � κi(S), ϕi(s) =
1

�
ϕ
i
(S), θ(s) = θ(S) (13)

Using the fact that ∂f
∂S = 1

�
∂f
∂s and the convention f � := ∂f

∂s for any function f(S) and injecting (13) into

(10) one gets:

ε�1 + g(ε3 − 1)κ2 = 0
gε�3 − ε1κ2 = 0

gκ�
2 + ε1ε3 − gε1(ε3 − 1) = 0

(14)
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Using (13), dimensionless energy per unit length (7) becomes:

Ψ =
1

2
ε21 +

1

2
g(ε3 − 1)2 +

1

2
gκ2

2 (15)

It is interesting to observe that physical force and moment N(S) and M(S) have also dimensionless com-
panions N(s) and M(s) related by

N =
1

GA
N, M =

1

�

1

GA
M

In particular, in term of dimensionless components

N1 = ε1
N3 = g(ε3 − 1)
M2 = gκ2

(16)

the equilibrium equation (9) becomes

N� = 0

M� + ε×N = 0
(17)

Consitutive relation (16) and equilibrium relation (17) (or its projection (14)) are our starting point for the
analysis of solutions of the static equilibrium problem of beam.

3. Remark on the boundary conditions

The static problem is posed up to a translation and a rigid rotation. It is then natural to observed that85

the problem (17) is perfectly described thanks to dynamical (stresses or strains) quantities.

3.1. Parametrization of the boundary conditions

The boundary conditions are prescribed at a given end, say s = �. Then consider the known quantities

N� = N(�), M� = M(�) .

Of course, M� = M�d2 is oriented along ey and N� belongs to the (ex, ez)-plane (equivalently (d1,d3)-

plane). Hence orientation and magnitude of N� has to be described properly. Let us define φ� = �d3(�),N�

the relative angle of the load respectively to the normal d3(�) of the last section. By convention φ� is
measured in a trigonometric way, such that:

N1(�) = N� sin (φ�) , N3(�) = N� cos (φ�) , (18)

where N� = �N�� and φ� ∈] − π,π]. This convention emphasize the crucial role of φ� that prescribes the
shear or normal character of the external force at this specific end. For φ� = ±π/2 the external force is a
shear, for φ� = π it is a compression, last for φ� = 0 it is a traction.90

Remark 3.1 (Cauchy problem). It must be stressed that under this point of view the boundary condition is
the set (N�,φ�,M�): an assignation of the variables (or their derivatives) at a specific end. In that context
the problem has the structure of a Cauchy initial value problem from which the solution is known as unique
[35]. It is clear that for most of the physical problem, distinct constraints are imposed at each end and95

then the problem has mainly the structure of a Cauchy boundary value problem for which the solution is not
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necessarily unique. The next sections are mainly related to Cauchy initial value problem associated to the
set (N�,φ�,M�). The last section would be devoted to the Cauchy boundary value problem.

3.2. Follower and dead load

At the end s = �, the rotation of the section θ(�) and the angle φ� between the section and the load N�

are related by
φ� = φ̂− θ(�) (19)

According to Fig.1, φ̂ = �ez,N� is the angle between the external force and the normal of the last section

N�

N�θ(s)

φ(s)

s = �

G

C

S
ez

ez

ex

ex

d3(s)
d1(�)

φ̂
d1(s)

d3(�)
φ̂

φ�

θ�

Figure 1: Parametrization of a current configuration of a Timoshenko beam. At a given curvilinear abscissa s, the center of
mass G and the section S are given. The directors d1(s) and d3(s) of this section are obtained by a rotation θ(s) around ey.

At s = � the external force N� has an angle φ(�) = φ� with the normal d3(�) of the last section and φ̂ with ez.

100

at rest (in such a sense, it can be seen as a Lagrangian quantities).
Let us suppose that the magnitude N� and M� of the external efforts varies in a quasi-static way. A priori
this may imply a possible reorientation of the last section or of the load. Indeed, prescribing the angle
φ� during this variation has a large physical impact. More precisely, during this slow evolution, standard
situations appear for such special cases:105

• If φ� is held constant, the external force is a follower load. In particular if φ� is maintained equal to
π the external force is a purely compressive follower load and if φ� = ±π/2 this force acts as a pure

shear follower load. Note that during this evolution the value of φ̂ changes in order to respect (19).

• If φ̂ is held constant, the external force is a dead load. In particular if φ̂ is maintained null or equal to
π the external force is a pure vertical (along ez) dead load and if φ̂ = ±π/2, this force acts as a pure110

horizontal dead load. Here φ� has to change during the loading process in order to respect (19).

3.3. Domain of variation

A priori N� ≥ 0, φ� ∈ [0, 2π[ and M� ∈ R but physical considerations may help to limit these bounds.
First of all it can be observed that non-overlapping of the section of the beam during a large bending
imposes |κ2| � 1/2. Second, it is justified to limit the analysis to a total force lower than a certain multiple
of the Euler critical load. For pinned boundary conditions this later is physically P e = EIπ2/L2, then its
dimensionless form is Pe = gπ2/�2. As beam model is justified for slenderness ratio � � 20 and 2 � g � 3,
one gets Pe � 0.1. Hence it is exhaustive to focus on the following bounds for boundary conditions variables

0 ≤ N� ≤ 0.1, −0.1 ≤ M� ≤ 0.1 . (20)

These bounds are particularly large, especially for elongated structures. It must not be considered as
an indicator of the order of magnitude of these variables, but rather as a maximum bounds (physically
unreachable in general). However the bounds N� ≤ 0.01 and |M�| ≤ 0.01 are attainable in most of the cases.
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These bounds may be used to prescribe some bounds for strains at s = �, and more generally at any s
according to (16). One get:

−0.1 ≤ ε1(s) ≤ 0.1, 0.95 ≤ ε3(s) ≤ 1.05, −0.05 ≤ κ2(s) ≤ 0.05

4. Problem analysis

4.1. First integration

The system (17) may be easily integrated. Considering the first line, one gets directly

N(s) = N�, ∀ s ∈ [0, �]

In other words, the internal load is constant along the beam. However, as the orientation of the directors
d1(s) and d3(s) are not uniform, the shear and longitudinal component are not uniform along s, but
controlled by

N1(s) = N� · d1(s), N3(s) = N� · d3(s) (21)

Considering now the second equation of (17), its integration is trivial too. First as ε = ϕ�, one gets

M� +ϕ� ×N� = 0

then, after integration

M(s)−M(0) + (ϕ(s)−ϕ(0))×N� = 0, ∀ s ∈ [0, �] (22)

In particular, one gets a momentum relation between the bending moment at both ends:

M(0) = M� +
�
ϕ(�)−ϕ(0)

�
×N�

Inspired by (18) and (21), a new variable φ(s) is introduced such that

N1(s) = N� sin (φ(s))
N3(s) = N� cos (φ(s))

(23)

Then, φ(s) is the relative angle between the normal of the section at s and the external load. Of course
φ(�) = φ�. The relation (19) can be extended too (see Fig.1):

φ(s) = φ̂− θ(s) (24)

As θ� = −φ�, the internal couple M2 = gθ� along the beam becomes

M2(s) = −gφ�(s) (25)

Last all strains may be written in terms of φ according to (16):

ε1(s) = N� sin (φ(s))

ε3(s) = 1 +
N�

g
cos (φ(s))

κ2(s) = −φ�(s)

(26)

To simplify further notation φ�
� will be used instead of φ�(�) in the following.115
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4.2. Non-homogeneous equation

The two first equations of (14) are directly satisfied, the last one becomes

g2φ
�� − gN� sin (φ) + (g − 1)N2

� sin (φ) cos (φ) = 0 (27)

Let us consider that φ�� �= 0. By multiplying (27) by 2φ� one obtains after integration

(gφ�)2 + 2gN� cos (φ)− (g − 1)N2
� cos2 (φ) = µ (28)

where µ is a constant related to set (N�,φ�,M�) of boundary conditions

µ = M2
� + 2gN� cos (φ�)− (g − 1)N2

� cos2 (φ�) (29)

Remark 4.1 (Invariants). The magnitude N� is the first invariant of the beam as, for any s:

N2
� = N1(s)

2 +N3(s)
2

In the first integral (28) of (27) the parameter µ appears as a second invariant of the beam configuration.
Indeed, in terms of internal load, as M2(s) = −gφ� and N3(s) = N� cos (φ(s)), one gets all along the beam:

µ = M2(s)
2 + 2gN3(s)− (g − 1)N3(s)

2

These two invariants are presented graphically in Fig.3

Figure 2: Representation of the two invariants (N� in green and µ in purple) in the configuration space (N1(s),M2(s), N3(s)).
The solutions N1(s), M2(s) and N3(s) of the problem is along the intersection of the two surfaces.

The equation (28) is a scalar, first order and non-linear ordinary differential equation. Its coefficient is
written in terms of the invariants µ and N� of the problem. Its resolution can be performed thanks to some
special change of variable that will be developed in the next section.120

Remark 4.2 (Existence and unicity of the solution). According to Cauchy theorem, the ordinary differential
equation (28) has a unique solution if φ� or φ

�
� is prescribed (e.g. [35]). Existence and unicity is then obtained

if the invariants (µ,N�) are prescribed. As the load properties (N�,φ�,M�) at s = � defines (N�, µ,φ�) or
(N�, µ,φ

�
�) in a unique manner, existence and unicity of the solution are ensured by the prescription of the

load at one end.125
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Remark 4.3 (Discussion on the regularity of the solution). As the set (N�,φ�,M�) contributes to define
both the initial condition and the coefficients µ, N� of the differential equation, the regularity of the solution
may be (a prioiri) strongly affected by even a smooth change of N�, φ� or M�. This very special character
of the problem explains (at least in a part) the attention of scientists on behavior of beam under large
transformation. This problem will be adressed more deeply in section 5.6.130

4.3. Homogeneous equation

Let us consider the special case φ�� = 0 for all s (then φ� = cste). From (27) and according to the domain
of variation of g, this situation appears only if N� sin (φ) = 0, what corresponds to two distinct cases:

• If N� = 0 the last end supports only a non-null couple M�. In that case φ(s) = as+ b where a and b
depends on boundary conditions. Since M� = −gφ�(�), a = −M�/g and imposing arbitrarily φ(�) = 0

implies b = M��/g and by (19) one gets φ̂ = θ(�), therefore by (24) one obtains

θ(s) =
M�

g
(s− �) + θ(�) (30)

Dynamical variables are given by N1(s) = 0, N3(s) = 0 and M2(s) = M�. Using (6),(16) one gets:

ϕ1(s) = ϕ1(0) +
g

M�
(cos (θ(s))− 1)

ϕ3(s) = ϕ3(0) +
g

M�
sin (θ(s))

(31)

This problem is a standard solution in Elastica theory.

• If sin(φ(s)) = 0 then φ(s) = 0 or π: the load is a pure longitudinal force. Therefore by using (24) one
gets N1(s) = 0, N3(s) = ±N� and M2(s) = 0. So kinematical variables are given for pure traction or
compression by:

ϕ1(s) = ϕ1(0) θ(s) = θ(0) ϕ3(s) = ϕ3(0) + (1± N�

g
)s

For other situations, φ� is necessarily not uniform and the problem consists in the resolution of (28).135

4.4. Analysis of µ

As it has been seen µ plays an important role as first variable integration depending on (N�,φ�,M�).
More precisely, the shear load does not affect this parameter that is controlled by M� and the longitudinal
part of the force N� cos (φ�). The behavior of µ with respect to these parameters is given in Fig.3.
In practice µ is positive only for longitudinal traction or eventually moderate longitudinal compressive load
associated to non null couple M�. The following bounds for µ are obtained

M2
� − 2gN� − (g − 1)N2

� ≤ µ ≤ M2
� + 2gN� − (g − 1)N2

� (32)

and −0.5 � µ � 0.5 according to the numerical values proposed in section 3.3. Let us introduce

µa = −2gN� − (g − 1)N2
� , µc = 2gN� − (g − 1)N2

� . (33)

Remarks that in contrary to µ, the parameters µa and µc depends only on N�. The equality µ = µa is
obtained only for pure compressive load. For a pure traction µ = µc however the equality µ = µc may be
observed for other configuration for which φ� �= 0 and M� �= 0. There is always µa ≤ µ but in the special
cases for which M� = 0 the bounds are more restrictive: µa ≤ µ ≤ µc.140
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Figure 3: Variation of µ according to the parameter of the boundary conditions.

5. Jacobian elliptic functions

In this section the problem (28) is solved using a series of transformations that leads to Jacobian elliptic
functions. The study concerns non-homogeneous solutions of (28).

5.1. Problem statement

Let us use first the tangent half-angle substitution for φ:

t(s) = tan

�
φ(s)

2

�
(34)

where t(s) is a real valued function. Therefore

cos (φ) =
1− t2

1 + t2
, sin (φ) =

2t

1 + t2
, φ� =

2t�

1 + t2
(35)

Injecting (35) into (28), the differential equation is written as:

t�2 = a t4 + b t2 + c (36)

• If a �= 0, the roots of the t-polynomial at the right-hand side can be computed in order to obtain:

t�2 = a (t2 − α−)(t
2 + α+) (37)

• If a = 0, then
t�2 = b t2 + c (38)

10



All these formulations need a deep analysis of each parameter a, b, c and α± that are intrinsically related to
the set of boundary conditions (N�, φ�, M�), and more precisely to two independent coefficients µ and N�:

a =
µ− µa

4g2

b =
2µ+ µa + µc

4g2

c =
µ− µc

4g2

and

α+ =

g+
√

g2−(g−1)µ

g−1 −N�

g+
√

g2−(g−1)µ

g−1 +N�

α− =
N� − g−

√
g2−(g−1)µ

g−1

N� +
g−

√
g2−(g−1)µ

g−1

(39)

5.2. Parameter analysis145

According to (4.4) µa ≤ µ then a ≥ 0.

Remark 5.1. Equality a = 0 corresponds to a pure longitudinal compression for which an homogeneous
solution has been found already. Notice that if a = 0, then µ = µa and, as µa ≤ 0 ≤ µc, both b and c are
strictly negative. In other words, the right hand side of (38) is negative and then no real non-homogeneous
solutions t(s) may exists. For pure compressive external load, the homogeneous solution is the only real-150

valued solution.

It is now justified to focus hereafter on (37) with strictly µ > µa then a > 0 . However sign of b and c
may change according to M�, φ� and N�.

The roots α± are real as g2 − (g − 1)µ is always positive. The values of α+ according to N� and µ is
presented in Fig.4-left (the values of α+ are presented in a domain such that µ > µa). This roots is strictly
positive and close to 1. First order Taylor expansion gives:

α+ = 1− g − 1

g
N� +O(N2

� , µ
2) (40)

α+

Nℓ

0 0.02 0.04 0.06 0.08 0.1

µ

-0.5
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0.5

µa(Nℓ)
µc(Nℓ)

0.94

0.95

0.96

0.97

0.98

0.99

log10(|α−
|)

Nℓ

0 0.02 0.04 0.06 0.08 0.1

µ

-0.5

0

0.5

µa(Nℓ)
µc(Nℓ)

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

α
−
> 0

α
−
< 0

Figure 4: Variation of α+ (left) and log10(|α−|) (right) according to N� and µ. The curves µ = µa(N�) and µ = µa(N�) are
presented too.

The values of α− according to N� and µ is presented in Fig.4-right. As α− has a large domain of variation
the log10(|α−|) is plotted and the sign of α− is specified in each domain. In practice α− > 0 if µa < µ < µc

and α− < 0 if µc < µ. α− = 0 if µ = µc and for small values of µ, N�:

α− = 1− 2µ

µ+ 2gN�
+O(N�, µ)

11



5.3. Resolution of the elliptic differential equation

As a > 0 and α+ > 0 in all the domain of variation, the following formulation of (37) is proposed:

�
1√
aα+

t�√
α+

�2

=

�
(

t√
α+

)2 + 1

��
(

t√
α+

)2 − α−
α+

�
(41)

This motivates the following change of variable associated to a rescaling of the curvilinear abscissa

h(ζ) =
t(s)√
α+

where ζ =
√
aα+(s+ s0) (42)

where the constant s0 will be related to the boundary conditions. As d
ds =

√
aα+

d
dζ , (41) becomes:

�
dh

dζ

�2

= (h2 + 1)(h2 − α−
α+

), (43)

for which solutions are a Jacobian elliptic function [23]:

h(ζ) = ±cs(ζ |m), with m = 1 +
α−
α+

(44)

5.4. Class of solutions

Particular attention must be drawn to the values of m presented in Fig.5-left. For moderate parameters
µ and N�:

m =
4gN�

µ+ 2gN�
+O(µ,N�) (45)

This is illustrated in Fig.5-right, where it can be observed that this approximation is well justified.

log10(m)

Nℓ

0 0.02 0.04 0.06 0.08 0.1

µ

-0.5
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0.5

µa(Nℓ)
µc(Nℓ)

-1.5

-1

-0.5

0

0.5

1

1.5

2

-0.5 0 0.5
0

0.5

1

1.5

1/m m µℓ+2gNℓ

4gNℓ

4gNℓ

µℓ+2gNℓ

µ

-0.5 0 0.5
0

0.5

1

1.5

1/m m µℓ+2gNℓ

4gNℓ

4gNℓ

µℓ+2gNℓ

Figure 5: Left: Variation of log10(m) according to N� and µ. The curves corresponding to µa(N�) and µc(N�) are presented
too. Right: Variation of m and 1/m according to µ for fixed N�. The approximation (45) is presented too. The vertical lines
depict the position of µa(N�) (left) and µc(N�) (right).

155

In a classical formulation of Jacobian elliptic functions, the second argument m belongs in [0, 1]. Here, it is
observed that m belongs to ]0,+∞[. Here some analysis is given in order to link the two formulations:

12



• If µa < µ < µc, we have α− > 0 and α+ > 0 then m > 1. For that situation, one may use [23]

cs(ζ | 1

m
) =

1√
m
ds(

ζ√
m

|m)

to obtain a more standard formulation:

h(ζ) = ±
�

α+ + α−
α+

ds(

�
α+ + α−

α+
ζ | α+

α+ + α−
)

then
t(s) = ±

�
α− + α+ ds(

�
a(α− + α+)(s+ s0) |

α+

α+ + α−
) (46)

• If µ = µc, α− = 0 and m = 1, then

h(ζ) = ±cs(ζ | 1) = ± 1

sinh(ζ)

Alternatively, this can be obtained by observing that c = 0 then the differential equation (36) becomes
t�2 = t2(at2 + b).

• If µ > µc we have 0 < m < 1 then

t(s) = ±√
α+ cs(

√
aα+(s+ s0) |

α+ + α−
α+

) (47)

This last formulation is always justified if one consider for convention m ∈ R.160

In Fig.6 the function cs(ζ |m) and ds(ζ |m) are presented for m = 1/2. These odd functions have distinct
periodicity. Introducing the complete elliptic integral of the first kind K(m), the periodicity is 2K for
cs(ζ |m) and 4K for ds(ζ |m). Remarks that K(m) → ∞ as m → 1. As m passes through 1 the transition
between cs(ζ |m) to ds(ζ |m) through 1/ sinh (ζ) is then smooth as the non-periodic function 1/ sinh (ζ) is
asymptotically considered as a periodic function with infinite period. This anodyne remark leads to a more165

crucial ones detailed in sec.5.6.
Last, it is observed that ds(ζ |m) belongs to ]−∞,−

√
1−m] ∪ [

√
1−m,+∞[ if 0 < m < 1. According to

(34) and (46), this means that |φ(s)| does not belong to the interval [0, 2 arctan(
√
α−)[ if µa ≤ µ ≤ µc.

ζ
-2K 0 2K 4K

-5

0

5

cs(ζ| 12)
ds(ζ| 12)
1/ sinh(ζ)

Figure 6: cs(ζ |m), ds(ζ |m) and 1/ sinh (ζ) for m = 1/2. Numerically K(m) � 1.85. The horizontal dashed lines corresponds
to ±√

1−m � 0.71
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5.5. Determination of the unknown s0

The shifting parameter s0 has to be adjusted such that

t(�) = tan (
φ�

2
),

2t�(�)
1 + t(�)2

= φ�
� (48)

where φ�
� is just determined by the bending moment according to (25): M� = −gφ�

�. In practice s0 is
determined numerically by an optimisation algorithm associated to the following statement

find s0 ∈ D such that �t(�)− tan(
φ�

2
)�2 + � 2t�(�)

1 + t(�)2
− φ�

��2 = 0 (49)

The domain D and the function t(s) have to be adjusted according to the boundary condition:

• If µ < µc, D =]0, 1√
a(α−+α+)

4K( α+

α++α−
)[ and t(s) =

√
α− + α+ ds(

�
a(α− + α+)(s + s0) | α+

α++α−
)170

(the sign − is not necessary as ds(ζ + 2K(m) |m) = −ds(ζ |m)).

• If µ > µc and φ�
� < 0, then D =]0, 1√

aα+
2K(α++α−

α+
)[ and t(s) =

√
α+ cs(

√
aα+(s+ s0) | α++α−

α+
)

• If µ > µc and φ�
� > 0, then D =]0, 1√

aα+
2K(α++α−

α+
)[ too but t(s) = −√

α+ cs(
√
aα+(s+ s0) | α++α−

α+
)

Indeed with such domain D, the discussion associated to Fig.6 shows that the solution s0 in D of the problem
(49) is unique in all the cases.175

5.6. Regularity of the solutions

The existence and unicity of the problem (17) has been already underlined in rem-4.2. However regular-
ity of the solution relatively to a smooth change of the boundary conditions parameters N�,φ�,M� was just
interrogated in rem.4.3.
According to the discussion of Fig.6 the function t(s) is regularly varying according to the parameters α±,180

a and s0 in all the variation domain of µ, N� and φ�. It is then the case for φ(s) too. In other words φ(s) is
regularly dependent to the set (µ,N�,φ�) or (µ,N�,φ

�
�). In one hand the map (N�,M�,φ�) → (µ,N�,φ�) is

smooth and surjective, in the other hand (N1(s), N3(s),M2(s)) are regular function of φ(s) thanks to (26).
This leads to the following important result:

185

The solutions N1(s), N3(s), M2(s) (or equivalently ε1(s), ε3(s),κ2(s)) of the problem (17) are regularly
dependent to the boundary conditions (N�,φ�,M�). No bifurcation may occurs if the load is completely
controlled (prescription of the couple intensity, force intensity and of the orientation of the force relatively
to the section) in a smooth and quasi-static way at one end of the beam. Reciprocally, some bifurcation may
occur only if one of these load properties are held free (standard buckling problem of beam by a dead-load)
or if kinematical variable (position or orientation of the section) are controlled.

This result is valid for any large transformation, any shape of the beam and any isotropic and elastic
material.
In term of instabilities, the preceding result shows that quasi-static instabilities cannot appear if the loads190

are controlled at one end in a smooth way. This is the case for follower loads. However, as this work do not
invoque dynamical effect, this analysis do not allow any conjecture on dynamical-instabilities. In particular
fluttering effect is over the scope of the paper.

At this stage all unknown functions and parameter are determined. It is then possible to have explicit195

expression of strains and shape of the beam without any approximation. This is now illustrated through a
practical example.
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6. First illustrating example

Let us consider a beam of length � = 50 and material ratio g = 5/2 supporting the following boundary
conditions N� = 0.01, M� = 0.05, φ� = 3π/4. The beam is glued at s = 0 on the origin of the Cartesian200

frame, then θ(0) = 0 and ϕ(0) = 0.

6.1. Determination of each parameters

According to the set (N�, M�, φ�) one obtains µ � −0.03, µa � −0.05, µc � 0.05 and m � 5.86
then µa < µ < µc and m > 1. The solution t(s) corresponds to (46) but can still be written as t(s) =√
α+cs(

√
aα+(s + s0) |m), if one accepts that m > 1. In Fig.7 t(�) is presented as a function of s0.205

Intersections with the level set tan (φ�/2) respecting the constraints (48) are highlighted by a dot. The

s0

-100 -50 0 50 100

-4

-3

-2

-1

0

1

2

3

4

t(ℓ)

tan(φℓ

2 ) s ℓ0

Figure 7: Graphs of t(�) according to s0. The level-set tan (φ�/2) is presented too. The graph of t(s) for an admissible s0 is
presented in red (the corresponding abscissa is given in red too).

possible values of s0 form a periodic set but any value may be chosen as position of the dot and t(s) share
the same periodicity. This illustrates that the definition of a restrictive domain D in (49) does not affect
the generality of the resolution.

6.2. Determination of the internal forces and moments210

According to (23), (25) and (35)

N1(s) = N�
2t

1 + t2
, N3(s) = N�

1− t2

1 + t2
, M2(s) = −g

2t�

1 + t2
(50)

that is easily computed as t(s) is given in (47) and because the derivation rule d
dz cs(z|m) = −ns(z|m)ds(z|m)

holds true for any m ∈ R [23]. One obtains t�(s) = −√
aα+ ns(ζ |m)ds(ζ |m) and then:

N1(s) = N�

2
√
α+cs(ζ |m)

1 + α+cs2(ζ |m)
,

N3(s) = N�
1− α+cs

2(ζ |m)

1 + α+cs2(ζ |m)
,

M2(s) =
√
ag

2α+ ns(ζ |m)ds(ζ |m)

1 + α+cs2(ζ |m)
,

ζ =
√
aα+(s+ s0)

m =
α+ + α−

α+

(51)

The internal forces and moment are illustrated in Fig.8-left.
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Figure 8: Left: N1(s), N3(s) and M2(s) for the example. Right: θ(s).

6.3. Determination of the rotation and placement

The rotation θ(s) of the section is directely obtained by (24) as φ(s) is now-determined univocally by
(34) as φ(s) = 2 arctan (t(s)). Then

θ(s) = φ̂− 2 arctan
�
t(s)

�

The constant φ̂ can be chosen with a great liberty for a given set of boundary conditions as the static
problem is unchanged up to a rigid rotation. For a quasi-static loading, details have been exposed in sec.3.2.
As the beam is glued at s = 0 in this example, one imposes θ(0) = 0 and then φ̂ = 2arctan (t(0)). Result of
this typical case are presented in Fig.8-right.
The situation is more complex for the placement function ϕ(s). The two components of this vector have to
be determined. In practice ϕ(s) belongs to the (ex, ez)-plane. The choice of a proper orthonormal basis is
crucial. Cartesian frame can be chosen such that ϕ = ϕx(s)ex + ϕz(s)ez or a mobile directors frame such
that ϕ = ϕ1(s)d1(s) + ϕ3(s)d3(s). However an other orthogonal frame is naturally introduced into the
problem, let us denote it (et, ey, en), where

en =
N�

�N��
, et = ey × en

It is a fixed frame induced by the direction of the external force N� = N�en. Of course this direction is known
if the external force is perfectly described. In this frame the placement is expressed by ϕ = ϕt(s)et+ϕn(s)en.

Note that �d3(s), en = φ(s), then en · d3(s) = cos (φ(s)), and en · d1(s) = sin (φ(s)).
The relation (22) gives M(s)−M(�) + (ϕ(s)−ϕ(�))×N� = 0 that is written in this frame: M2(s)−M� −
(ϕt(s)− ϕt(�))N� = 0, hence

ϕt(s) = ϕt(�) +
M2(s)−M�

N�

Remark that M2(0) is now determined, hence the following expression holds too:

ϕt(s) = ϕt(0) +
M2(s)−M2(0)

N�
(52)

and seems more appropriate, as in general ϕ(0) is generally imposed.
In order to determine ϕn(s) a more tricky strategy is necessary as an integration is needed. Starting with
(5) that is written as

ϕ�
nen + ϕ�

tet = ε1(s)d1(s) + ε3(s)d3(s)
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After projection along en:

ϕ�
n = ε1(s) sin (φ(s)) + ε3(s) cos (φ(s))

= N1(s) sin (φ(s)) + (
1

g
N3 + 1) cos (φ(s))

= N�

�
2t

1 + t2

�2

+
N�

g

�
1− t2

1 + t2

�2

+
1− t2

1 + t2

where (16), (50) and (35) have been used successively. Integration is then performed as

ϕn(s)− ϕn(0) =

� s

0

ϕ�
n(σ) dσ

which implies

ϕn(s) = ϕn(0) +

� s

0

N�

�
2t

1 + t2

�2

+
N�

g

�
1− t2

1 + t2

�2

+
1− t2

1 + t2
ds (53)

where t(s) =
�
|α+|cs(

�
a|α+|(s + s0) |m) is perfectly known. For this general case, no simple explicit

formulation of a primitive of ϕ�
n can be obtain (a simplified expression is given in sec.7 for a particular case).

However, the smooth behavior of such function allows us to use a simple integration technic in order to
obtain a numerical solution. In practice one uses a rectangular integration on a fine discretization of the
length (Δs = �/1 000).
As mentioned earlier, ϕn(0) = ϕt(0) = 0 is considered. The placement function is now completely determined
as ϕ(s) = ϕt(s)et + ϕn(s)en. However if a Cartesian frame is privileged one has of course to remind that

the angle between ez and N� satisfies θ(�) + φ� = φ̂ (see Fig.1). Then

en · ez = cos φ̂, en · ex = sin φ̂,

et · ez = − sin φ̂, et · ex = cos φ̂.

The Cartesian components ϕx = ϕ · ex and ϕy = ϕ · ey become:

ϕx(s) = cos (φ̂)ϕt(s) + sin (φ̂)ϕn(s),

ϕy(s) = cos (φ̂)ϕn(s)− sin (φ̂)ϕt(s) .

This result is plotted on Fig.9 where the sections (oriented along d1(s)) are also presented for the sake of
the clarity. Knowing that the physical radius of the section is �, these sections are plotted in a dimensionless
way with a unitary radius. Hence this picture is completely dimensionless with a respected slenderness ratio.215

7. Pure-shear follower load

The beam (� = 50, g = 5/2) is still glued at s = 0, then θ(0) = 0 and support at the other end a pure
shear-follower load. Then the boundary conditions at s = � are: N� �= 0, φ� = π/2 and M� = 0. For such
type of control all the configurations presented on this section (7) are quasi-statically stable according to220

the sec-5.6.
The objective of this example is to analyse the qualitative and quantitative behavior of the beam as N�

increases. Some simplified asymptotic expressions are given in the case of moderate shear force N�.

7.1. Parameter analysis

For this example µ = 0. In particular, according to (37), one gets α− = 1 then α− > 0, t(s) is given by
(46). One has explicitly α+ = ( 2g

g−1 −N�)/(
2g
g−1 +N�) but if 0 < N� � 1 (which is almost always justified)
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Figure 9: Dimensionless deformed shape of the beam glued at s = 0 and supporting a follower load N� making an angle
φ� = 3π/4 with the normal of the last section (s = �). The intensity of the force is N� = 0.01 and a bending moment M� = 0.05
is imposed on this last section too. The length of the beam is � = 50. No extra-amplification is used except for the force N�.

first order Taylor (40) can be used. In the same spirit, Taylor expansion of
√
α− + α+,

�
a(α− + α+) and

α+

α++α−
in terms of N� exhibits a first order approximation:

t(s) =
√
2 ds(

�
N�

g
(s+ s0) |

1

2
) +O(N�)

Within this approximation, one obtains directly M2(s) by (50) and ϕt(s) thanks to (52):

M2(s) �
�
2gN� cn(

�
N�

g
(s+ s0) |

1

2
)

ϕt(s) � ϕt(0) +
�

2g
N�

cn(
�

N�

g (s+ s0) | 1
2 )

The expression of ϕn is highly simplified by applying leading term approximation with respect to N�. In
fact by (53) one gets:

ϕn(s) � ϕn(0) +

� s

0

1− t2

1 + t2
ds

Integration is explicit in such a case and gives

ϕn(s) � ϕn(0) + s− 2

�
g

N�
E(

�
N�

g
(s+ s0) |

1

2
)

where E(x |m) is the Jacobian epsilon function and sn(s) := sn(
�

N�

g (s+ s0) | 1
2 )225

7.2. Qualitative and quantitative analysis

The figure (10) represents successive configurations as the magnitude of the transverse shear load in-
creases. These 20 simulations have been computed with the exact formulation (in particular numerical
integration of (53)). The computation cost for these 20 simulations is 0.23 s on a 2.2 GHz Intel Core i7
(without plotting curves). This analytical approach clearly allows real-time simulations.
On Fig.10 one observes qualitatively that the beam wrinkles with a periodicity controlled by the magnitude
of the force. The asymptotic approach developed in the preceding section provides some tools in order to
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characterize this wrinkle.

z
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Nℓ = 0.01

Figure 10: Dimensionless deformed shape of the beam glued at s = 0 and supporting a follower shear load N� at s = �
(φ� = π/2 and M� = 0). The properties of the beam are � = 50 and g = 5/2. The figure represents successive snap shot for
N� = [0.01, 0.2] (with regular step of 0.01). Some values or N� are given and the directions of the external load are represented
too in order to help the reader.

The periodicity P (along s) of ϕ is given by the complete elliptic integral of the first kind K(m) that is
the quarter period of the Jacobian elliptic functions too. According to the approximation proposed in the
preceding section, the periodicity of ϕ is

P = 4

�
g

N�
K(

1

2
) � 7.41

�
g

N�

Hence the number of wrinkle along the beam is �/P .
In one hand, the size A of the wrinkle is related to the magnitude of ϕt: A = 2

�
2g/N�. In the other

hand the spatial periodicity B (indeed P is the material periodicity) of this wrinkle may be computed as
B = |ϕn(P )− ϕn(0)|. Focusing on the leading terms, and detailing the computation, on obtain:

B =

����P − 2

�
g

N�
E(4K(

1

2
) | 1

2
)

����

=

����4
�

g

N�
K(

1

2
)− 8

�
g

N�
E(

1

2
)

����

= 4

�
g

N�

�
2E(

1

2
)−K(

1

2
)

�

=
2π

K( 12 )

�
g

N�

where the complete elliptic integral E is introduced thanks to the relation E(4K( 12 ) | 1
2 ) = 4E( 12 ) ([23]-

22.16.29) and [23]-19.7.1 has been used too. Lastly the size ratio B/A (see Fig.11) of the wrinkle pattern is
independent of any material, geometrical or loading parameter:

B

A
=

π√
2K( 12 )

∼ 1.2

This properties of the deformed shape can been seen as a particular signature of such sollicitation by a
pure-shear load.
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Figure 11: dimensionless deformed shape of the beam glued at s = 0 and supporting a pure shear load at s = � (N� = 0.01,
φ� = π/2 and M� = 0). The properties of the beam are � = 500 and g = 5/2. The wrinkles are clearly visible. For this loading
B � 53.6 and A � 44.7 and P � 117.3. There is 4.25 wrinkles.

8. Quasi-static stability

Let us consider a given static configuration. Let us denote the associated quantities V (for example230

N�, θ(s), di(s)). This quantities are supposed to be known, they are solutions of the problem (17) for
given boundary condition. The quasi-static stability problem consists of the analysis of the behavior of
a perturbed solution V = V + δV keeping invariant some boundary conditions. The perturbation δV is
infinitesimal, then all quadratic terms in δV would be neglected in the following, leading to a linear analysis
of the unknowns δV.235

8.1. Problem statement

Let us focus first on the vectorial quantities N(s) = N(s) + δN(s), M(s) = M(s) + δM(s) and ε(s) =
ε(s) + δε(s). The prescribed initial quantities V(s) satisfies (17). In particular N(s) = N� is a fixed vector.
The perturbed quantities solve (17) too. They writes (linear δ-order):

δN�(s) = 0
δM�(s) + ε(s)× δN(s) + δε(s)×N� = 0

(54)

According to the first line δN(s) is a constant vector, so let not it δN� (= δN(s)) where δN� is indeed
prescribed by boundary conditions. It is then natural to focus on

δM�(s) + ε(s)× δN� + δε(s)×N� = 0 (55)

Consideri now the components of vectorial quantities. Constitutive relations motivate the use of initial
(respectively current) basis for the prescribed (respectively perturbed) configuration:

N� = N1(s)d1(s) +N3(s)d3(s)

M(s) = M2(s)d2

ε(s) = ε1(s)d1(s) + ε3(s)d3(s)

with

N1(s) = N � sinφ(s)

N3(s) = N � cosφ(s)

M2(s) = g θ
�
(s)

(56)

N(s) = N1(s)d1(s) +N3(s)d3(s)
M(s) = M2(s)d2

ε(s) = ε1(s)d1(s) + ε3(s)d3(s)
with

N1(s) = ε1(s)
N3(s) = g (ε3(s)− 1)
M2(s) = g θ�(s)

(57)

Last, the perturbations are arbitrary defined on the new basis:

δN� = δN1(s)d1(s) + δN3(s)d3(s)
δM(s) = δM2(s)d2

δε(s) = δε1(s)d1(s) + δε3(s)d3(s)
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Even if d2 = d2 = ey, this is not the case for the other directors that may undergo an infinitesimal rotation:
θ(s) = θ(s) + δθ(s). Then d1(s) = cos(δθ(s))d1(s) − sin(δθ(s))d3(s) and d3(s) = sin(δθ(s))d1(s) +
cos(δθ(s))d3(s) may be approximated in this first order approach by: d1(s) = d1(s) − δθ(s)d3(s) and
d3(s) = d3(s) + δθ(s)d1(s) respectively.
The constitutive relation for the perturbation of the moment is trivial δM2(s) = g δθ�(s) but this is not the
case for the strains. This is obtained by considering that Ni(s) may be defined by two equivalent ways:

for N1(s) (N� + δN�) · d1(s) = (ε(s) + δε(s)) · d1(s)
for N3(s) (N� + δN�) · d3(s) = g ((ε(s) + δε(s)) · d3(s)− 1)

(58)

Expanding each side and using first δ-order approximations, one obtains, respectively:

N1(s)− δθ(s)N3(s) + δN1(s) = ε1(s)− δθ(s) ε3(s) + δε1(s)
N3(s) + δθ(s)N1(s) + δN3(s) = g (ε3(s) + δθ(s) ε1(s) + δε3(s)− 1)

(59)

Using (56), a constitutive relation depending on the initial state is obtained for the perturbation:

δε1(s) = cos (φ(�)− φ(s))δN1(�)− sin (φ(�)− φ(s))δN3(�)−
�

g−1
g N3(s)− 1

�
δθ(s)

δε3(s) = 1
g

�
sin (φ(�)− φ(s))δN1(�) + cos (φ(�)− φ(s))δN3(�)

�
− g−1

g N1(s) δθ(s)
(60)

where φ(�)+ θ(�) = φ(s)+ θ(s) (= φ̂) has been used. Hence strain perturbations δεi(s) are all related to the
field of micro-rotation δθ(s) and controlled by both the prescribed configuration and boundary conditions
imposed on the force perturbation δN� at the last section. This observation induces that (55) may be
written merely in terms of a single degree of freedom δθ(s) of the perturbation with parameters controlled
by the prescribed configuration and boundary conditions. Straight forward calculation gives:

δθ��(s) + k2(s) δθ(s) = f(s) (61)

where k2(s) and f(s) are

k2(s) = −1

g
N3(s) +

g − 1

g2

�
N

2

3(s)−N
2

1(s)
�

f(s) =
1

g

�
g − 1

g
N3(s)− 1

��
cos (φ(�)− φ(s))δN1(�)− sin (φ(�)− φ(s))δN3(�)

�
+ . . .

. . .
g − 1

g2
N1(s)

�
sin (φ(�)− φ(s))δN1(�) + cos (φ(�)− φ(s))δN3(�)

�
(62)

δθ(s) is a solution of a linear, non-homogeneous, second order differential equation with non-constant co-
efficients. This differential equation is of the class of driven parametric oscillators for which analysis is
well-documented but beyond the scope of the present paper.
Boundary conditions affect only the non-homogeneous term. Indeed, the prescription of δN� is of particular240

physical importance. This is detailed in the next paragraph for dead and follower load cases.

8.2. Dead-load

For a dead-load on gets N� = N� then δN� = 0. The equation (62) becomes:

δθ��(s) + k2(s) δθ(s) = 0 (63)

Boundary conditions at σ = 0 or � are either δθ(σ) = 0 for constant orientation of the section or δθ�(σ) = 0
if the moment kept constant.
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Exemple for a pure longitudinal compression. For this initial configuration φ(s) = π and k(s) is constant:

k2 =
N�

g
+

g − 1

g2
N2

� (64)

In that case k2 is strictly positive, hence solutions of (63) are of the form

δθ = C1 cos (ks) + C2 sin (ks) (65)

for which the constants Ci depend on the boundary conditions.245

• For simply supported beam δθ�(0) = 0 and δθ�(�) = 0. Trivial solution Ci = 0 is imposed except
if k = nπ/� (with n ∈ N∗) for which δθ(s) = C1 cos (ks) is a possible solution. A straightforward
computation shows that this buckling solution occurs for

N� =
g

2(g − 1)

��
1 + 4(g − 1)(

nπ

�
)2 − 1

�
(66)

This non-linear relation may be simplified in first approximation as nπ
� � 1. This leads to the standard

Euler critical-load N� = g(
nπ

�
)2 for buckling of simply supported beam.

• For clamped-hinged beam δθ(0) = 0 and δθ�(�) = 0. Again trivial solution is imposed except if
k = (2n+ 1)π/(2�) (with n ∈ N) for which δθ(s) = C2 sin (ks) is a possible solution. In that case the
critical load becomes:

N� =
g

2(g − 1)

��
1 + (g − 1)(

(2n+ 1)π

�
)2 − 1

�
(67)

which corresponds in first approximations to the standard Euler critical load N� = g(
(2n+ 1)π

2�
)2 for

cantilever beam.

• For beam clamped at both ends, δθ(0) = 0, δθ(�) = 0, the same approach leads to (66) as for simply250

supported beam.

8.3. Follower load

If the force acting on the last section is a follower load, then N� �= N�. However the components of the
actual force at this end are unchanged: N1(�) = N1(�) and N3(�) = N3(�). Applying (58) at s = � leads to:

δN1(�) = N3(�) δθ(�), δN3(�) = −N1(�) δθ(�) . (68)

Injecting these expressions in (62), the equation (61) writes after rearrangement:

δθ��(s) + k2(s)
�
δθ(s)− δθ(�)

�
= 0 (69)

where δφ(s)+ δθ(s) = δφ(�)+ δθ(�) has been used. For a follower-load, the angle between the normal of the
last section and the external force is the same before and after perturbation, then δφ(�) = 0. In other words:
δθ(s)− δθ(�) = −δφ(s). According to this change of variables, the above differential equation becomes:

δφ��(s) + k2(s) δφ(s) = 0 (70)

where the boundary condition at s = � is already prescribed δφ(�) = 0 even if δθ(�) is unknown (note that
δθ(�) may be a boundary condition prescription).
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Exemple for a pure longitudinal compression. As already mentioned k2 is, in that case, a positive constant
specified in (64). As δφ(�) = 0, solution of (70) is of the form

δφ(s) = C1 sin (k(�− s)) (71)

However, the boundary conditions imposed on the beam still play an important role, as it is highlighted by255

the three following examples:

• If the couple remains null at the last end δM2(�) = 0 then δθ�(�) = 0 or equivalently δφ�(�) = 0. Direct
calculation shows that no solution δφ(s) may respect this condition except the trivial ones: δφ(s) = 0,
then δθ(s) = δθ(�). Physically speaking any perturbation of the beam induced an instability in the
form of a rigid rotation. Note that this observation is valid for any constraint imposed on s = 0. In260

particular if the beam is clamped at the origin δθ(s) = 0: no transverse perturbation are possible.

• If the beam is simply supported at s = 0 but δθ�(�) �= 0 at the other end, the problem writes in
terms of δφ: δφ�(0) = 0 and δφ(�) = 0. These boundary conditions imposes non-trivial solution if
k = (2n + 1)π/(2�) (with n ∈ N). A buckling appears for a critical load presented in (67) and the
mode of buckling may be written as

δθ(s) = δθ(�)− C1 sin
� (2n+ 1)π

2�
(�− s)

�

where the constant C1 is arbitrary.

• If δθ(0) = 0 the beam is clamped at s = 0 then δφ(0) = δθ(�) and still δφ(�) = 0. According to (71),
C1 sin (k�) = δθ(�). Let consider moderate compression (0 < k� < π) in that case the solution (71) is
always possible and writes:

δφ(s) = δθ(�)
sin (k(�− s))

sin (k�)
, then δθ(s) = δθ(�)

�
1− sin (k(�− s))

sin (k�)

�

Then, for any infinitesimal perturbation of the orientation of the last section (and then of the follower
load), a perturbed solution exists. No brutal bifurcation is observed. In conclusion the clamped
beam is particularly unstable under the loading of a follower compressive force (even if this latter is265

infinitesimal).

9. Boundary problem

Examining now that the same beam (� = 50, g = 5/2) supports a pure dead-load N� = N�ez, M� = 0.
Of course φ�

� = 0 as M� = 0 however φ� is not prescribed. Indeed, the last boundary condition is the
orientation of the section at s = 0: θ0 = θ(0). Let us define in the same spirit M0 := M2(0), φ0 := φ(0) and270

φ�
0 := φ�(0) (= −M0/g). From (24) θ0 = φ̂− φ0 and according to the section (3.2) φ̂ = 0.

The questions are the following:

What is the configuration of the beam as θ0 varies according to a command, for a fixed pure dead-load ?
Is this solution unique ?

In order to address these questions, one first consider the initial condition problem which has unique solution:275

What is the configuration of the beam as φ� varies for a prescribed N� and such that M� = 0, φ̂ = 0 ?

In a second step the map of the solution associated to θ0 ∈ C → φ� is studied according to the command C
of the boundary condition.
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9.1. Parameter analysis

First observe that µ = 2gN� cos (φ�)− (g− 1)N2
� cos2 (φ�) then µa ≤ µ ≤ µc and t(s) is of the form (46).

Second, as φ�
� = 0 we have t�(�) = 0 and according to Fig.6 and the associated analysis:

�
a(α− + α+)(�+ s0) = +K, if 0 ≤ φ� < π�
a(α− + α+)(�+ s0) = −K, if π ≤ φ� < 2π

, where K := K(
α+

α+ + α−
)

Then, for a fixed φ�, s0 can be determined directly. In other words, t(s) is perfectly determined and then
φ(s). In particular θ0 := −2 arctan (t(0)) becomes:

θ0 = −2 arctan
��

α− + α+ ds(
�

a(α− + α+)s0 |
α+

α+ + α−
)
�

= 2arctan
��

α− + α+ ds(±K +
�
a(α− + α+)� |

α+

α+ + α−
)
�

= ±2 arctan
� √

α−

cn(
�
a(α− + α+)� | α+

α++α−
)

�

According to the preceding results and using translation rules [23]-22.4.(iii). The sign ± is − if φ� ∈ [0,π[280

and + if φ� ∈ [π, 2π[. Recall that a and α± depend explicitly on φ� according to (39) and (29).

9.2. Catastrophic instablities

The evolution of θ0 versus φ� is presented in Fig.12. The map φ� → θ0 is bijective only for moderate
magnitude N� of the dead-load. For moderate N� the angle φ� is uniquely determined for a given θ0 hence
the associated configuration of the beam is unique. For larger N�, more than one value of φ� is associated285

to a given value of θ0. This lack of uniqueness induces a non-uniqueness of the configurations for a fixed θ0.
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Figure 12: Evolution of θ0 according to φ� for various magnitude of the dead-load (� = 50, g = 5/2, N� = N�ez, M� = 0,

φ̂ = 0). If C is θ0 increases linearly from 0, the graph has to be read from right to left.

Supposing that the command C is ”θ0 increases from 0”. The initial state is then associated to the point
(φ� = 0, θ0 = 0) for which the beam supports a pure traction. Afterward the graph in Fig.12 has to be read
from right to left and the first configurations are defined by the increasing branch initiated at (0, 0). For290

large N�, this branch has an inflection point (for φ� � −π/3 if N� = 0.01 see in Fig.13-left). In order to
respect the command imposed on θ0, the values of φ� has to present a large jump (its magnitude is higher
than 3π/2 if N� = 0.01). This jump corresponds to a large and brutal change of the configuration of the
beam as it is observed in Fig.13-right. This phenomena is known as a catastrophe in instability theories
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([36, 37, 38]).295

The analytical and dimensionless approach followed along the present paper allows to tackle this type of
problem through explicit solution without a priori approximations or hypotheses. This methodology may
be seen as a complementary approach to those more usual based on the internal energy.

10. Conclusion

Analytical study of large (but plane) transformation of a Timoshenko beam with linear constitutive law300

was conducted. Cosserat’s formulation was used by modeling the beam as a curvilinear line with moving
directors frame. Inspired by [14] and by adapting dimensionless procedures, equilibrium relations in non-
dimensional form were found.
Even if the physical problem is defined by a mixture of kinematical (position and orientation of the cross-
section) and dynamical (force and moments) boundary conditions, the formulation followed in the present305

paper chooses to emphasize first a Cauchy problem formalism where all strains are prescribed at one end
(in contrast to most studies in this field). More precisely, at one end, the moment and force intensities are
supposed to be known but the orientation of the load with respect to the normal of the section too.
This approach ensures existence and unicity of the solution. It had been proved that such prescription of the
moment and force (intensity and orientation relatively to the cross-section) at a given end ensures regularity310

of the solution with respect to the boundary conditions too.
Explicit formulation of the solution is obtained thanks to Jacobian elliptic functions for which coefficients
are smoothly dependents on the invariants of the problem. This methodology let us tackle several theoretical
and physical problems since explicit solutions were obtained without any approximation.
Several examples are then presented to illustrate this methodology. In the case of a pure-shear follower load,315

load is completely prescribed at one end, and a quasi-static evolution is straightforwardly addressed. In
such a case, the explicit analysis is the opportunity to exhibit an universel size ratio of a wrinkle pattern:
this size-ratio is independent of the material and the geometrical properties of the beam but independent of
the intensity of the load too.
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For mixed boundary conditions, the perturbation of the problem is presented in a general way, which allows320

us to compute the perturbed solutions under various boundary conditions. This general perturbed problem
written as a driven parametric oscillator for which each (space-varying) parameters is explicitly available.
In the last example, the kinematic control of a beam supporting a dead-load is presented. For such a
problem, the usual perturbation methodology could be used to detect eventual instability. The present paper
however focus on an alternative nonlinear method that depicts the whole equilibrium solution. Emergence325

of even more critical instability than fork bifurcation (as usual buckling) is observed. Indeed such so called
catastrophe remains reachable in a straightforward and explicit way.
A more detailed study of energy function property and a dynamic approach could improve our understanding
of planar elastic beam. In particular dynamic instabilities, such as fluttering, is one of the interesting issues
that may be potentially addressed by extending the present work.330
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