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Expectiles de�ne a least squares analogue of quantiles. They have been
the focus of a substantial quantity of research in the context of actuarial and
�nancial risk assessment over the last decade. The behaviour and estima-
tion of unconditional extreme expectiles using independent and identically
distributed heavy-tailed observations has been investigated in a recent se-
ries of papers. We build here a general theory for the estimation of extreme
conditional expectiles in heteroscedastic regression models with heavy-tailed
noise; our approach is supported by general results of independent interest on
residual-based extreme value estimators in heavy-tailed regression models,
and is intended to cope with covariates having a large but �xed dimension.
We demonstrate how our results can be applied to a wide class of impor-
tant examples, among which linear models, single-index models as well as
ARMA and GARCH time series models. Our estimators are showcased on a
numerical simulation study and on real sets of actuarial and �nancial data.

1. Introduction.

1.1. Motivation. A traditional way of considering extreme events is to estimate extreme
quantiles of a random variableY 2 R, such as the negative daily log-return of a stock market
index in �nance, so that large values ofY correspond to extreme losses on the market, or the
magnitude of a claim in insurance. A better understanding of the extremes ofY can often
be achieved by inferring the conditional extremes ofY given a covariateX . Recent exam-
ples include the analysis of high healthcare costs in [49] and large insurance claims in [41].
We focus on the case whenY given X is heavy-tailed (i.e. Paretian-tailed); this assump-
tion underpins the aforementioned papers and is generally appropriate to the modelling of
actuarial and �nancial data. Under no further assumptions on the structure of(X ;Y ), non-
parametric smoothing methods such as those of [7, 18] can be used. Those techniques suffer
from the curse of dimensionality, compounded in conditional extreme value statistics by the
necessity to select only the few high observations relevant to the analysis. Early attempts at
tackling the low-dimensional restriction, such as [12], were built on parametric models. Later
attempts have mostly used quantile regression: a seminal paper is [6], developed further by
[23, 49, 50]. An approach based on Tail Dimension Reduction was adopted by [17].

These techniques, and more generally the current state of art in conditional extreme value
analysis, rely on quantiles, which only use the information on the frequency of tail events
and not on their actual magnitudes. This is an issue in risk assessment, where knowing the
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magnitude of typical extreme losses is important. One way of tackling this problem is to work
with expectiles, introduced in [38]. The� th regression expectile ofY given X is obtained
from the� th regression quantile by replacing absolute deviations by squared deviations:

� � (Y jx ) = arg min
� 2 R

E ([� � (Y � � ) � � � (Y )] jX = x ) ;

where� � (y) = j� � 1f y � 0gj y2 is the expectile check function and1f�g is the indicator
function. Expectiles are well-de�ned and unique when the underlying distribution has a �nite
�rst moment (see [1] and Theorem 1 in [38]). Unlike quantiles, expectiles depend on both
the probability of tail values and their realisations (see [31]). In addition, expectiles induce
the only coherent, law-invariant and elicitable risk measure (see [55]) and therefore bene�t
from the existence of a natural backtesting methodology. Expectiles are thus a sensible risk
management tool to use, as a complement or an alternative to quantiles.

The literature has essentially focused on estimating expectiles with a �xed level� (see
e.g. [27, 30]). The estimation of extreme expectiles, where� = � n ! 1 as the sample size
n tends to in�nity, remains largely unexplored; it was initiated by [9, 11] in the unconditional
heavy-tailed case. Our focus is to provide and discuss the theory of estimators of extreme con-
ditional expectiles, in models that may cope with a large but �xed dimension of the covariate
X . In doing so we shall develop a novel theory of independent interest for the asymptotic
analysis of residual-based extreme value estimators in heavy-tailed regression models.

1.2. Expectiles and regression models.We outline our general idea in the location-scale
shift linear regression model. Let(X i ;Yi ), 1 � i � n be a sample from a random pair(X ;Y )
such thatY = � + � > X + (1 + � > X )": The parameters� 2 R, � 2 Rd and � 2 Rd are
unknown, and so are the distributions of the covariateX 2 Rd and the unobserved noise
variable" 2 R. We also suppose thatX is independent of" , and has a supportK such that
1+ � > x > 0 for all x 2 K . In this model, by location equivariance and positive homogeneity
of expectiles (Theorem 1(iii) in [38]), we may write� � (Y jx ) = � + � > x + (1 + � > x )� � (" ):
A natural idea to estimate the extreme conditional expectile� � n (Y jx ), where� = � n ! 1 as
n ! 1 , is to �rst construct estimatorsb� , b� and b� of the model parameters using a weighted
least squares method and then construct residuals which can be used, instead of the unobserv-
able errors, to estimate extreme expectiles of" . This expectile estimator can be adapted from,
for instance, an empirical asymmetric least squares method (see [9, 11]). If" has a �nite sec-
ond moment, the weighted least squares approach produces

p
n� consistent estimators, and

it is reasonable to expect that the asymptotic normality properties of the estimators of [9, 11]
carry over to their residual-based versions. An estimator of the extreme conditional expectile
� � n (Y jx ) is then readily obtained asb� � n (Y jx ) = b� + b� > x + (1 + b� > x )b� � n (" ):

Our main objective in this paper is to generalise this construction in heteroscedastic regres-
sion models of the formY = g(X ) + � (X )" whereg and � > 0 are two measurable func-
tions of X , so that� � n (Y jx ) = g(x ) + � (x )� � n (" ). If " is centred and has unit variance,
this model can essentially be viewed asE(Y jX ) = g(X ) andVar( Y jX ) = � 2(X ), and is
called location-dispersion regression modelin [47]. Even though our theory will be valid
for arbitrary regression models of this form, one should keep in mind models adapted to the
consideration of a large dimensiond, where the estimation ofg and � will not suffer from
the curse of dimensionality and thus reasonable rates of convergence can be achieved. The
viewpoint we deliberately adopt is that the estimation ofg and � is the “easy” part of the
estimation of� � n (Y jx ) because, depending on the model, it can be tackled by known para-
metric or semiparametric techniques that are easy to implement and converge faster than the
extreme value procedure for the estimation of� � n (" ). This converts the problem of condi-
tional extreme value estimation into the question of being able to carry out extreme value
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inference based on residuals rather than the unobserved noise variables, which is nonetheless
a dif�cult question because residuals are neither independent nor identically distributed.

In Section 2, given that residuals of the model are available, we provide high-level, fairly
easy to check and reasonable suf�cient conditions under which the asymptotics of residual-
based estimators of� � n (" ) are those of their unfeasible, unobserved error-based counterparts.
Several of our results are of independent interest: in particular, we prove in Section 2.2 a
non-trivial result on Gaussian approximations of the tail empirical process of the residuals,
which is an important step in proving asymptotic theory for extreme value estimators in gen-
eral regression models. The idea of carrying out conditional extreme value estimation using
residuals of location-scale regression models is not new: it has been used since at least [37]
and more recently in [2, 26, 35] in the context of the estimation of extreme conditional Value-
at-Risk and Expected Shortfall. A novel contribution of this paper is to provide a very general
theoretical framework for tackling such questions. In Section 3, we shall then consider �ve
fully worked-out examples. We start with the location-scale shift linear regression model
in Section 3.1, a heteroscedastic single-index model in Section 3.2, and a heteroscedastic,
Tobit-type left-censored model in Section 3.3. The latter example allows us to show how
our method adapts to a situation where the modelY = g(X ) + � (X )" is valid in the right
tail rather than globally. Aside from these three examples, we study the two general ARMA
and GARCH time series models in Section 3.4 as a way to illustrate how our results may be
used to tackle the problem of dynamic extreme conditional expectile estimation. Section 4
examines the behaviour of our estimators on simulated and real data, and Section 5 discusses
our �ndings and research perspectives. All the necessary mathematical proofs, as well as fur-
ther details and results related to our �nite-sample studies, are deferred to the Supplementary
Material [19].

2. General theoretical toolbox for extreme expectile estimation in heavy-tailed re-
gression models. Our general framework is the following. Let(X i ;Yi ), 1 � i � n be part
of a (strictly) stationary sequence of copies of the random pair(X ;Y ), with Y 2 R, such that

(1) Y = g(X ) + � (X )"

whereg and � > 0 are two measurable functions ofX . The unobserved noise variable" 2
R is centred and independent ofX ; in other words, for eachi , X i is independent of" i ,
although we do not assume independence between the pairs(X i ; " i ). In addition, we suppose
throughout that the" i = ( Yi � g(X i ))=� (X i ) are independent.

It follows from this assumption that a conditional expectile� � n (Y jx ) can be written as
� � n (Y jX = x ) = g(x ) + � (x )� � n (" jX = x ) = g(x ) + � (x )� � n (" ); where we used the loca-
tion equivariance and positive homogeneity to obtain the �rst identity, and the independence
betweenX and" to get the second identity. We assume throughout Section 2 thatg and �
have been estimated, and we concentrate on estimating the extreme expectile� � n (" ), with the
objective of ultimately constructing an estimator of� � n (Y jx ). Denoting by� 7! q� (" ) the
quantile function of" , we work under the following �rst-order Pareto-type condition:

C1( ) The tail quantile function of" , de�ned by U(t) = q1� t � 1 (" ) for t > 1, is regularly
varying with index > 0: U(tx )=U(t) ! x  ast ! 1 for anyx > 0.

ConditionC1( ) is equivalent to assuming that the survival function of" , denoted hereafter
by F : x 7! P(" > x ), is regularly varying with index� 1= < 0 (see [13], Proposition B.1.9).
Together with conditionEj" � j < 1 , where" � = min( "; 0), the assumption < 1 ensures
that the �rst moment of" exists, which entails that expectiles of" of any order are well-
de�ned. Both of these conditions shall be part of our minimal assumptions throughout.
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The essential dif�culty to overcome in our setup is that the" i are unobserved. However,
becauseg and � have been estimated, byg and � say, we have access to residualsb" (n)

i =
(Yi � g(X i ))=� (X i ) constructed from the regression model (1). Our idea in this section will
be to construct estimators of extreme expectiles based on the observableb" (n)

i , and study their
theoretical properties when they are in some sense “close” to the true, unobserved" i .

We start by the case of anintermediate level� n , meaning that� n ! 1 andn(1 � � n ) ! 1 .
Section 2.1 below focuses on a residual-based Least Asymmetrically Weighted Squares
(LAWS) estimator. Section 2.2 then introduces a competitor based on the connection be-
tween (theoretical) extreme expectiles and quantiles and new general results on tail empirical
processes of residuals in heavy-tailed models. Section 2.3 extrapolates these estimators to
properly extreme levels� 0

n using a Weissman-type construction warranted by the heavy-tailed
assumption (see [51]), and combines these extrapolated devices with the estimators ofg and
� to �nally obtain an estimator of the extreme conditional expectile� � 0

n
(Y jx ).

2.1. Intermediate step, direct construction: residual-based LAWS.Assume that� n is an
intermediate sequence,i.e. � n ! 1 andn(1 � � n ) ! 1 . If the errors" i were available, we
could estimate� � n (" ) by q� � n (" ) minimising

P n
i =1 � � n (" i � u) with respect tou. We replace

the unobserved" i by the observed residualsb" (n)
i , resulting in the LAWS estimator

b� � n (" ) = arg min
u2 R

nX

i =1

� � n (b" (n)
i � u):

Our �rst main theorem is a �exible result stating thatb� � n (" ) is a
p

n(1 � � n )� relatively
asymptotically normal estimator of the high, intermediate expectile� � n (" ) provided the gap
between residuals and unobservable errors is not too large. For technical extensions to the
case of a random sample size or independent arrays, see Lemmas C.5 and C.8 of [19].

THEOREM 2.1. Assume that there is� > 0 such thatEj" � j2+ � < 1 , that " satis�es
conditionC1( ) with 0 <  < 1=2 and� n " 1 is such thatn(1 � � n ) ! 1 . Suppose moreover
that the array of random variablesb" (n)

i , 1 � i � n, satis�es

(2)
p

n(1 � � n ) max
1� i � n

jb" (n)
i � " i j
1 + j" i j

P�! 0:

Then we have
p

n(1 � � n )

 
b� � n (" )
� � n (" )

� 1

!
d�! N

�
0;

2 3

1 � 2

�
:

REMARK 1. Theorem 2.1 is a non-trivial extension of Theorem 2 in [9] to the case
when the" i are unobserved. The difference lies in the fact that the estimatorb� � n (" ) is much
more dif�cult to handle directly; Condition (2), on the weighted distance between the" i

and theb" (n)
i , allows for a control of the gap betweenb� � n (" ) and the unfeasibleq� � n (" ), with

the presence of the denominator1 + j" i j making it possible to deal with heteroscedasticity
in practice. We shall use this key condition again in our results in Section 2.2. It will be
satis�ed when the structure of the modelY = g(X ) + � (X )" is estimated at a faster rate
than the

p
n(1 � � n )� rate of convergence of intermediate expectile estimators. The proof is

based on rigorously establishing thatb� � n (" ) andq� � n (" ) have the same asymptotic distribution;
the striking fact is that the theoretical arguments fundamentally only require stationarity of
the " i , with independence only being crucial for concluding thatq� � n (" ) is asymptotically
Gaussian by Theorem 2 in [9] and thereforeb� � n (" ) must be so. Theorem 2.1 can then be
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expected to have analogues when the" i are stationary but weakly dependent, thus covering
(for example) regression models with time series errors as in [46], as long as one can prove
the

p
n(1 � � n )� asymptotic normality ofq� � n (" ). An example of such a result for stationary

and mixing" i has been investigated in [10].

2.2. Intermediate step, indirect construction.We start by recalling, as shown in Propo-
sition 2.3 of [3], that the heavy-tailed condition ont 7! U(t) = q1� t � 1 (" ) entails

lim
� " 1

� � (" )
q� (" )

= (  � 1 � 1)�  :

Therefore, if is a consistent estimator of , andq� n
(" ) is a consistent estimator ofq� n (" ),

we can estimate the intermediate expectile� � n (" ) by the so-called indirect estimator

e� � n (" ) = (  � 1 � 1)�  q� n
(" ):

An extension of Theorem 1 in [9] (see Proposition A.1 in [19]) shows that under the follow-
ing classical second-order re�nement of conditionC1( ), the asymptotic distribution of the
estimatore� � n (" ) is determined under high-level conditions on(; q� n

(" )) .

C2(; �;A ) For all x > 0,

lim
t !1

1
A(t)

�
U(tx )
U(t)

� x 
�

= x  x � � 1
�

;

whereA is a function converging to 0 at in�nity and having constant sign, and� � 0. Here
and in what follows,(x � � 1)=� is to be read aslogx when� = 0 .

We now explain how one may construct and study residual-based estimators andq� n
(" ). Let

z1;n � z2;n � � � � � zn;n be the orderedn� tuple associated with ann� tuple(z1; z2; : : : ; zn ).
A number of estimators of can be adapted to our case and written as a functional of the tail
empirical quantile process of the residuals, among which the popular Hill estimator ([24]):

b k =
1
k

kX

i =1

log
b" (n)

n� i +1 ;n

b" (n)
n� k;n

=
Z 1

0
log

0

@
b" (n)

n�b ksc;n

b" (n)
n� k;n

1

A ds:

Hereb�c denotes the �oor function. We may also adapt in the same way the moment-type
statistics which intervene in the construction of the moment estimator of [14], and the general
class of estimators studied by [42]. These estimators depend on the choice of an effective
sample sizek = k(n) ! 1 andk=n ! 0; it is useful to think ofk as beingk = bn(1 � � n )c.

It is therefore worthwhile to study the asymptotic behaviour of the tail empirical quantile
processs 7! b" (n)

n�b ksc;n of residuals, and of its log-counterpart. This is of course a dif�cult task,
because the array of residuals is not made of independent random variables. To tackle this
problem, we �rst recall that under conditionC2(; �;A ), one can write a weighted uniform
Gaussian approximation of the tail empirical quantile process of the (unobserved)" i :

"n�b ksc;n

q1� k=n (" )
= s�  +

1
p

k

�
s �  � 1Wn (s) +

p
kA(n=k)s�  s� � � 1

�
+ s�  � 1=2� � oP(1)

�

uniformly in s 2 (0;1], whereWn is a sequence of standard Brownian motions and� > 0
is arbitrarily small (see Theorem 2.4.8 in [13]), providedk = k(n) ! 1 , k=n ! 0, andp

kA(n=k) = O(1) . Strictly speaking, this approximation is only valid for appropriate ver-
sions of the tail empirical quantile process on an appropriate probability space; since tak-
ing such versions has no consequences on weak convergence results, we do not empha-
sise this in the sequel. For certain results which require the study of the log-spacings
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log"n�b ksc;n � log"n� k;n , such as the convergence of the Hill estimator, an approximation
of the log-tail empirical quantile process is sometimes preferred: uniformly ins 2 (0;1],

1


log
�

"n�b ksc;n

q1� k=n (" )

�
= log

1
s

+
1

p
k

�
s� 1Wn (s) +

p
kA(n=k)

1


s� � � 1
�

+ s� 1=2� � oP(1)
�

:

Our next result is that, if the error made in the construction of the residuals is not too large,
then these approximations hold for the tail empirical quantile process of residuals as well.

THEOREM 2.2. Assume that conditionC2(; �;A ) holds. Letk = k(n) = bn(1 � � n )c
where � n " 1, n(1 � � n ) ! 1 and

p
n(1 � � n )A((1 � � n ) � 1) = O(1) . Suppose that the

array of random variablesb" (n)
i , 1 � i � n, satis�es(2). Then there exists a sequenceWn of

standard Brownian motions such that, for any� > 0 suf�ciently small: uniformly ins 2 (0;1],

b" (n)
n�b ksc;n

q1� k=n (" )
= s�  +

1
p

k

�
s �  � 1Wn (s) +

p
kA(n=k)s�  s� � � 1

�
+ s�  � 1=2� � oP(1)

�

and

1


log

0

@
b" (n)

n�b ksc;n

q1� k=n (" )

1

A = log
1
s

+
1

p
k

�
s� 1Wn (s) +

p
kA(n=k)

1


s� � � 1
�

+ s� 1=2� � oP(1)
�

:

Theorem 2.2 is the second main contribution of this paper. It is a non-trivial asymptotic result,
because there is no guarantee that ranks of the original error sequence are preserved in the
residual sequence, and it therefore is not obvious at �rst sight that Condition (2) on the gap
between errors and their corresponding residuals is in fact suf�cient to ensure that the tail
empirical quantile process based on residuals has similar properties to its unobserved errors-
based analogue. As an illustration, we work out the asymptotic properties of the residual-
based, Hill-type estimator of the extreme value index of the errors, as well as the asymptotic
behaviour of the related indirect intermediate expectile estimator in Corollary 2.1 below.

COROLLARY 2.1. Assume that conditionC2(; �;A ) holds. Let� n " 1 satisfy n(1 �
� n ) ! 1 and

p
n(1 � � n )A((1 � � n ) � 1) ! � 2 R. Suppose that the array of random vari-

ablesb" (n)
i , 1 � i � n, satis�es(2). If  = b bn(1� � n )c andq� n

(" ) = b" (n)
n�b n(1� � n )c;n , then

p
n(1 � � n )

�
 � ;

q� n
(" )

q� n (" )
� 1

�
d�!

�
�

1 � �
+ 

Z 1

0

�
W (s)

s
� W (1)

�
ds; W (1)

�

whereW is a standard Brownian motion. In particular,

p
n(1 � � n )

�
 � ;

q� n
(" )

q� n (" )
� 1

�
d�! (� ; �) ;

where � � N
�
�= (1 � � );  2

�
and � � N

�
0;  2

�
are independent. As a consequence, if

moreoverEj" � j < 1 , 0 <  < 1, E(" ) = 0 and
p

n(1 � � n )=q� n (" ) = O(1) , one has

p
n(1 � � n )

 
e� � n (" )
� � n (" )

� 1

!
d�! N

�
�

�
m( )
1 � �

� b(; � )
�

;  2 �
1 + [m( )]2�

�
;

with m( ) = (1 �  ) � 1 � log( � 1 � 1) andb(; � ) =
( � 1 � 1)� �

1 �  � �
+

( � 1 � 1)� � � 1
�

:
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This result is our third main contribution. Such results on residual-based extreme value esti-
mators appear to be quite scarce in the literature: see Section 2 in [50] and Section 3 in [49] in
linear quantile regression models, Proposition 2 in Appendix A of [26] in ARMA-GARCH
models, and Section 3 in [48] in a nonparametric homoscedastic quantile regression model.
Our result relaxes these strong modelling assumptions, and provides a reasonable general the-
oretical framework for the estimation of the extreme value index and intermediate quantile
via residuals of a regression model. Similarly to Theorem 2.2, this result is of wider interest
in general extreme value regression problems with heavy-tailed random errors.

REMARK 2. When, with probability 1,g(X ) is bounded and� (X ) is positive and
bounded (this is the setup of our simulation study for linear and single-index models, see
Section 4.1), one could estimate using theYi = g(X i ) + � (X i )" i directly, because then the
Yi all have extreme value index (see Lemma A.4 in [19]). A competitor to the estimatorb k

is thusq k = k� 1 P k
i =1 log(Yn� i +1 ;n =Yn� k;n ). A numerical comparison of the estimatorsb k

andq k (which we do not report to save space) shows, however, that the residual-based esti-
matorb k has by far the best �nite-sample performance. The idea is that the presence of the
shift g(X i ) and scaling� (X i ) in theYi introduces a large amount of bias in the estimation
of  by q k ; removing these two components in the calculation of the residuals substantially
improves �nite-sample results. A related point is made in [13] (p.83).

REMARK 3. The earlier work of [25] provides general tools to obtain the asymptotic
normality of the Hill estimator based on a �ltered process. The essential difference with our
approach is that we put our assumptions directly on the gap between the residuals and the
unobserved noise variables; by contrast, the methodology of [25] essentially assumes that
the residuals are obtained through a parametric �lter, and makes technical assumptions on
the regularity of the parametric model and the gap between the estimated parameter and its
true value. The latter approach is very powerful when working with time series models, as
typical such models (ARMA, GARCH, ARMA-GARCH) have a parametric formulation.
By contrast, we avoid the parametric speci�cation and therefore can handle a large class of
possibly semiparametric regression models (such as heteroscedastic single-index models, see
Section 3.2), while still providing useful results for time series models (see Section 3.4).

The theory in [25] allows for non-independent errors in autoregressive time series, see Sec-
tion 3.2 therein. This corresponds to when the �lter does not correctly describe the underlying
structure of the time series, and can be used in misspeci�ed models. Our results use the in-
dependence of the errors, but may also be extended to the stationary weakly dependent case:
our argument for the proof of Theorem 2.2 (and hence for Corollary 2.1) relies on, �rst,
quantifying the gap between the tail empirical quantile process based on the unobserved er-
rors and its version based on the residuals (see Lemma A.3 of [19]), and then on a Gaussian
approximation of the tail empirical quantile process for independent heavy-tailed variables.
Inspecting the proofs reveals that both of these steps can in fact be carried out when the" i
are only stationary,� � mixing and satisfy certain anti-clustering conditions, because a Gaus-
sian approximation of the tail empirical quantile process also holds then, see for instance
Theorem 2.1 in [15].

2.3. Extrapolation for extreme conditional expectile estimation.We �nally develop
high-level results for the estimation of properly extreme conditional expectiles whose level
� 0

n ! 1 can converge to 1 at an arbitrarily fast rate. One would typically choose� 0
n = 1 � pn

for an exceedance probabilitypn not greater than1=n, seee.g.Chapter 4 of [13] in the context
of extreme quantile estimation. Following [51], intermediate quantiles of order� n can be ex-
trapolated to the extreme level� 0

n , using the heavy-tailed assumption. This idea successfully
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carries over to expectile estimation because of the asymptotic proportionality relationship
� � (" )=q� (" ) ! ( � 1 � 1)�  as� " 1, resulting in the following class of estimators of� � 0

n
(" ):

�
?
� 0

n
(" ) =

�
1 � � 0

n

1 � � n

� � 

� � n
(" );

where and � � n
(" ) are consistent estimators of and of the intermediate expectile� � n (" ).

In the context of a regression model of the form (1), these would be based on the residuals
obtained via estimatorsg(x ) and� (x ) of g(x ) and� (x ). One can then estimate� � 0

n
(Y jx ) in

model (1) by�
?
� 0

n
(Y jx ) = g(x ) + � (x )�

?
� 0

n
(" ): We examine the convergence of this estimator.

THEOREM 2.3. Assume thatEj" � j < 1 and conditionC2(; �;A ) holds with0 <  < 1
and � < 0. Assume further thatE(" ) = 0 and � n ; � 0

n " 1 satisfy

n(1 � � n ) ! 1 ;
1 � � 0

n

1 � � n
! 0;

p
n(1 � � n )

log[(1 � � n )=(1 � � 0
n )]

! 1 ;(3)

p
n(1 � � n )A((1 � � n ) � 1) ! � 2 R and

p
n(1 � � n )
q� n (" )

= O(1) :(4)

Suppose also that
p

n(1 � � n )( � � n
(" )=� � n (" ) � 1) = O P(1) and

p
n(1 � � n )(  �  ) d�! � ,

where� is nondegenerate. Then
p

n(1 � � n )
log[(1 � � n )=(1 � � 0

n )]

 
�

?
� 0

n
(" )

� � 0
n
(" )

� 1

!
d�! � :

Finally, if model(1) holds (withX independent of" ) and, at a given pointx , the estimators
g(x ) ands(x ) satisfyg(x ) � g(x ) = O P(1) and

p
n(1 � � n )( � (x ) � � (x )) = O P(1), then

p
n(1 � � n )

log[(1 � � n )=(1 � � 0
n )]

 
�

?
� 0

n
(Y jx )

� � 0
n
(Y jx )

� 1

!
d�! � :

REMARK 4. This result applies to the residual-based direct LAWS estimator and indirect
quantile-based estimator under the conditions that ensure their

p
n(1 � � n )� consistency.

These conditions essentially amount to assuming that the structure of the model is estimated
at a rate faster than

p
n(1 � � n ), see Theorem 2.1, the related Remark 1, and Corollary 2.1.

3. Applications of our theoretical results.

3.1. Location-scale shift linear regression model.We concentrate here on applications
in the popular example of location-scale shift linear regression model, which we recall below.

Model (M 1) The random pair(X ;Y ) is such thatY = � + � > X + (1 + � > X )": Here the
random covariateX is independent of the centred noise variable" , and has a density function
f X on Rd whose support is a compact setK such that1 + � > x > 0 for all x 2 K .

Model (M 1) features heteroscedasticity. It is well-known that in this model, traditional meth-
ods such as ordinary least squares are consistent but inef�cient. A particular concern in
our case is also to �nd accurate estimators of the heteroscedasticity parameter� ; indeed,
� � n (Y jx ) = � + � > x + (1 + � > x )� � n (" ) with � � n (" ) ! 1 asn ! 1 , so that, whenn is
large, even a moderately large error in the estimation of� can result in a substantial error in
the estimation of the extreme conditional expectile� � n (Y jx ). We suggest a two-stage proce-
dure to estimate (� , � , � ), based on independent data points(X i ;Yi )1� i � n .
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1. (Preliminary step) Compute the ordinary least squares estimatorse� and e� of � and � ,
and then the ordinary least squares estimator of� based on the absolute residualseZ i =
jYi � (e� + e� > X i )j, that is,e� = e� =e� and

(e�; e� ) = arg min
(a;b)

nX

i =1

(Yi � a � b> X i )2; (e�; e� ) = arg min
(c;d)

nX

i =1

( eZ i � c � d> X i )2:

2. (Weighted step) Compute the least squares estimatorsb� and b� of � and � , weighted
using estimated standard deviations obtained viae� , and then the weighted least squares
estimator of� based on the absolute residualsbZ i = jYi � (b� + b� > X i )j, i.e. b� = b� =b� and

(b�; b� ) = arg min
(a;b)

nX

i =1

�
Yi � a � b> X i

1 + e� > X i

� 2

; (b�; b� ) = arg min
(c;d)

nX

i =1

 
bZ i � c � d> X i

1 + e� > X i

! 2

:

REMARK 5. This is a one-iteration version of a general weighted least squares procedure
where estimates obtained at a given step are fed back into the next iteration to update weights,
this procedure being repeatedn0 times. Simulation results seem to indicate that iterating the
procedure further does not improve the accuracy of the estimators in practice.

Once these estimates have been obtained, we can construct the sample of (weighted) residuals
b" (n)

i = ( Yi � (b� + b� > X i ))=(1 + b� > X i ) satisfying Condition (2) since the weighted least
squares estimators are

p
n� consistent (see Lemma C.1 in [19] and also (52) in the proof of

Corollary 3.1). One can then estimate� � n (" ) by the direct LAWS estimatorb� � n (" ) described
in Section 2.1. The consistency and asymptotic normality ofb� � n (" ) are therefore a corollary
of Theorem 2.1, and this in turn yields the asymptotic behaviour of the estimators

b� � n (Y jx ) = b� + b� > x + (1 + b� > x )b� � n (" ) (intermediate level)

and b� ?
� 0

n
(Y jx ) = b� + b� > x + (1 + b� > x )

�
1 � � 0

n

1 � � n

� � 
b� � n (" ) (extreme level)

where is a consistent estimator of constructed on the residuals.

COROLLARY 3.1. Assume that the setup is that of the heteroscedastic linear model(M 1).
Assume that" satis�es conditionC1( ) with 0 <  < 1=2. Suppose also thatEj" � j2+ � < 1
for some� > 0, and that� n " 1 with n(1 � � n ) ! 1 .

(i) Then for anyx 2 K ,
p

n(1 � � n )

 
b� � n (Y jx )
� � n (Y jx )

� 1

!
d�! N

�
0;

2 3

1 � 2

�
:

(ii) Assume further that" satis�es conditionC2(; �;A ) with � < 0. Suppose also that
� n ; � 0

n " 1 satisfy(3) and (4). If there is a nondegenerate limiting random variable� such

that
p

n(1 � � n )(  �  ) d�! � , then
p

n(1 � � n )
log[(1 � � n )=(1 � � 0

n )]

 
b� ?
� 0

n
(Y jx )

� � 0
n
(Y jx )

� 1

!
d�! � :

We may similarly obtain the asymptotic normality of the indirect estimatorse� � n (Y jx ) and
e� ?
� 0

n
(Y jx ) of the intermediate and extreme expectiles� � n (Y jx ) and� � 0

n
(Y jx ), de�ned as

e� � n (Y jx ) = b� + b� > x + (1 + b� > x )(  � 1 � 1)�  b" (n)
n�b n(1� � n )c;n



10

and e� ?
� 0

n
(Y jx ) = b� + b� > x + (1 + b� > x )

�
1 � � 0

n

1 � � n

� � 

( � 1 � 1)�  b" (n)
n�b n(1� � n )c;n :

Here is the residual-based Hill estimator of ; the asymptotic properties of the estimators
are obtained using Corollary 2.1 and Theorem 2.3. See Corollary E.1 in [19].

REMARK 6. Corollary 3.1 requires a second moment of the noise variable" because
of the use of the weighted least squares method and the residual-based LAWS estimator of
intermediate expectiles. The R packageCASdatasets contains numerous examples of real
actuarial data sets for which the assumption of a �nite variance is perfectly sensible. When
this assumption is violated, the alternative is to use a more robust method for the estimation
of the model structure and then use the indirect expectile estimator of Section 2.2. A more
robust method for the estimation of� and� is, for instance, the one-step estimator of [39].
Such methods typically require some regularity on the joint distribution of(X ; " ), but avoid
moment assumptions. The convergence of the indirect expectile-based estimator built on the
residuals will then only require a �nite �rst moment, see Corollary 2.1 and Theorem 2.3.

3.2. Heteroscedastic single-index model.A model with greater �exibility is the het-
eroscedastic single-index model; the single-index structure allows to handle complicated re-
gression equations in a satisfactory way, including when the dimensiond is large.

Model (M 2) The random pair(X ;Y ) is such thatY = g(� > X ) + � (� > X )": Hereg and
� > 0 are measurable functions. The random covariateX is independent of the noise variable
" , and has a density functionf X on Rd whose support is a compact and convex setK with
nonempty interiorK o. Besides, the variable" is centred and such thatEj" j = 1 .

For identi�ability purposes, we will assume thatg is continuously differentiable,k� k = 1
(wherek � k denotes the Euclidean norm) and that the �rst non-zero component of� is pos-
itive. This guarantees that� is identi�able. Other sets of identi�ability conditions are possi-
ble, seee.g.[28]. In this regression model, the conditional mean and variance have the same
single-index structure. There are analogue models where the direction of projection in� is
a vector� possibly different from� (seee.g.[54]). In practice, model(M 2) is already very
�exible, and for the sake of simplicity we therefore ignore this more general case; in the lat-
ter, the direction in the variance component can be estimated at the

p
n� rate (see Theorem 1

in [54]), and it is readily checked that our methodology below extends to this case.

In model(M 2), � � n (Y jx ) = g(� > x ) + � (� > x )� � n (" ): There are numerous
p

n� consistent
estimators of� (seee.g.Chapter 2 of [28]). We thus assume that such an estimatorb� has
been constructed,i.e.

p
n( b� � � ) = O P(1). Estimate nowg with

bghn ;t n (z) =
nX

i =1

Yi 1fj Yi j � tngL

 
z � b� > X i

hn

! ,
nX

i =1

L

 
z � b� > X i

hn

!

:

HereL is a probability density function onR, hn ! 0 is a bandwidth sequence andtn ! 1
is a positive truncating sequence. This is inspired by an estimator of [22]; truncating helps in
dealing with heavy tails. Besides, analogously to what we observed in model(M 1), � (� > X )
is the conditional �rst moment ofjY � g(� > X )j. Introduce then absolute residualsbZ i;h n ;t n =
jYi � bghn ;t n ( b� > X i )j and consider a Nadaraya-Watson-type estimator:

b� hn ;t n (z) =
nX

i =1

bZ i;h n ;t n 1
n

bZ i;h n ;t n � tn

o
L

 
z � b� > X i

hn

! ,
nX

i =1

L

 
z � b� > X i

hn

!

:
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In Proposition C.1 (see [19]) we show that, under conditions tailored to our framework, both
of these estimators converge uniformly on any compact subsetK 0 of the interior of the sup-
port of X at the raten2=5=

p
logn under the conditionnh5

n ! c 2 (0;1 ). Similar results,
mostly on the estimation of the link functiong, are available in the literature; see for exam-
ple [32] for an estimator based on smoothing splines, as well as references therein.

The residuals are thenb" (n)
i = ( Yi � bghn ;t n ( b� > X i ))=b� hn ;t n ( b� > X i ): Translated in terms of

these residuals, Proposition C.1 of [19] reads

n2=5
p

logn
max

1� i � n

jb" (n)
i � " i j
1 + j" i j

1f X i 2 K 0g = O P(1);

for any compact subsetK 0 of the interior of the support ofX . The restriction to such a
compact subset makes sense since kernel regression estimators strongly suffer from boundary
effects (see, among many others, [33]). This restriction is not important in practice since one
would only trust the estimates ofg and� on a sub-domain of the support where suf�ciently
many observations fromX have been recorded. It implies, however, that the residualsb" (n)

i
that can be used for the estimation of the high conditional expectile are those for whichX i 2
K 0. More precisely, letb" (n)

1;K 0
; : : : ; b" (n)

N;K 0
be those residuals whose corresponding covariate

vectorsX i 2 K 0 andN = N (K 0; n) =
P n

i =1 1f X i 2 K 0g be their total number. De�ne

b� � N (" ) = arg min
u2 R

NX

i =1

� � N (b" (n)
i;K 0

� u);

with � N = � m whenN = m > 0. This yields the estimators

b� � N (Y jx ) = bghn ;t n ( b� > x ) + b� hn ;t n ( b� > x )b� � N (" ) (intermediate level)

and b� ?
� 0

N
(Y jx ) = bghn ;t n ( b� > x ) + b� hn ;t n ( b� > x )

�
1 � � 0

N

1 � � N

� � 
b� � N (" ) (extreme level).

Again, the estimator is typically calculated using high order statistics of the residualsb" (n)
i;K 0

;
for example, this can be the Hill estimator taking into account the topbN (1 � � N )c order
statistics of these residuals (see Lemma C.6(ii) in [19] for the asymptotic properties of this
estimator). The next result focuses on the estimatorsb� � N (Y jx ) andb� ?

� 0
N

(Y jx ).

THEOREM 3.1. Work in model(M 2). Assume that" satis�es conditionC1( ) with 0 <
 < 1=2 and the conditions of Proposition C.1 in [19] hold. Let� n = 1 � n� a with a 2
(1=5;1), K 0 be a compact subset ofK � such thatP(X 2 K 0) > 0, andN = N (K 0; n).

(i) We have, for anyx 2 K 0,
p

N (1 � � N )

 
b� � N (Y jx )
� � N (Y jx )

� 1

!
d�! N

�
0;

2 3

1 � 2

�
:

(ii) Assume moreover that" satis�es conditionC2(; �;A ) with � < 0. Suppose also that
� n ; � 0

n " 1 satisfy(3) and (4). If there is a nondegenerate limiting random variable� such

that
p

N (1 � � N )(  �  ) d�! � , then for anyx 2 K 0,
p

N (1 � � N )
log[(1 � � N )=(1 � � 0

N )]

 b� ?
� 0

N
(Y jx )

� � 0
N

(Y jx )
� 1

!
d�! � :

REMARK 7. Compared to Corollary 3.1, Theorem 3.1 features the additional restriction
� n = 1 � n� a with a 2 (1=5;1). This means that the intermediate expectile to be estimated
has to be high enough so that the rate of (semiparametric) estimation of the structure of the
model is faster than that of the intermediate expectile and the extreme value index .
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REMARK 8. In Theorem 3.1, the order of the conditional expectile to be estimated and
rates of convergence are random and dictated by the numberN = N (K 0; n) of covariates
X i 2 K 0 (where model structure can be estimated at the raten2=5=

p
logn). Random conver-

gence rates are not unusual in situations where the effective sample size is random: see, for
example, Corollary 1.1 in [43] and Theorem 3 in [52] in the context of randomly truncated
observations. The random rate of convergence

p
N (1 � � N ) in Theorem 3.1 can nonethe-

less be replaced by a nonrandom rate because, with the notation of Theorem 3.1 and if
p0 = P(X 2 K 0),

p
N (1 � � N ) = [ np0](1� a)=2(1 + o P(1)) by the law of large numbers.

Similarly, in convergence (ii) and if� 0
n = 1 � n� b with b > a, one can replace1 � � 0

N by the
nonrandom sequence1� � 0

np0
= ( np0) � b and the rate of convergence in (ii) can be substituted

with the nonrandom rate of convergence[np0](1� a)=2=[(b� a) log(np0)].

Let us �nally mention that, if is the residual-based Hill estimator, an analogous result
(Theorem E.1 in [19]) holds for the indirect extreme conditional expectile estimator

e� ?
� 0

N
(Y jx ) = bghn ;t n ( b� > x ) + b� hn ;t n ( b� > x )

�
1 � � 0

N

1 � � N

� � 

( � 1 � 1)�  b" (n)
N �b N (1� � N )c;N;K 0

:

Again, its asymptotic distribution is controlled by that of .

3.3. Heteroscedastic left-censored (Tobit) regression model.We brie�y discuss how the
assumption that our model describes globally the structure of(X ;Y ) can be relaxed, through
the example of the left-censored regression model below.

Model (M 3) The random pair(X ;Y ) satis�esY = g(X )+ � (X )" wheng(X )+ � (X )" >
y0, andY = y0 otherwise. Herey0 is known andg and� > 0 are measurable functions. The
random covariateX 2 Rd is independent of the centred noise variable" such thatEj" j = 1 .
On the support ofX , the functionsg and� are bounded and� is bounded away from 0.

Wheng is linear and� is constant, this is the Tobit model of [45] with non-Gaussian errors.
The heteroscedastic case is considered ine.g.[34, 40], where it is shown how a linearg can be
estimated at the

p
n� rate, with standard nonparametric rates obtained under no assumption

on g. Such models are important in economics (see [45]) and insurance (to model a net loss,
i.e. claim amount minus deductible when the former exceeds the latter, and 0 otherwise).

Here, if " is heavy-tailed, there is� c 2 (0;1) such that for� 2 [� c; 1], the conditional quantile
function of Y given X satis�esq� (Y jx ) = g(x ) + � (x )q� (" ) (see Lemma C.7(i) of [19]),
linking model (M 3) to the tail regression models of [48, 50]. We do not have an analogue
formula for expectiles because they are not equivariant by taking increasing transformations,
but

� � (Y jx ) � � � (g(X ) + � (X )" jX = x ) = g(x ) + � (x )� � (" ) (see Lemma C.7(ii) of [19])

as� " 1, which is much weaker than the relationship� � (Y jx ) = g(x ) + � (x )� � (" ) true when
the regression model is valid globally. It is also weaker than a speci�cation of the form
� � (Y jx ) = r (x ) + � � (" ) for � 2 [� c; 1], which would be an expectile-based version of the
model of [48].

Assume that there are estimatorsbg of g andb� of � which arevn � uniformly consistent (for
somevn ! 1 ) on a measurable subsetK 0 of the support ofX such thatP(X 2 K 0) > 0.
Let (Xi ;Yi ; ei ) stand for all thoseN vectors (whereN is random) relative to noncensored
observations with covariate vectors inK 0, i.e. Yi = g(Xi ) + � (Xi )ei andXi 2 K 0 for 1 �
i � N . Construct residuals asbe(N )

i = ( Yi � bg(Xi ))=b� (Xi ). These approximate unobservable
ei that, givenN = m > 0, arem i.i.d. copies of a random variablee such thatP(e > t ) =
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p� 1 P(" > t ) for t large enough, wherep = P(" > (y0 � g(X ))=� (X ) j X 2 K 0) > 0 (see
Lemma C.7(iii) of [19]). In particular one easily shows that if" has extreme value index
 , thene has too, and� � (" )=� � (e) ! p as � " 1 (see Lemma C.7(iv) of [19]). LetN0 =P n

i =1 1f X i 2 K 0g. The fact thatN=N0 is a
p

n� consistent estimator ofp motivates the
estimators

b� � N (Y jx ) = bg(x ) + b� (x )
�

N
N0

� b bN (1 � � N ) c

b� � N (e) (intermediate level)

and b� ?
� N

(Y jx ) = bg(x ) + b� (x )
�

N
N0

� b bN (1 � � N ) c
�

1 � � 0
N

1 � � N

� � b bN (1 � � N ) c

b� � N (e) (extreme level)

whereb� � N (e) is the LAWS estimator of the expectile ofe at level� N , based on the residuals
be(N )

i , andb bN (1� � N )c is the Hill estimator based on the topbN (1 � � N )c elements of these
same residuals. We examine the convergence of the above estimators next.

THEOREM 3.2. Work in model(M 3). Assume that" satis�es conditionC2(; �;A ) with
0 <  < 1=2. Suppose also thatEj" � j2+ � < 1 for some� > 0, and suppose thatbg andb� are
vn � uniformly consistent estimators (herevn ! 1 ) of g and � on K 0 with P(X 2 K 0) > 0.
Let � n = 1 � n� a with a 2 (0;1) and assume thatn1� a=v2

n ! 0.

(i) If
p

n(1 � � n )A((1 � � n ) � 1) ! � 2 R and
p

n(1 � � n )=q� n (" ) ! � 2 R then, for any
x 2 K 0,

p
N (1 � � N )

 
b� � N (Y jx )
� � N (Y jx )

� 1

!
d�! N (b(; �; p; x );v(; p )) with

b(; �; p; x )

=  ( � 1 � 1)
�

p E
�
"

�
�
�
� " >

y0 � g(X )
� (X )

; X 2 K 0

�
� E

�
max

�
";

y0 � g(x )
� (x )

���
�

+
�

p� � logp
1 � �

+
p� � � 1

�

�
1 + �

�
( � 1 � 1)� �

1 �  � �
+

( � 1 � 1)� � � 1
�

���
� and

v(; p ) =
2 3

1 � 2
+ 2 log p

 3( � 1 � 1)

(1 �  )2 + (log p)2 2:

(ii) Assume moreover that� < 0 and � n ; � 0
n " 1 satisfy(3) and(4). Then, for anyx 2 K 0,

p
N (1 � � N )

log[(1 � � N )=(1 � � 0
N )]

 b� ?
� 0

N
(Y jx )

� � 0
N

(Y jx )
� 1

!
d�! N

�
p� � �

1 � �
;  2

�
:

Note that when observations withX 2 K 0 are never censored, we �ndp = 1 , N =P n
i =1 1f X i 2 K 0g, b(; �; 1; x ) = 0 (becauseE(" ) = 0 ) andv(; 1) = 2  3=(1 � 2 ), which

then makes convergence (i) above analogous to Theorem 3.1(i). As expected, the asymptotic
distribution in (ii) is identical to that of the classical Weissman-Hill estimator whenp = 1 .

3.4. Time series models.Expectiles can be interpreted in terms of the gain-loss ratio.
This is a popular performance measure in portfolio management, well-known in the literature
on no good deal valuation in incomplete markets (see [3] and references therein). Financial
applications typically require working with stationary but dependent time series data. We
present here, in two such time series contexts, applications of our results to the dynamic
prediction of extreme expectiles given past observations. We only focus on LAWS estimators;
extensions of our theory to indirect expectile estimation can be found in Appendix E of [19].



14

3.4.1. The ARMA model. We start with the following general ARMA(p;q) model.

Model (T1) The stationary time series(Yt )t2 Z satis�esYt =
P p

j =1 � j Yt � j +
P q

j =1 � j " t � j +
" t where� 1; : : : ; � p; � 1; : : : ; � q 2 R are unknown coef�cients. The polynomialsP(z) = 1 �P p

j =1 � j zj andQ(z) = 1 +
P q

j =1 � j zj have no common root, and no root inside the unit
disk of the complex plane. Finally,(" t ) is an i.i.d. sequence of copies of" such thatE(" ) = 0 ,
E("2) < 1 , andP(" > x )=P(j" j > x ) ! ` 2 (0;1] asx ! 1 .

In model (T1), the process(Yt ) is causal and invertible, and so can be represented as
a linear time series in the" t � j , j � 0, by Theorem 3.1.1 in [4]. A conditional one-step
ahead expectile based on data up to timen is then � � n (Yn+1 j F n ) =

P p
j =1 � j Yn+1 � j +

P q
j =1 � j "n+1 � j + � � n (" ) whereFn = � (Yn ;Yn� 1; : : :) is the past� � �eld at time n. In gen-

eral,
P p

j =1 � j Yn+1 � j +
P q

j =1 � j "n+1 � j depends on the unobservable"n ; : : : ; "n+1 � q, which
are all linear functions of(Yn+1 � j ) j � 1 since(Yt ) is an invertible ARMA process. This is why
the dynamic expectile� � n (Yn+1 j F n ) to be estimated is conditional upon the whole pastFn
of the process; in the AR(p) case whenq= 0 , this becomes the simpler conditional expectile
� � n (Yn+1 j Yn ;Yn� 1; : : : ;Yn� p+1 ), determined by the pastp values only.

Among others, the Gaussian maximum likelihood estimator and the ordinary least squares
estimator of the� j and � j are

p
n� asymptotically normal becauseE("2) < 1 (see The-

orem 10.8.2 in [4]). We then assume that the estimatorsb� 1;n ; : : : ; b� p;n ; b� 1;n ; : : : ; b� q;n are
such thatb� j;n = � j + O P(n� 1=2) and b� j;n = � j + O P(n� 1=2). To construct residuals, set

b" (n)
max( p;q)� q+1 = � � � = b" (n)

max( p;q) = 0 and de�neb" (n)
t = Yt �

P p
j =1

b� j;n Yt � j �
P q

j =1
b� j;n b" (n)

t � j ,
for max(p;q) + 1 � t � n. We consider the asymptotic behaviour of the estimators

b� � n (Yn+1 j F n ) =
pX

j =1

b� j;n Yn+1 � j +
qX

j =1

b� j;n b" (n)
n+1 � j + b� � n (" ) (� n intermediate),

b� ?
� 0

n
(Yn+1 j F n ) =

pX

j =1

b� j;n Yn+1 � j +
qX

j =1

b� j;n b" (n)
n+1 � j +

�
1 � � 0

n

1 � � n

� � 
b� � n (" ) (� 0

n extreme),

where b� � n (" ) is the LAWS estimator of� � n (" ) and  is a consistent estimator of , both
constructed on the residualsb" (n)

t for tn � t � n only, wheretn=logn ! 1 and tn=n ! 0.
This condition ontn ensures that the in�uence of the incorrect starting values for the residuals
has vanished; in the autoregressive caseq= 0 , one can use all theb" (n)

t for p + 1 � t � n.

THEOREM 3.3. Work in the ARMA model(T1). Assume that" satis�es conditionC1( )
with 0 <  < 1=2. Suppose also that there is� > 0 such thatEj" � j2+ � < 1 , and that� n " 1
is such thatn(1 � � n ) ! 1 .

(i) If n2 + � (1 � � n ) ! 0 for some� > 0, then

p
n(1 � � n )

 
b� � n (Yn+1 j F n )
� � n (Yn+1 j F n )

� 1

!
d�! N

�
0;

2 3

1 � 2

�
:

(ii) Assume further that" satis�es conditionC2(; �;A ) with � < 0. Suppose also that
� n ; � 0

n " 1 satisfy(3) and(4) (in addition ton2 + � (1 � � n ) ! 0). If there is a nondegenerate

limiting random variable� such that
p

n(1 � � n )(  �  ) d�! � , then
p

n(1 � � n )
log[(1 � � n )=(1 � � 0

n )]

 
b� ?
� 0

n
(Yn+1 j F n )

� � 0
n
(Yn+1 j F n )

� 1

!
d�! � :
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3.4.2. The GARCH model.ARMA models are widely applicable but well-known for
failing to replicate the time-varying volatility typically displayed by �nancial time series. Our
next focus is on general GARCH(p;q) models, which arguably constitute the best-known and
most employed class of heteroscedastic time series models.

Model (T2) The stationary time series(Yt )t2 Z satis�es Yt = � t " t , with � t > 0 such that
� 2

t = ! +
P p

j =1 � j � 2
t � j +

P q
j =1 � j Y 2

t � j and !; � 1; : : : ; � q; � 1; : : : ; � p > 0 are unknown co-
ef�cients, and(" t ) is an i.i.d. sequence of copies of" such thatE(" ) = 0 , E("2) = 1 and
P("2 = 1) < 1. Suppose also that the sequence of matrices

A t =

0

B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
@

� 1"2
t � � � � � � � � � � q"2

t � 1"2
t � � � � � � � � � � p"2

t
1 0 0 � � � 0 0 � � � � � � � � � 0
0 1 0 � � � 0 0 � � � � � � � � � 0
...

... ... ...
...

...
...

...
...

...
0 � � � 0 1 0 0 � � � � � � � � � 0

� 1 � � � � � � � � � � q � 1 � � � � � � � � � � p
0 � � � � � � � � � 0 1 0 0 � � � 0
0 � � � � � � � � � 0 0 1 0 � � � 0
...

...
...

...
...

...
... ... ...

...
0 � � � � � � � � � 0 0 � � � 0 1 0

1

C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
A

has a negative top Lyapunov exponent,i.e. lim t !1 t � 1E(log kA t A t � 1 � � � A1k) < 0 with
probability 1 (wherek � k is an arbitrary matrix norm).

The above condition on(A t ) is necessary and suf�cient for the existence of a stationary,
nonanticipative solution, see Theorem 2.4 p.30 of [16]. ConditionP("2 = 1) < 1 ensures
identi�ability. In pure ARCH models (p = 0 ), one can estimate the model with weighted
least squares regression ofY 2

t on its past. This estimator is
p

n� asymptotically normal if
E(Y 4

t ) < 1 (see Theorem 6.3 p.132 in [16]). Under further conditions on model coef�cients
(see p.41 of [16]), this may reduce toE("4) < 1 , but this is still a substantial restriction in
our context of heavy-tailed" . An alternative is the weightedL 1� regression estimator of [29],
whose

p
n� asymptotic normality requires some regularity on the distribution of" rather than

�nite moments. In GARCH models, the self-weighted quasi-maximum exponential likeli-
hood estimator of [53] is

p
n� asymptotically normal for square-integrable innovations.

Take
p

n� consistent estimatorsb! n , b� j;n andb� j;n . To construct residuals, setb� (n)
max( p;q)� p+1 =

� � � = b� (n)
max( p;q) = b! n , and then de�ne(b� (n)

t )2 = b! n +
P p

j =1
b� j;n (b� (n)

t � j )2 +
P q

j =1 b� j;n Y 2
t � j

andb" (n)
t = Yt =b� (n)

t , for max(p;q) + 1 � t � n. Denoting again byFn the past� � �eld and
lettingb� 2

n+1 = b! n +
P p

j =1
b� j;n b� 2

n+1 � j +
P q

j =1 b� j;n Y 2
n+1 � j be the predicted volatility at time

n + 1 , one-step ahead estimators of intermediate and extreme conditional expectiles are

b� � n (Yn+1 j F n ) = b� n+1 b� � n (" ) and b� ?
� 0

n
(Yn+1 j F n ) = b� n+1 �

�
1 � � 0

n

1 � � n

� � 
b� � n (" )

respectively, whereb� � n (" ) is the LAWS estimator of� � n (" ) and  is a consistent estimator
of  , both constructed on the residualsb" (n)

t for tn � t � n only, wheretn=logn ! 1 and
tn=n ! 0 (for pure ARCH models whenp = 0 , all residuals forq+ 1 � t � n may be used).

THEOREM3.4. Work in the GARCH model(T2). Assume that" satis�es conditionC1( )
with 0 <  < 1=2. Suppose also that there is� > 0 such thatEj" � j2+ � < 1 , and that� n =
1 � n� a for somea 2 (0;1).



16

(i) Then
p

n(1 � � n )

 
b� � n (Yn+1 j F n )
� � n (Yn+1 j F n )

� 1

!
d�! N

�
0;

2 3

1 � 2

�
:

(ii) Assume further that" satis�es conditionC2(; �;A ) with � < 0. Suppose also that
� n ; � 0

n " 1 satisfy(3) and (4). If there is a nondegenerate limiting random variable� such

that
p

n(1 � � n )(  �  ) d�! � , then
p

n(1 � � n )
log[(1 � � n )=(1 � � 0

n )]

 
b� ?
� 0

n
(Yn+1 j F n )

� � 0
n
(Yn+1 j F n )

� 1

!
d�! � :

4. Finite-sample study. We showcase our estimators on simulated data (Sections 4.1
and 4.2) and real data (Sections 4.3 and 4.4). Here we use, to estimate the extreme value
index, the following bias-reduced version of the Hill estimatorb k , see [21]:

b RB
k = b k

 

1 �
bb

1 � b�

� n
k

� b�
!

;

where throughout,k = bn(1 � � n )c, andbb and b� are consistent estimators of the quantities
b and � under conditionC2(; �;A ) and the additional assumption thatA(t) = bt � . The
estimatorsbb andb� may be found in [21] and are available from the R functionmop in the R
packageevt0 ; of course, we shall use here their residual-based versions. We also consider
the following bias-reduced version of the family of direct extreme expectile estimators of" :

b� ?;RB
� 0

n
(" ) = b� ?

� 0
n
(" )

�
1 +

[n(1 � � 0
n )=k]� b� � 1

b�
bbb RB

k

� n
k

� b�
�

�
�

1 + r ?(� 0
n )

1 + r (1 � k=n)

� � b RB
k

�
b� + [(1 =b RB

k � 1)� b� [1 + r ?(� 0
n )] � b� � 1]bbb RB

k (1 � � 0
n ) � b�

b� + [(1 =b RB
k � 1)� b� [1 + r (1 � k=n)] � b� � 1]bbb RB

k (n=k)b�
; with

r (1 � k=n) =

 

1 �
b� 1=2(" )

b� 1� k=n (" )

!
1

1 � 2k=n

0

@1 +
bb[bF n (b� 1� k=n (" ))] � b�

1 � b RB
k � b�

1

A

� 1

� 1; and

r ?(� 0
n ) =

 

1 �
b� 1=2(" )
b� ?
� 0

n
(" )

!
1

2� 0
n � 1

 

1 +
bb

�
1=b RB

k � 1
� � b�

1 � b RB
k � b�

(1 � � 0
n ) � b�

! � 1

� 1:

This expression is motivated by the proof of Proposition 1 and Corollary 1 in [9]; herebF n
is the empirical survival function (i.e. complementary distribution function) of the residuals.
We similarly consider the following bias-reduced version of the family of indirect estimators:

e� ?;RB
� 0

n
(" ) = e� ?

� 0
n
(" )

�
1 +

[n(1 � � 0
n )=k]� b� � 1

b�
bbb RB

k

� n
k

� b�
�

� [1 + r ?(� 0
n )] � b RB

k

�
�

1 +
(1=b RB

k � 1)� b� [1 + r ?(� 0
n )] � b� � 1

b�
bbb RB

k (1 � � 0
n ) � b�

�
:

These procedures improve the accuracy of our estimators, without affecting their asymptotic
properties (see [20, 21]). They naturally give rise to extreme conditional expectile estimators
b� ?;RB
� 0

n
(Y jx ) ande� ?;RB

� 0
n

(Y jx ), to which we refer in the present section.
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4.1. Simulation study: linear and single-index models.We simulateN = 1 ;000samples
of n = 1 ;000observations(X i ;Yi ), 1 � i � n. HereX 2 R4, with independent components,
the �rst three being uniformly distributed on(0; 1), and the fourth following a Beta(2; 1)
distribution. We then simulate from two different models on(X ;Y ):

(G1) Y = 1 + � > X +
�
1=2 + � > X

�
" .

(G2) Y = 1 + exp
�
� > X � 2

�
+

�
3=2 + exp

�
� > X � 2

��
" .

Model (G1) is a location-scale shift linear regression model, while model (G2) is a het-
eroscedastic single-index model. In both cases, the coef�cient vector� = (1 ;1;1;1) and" is
a noise variable, independent ofX , with a normalised symmetric Burr distribution, that is,
" = � �" 0=B((  � 1)=�; (� �  )=� ); whereB is the Beta function and"0 has density

(5) f 0(x) = (2  ) � 1jxj � �= � 1(1 + jxj � �= )1=� � 1 (x 2 R):

We consider the cases 2 f 0:1;0:2;0:3;0:4g and the second-order parameter� = � 1.

Our aim is to estimate extreme expectiles� � 0
n
(Y jx ), in both of these models. We compare

the performances of several procedures, constructed using the following four strategies:

(S1) We assume thatY is linked to X by a location-scale shift linear regression model,
i.e.Y = � + � > X +

�
1 + � > X

�
" . The methodology used for the estimation of� � 0

n
(Y jx )

is outlined in Section 3.1, and the bias-reduced direct estimator is used.
(S1i) Identical to (S1), but the bias-reduced indirect estimator is used instead.
(S2) We assume thatY is linked to X by the heteroscedastic single-index modelY =

g
�
� > X

�
+ �

�
� > X

�
" . The vector� is estimated using the algorithm of [54] (see 1.(a)–

(c) on page 1240 therein), withg and� estimated using the procedure described in Sec-
tion 3.2, withhn = 0 :3 andtn = n2=5 � 15:85. The bias-reduced direct estimator is used.

(S2i) Identical to (S2), but the bias-reduced indirect estimator is used instead.

These procedures are compared with the following eight benchmarks:

(B1) We assume no speci�c structure on(X ;Y ) and, atX = x , we use a local bias-reduced
direct estimator relying on thoseYi whoseX i are the 100 nearest neighbours ofx . In this
procedure we usek = 20 , i.e. � n = 0 :8 for the extrapolation step.

(B1i) Identical to (B1), but the bias-reduced indirect estimator is used instead.
(B2) We assume the homoscedastic single-index modelY = g

�
� > X

�
+ " with known � =

(1;1;1;1). The functiong is estimated through the Nadaraya-Watson estimator, with a
bandwidth chosen using the R packagenp. The bias-reduced direct estimator is used.

(B3) Identical to (S2), although� is assumed to be known and equal to(1; 1; 1;1).
(B4) We assume that the structure of the model linkingY to X is fully known,i.e.we know

� and the location and scale functions, and we use the direct estimator (no bias reduction).
(B4i) Identical to (B4), although the indirect estimator is used instead (no bias reduction).
(B5) Identical to (B4), although the bias-reduced direct estimator is used instead.
(B5i) Identical to (B5), although the bias-reduced indirect estimator is used instead.

In each procedure except (B1) and (B1i), the intermediate expectile level used as an anchor in
the extreme value index and extreme expectile estimators is �xed at� n = 0 :9, corresponding
to k = bn(1 � � n )c = 100; in (S2), (S2i), (B2) and (B3), we use the Epanechnikov kernel in
the estimation of the link functionsg and� . To assess the performance of our methods, we
compute, for a given estimator�

?
� 0

n
(Y jx ), the Relative Mean Absolute Deviation (RMAD)

RMAD = median
1� m� N

�
�
�
�
�
�

�
?;(m)
� 0

n
(Y jx )

� � 0
n
(Y jx )

� 1

�
�
�
�
�
�
;



18

wherex > = (1 =2;1=2;1=2;1=3). The quantity�
?;(m)
� 0

n
(Y jx ) denotes the estimator calculated

on themth replication, at the level� 0
n = 1 � 5=n = 0 :995. The errorRMAD gives an idea of

the uncertainty on extreme conditional expectiles at a typical data point in the centre of the
data cloud. Finally, for all� 2 (0;1), the true expectiles� � (Y jx ) are deduced from� � ("0),
obtained by solving the equation (y)=(2 (y) + y) = 1 � � via the R functionuniroot ,
where (y) =

R1
y P("0 > t ) dt is computed with the R functionintegrate .

Results are reported in Table F.1 of [19]. In the linear model (G1), methods (S1) and (S1i) are
clearly the best, and single-index based methods (S2) and (S2i) perform reasonably well. In
fact, for the heaviest tail, methods (S2) and (S2i) slightly outperform (S1) and (S1i) because
they are more robust to the highest values in the sample. In the single-index model (G2),
methods (S2) and (S2i) perform best, and method (S2) is quite close to the unrealistic bench-
mark (B3); methods (S1) and (S1i) are heavily penalised by the misspeci�cation of the con-
ditional mean and variance. The nonparametric benchmarks (B1) and (B1i) are surprisingly
competitive, perhaps because they bene�t from a degree of robustness against heteroscedas-
ticity. Not accounting for heteroscedasticity is indeed very detrimental, as a comparison of
method (S2) and benchmarks (B2), (B3) shows, even with the unrealistic advantage of a
correct pre-speci�cation of the direction� . Finally, a comparison of benchmarks (B4) and
(B5) shows that even though an unrealistic correct pre-speci�cation of the model structure
is obviously bene�cial, getting the extreme value step right is very important: in the linear
model (G1), method (S1) outperforms benchmark (B4) for 2 f 0:1;0:2g, and is competitive
otherwise, because it features a bias-reduction scheme at the extreme value step.

It appears that while knowing model structure is an advantage for lighter-tailed models, this
advantage disappears when the noise variable has a heavier tail, thus illustrating that the
extreme value step, rather than model estimation, is indeed the major contributor to estima-
tion error. For instance, when = 0 :2, the RMAD of benchmark (B5) is only5% smaller
than the RMAD of method (S2) in the single-index model (G2), and method (S2) is even
slightly more accurate when is larger. The difference when = 0 :1 makes sense: in this
setup where extreme expectiles are comparatively smaller, an error on the conditional mean
or variance will have more consequences. Let us conclude that while we used the intermedi-
ate levelkn = 100 for the sake of computational ef�ciency, in practice one may want to use
a data-driven criterion for the choice ofkn . In Appendix F.1 of [19], we suggest an adapta-
tion of an Asymptotic Mean-Squared Error (AMSE) minimisation criterion; we repeated this
simulation exercise with this choice ofkn and observed that there is no obvious advantage in
the data-driven choice although results are competitive. Full results are reported in Table F.2
of [19].

4.2. Simulation study: time series models.We simulateN = 1 ;000 replications of time
series of sizen + 1 = 1 ;001 from two different models:

(T1) An ARMA(1;1) modelYt = �Y t � 1 + �" t � 1 + " t , where the parameters� and � are
estimated using default settings of the R functionarma from packagetseries .

(T2) A GARCH(1;1) modelYt = ( ! + �Y 2
t � 1 + �� 2

t � 1)1=2 " t , where! , � and � are esti-
mated using default settings of the R functiongarch from packagetseries .

The " t are i.i.d. with common densityf 0 as in (5) and� = � 1; in the GARCH(1;1) model,
these innovations are rescaled by

p
�(1 � 2 )�(1 + 2  ) to guarantee thatE["2] = 1 .

We estimate a one-step ahead extreme expectile� � 0
n
(Yn+1 j F n ), whereFn denotes the past

� � �eld at time n. We then compute, on themth sample, the target value� (m)
� 0

n
(Yn+1 j F n ), its
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direct estimateb� ?;RB ;(m)
� 0

n
(Yn+1 j F n ) and its indirect counterparte� ?;RB ;(m)

� 0
n

(Yn+1 j F n ), where
� 0

n = 1 � 5=n = 0 :995andkn = n(1 � � n ) = 100 . We calculate their RMAD

RMAD = median
1� m� N

�
�
�
�
�
�

�
?;(m)
� 0

n
(Yn+1 j F n )

� (m)
� 0

n
(Yn+1 j F n )

� 1

�
�
�
�
�
�
; with �

?;(m)
� 0

n
= b� ?;RB ;(m)

� 0
n

or e� ?;RB ;(m)
� 0

n
:

In the ARMA model, we take�; � 2 f 0:1;0:5g; in the GARCH model, we �x ! = 0 :1
and take(�; � ) 2 f (0:1;0:1); (0:1; 0:45); (0:45;0:1); (0:1; 0:85)g. In each model, we take
 2 f 0:1;0:2;0:3;0:4g. Note that the GARCH model is second-order stationary only if
� + � < 1 (see Theorem 2.5 in [16]). Our methods are compared with the (unrealistic) bench-
marks generated from knowing model coef�cients (and therefore observing the innovations).

Results are reported in Table F.3 of [19]. In the ARMA model, the RMAD does not seem
overly sensitive to the parameters� and � , but increases with the extreme value index .
In the GARCH model, errors seem to be sensitive to whether the model is close to second-
order stationarity (note the slightly different errors in the case(�; � ) = (0 :1;0:85) and  2
f 0:1;0:2g). In both models, the indirect estimator has an advantage over the direct estimator,
which gets smaller as the tail gets heavier. Knowing the true values of the coef�cients does
not bring a large improvement, except maybe for the lightest tails; this again underlines that
most of the estimation error, and hence of the uncertainty on the estimates, originates from
the extreme value step, rather than model estimation. With our data-driven choice ofkn , the
indirect estimator typically stays the best.

4.3. Real data analysis: Vehicle insurance data.We consider the Vehicle Insurance Cus-
tomer Data1, made ofn = 9 ;134total (i.e.cumulative over the duration of the contract) claim
amountsY of insurance policyholders according to their lifetime valueX 1 (in USD), income
X 2 (in USD), numberX 3 of months since last claim and numberX 4 of months since policy
inception. We follow the methodology of Section 3.2. A cross-validation procedure using
the R functionnpindexbw (from the packagenp) gives a selected bandwidthh� � 0:1
(for covariates standardised by their respective maxima). We also chooset � = 1 . We ob-
tain b� ' (� 0:923;0:386; � 0:001; � 0:002), which seems to indicate that only lifetime value
X 1 and incomeX 2 play a role in the prediction ofY . The estimated functionsbg andb� are
depicted in the top left panel of Figure 1 (the kernel functionL is the Epanechnikov kernel).

We now estimate an extreme conditional expectile� � 0
n
(Y jx ) at level � 0

n = 1 � 1=(nh � ) �
0:999. The top right panel of Figure 1 shows the direct extreme conditional expectile esti-
mator fork� = 200 and � � = 1 � k� =n (the bottom right panel of Figure 1 shows that the
heavy-tailed assumption on the noise is reasonable). The heteroscedastic single-index model
captures the variation in the shape of the data cloud fairly well, and the extreme conditional
expectile curve gives a reasonable idea of the conditional extremes of the data. Interpret-
ing an expectile curve, meanwhile, is not always straightforward. However, in this insurance
example, the expectile� � 0

n
(Y jx ) satis�es the following gain-loss ratio criterion (see [3]):

1 � � 0
n �

1 � � 0
n

� 0
n

=
E((Y � � � 0

n
(Y jx ))1f Y > � � 0

n
(Y jx )gjX = x )

E(( � � 0
n
(Y jx ) � Y )1f Y < � � 0

n
(Y jx )gjX = x )

�
E((Y � � � 0

n
(Y jx ))1f Y > � � 0

n
(Y jx )gjX = x )

� � 0
n
(Y jx ) � E(Y jX = x )

:

1Available athttps://www.kaggle.com/ranja7/vehicle-insurance-customer-data and
from the authors upon request.
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In other words,� � 0
n
(Y jx ) is the aggregate premium to be collected over the lifetime of the

contract so that, for customers having the list of characteristicsx , the ratio between aver-
age losses exclusively incurred by claims made by such customers above that level and net
average pro�t is approximately the small quantity1 � � 0

n . This value� � 0
n
(Y jx ) can be thus

interpreted as a high safety margin for the insurer, and has an even clearer meaning to rein-
surers, who only face a loss when the claim exceeds a certain high threshold.

We compare extreme conditional expectile and quantile estimates at the same level� 0
n , the

latter being obtained by combining the standard Weissman-type estimate of an extreme quan-
tile of the noise with our estimatesbg and b� . It can be seen in Figure 1 that the extreme
conditional quantile estimate is outside a pointwise95% bootstrap con�dence interval for
the extreme conditional expectile (constructed using an adapted methodology calledsemi-
parametric Pareto tail bootstrap, see Appendix F.2 of [19]). This may be relevant to insur-
ance companies, for whom lower (i.e. more optimistic) assessments of risk translate into
marketable contracts with lower premiums and hence improved competitivity, while policy-
makers and regulators would favour the higher (i.e. more pessimistic) quantile estimates to
hedge better against systemic risk. Interestingly, the regression median is below the regres-
sion mean, so there is a qualitative difference between central and extreme assessments of risk
using expectiles and quantiles: a risk assessment based on the regression mean (i.e. a central
conditional expectile) is more conservative than if it were based on the regression median
(i.e. a central conditional quantile), but extreme conditional expectile risk measurements are
less conservative than those made with extreme conditional quantiles.

4.4. Real data analysis: Australian dollar exchange rates.The analysis of exchange rate
risk is a key question in economics. An accurate analysis of exchange rate risk informs strate-
gic decisions made by �rms, such as the extent to which they import and export and whether
they should invest in foreign markets, which have consequences on their competitiveness
on the global marketplace. We study the daily log-returns of the Australian Dollar/Swiss
Franc (AUD/CHF) and Australian Dollar/Swedish Krona (AUD/SEK) exchange rates from
1st March 2015 to 28th February 2019, represented in the left panels of Figure 2 (sam-
ple sizen = 1 ;043). The literature has suggested that expectiles can be fruitfully used to
estimate quantiles (seee.g. [3, 44]). Our goal is to estimate the (dynamic) extreme condi-
tional quantileq� 0

n
(Yn+1 j F n ) of level � 0

n = 0 :995� 1 � 5=n on the �nal day. We consider
a GARCH(1;1) model, motivated by the �nding of [36] that GARCH models �t past Aus-
tralian exchange rates well; the R functiongarch (in the packagetseries ) returns, with
the notation of Section 3.4.2,(b! n ; b� n ; b� n ) = (4 :20� 10� 7; 0:943;0:0465)for AUD/CHF and
(1:21� 10� 5; 0:576;0:119) for AUD/SEK. We construct the quantile estimator

bq?;RB
� 0

n
(" ) =

�
(b RB

k ) � 1 � 1
� b RB

k b� ?;RB
� 0

n
(" ):

With k� = 50 and� n = 1 � k� =(n � 1), we getb RB
k = 0 :189 for AUD/CHF (resp.0:211 for

AUD/SEK) andbq?;RB
� 0

n
(" ) = 2 :40 (resp.2:58) (graphical evidence of a heavy right tail of" is

given on the right panels of Figure 2). To check that our estimates make sense, we recall the
characterisation ofq� 0

n
(" ) as0:995 = � 0

n = E(1f " � q� 0
n
(" )g) and compare that with

1
n � 1

nX

i =2

1
n

b" (n)
i < bq?;RB

� 0
n

(" )
o

� 0:99424for AUD/CHF (resp. 0.99520 for AUD/SEK):

This is indeed very close to the expected value� 0
n = 0 :995. Our estimate can be compared

with a bias-reduced versioneq?;RB
� 0

n
(" ) of the classical extrapolated estimate of [51]:

eq?;RB
� 0

n
(" ) = eq?

� 0
n
(" )

 

1 � b RB
k

bb
b�

� n
k

� b�
!

;
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whereeq?
� 0

n
(" ) is the residual-based Weissman quantile estimator usingb RB

k � in its extrapo-
lation step. This estimate is2:48 for AUD/CHF (resp.2:64 for AUD/SEK). Our expectile-
based estimate of2:40 (resp.2:58) is slightly lower; this makes sense, as the estimated value
of  is lower than1=4, and extreme expectile-based estimates can be thought to re�ect this
rather light tail by producing lower point estimates than their quantile counterparts (and when
 > 1=4, expectile-based quantile estimates seem to be higher than traditional estimates,
seee.g. Section 7.1 in [9]). This lower assessment of risk may be interesting to �nancial
companies, as opposed to regulators who may prefer quantile-based estimates. Finally, the
predicted estimate ofq� 0

n
(Yn+1 j F n ) on 1st March 2019 is0:0138with Gaussian and semi-

parametric Pareto tail bootstrap95% con�dence intervals (see Appendix F.2 of [19]) being
[0:0122;0:0154]and[0:0116;0:0160]for AUD/CHF (resp. 0.0156, Gaussian con�dence in-
terval [0:0136;0:0178] and bootstrap con�dence interval[0:0127;0:0191] for AUD/SEK).
This amounts to a daily variation of1:4% of the AUD/CHF exchange rate (resp.1:6% for
AUD/SEK).

5. Discussion and perspectives.We provide a general toolbox for the estimation of
extreme conditional expectiles, by showing how a simple assumption on the residuals of
the model makes it possible to obtain the convergence of residual-based estimators of the
extremes of the noise. By applying our results in examples not limited to low dimensions,
we contribute to the broader question of how to model extremes with a large number of
covariates. The works of [17, 23, 49, 50] introduce dedicated modelling assumptions on
the tail conditional quantiles ofY . The tail linear quantile regression model of [50] is not
straightforward to interpret: even when the conditional quantile is in fact linear inx (for
any � ), this model is the arguably complicated linear model linkingY to X with random
coef�cients (see p.808 of [6]). Our generic model provides a straightforward way of seeing
the effectX has onY and avoids the crossing problem (unlike the method of [50]), since the
structure of the model is estimated only once. The nonparametric model of [17], meanwhile,
rests upon the estimation of a Tail Dimension Reduction subspace, which can only be done
using the pairs(X i ;Yi ) such thatYi is large. This entails a potentially substantial loss of
modelling strength compared to our approach. Besides, the aforementioned papers focus on
the case of i.i.d. data(X i ;Yi ); our method allows us to consider popular time series examples.

Among future research perspectives, it would be nice to extend our results for ARMA and
GARCH models in the ARMA-GARCH model, to allow for heteroscedasticity in time series
not having mean 0. Besides, the basic principle of our approach relies on location equivari-
ance and positive homogeneity, which are true for numerous interesting functionals,e.g.co-
herent spectral risk measures, including the very recent concept of extremiles ([8]). Adapting
our approach to other risk measures constitutes an interesting avenue for further work. An-
other perspective is to relax the heavy-tailed assumption, to extend the applicability of our
method. As far as we know, even in the simple unconditional i.i.d. case, there are currently
no estimation procedures available for extreme expectiles of either light-tailed or short-tailed
distributions, which are the other setups one would consider in an extreme value framework.
Finally, an approach that fully accounts for joint uncertainty between model estimation and
extreme value estimation would be an important next step in order to handle the strongest
possible forms of heteroscedasticity. This will at least require uniform weighted Gaussian
approximations of the tail empirical residual-based quantile process; this very dif�cult ques-
tion needs to be solved on a case-by-case basis, because the structure of residuals is com-
pletely controlled by the structure of the model. In linear regression, the current state of the
art seems to be uniform non-weighted approximations on the real line (see [5], especially
Section 6 therein). The absence of weighting makes it impossible to use such results for ex-
treme value inference. We are not aware of such results in single-index models, not even
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non-weighted and in the homoscedastic case. This is a very substantial research project in
itself which we defer to future work.
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SUPPLEMENTARY MATERIAL

The supplementary material document () contains the proofs of all theoretical results. It
also provides further theoretical results related to indirect estimators, and further details about
our �nite-sample procedures and studies.

FIG 1. Vehicle Insurance Customer data. Top left: estimates ofg (red curve) and� (blue curve) with a histogram
of the b� > X i . Top right: estimates of the regression mean (red line) and median (orange line) and of the estimated
conditional expectile (solid purple line; dotted lines represent bootstrap pointwise95%con�dence intervals) and
quantile (green line) at level� 0

n = 1 � 1=(nh � ) � 0:999 in the ( b� > x ; y) plane. Bottom left: curvesk 7! b RB
k

on the non-�ltered dataYi (black curve) and residuals (red curve). Bottom right: Exponential QQ-plot of the
log-spacingslog(b" ( n )

n � i +1 ;n =b" ( n )
n � k � ;n ), 1 � i � k � = 200. The straight line has slopeb RB

k � = 0 :263.
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This supplementary material document contains the proofs of all theoret-
ical results in the main paper, preceded by auxiliary results and their proofs
(Sections A and B for the main results, and Sections C and D for the worked-
out examples). It also provides further theoretical results related to indirect
estimators in Section E, and further details about our �nite-sample proce-
dures and studies in Section F.

APPENDIX A: THEORETICAL TOOLBOX: AUXILIARY RESULTS AND THEIR
PROOFS

Lemma A.1 below is a result on the mean excess function of a sample of heavy-tailed random
variables, used in the proof of Theorem 2.1.

LEMMA A.1. Assume that" satis�es conditionC1( ) with 0 <  < 1=2 and� n " 1 is such
thatn(1 � � n ) ! 1 . Let moreovertn ! 1 be a nonrandom sequence such thatF (tn )=(1 �
� n ) ! c 2 (0;1 ). Then

1
nt n (1 � � n )

nX

i =1

" i 1f " i > t ng P�!
c

1 � 
:

PROOF. Write �rst

1
nt n (1 � � n )

nX

i =1

" i 1f " i > t ng =
c+ o(1)

nt nF (tn )

nX

i =1

" i 1f " i > t ng:

The idea is now to split the sum on the right-hand side as follows:

1

nt nF (tn )

nX

i =1

" i 1f " i > t ng =
1

nF (tn )

nX

i =1

1f " i > t ng+
1

nt nF (tn )

nX

i =1

(" i � tn )1f " i > t ng:

Straightforward expectation and variance calculations yield

E

 
1

nF (tn )

nX

i =1

1f " i > t ng

!

= 1 ;
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Var

 
1

nF (tn )

nX

i =1

1f " i > t ng

!

= O
�

1

nF (tn )

�
= O

�
1

n(1 � � n )

�
! 0;

E

 
1

nt nF (tn )

nX

i =1

(" i � tn )1f " i > t ng

!

=
1
tn

Z 1

t n

F (x)

F (tn )
dx !


1 � 

;

and Var

 
1

nt nF (tn )

nX

i =1

(" i � tn )1f " i > t ng

!

= O
�

1

nF (tn )

�
= O

�
1

n(1 � � n )

�
! 0:

Therefore

1
nt n (1 � � n )

nX

i =1

" i 1f " i > t ng P�! c
�

1 +


1 � 

�
=

c
1 � 

as announced.

The next auxiliary result is an extension of Theorem 1 in [10]. It drops the assumption of an
independent sequence and of an increasing underlying distribution function. We note that the
bias termb(; � ) of our result below is simpler than the corresponding bias term of Theorem 1
in [10], due to the assumption of a centred noise variable.

PROPOSITIONA.1. Assume thatEj" � j < 1 , that conditionC2(; �;A ) holds with0 <
 < 1, and thatE(" ) = 0 . Let � n " 1 be such thatn(1 � � n ) ! 1 ,

p
n(1 � � n )A((1 �

� n ) � 1) ! � 2 R and
p

n(1 � � n )=q� n (" ) = O(1) . Then, if

p
n(1 � � n )

�
 � ;

q� n
(" )

q� n (" )
� 1

�
d�! (� ; �) ;

we have

p
n(1 � � n )

 
e� � n (" )
� � n (" )

� 1

!
d�! m( )� + � � �b (; � )

with m( ) = (1 �  ) � 1 � log( � 1 � 1) and

b(; � ) =
( � 1 � 1)� �

1 �  � �
+

( � 1 � 1)� � � 1
�

:

PROOF. Note that( � 1 � 1)�  P�! ( � 1 � 1)�  andq� n
(" )=q� n (" ) � 1 P�! 0, so that

linearising leads to

e� � n (" )
� � n (" )

� 1 =
�

( � 1 � 1)� 

( � 1 � 1)�  � 1
�

+
�

q� n
(" )

q� n (" )
� 1

�
(1 + o P(1))

+
�

( � 1 � 1)�  q� n (" )
� � n (" )

� 1
�

(1 + o P(1)) :(6)

To control the bias term, use Proposition 1 in [12], of which a consequence is, for the centred
variable" ,
p

n(1 � � n )
�

( � 1 � 1)�  q� n (" )
� � n (" )

� 1
�

= � �
�

( � 1 � 1)� �

1 �  � �
+

( � 1 � 1)� � � 1
�

�
+ o(1)

= � �b (; � ) + o(1) :
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Reporting this in (6) and using the delta-method, we obtain

p
n(1 � � n )

 
e� � n (" )
� � n (" )

� 1

!
d�! m( )� + � � �b (; � ):

This is precisely the required result.

The following rearrangement lemma is an extension of Lemma 1 in [19], which we use in
the proof of Lemma A.3 below.

LEMMA A.2. Let n � 2 and(a1; : : : ; an ) and(b1; : : : ; bn ) be twon� tuples of real num-
bers such that for alli 2 f 1; : : : ; ng, ai � bi . Then for alli 2 f 1; : : : ; ng, ai;n � bi;n .

PROOF. See the proof of Lemma 1 in [19], which, although the original result was stated
for n� tuples featuring no ties, carries over to this more general case with no modi�cation.

The following lemma is the key to the proof of Theorem 2.2. In our context, its interpretation
is that the gap between the tail empirical quantile process of the residuals and the analogue
process based on the unobserved errors is bounded above by the gap between errors and
their corresponding residuals; this will be used to give an approximation of the tail empirical
quantile process of the errors by the tail empirical quantile process of the residuals.

LEMMA A.3. Let k = k(n) ! 1 be a sequence of integers withk=n ! 0. Assume that
" has an in�nite right endpoint. Suppose further that the" i are independent copies of" and
that the array of random variablesb" (n)

i , 1 � i � n, satis�es

Rn := max
1� i � n

jb" (n)
i � " i j
1 + j" i j

P�! 0:

Then we have both

sup
0<s � 1

�
�
�
�
�
�

b" (n)
n�b ksc;n

"n�b ksc;n
� 1

�
�
�
�
�
�
= O P(Rn ) and sup

0<s � 1

�
�
�
�
�
�
log

0

@
b" (n)

n�b ksc;n

"n�b ksc;n

1

A

�
�
�
�
�
�
= O P(Rn ):

PROOF. Clearly:

8i 2 f 1; : : : ; ng; " i � Rn (1 + j" i j) =: � i � b" (n)
i � � i := " i + Rn (1 + j" i j):

It then follows from Lemma A.2 that

8i 2 f 1; : : : ; ng; � i;n � b" (n)
i;n � � i;n :

Note that for anyr 2 (� 1; 1), the functionx 7! x + r (1 + jxj) is increasing. Therefore, on
the eventf Rn � 1=4g, whose probability gets arbitrarily high asn increases, we have:

8i 2 f 1; : : : ; ng; " i;n � Rn (1 + j" i;n j) = � i;n � b" (n)
i;n � � i;n = " i;n + Rn (1 + j" i;n j):

Now, by Lemma 3.2.1 in [14] together with the equality" d= U(Z ) whereZ has a unit Pareto

distribution, we get"n� k;n
P�! + 1 . On the eventAn := f Rn � 1=4g \ f "n� k;n � 1g, which

likewise has probability arbitrarily large, we obtain

8i � n � k; (1 � Rn )" i;n � Rn � b" (n)
i;n � (1 + Rn )" i;n + Rn :
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In other words, onAn , and for anys 2 (0;1],

� 2Rn � � Rn

�
1 +

1
"n�b ksc;n

�
�

b" (n)
n�b ksc;n

"n�b ksc;n
� 1 � Rn

�
1 +

1
"n�b ksc;n

�
� 2Rn :

This shows that

sup
0<s � 1

�
�
�
�
�
�

b" (n)
n�b ksc;n

"n�b ksc;n
� 1

�
�
�
�
�
�
= O P(Rn ):

Note further that, onAn ,

8s 2 (0;1]; log(1 � 2Rn ) � log

0

@
b" (n)

n�b ksc;n

"n�b ksc;n

1

A � log(1 + 2Rn ):

Sincelog(1 + x) � x andlog(1 � x) � � 2x for all x 2 [0;1=2], this yields, onAn ,

8s 2 (0;1];

�
�
�
�
�
�
log

0

@
b" (n)

n�b ksc;n

"n�b ksc;n

1

A

�
�
�
�
�
�
� 4Rn :

As a consequence,

sup
0<s � 1

�
�
�
�
�
�
log

0

@
b" (n)

n�b ksc;n

"n�b ksc;n

1

A

�
�
�
�
�
�
= O P(Rn ):

This concludes the proof.

The �nal auxiliary result of this section is used as part of Remark 2. It can be seen as a
Breiman-type result, see Proposition 3 in [4] for the original Breiman lemma.

LEMMA A.4. Suppose that the random variableY can be writtenY = Z1 + Z2 " , where

• Z1 is a bounded random variable,
• Z2 is a (strictly) positive and bounded random variable,
• " satis�es conditionC1( ),
• Z2 is independent of" .

ThenY satis�es conditionC1( ).

PROOF. We prove that for allx > 0, P(Y > tx )=P(Y > t ) ! x � 1= ast ! 1 . Note that
if a1; b1 are such thatZ1 2 [a1; b1] with probability 1,

P(Z2 " > tx � a1)
P(Z2 " > t � b1)

�
P(Y > tx )
P(Y > t )

�
P(Z2 " > tx � b1)
P(Z2 " > t � a1)

:

This entails, for any �xed" 2 (0;1), that fort large enough,

P(Z2 " > t (x + "))
P(Z2 " > t (1 � " ))

�
P(Y > tx )
P(Y > t )

�
P(Z2 " > t (x � " ))
P(Z2 " > t (1 + "))

:

Let b2 > 0 be such thatZ2 2 (0;b2] with probability 1. SinceZ2 is independent of" , we have
for any t > 0

P(Z2 " > t )
P(" > t )

=
Z b2

0

P(" > t=z )
P(" > t )

PZ 2 (dz):
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Use now Potter bounds (seee.g.Proposition B.1.9.5 in [14]) and the dominated convergence
theorem to obtain

P(Z2 " > t )
P(" > t )

!
Z b2

0
z PZ 2 (dz) = E(Z 

2 ) 2 (0;1 ):

This implies thatZ2 " is, like " , heavy-tailed with extreme value index . In particular

P(Z2 " > t (x � " ))
P(Z2 " > t (1 � " ))

=
P(Z2 " > t (x � " ))

P(Z2 " > t )
P(Z2 " > t )

P(Z2 " > t (1 � " ))
! (1 � " )1= (x � " ) � 1=

ast ! 1 . Conclude that

(1 � " )1= (x + ") � 1= � lim inf
t !1

P(Y > tx )
P(Y > t )

� limsup
t !1

P(Y > tx )
P(Y > t )

� (1 + ")1= (x � " ) � 1=

for any" > 0, and let" # 0 to complete the proof.

APPENDIX B: THEORETICAL TOOLBOX: PROOFS OF THE MAIN RESULTS

PROOF OFTHEOREM 2.1. Note that

p
n(1 � � n )

 
b� � n (" )
� � n (" )

� 1

!

= arg min
u2 R

� n (u)

with � n (u) :=
1

2� 2
� n

(" )

nX

i =1

"

� � n

 

b" (n)
i � � � n (" ) �

u� � n (" )
p

n(1 � � n )

!

� � � n (b" (n)
i � � � n (" ))

#

:

De�ne

 n (u) :=
1

2� 2
� n

(" )

nX

i =1

"

� � n

 

" i � � � n (" ) �
u� � n (" )

p
n(1 � � n )

!

� � � n (" i � � � n (" ))

#

:

In other words, n (u) is the counterpart of� n (u) based on the true, unobservable errors" i .
Note that for anyn, u 7!  n (u) is a continuously differentiable convex function. We shall

prove that, pointwise inu, � n (u) �  n (u) P�! 0: The result will then be a straightforward
consequence of a convexity lemma stated as Theorem 5 in [33] together with the convergence

 n (u) d�! � uZ

r
2

1 � 2
+

u2

2
as n ! 1

(in the sense of �nite-dimensional convergence, withZ being standard Gaussian) shown in
the proof of Theorem 2 in [10].

We start by recalling that

1
2

(� � (x � y) � � � (x)) = �
Z y

0
' � (x � t)dt

where' � (y) = j� � 1f y � 0gjy (see Lemma 2 in [10]). Therefore

� n (u) �  n (u)

= �
1

� 2
� n

(" )

nX

i =1

Z u� � n (" )=
p

n(1� � n )

0
[' � n (b" (n)

i � � � n (" ) � t) � ' � n (" i � � � n (" ) � t)]dt:
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SetI n (u) = [0 ; juj� � n (" )=
p

n(1 � � n )]. Since

j� n (u) �  n (u)j

�
juj

� � n (" )
p

n(1 � � n )

nX

i =1

sup
jt j2 I n (u)

j' � n (b" (n)
i � � � n (" ) � t) � ' � n (" i � � � n (" ) � t)j;

it is enough to show that

Tn (u) :=
1

� � n (" )
p

n(1 � � n )

nX

i =1

sup
jt j2 I n (u)

j' � n (b" (n)
i � � � n (" ) � t) � ' � n (" i � � � n (" ) � t)j

P�! 0:(7)

We now apply Lemma 3 in [10], which gives, for anyx;h 2 R,

j' � (x � h) � ' � (x)j � j hj(1 � � + 21f x > min(h; 0)g):

This translates into

j' � n (b" (n)
i � � � n (" ) � t) � ' � n (" i � � � n (" ) � t)j

� j b" (n)
i � " i j(1 � � n + 21f " i � � � n (" ) � t > min(" i � b" (n)

i ; 0)g):

Hence the inequality

(8) Tn (u) � T1;n + T2;n (u)

with

T1;n :=
p

1 � � n

� � n (" )
p

n

nX

i =1

jb" (n)
i � " i j and

T2;n (u) :=
2

� � n (" )
p

n(1 � � n )

nX

i =1

sup
jt j2 I n (u)

jb" (n)
i � " i j1f " i � � � n (" ) � t > min(" i � b" (n)

i ; 0)g:

We �rst focus onT1;n . De�ne Rn;i := jb" (n)
i � " i j=(1 + j" i j) andRn = max 1� i � n Rn;i . We

have

T1;n �

" p
n(1 � � n )
� � n (" )

Rn

#

�
1
n

nX

i =1

(1 + j" i j) = O P

 p
n(1 � � n )
� � n (" )

Rn

!

by the law of large numbers. Note now that� � n (" ) ! 1 and thus

(9) T1;n = O P

 p
n(1 � � n )
q� n (" )

Rn

!

= o P

� p
n(1 � � n )Rn

�
P�! 0

by assumption. We now turn to the control ofT2;n (u), for which we write, for anyt ,

" i � � � n (" ) � t > min(" i � b" (n)
i ; 0) ) " i � � � n (" ) � t > 0 or b" (n)

i � � � n (" ) � t > 0:

It follows that, forn large enough, we have, for anyt such thatjt j 2 I n (u),

(10) " i � � � n (" ) � t > min(" i � b" (n)
i ; 0) ) " i >

� � n (" )
2

or b" (n)
i >

� � n (" )
2

:
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Now, for n large enough and with arbitrarily large probability asn ! 1 , jb" (n)
i � " i j � (1 +

j" i j)=2 for any i 2 f 1; : : : ; ng, so that after some algebra,

b" (n)
i >

� � n (" )
2

) " i +
1
2

j" i j >
1
2

(� � n (" ) � 1) ) " i +
1
2

j" i j >
1
4

� � n (" )

because� � n (" ) ! 1 . Since the quantityx + jxj=2 can only be positive ifx > 0, it follows
that, with arbitrarily large probability,

(11) b" (n)
i >

� � n (" )
2

) " i >
1
6

� � n (" ):

Combining (10) and (11) results in the following bound, valid with arbitrarily large probabil-
ity asn ! 1 :

T2;n (u) �
2

� � n (" )
p

n(1 � � n )

nX

i =1

jb" (n)
i � " i j1

�
" i >

1
6

� � n (" )
�

:

By assumption onjb" (n)
i � " i j, this leads to

T2;n (u) � 4

" p
n(1 � � n )
� � n (" )

Rn

#

�
1

n(1 � � n )

nX

i =1

" i 1
�

" i >
1
6

� � n (" )
�

:

Finally, the regular variation property ofF and the asymptotic proportionality relationship
between� � n (" ) andq� n (" ) ensure that

lim
n!1

F (� � n (" )=6)
1 � � n

exists, is positive and �nite.

Lemma A.1 then entails

(12) T2;n (u) = O P

� p
n(1 � � n )Rn

�
P�! 0

by assumption. Combining (7), (8), (9) and (12) completes the proof.

PROOF OFTHEOREM 2.2. To prove the �rst expansion, write

b" (n)
n�b ksc;n

q1� k=n (" )
� s�  =

b" (n)
n�b ksc;n

"n�b ksc;n

�
"n�b ksc;n

q1� k=n (" )
� s� 

�
+ s� 

0

@
b" (n)

n�b ksc;n

"n�b ksc;n
� 1

1

A :

Use Lemma A.3 and Theorem 2.4.8 in [14] to get

b" (n)
n�b ksc;n

"n�b ksc;n

�
"n�b ksc;n

q1� k=n (" )
� s� 

�

=
1

p
k

�
s �  � 1Wn (s) +

p
kA(n=k)s�  s� � � 1

�
+ s�  � 1=2� � oP(1)

�
(13)

uniformly in s 2 (0;1]. Applying Lemma A.3 again gives

(14) s� 

�
�
�
�
�
�

b" (n)
n�b ksc;n

"n�b ksc;n
� 1

�
�
�
�
�
�
� s�  � 1=2� �

�
�
�
�
�
�

b" (n)
n�b ksc;n

"n�b ksc;n
� 1

�
�
�
�
�
�
=

s�  � 1=2� �
p

k
oP(1)
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uniformly in s 2 (0;1]. Combine (13) and (14) to complete the proof of the �rst expansion.
The proof of the second expansion is based on the equality

log

0

@
b" (n)

n�b ksc;n

q1� k=n (" )

1

A = log
�

"n�b ksc;n

q1� k=n (" )

�
+ log

0

@
b" (n)

n�b ksc;n

"n�b ksc;n

1

A

and follows exactly the same ideas.

PROOF OFCOROLLARY 2.1. Notice that, by Theorem 2.2, there is a sequenceWn of
standard Brownian motions such that, for any� > 0 suf�ciently small:

b k =
Z 1

0
log

0

@
b" (n)

n�b ksc;n

b" (n)
n� k;n

1

A ds

=
Z 1

0

�
 log

1
s

+


p
k

�
s� 1Wn (s) � Wn (1)

�
+ A

� n
k

� �
s� � � 1

�
+ s� 1=2� � oP(1)

��
ds:

We then obtain thatb k can be written

p
k(b k �  ) =

�
1 � �

+ 
Z 1

0

�
s� 1Wn (s) � Wn (1)

�
ds+ o P(1):

Similarly,

p
k

0

@
b" (n)

n� k;n

q1� k=n (" )
� 1

1

A = W n (1) + o P(1):

Noting that the Gaussian terms in these two asymptotic expansions are independent com-
pletes the proof.

PROOF OFTHEOREM 2.3. The key is to note that

�
?
� 0

n
(Y jx )

� � 0
n
(Y jx )

� 1 =
�

1 +
g(x )

� (x )� � 0
n
(" )

� � 1
 

�
?
� 0

n
(" )

� � 0
n
(" )

� 1

!

+
g(x ) � g(x )

g(x ) + � (x )� � 0
n
(" )

+
�

1 +
g(x )

� (x )� � 0
n
(" )

� � 1 � (x ) � � (x )
� (x )

�
?
� 0

n
(" )

� � 0
n
(" )

:

Using the convergence� � (" )=q� (" ) ! ( � 1 � 1)�  as � " 1 and the heavy-tailed condi-
tion, we �nd 1=� � 0

n
(" ) = o(1 =� � n (" )) = o(1 =q� n (" )) . Our assumptions show that this is a

o(1=
p

n(1 � � n )) and therefore
p

n(1 � � n )
log[(1 � � n )=(1 � � 0

n )]

 
�

?
� 0

n
(Y jx )

� � 0
n
(Y jx )

� 1

!

=

p
n(1 � � n )

log[(1 � � n )=(1 � � 0
n )]

 
�

?
� 0

n
(" )

� � 0
n
(" )

� 1

!

(1 + o P(1)) + o P(1):

Our result is then shown by adapting the proof of Theorem 5 of [12], with the condition
� < 0 being used exclusively to control the bias term appearing naturally because of the
extrapolation procedure applied to the heavy-tailed random variable" . We omit the details.
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APPENDIX C: WORKED-OUT EXAMPLES: AUXILIARY RESULTS AND THEIR
PROOFS

Lemma C.1 gives the rate of convergence of the weighted least squares estimators in
model(M 1). Here and throughout allOP(1) statements are meant componentwise.

LEMMA C.1. Assume that(X i ;Yi ) i � 1 are independent random pairs generated from
model(M 1). Suppose further thatE("2) < 1 . Then we have

p
n(b� � � ) = O P(1);

p
n( b� � � ) = O P(1) and

p
n( b� � � ) = O P(1):

PROOF. We introduce the notation

X =

0

B
@

1 X >
1

...
...

1 X >
n

1

C
A ; Y =

0

B
@

Y1
...

Yn

1

C
A and
 = diag([1 + � > X 1]2; : : : ; [1 + � > X n ]2):

A preliminary step is to remark that for anya = ( a0; a1; : : : ; ad)> 2 Rd+1 ,

a> X > X a =
nX

i =1

[a0 + ( a1; : : : ; ad)X i ]2 > 0

and a> X > 
 � 1X a =
nX

i =1

h
1 + � > X i

i � 2
[a0 + ( a1; : : : ; ad)X i ]2 > 0

with probability 1, becauseX has a continuous distribution (and as such, does not put mass
on af�ne hyperplanes ofRd). The symmetric matricesX > X andX > 
 � 1X therefore have
full rank with probability 1. Since, by the law of large numbers,

1
n

h
X > X

i

i +1 ;j +1

P�! E (X i X j ) and
1
n

h
X > 
 � 1X

i

i +1 ;j +1

P�! E
� h

1 + � > X
i � 2

X i X j

�

(whereX 0 = 1 for notational convenience), the same argument shows thatX > X =n and
X > 
 � 1X =n converge in probability to symmetric positive de�nite matrices,� 1 and � 2
say.

Our �rst step is to show that the preliminary estimatorse� , e� and e� are
p

n� consistent.
Rewrite model(M 1) for the available data as

Y = X
�

�
�

�
+

�
X

�
1
�

��
� " ;

where" > = ( "1; : : : ; "n ) and � denotes the Hadamard (entrywise) product of matrices. By
standard least squares theory,

�
e�
e�

�
=

�
X > X

� � 1
X > Y :

A direct calculation then yields
� p

n(e� � � )
p

n( e� � � )

�
= n

�
X > X

� � 1
�

1
p

n
X >

��
X

�
1
�

��
� "

�

= n
�

X > X
� � 1

�

0

B
B
B
B
@

n� 1=2 P n
i =1

�
1 + � > X i

�
" i

n� 1=2 P n
i =1

�
1 + � > X i

�
X i 1" i

...
n� 1=2 P n

i =1

�
1 + � > X i

�
X id " i

1

C
C
C
C
A

:
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Set for notational convenienceX i 0 = 1 . Since, for anym 2 f 0;1: : : ; dg, the random variables�
1 + � > X i

�
X im " i , 1 � i � n, are independent, centred and square-integrable, the standard

multivariate central limit theorem combined with the convergencen
�
X > X

� � 1 P�! � � 1
1

yields

(15)
p

n(e� � � ) = O P(1) and
p

n( e� � � ) = O P(1):

We then prove that
p

n( e� � � ) = O P(1). Recalling that

e� =
e�
e�

and � =
�
�

where� = Ej" j > 0 and� = � � , it is enough to show that
p

n(e� � � ) = O P(1) and
p

n(e� �
� ) = O P(1). De�ning

Z =

0

B
@

jY1 � (� + � > X 1)j
...

jYn � (� + � > X n )j

1

C
A = X

�
�
�

�
+

�
X

�
1
�

��
� e;

wheree> = ( j"1j � Ej" j; : : : ; j"n j � Ej" j), and de�ning theneZ in the obvious way, we have
�

e�
e�

�
=

�
X > X

� � 1
X > eZ :

We therefore obtain
� p

n(e� � � )p
n(e� � � )

�
= n

�
X > X

� � 1
�

1
p

n
X >

��
X

�
1
�

��
� e

�

+ n
�

X > X
� � 1

� X >
�

1
p

n

h
eZ � Z

i �
:(16)

Sincee= j" j � Ej" j is independent ofX and has a �nite variance, repeating the proof of (15)
gives

(17) n
�

X > X
� � 1

�
1

p
n

X >
��

X
�

1
�

��
� e

�
= O P(1):

Furthermore,

X >
�

1
p

n

h
eZ � Z

i �
=

0

B
B
B
B
B
B
@

n� 1=2 P n
i =1

h
eZ i � Z i

i

n� 1=2 P n
i =1 X i 1

h
eZ i � Z i

i

...

n� 1=2 P n
i =1 X id

h
eZ i � Z i

i

1

C
C
C
C
C
C
A

:

Recalling thatX lies in a compact set, we �nd that for anym 2 f 0;1; : : : ; dg,
�
�
�
�
�
n� 1=2

nX

i =1

X im

h
eZ i � Z i

i
�
�
�
�
�
= O P

�
p

n max
1� i � n

j(e� � � ) + ( e� � � )> X i j
�

= O P(1)

by (15). Combining this with (16), (17) and the convergencen
�
X > X

� � 1 P�! � � 1
1 , we get

indeed
p

n(e� � � ) = O P(1) and
p

n(e� � � ) = O P(1) and thus

(18)
p

n( e� � � ) = O P(1):
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We are now ready to prove the convergence of the weighted estimatorsb� , b� and b� . By
standard weighted least squares theory,

�
b�
b�

�
=

�
X > e
 � 1X

� � 1
X > e
 � 1Y :

It follows that

(19)
� p

n(b� � � )
p

n( b� � � )

�
= n

�
X > e
 � 1X

� � 1
�

1
p

n
X > e
 � 1

��
X

�
1
�

��
� "

�

wheree
 is obtained from
 in the obvious manner. Note that for anyi; j 2 f 0; : : : ; dg,

1
n

h
X > 
 � 1X

i

i +1 ;j +1
=

1
n

nX

k=1

X ki X kj
h
1 + � > X k

i 2 and

1
n

h
X > e
 � 1X

i

i +1 ;j +1
=

1
n

nX

k=1

X ki X kj
h
1 + e� > X k

i 2 :

Recalling once again thatX lies in a compact set, that1 + � > X is bounded from below by
a positive constant, and (18), we �nd, by the law of large numbers,

(20)
1
n

h
X > e
 � 1X

i
�

1
n

h
X > 
 � 1X

i
P�! 0 and thusn

�
X > e
 � 1X

� � 1 P�! � � 1
2 :

Besides, for anym 2 f 0;1; : : : ; dg,
�

1
p

n
X > e
 � 1

��
X

�
1
�

��
� "

�
�

1
p

n
X > 
 � 1

��
X

�
1
�

��
� "

��

m+1

=
1

p
n

nX

i =1

h
1 + � > X i

i
X im " i

2

6
4

1
h
1 + e� > X i

i 2 �
1

h
1 + � > X i

i 2

3

7
5

= �
p

n
�

e� � �
� >

8
><

>:

1
n

nX

i =1

X im " i
2 + � > X i + e� > X i

h
1 + e� > X i

i 2h
1 + � > X i

i X i

9
>=

>;
:

Using again the properties ofX and (18), some straightforward algebra yields that

Rn :=
p

n max
1� i � n

�
�
�
�
�
�
�

2 + � > X i + e� > X i
h
1 + e� > X i

i 2 �
2

1 + � > X i

�
�
�
�
�
�
�
= O P(1):

Conclude that
�

1
p

n
X > e
 � 1

��
X

�
1
�

��
� "

�
�

1
p

n
X > 
 � 1

��
X

�
1
�

��
� "

��

m+1

= � 2
p

n
�

e� � �
� >

(
1
n

nX

i =1

X im " i

"
2

[1 + � > X i ]
2 + O P

�
Rnp

n

� #

X i

)

:

Since" is centred and independent ofX , we may combine the properties ofX and (18) with
the law of large numbers to get

(21)
1

p
n

X > e
 � 1
��

X
�

1
�

��
� "

�
�

1
p

n
X > 
 � 1

��
X

�
1
�

��
� "

�
= o P(1):



12

Now clearly
�

1
p

n
X > 
 � 1

��
X

�
1
�

��
� "

��

m+1
=

1
p

n

nX

i =1

X im

1 + � > X i
" i

so that, by the standard multivariate central limit theorem,

(22)
1

p
n

X > 
 � 1
��

X
�

1
�

��
� "

�
= O P(1):

Combining (19), (20), (21) and (22) results in
p

n(b� � � ) = O P(1) and
p

n( b� � � ) = O P(1):

We complete the proof by showing that
p

n( b� � � ) = O P(1). It is again enough to show thatp
n(b� � � ) = O P(1) and

p
n(b� � � ) = O P(1). Write

� p
n(b� � � )p
n(b� � � )

�
= n

�
X > e
 � 1X

� � 1
�

1
p

n
X > e
 � 1

��
X

�
1
�

��
� e

�

+ n
�

X > e
 � 1X
� � 1

� X > e
 � 1
�

1
p

n

h
bZ � Z

i �
:

Furthermore,

X > e
 � 1
�

1
p

n

h
bZ � Z

i �
=

0

B
B
B
B
B
B
B
@

n� 1=2 P n
i =1

h
1 + e� > X i

i � 2 h
bZ i � Z i

i

n� 1=2 P n
i =1 X i 1

h
1 + e� > X i

i � 2 h
bZ i � Z i

i

...

n� 1=2 P n
i =1 X id

h
1 + e� > X i

i � 2 h
bZ i � Z i

i

1

C
C
C
C
C
C
C
A

:

Recalling the properties ofX and the
p

n� convergence ofb� , b� and e� , we �nd that for any
m 2 f 0;1; : : : ; dg,

�
�
�
�
�
n� 1=2

nX

i =1

X im

h
1 + e� > X i

i � 2 h
bZ i � Z i

i
�
�
�
�
�
= O P

�
p

n max
1� i � n

j(b� � � ) + ( b� � � )> X i j
�

= O P(1):

Combining this with (20) and straightforward adaptations of (21) and (22) withe in place of
" , we �nd

p
n(b� � � ) = O P(1) and

p
n(b� � � ) = O P(1) as required.

Lemma C.2 is a general uniform consistency result which is useful for the analysis of the
single-index model(M 2).

LEMMA C.2. Assume that(Xi ;Yi ) i � 1 are independent copies of a bivariate random pair
(X ;Y) such that:

• X has support[a; b], with a < b, and a density functionf X which is uniformly bounded
on compact sub-intervals of(a; b).

• There exists� > 0 such thatEjYj2+ � < 1 and the conditional moment functionz 7!
E

�
jYj2+ � jX = z

�
is uniformly bounded on compact sub-intervals of(a; b).

Let further:
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• (Vi ) be a sequence of independent copies of a bounded random variableV.
• L be a Lipschitz continuous function with support contained in[� 1; 1].

Assume �nally thatnh5
n ! c 2 (0;1 ), and tn = nt with 2=(5 + � ) < t < 2=5. Then for any

a1; b1 2 [a;b] with a < a 1 < b1 < b,

n2=5
p

logn
sup

a1 � z� b1

�
�
�
�
�

1
nhn

nX

i =1

Yi 1fjY i j � tngVi L
�

z � X i

hn

�
�

1
hn

E
�
Y V L

�
z � X

hn

�� �
�
�
�
�

= O P(1):

We note that, as a consequence, we have a similar uniform consistency result for the non-
truncated version of the smoothed empirical moment, that is

n2=5
p

logn
sup

a1 � z� b1

�
�
�
�
�

1
nhn

nX

i =1

Yi Vi L
�

z � X i

hn

�
�

1
hn

E
�
Y V L

�
z � X

hn

�� �
�
�
�
�
= O P(1)

under the further assumptionEjYj5=2+ � < 1 . This follows from noting that

P

 
n[

i =1

fjY i j > t ng

!

� nP(jYj > t n ) = O

 
n

t5=2+ �
n

!

= O
�

n1� (5+2 � )=(5+ � )
�

= o(1)

by Markov's inequality. The stronger moment assumptionEjYj5=2+ � < 1 already appears
in [41] in the context of local polynomial estimation.

PROOF. The basic idea is to control the oscillation of the random function

z 7!
n2=5

p
logn

�
�
�
�
�

1
nhn

nX

i =1

Yi 1fjY i j � tngVi L
�

z � X i

hn

�
�

1
hn

E
�
Y V L

�
z � X

hn

�� �
�
�
�
�

and then use this control to prove that it is suf�cient to show uniform consistency over a �ne
grid instead, which can be done by using Bernstein's exponential inequality. Our proof adapts
the method of [23] (proof of Theorem 2).

De�ne Y (n)
i := Yi Vi 1fjY i j � tng andY (n) := Y V1fjYj � tng. Then

n2=5
p

logn
sup

a1 � z� b1

�
�
�
�
�

1
nhn

nX

i =1

Yi 1fjY i j � tngVi L
�

z � X i

hn

�
�

1
hn

E
�
Y V L

�
z � X

hn

�� �
�
�
�
�

�
n2=5

p
logn

sup
a1 � z� b1

�
�
�
�
�

1
nhn

nX

i =1

Y (n)
i L

�
z � X i

hn

�
�

1
hn

E
�
Y (n) L

�
z � X

hn

�� �
�
�
�
�

+
n2=5

p
logn

sup
a1 � z� b1

1
hn

E
�
jYj jVj 1fjYj > t ng

�
�
�
�L

�
z � X

hn

� �
�
�
�

�
:

(23)

The second term on the right-hand side of (23) is controlled by noting that, thanks to a change
of variables,

1
hn

E
�
jYj jVj 1fjYj > t ng

�
�
�
�L

�
z � X

hn

� �
�
�
�

�

= O
� Z 1

� 1
E [jYj1fjYj > t ngjX = z � hnu] jL (u)j f X (z � hnu) du

�
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= O
�

t � 1� �
n

Z 1

� 1
E

h
jYj2+ � jX = z � hnu

i
jL (u)j f X (z � hnu) du

�
= O( t � 1� �

n )

uniformly in z 2 [a1; b1]. Here the boundedness ofV, the integrability ofjL j and the assump-
tion that the(2 + � )� conditional moment ofY and the density functionf X are uniformly
bounded on compact sub-intervals of(a; b) were all used. Finally

t � 1� �
n = n� (1+ � )t = o( n� 2=5) = o

� p
logn

n2=5

�

so that

(24)
n2=5

p
logn

sup
a1 � z� b1

1
hn

E
�
jYj jVj 1fjYj > t ng

�
�
�
�L

�
z � X

hn

� �
�
�
�

�
= o(1) :

Combining (23) and (24), we �nd that it is suf�cient to show that

(25)
n2=5

p
logn

sup
a1 � z� b1

�
�
�
�
�

1
nhn

nX

i =1

Y (n)
i L

�
z � X i

hn

�
�

1
hn

E
�
Y (n) L

�
z � X

hn

�� �
�
�
�
�
= O P(1):

We now replace the supremum in (25) by a supremum over a grid by focusing on the oscilla-
tion of the left-hand side. For a givenz 2 R, let

An (z) :=
�

z02 [a1; b1]

�
�
�
� jz0� zj � hn

p
logn

n2=5

�
:

Then[a1; b1] is covered by theAn (zn;j ), with

zn;j = a1 + j h n

p
logn

n2=5
; j = 1 ; : : : ;

$
b1 � a1

hn

p
log n

n2= 5

%

=: Nn ;

whereb�c denotes the �oor function. Besides, writingjL (z0) � L (z)j � CL jz0� zj by Lips-
chitz continuity ofL , we also �nd

jz0� zj � 1 ) j L (z0) � L (z)j � j z0� zjL (z) with L (z) := CL 1fj zj � 2g:

Let zn;j be a grid point andz 2 An (zn;j ). By constructionjz � zn;j j=hn �
p

log(n)=n2=5

which converges to 0, so that, forn large enough,

8i 2 f 1; : : : ; ng;

�
�
�
�L

�
z � X i

hn

�
� L

�
zn;j � X i

hn

� �
�
�
� �

p
logn

n2=5
L

�
zn;j � X i

hn

�
:

Then

n2=5
p

logn
sup

z2 A n (zn;j )

�
�
�
�
�

1
nhn

nX

i =1

Y (n)
i L

�
z � X i

hn

�
�

1
hn

E
�
Y (n) L

�
z � X

hn

�� �
�
�
�
�

�
n2=5

p
logn

�
�
�
�
�

1
nhn

nX

i =1

Y (n)
i L

�
zn;j � X i

hn

�
�

1
hn

E
�
Y (n) L

�
zn;j � X

hn

�� �
�
�
�
�

+
1

nhn

nX

i =1

jY (n)
i j L

�
zn;j � X i

hn

�
+

1
hn

E
�
jY (n) j L

�
zn;j � X

hn

��

�
n2=5

p
logn

�
�
�
�
�

1
nhn

nX

i =1

Y (n)
i L

�
zn;j � X i

hn

�
�

1
hn

E
�
Y (n) L

�
zn;j � X

hn

�� �
�
�
�
�
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+

�
�
�
�
�

1
nhn

nX

i =1

jY (n)
i j L

�
zn;j � X i

hn

�
�

1
hn

E
�
jY (n) j L

�
zn;j � X

hn

�� �
�
�
�
�

+ 2 �
1

hn
E

�
jY (n) j L

�
zn;j � X

hn

��
:

By the boundedness ofV, of f X and ofz 7! E [jYj jX = z] over compact sub-intervals of
(a; b), we �nd, for n large enough,

sup
a1 � z� b1

1
hn

E
�
jY (n) j L

�
z � X

hn

��
� C0

whereC0 is a �nite constant. Consequently, for any constantC > 2C0,

n2=5
p

logn
sup

z2 A n (zn;j )

�
�
�
�
�

1
nhn

nX

i =1

Y (n)
i L

�
z � X i

hn

�
�

1
hn

E
�
Y (n) L

�
z � X

hn

�� �
�
�
�
�

�
n2=5

p
logn

�
�
�
�
�

1
nhn

nX

i =1

Y (n)
i L

�
zn;j � X i

hn

�
�

1
hn

E
�
Y (n) L

�
zn;j � X

hn

�� �
�
�
�
�

+
n2=5

p
logn

�
�
�
�
�

1
nhn

nX

i =1

jY (n)
i j L

�
zn;j � X i

hn

�
�

1
hn

E
�
jY (n) j L

�
zn;j � X

hn

�� �
�
�
�
�
+ C

where the (crude) inequalityn2=5=
p

logn � 1, for n large enough, was used. Conclude, by
writing [a1; b1] � [ 1� j � N n An (zn;j ), that

P

 
n2=5

p
logn

sup
a1 � z� b1

�
�
�
�
�

1
nhn

nX

i =1

Y (n)
i L

�
z � X i

hn

�
�

1
hn

E
�
Y (n) L

�
z � X

hn

�� �
�
�
�
�
> 3C

!

� Nn max
1� j � N n

P

 
n2=5

p
logn

�
�
�
�
�

1
nhn

nX

i =1

Y (n)
i L

�
zn;j � X i

hn

�
�

1
hn

E
�
Y (n) L

�
zn;j � X

hn

�� �
�
�
�
�
> C

!

+ Nn max
1� j � N n

P

 
n2=5

p
logn

�
�
�
�
�

1
nhn

nX

i =1

jY (n)
i j L

�
zn;j � X i

hn

�
�

1
hn

E
�
jY (n) j L

�
zn;j � X

hn

�� �
�
�
�
�
> C

!

:

We �nish the proof by showing
(26)

P

 
n2=5

p
logn

�
�
�
�
�

1
nhn

nX

i =1

Y (n)
i L

�
z � X i

hn

�
�

1
hn

E
�
Y (n) L

�
z � X

hn

�� �
�
�
�
�
> C

!

= O
�

1
n

�

and
(27)

P

 
n2=5

p
logn

�
�
�
�
�

1
nhn

nX

i =1

jY (n)
i j L

�
z � X i

hn

�
�

1
hn

E
�
jY (n) j L

�
z � X

hn

�� �
�
�
�
�
> C

!

= O
�

1
n

�

for C large enough, uniformly inz 2 [a1; b1]. SinceNn is of ordern2=5=(hn
p

log(n)) �
n3=5=

p
log(n) = o( n), this will entail

P

 
n2=5

p
logn

sup
a1 � z� b1

�
�
�
�
�

1
nhn

nX

i =1

Y (n)
i L

�
z � X i

hn

�
�

1
hn

E
�
Y (n) L

�
z � X

hn

�� �
�
�
�
�
> 3C

!

= o(1)
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for C large enough, which is suf�cient for our purposes. We only show (26) uniformly in
z 2 [a1; b1]; the proof of (27) is identical. Rewrite the left-hand side of (26) as

P

 �
�
�
�
�

nX

i =1

�
Y (n)

i L
�

z � X i

hn

�
� E

�
Y (n) L

�
z � X

hn

��� �
�
�
�
�
> Cu n

!

;

with un := n3=5hn
p

logn. Let v be a constant such thatjVj � v with probability 1. Note that
for any i we have the crude bound

�
�
�
�Y

(n)
i L

�
z � X i

hn

�
� E

�
Y (n) L

�
z � X

hn

�� �
�
�
� � 2vtn max

� 1� u� 1
jL (u)j:

Remark also that, forn large enough,

Var
�

Y (n) L
�

z � X
hn

��
� v2E

�
Y2 L 2

�
z � X

hn

��
� Dh n

for some �nite constantD , by uniform boundedness off X and z 7! E
�
Y2 jX = z

�
over

compact sub-intervals of(a; b). By the Bernstein exponential inequality we get

P

 �
�
�
�
�

nX

i =1

�
Y (n)

i L
�

z � X i

hn

�
� E

�
Y (n) L

�
z � X

hn

��� �
�
�
�
�
> Cu n

!

� 2exp
�

�
C2u2

n=2
Dnh n + 2Cvtnun max[� 1;1] jL j=3

�
:

Recalling thattn = nt with 2=(5+ � ) < t < 2=5, un = n3=5hn
p

logn andnh5
n ! c 2 (0;1 ),

one �nds

1
logn

�
C2u2

n=2
Dnh n + 2Cvtnun max[� 1;1] jL j=3

!
c1=5C2

2D
as n ! 1

and therefore there is a constantC0> 0, independent ofC, such that forn large enough

P

 �
�
�
�
�

nX

i =1

�
Y (n)

i L
�

z � X i

hn

�
� E

�
Y (n) L

�
z � X

hn

��� �
�
�
�
�
> Cu n

!

� 2exp
�
� C0C2 logn

�

uniformly in z 2 [a1; b1]. ForC large enough, this yields

P

 �
�
�
�
�

nX

i =1

�
Y (n)

i L
�

z � X i

hn

�
� E

�
Y (n) L

�
z � X

hn

��� �
�
�
�
�
> Cu n

!

= O
�

1
n

�

which is equivalent to (26). This completes the proof.

Lemma C.3 provides a uniform control, tailored to the assumptions of Proposition C.1, of the
gap between smoothed moments and their asymptotic equivalents.

LEMMA C.3. Assume that the bivariate random pair(X ;Y) is such that:

• X has support[a; b], witha < b, and a density functionf X which has a continuous deriva-
tive on(a; b).

• The conditional moment functionmYjX : z 7! E(YjX = z) is well-de�ned and has a con-
tinuous derivative on(a; b).

• L is a bounded measurable function with support contained in[� 1; 1].

Then, ash ! 0:
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(i) For anya1; b1 2 [a;b] with a < a 1 < b1 < b, we have, uniformly inz 2 [a1; b1],

1
h

E
�
Y L

�
z � X

h

��
= mYjX (z)f X (z)

Z 1

� 1
L(u)du

� hf m0
YjX (z)f X (z) + mYjX (z)f 0

X (z)g
Z 1

� 1
uL (u)du + o( h):

(ii) If moreoverf X andmYjX are twice continuously differentiable on(a; b) then, uniformly
in z 2 [a1; b1],

1
h

E
�
Y L

�
z � X

h

��

= mYjX (z)f X (z)
Z 1

� 1
L(u)du � hf m0

YjX (z)f X (z) + mYjX (z)f 0
X (z)g

Z 1

� 1
uL (u)du

+
h2

2
f m00

YjX (z)f X (z) + 2 m0
YjX (z)f 0

X (z) + mYjX (z)f 00
X (z)g

Z 1

� 1
u2L(u)du + o( h2):

PROOF. Note that

1
h

E
�
Y L

�
z � X

h

��
=

Z 1

� 1
mYjX (z � hu)f X (z � hu)L (u) du:

Parts (i) and (ii) are obtained by using the following Taylor formulae with integral remainder:

' (z + � ) = ' (z) + �' 0(z) +
Z z+ �

z
[' 0(t) � ' 0(z)] dt

and

' (z + � ) = ' (z) + �' 0(z) +
� 2

2
' 00(z) +

Z z+ �

z
(z + � � t)[' 00(t) � ' 00(z)] dt

applied to the function' : z 7! mYjX (z)f X (z). To get a uniform control of the remainders,
use the fact that this function has uniformly continuous derivatives on any compact sub-
interval of [a; b], by Heine's theorem.

Our next auxiliary result is the uniform consistency (with rate) of the estimators ofg and�
in the heteroscedastic single-index model of Section 3.2.

PROPOSITIONC.1. Assume that(X i ;Yi ) i � 1 are independent random pairs generated
from the single-index model(M 2). Assume further that:

• The functionsg and � > 0 are continuous onK � and twice continuously differentiable
on the interiorK o

� of K � .
• The projection� > X has a density functionf � > X which is twice continuously differen-
tiable and positive onK o

� .
• Each of the conditional moment functionsz 7! E(X j j� > X = z), j 2 f 1; : : : ; dg is con-
tinuously differentiable onK o

� .
• There is� > 0 such thatEj" j2+ � < 1 .
• L is a twice continuously differentiable and symmetric probability density function with
support contained in[� 1; 1].
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Assume also thatnh5
n ! c 2 (0;1 ), and tn = nt with 2=(5 + � ) < t < 2=5. Then, for any

compact subsetK 0 of K o and any estimatorb� such that
p

n
�

b� � �
�

= O P(1), we have

n2=5
p

logn
sup

x 2 K 0

�
�
�bghn ;t n

�
b� > x

�
� g

�
� > x

� �
�
� = O P(1)

and
n2=5

p
logn

sup
x 2 K 0

�
�
�b� hn ;t n

�
b� > x

�
� �

�
� > x

� �
�
� = O P(1):

Before proving this result, note that whenK is convex, its projectionK � := f � > x ; x 2 K g,
which is also the support of� > X , is a compact interval containing at least two points (be-
causeK has a nonempty interior). Note also that Proposition C.1 is tailored to our framework
in the sense that the assumptionEj" j2+ � < 1 , which puts a constraint on the tail heaviness
of the noise variable, is intuitively close to minimal for the estimation ofg and � by esti-
mators of Nadaraya-Watson type. An inspection of the proof reveals that a similar theorem
holds if bghn ;t n andb� hn ;t n are replaced by non-truncated versions, under the stronger moment
assumptionEj" j5=2+ � < 1 ; see the comment below the statement of Lemma C.2. The regu-
larity assumption onz 7! E(X j j� > X = z) is a technical requirement, which is for instance
satis�ed if the density functionf X is continuously differentiable and positive onK � .

PROOF. We start by proving the assertion onbghn ;t n . De�ne a truncated pseudo-Nadaraya-
Watson estimator by

eghn ;t n (z) =
nX

i =1

Yi 1fj Yi j � tngL
�

z � � > X i

hn

� ,
nX

i =1

L
�

z � � > X i

hn

�
:

The idea is to write�
�
�bghn ;t n

�
b� > x

�
� g

�
� > x

� �
�
� �

�
�
�g

�
b� > x

�
� g

�
� > x

� �
�
�

+
�
�
�eghn ;t n

�
b� > x

�
� g

�
b� > x

� �
�
�

+
�
�
�bghn ;t n

�
b� > x

�
� eghn ;t n

�
b� > x

� �
�
�(28)

and control each term on the right-hand side of (28) separately. To control the �rst term, we
�rst apply the mean value theorem:

�
�
�g

�
b� > x

�
� g

�
� > x

� �
�
� �

�
�
�
�

�
b� � �

� >
x

�
�
�
� � sup

� 2 [0;1]

�
�
�
�g

0
�

� > x + �
�

b� � �
� >

x
� �

�
�
� :

SinceK 0 � K o, the distance between the compact setK 0 and the (compact) topological
boundary ofK is positive,i.e. � := inf fk x � yk; x 2 K 0; y 2 K nK og > 0: It is then straight-
forward to show that, lettingK � = [ u; v], we have� > x 2 [u + �= 2; v � �= 2] for anyx 2 K 0.
Since b� is a consistent estimator of� , we obtain that, with arbitrarily large probability as
n ! 1 ,

(29) 8� 2 [0;1]; 8x 2 K 0; � > x + �
�

b� � �
� >

x 2 [u + �= 4; v � �= 4]:

Becauseg0 is continuous and therefore bounded on compact intervals contained in(u; v), this
gives

(30)
n2=5

p
logn

sup
x 2 K 0

�
�
�g

�
b� > x

�
� g

�
� > x

� �
�
� = O P

�
n2=5

p
logn

�
1

p
n

�
= o P(1):
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To control the second term, we show the uniform consistency of the regression pseudo-
estimatoreghn ;t n . The assumptions of Lemma C.2 are ful�lled for(X ;Y;V) = ( � > X ;Y;1) =
(� > X ;g

�
� > X

�
+ �

�
� > X

�
"; 1) and (X ;Y;V) = ( � > X ;1;1). Recalling that" is inde-

pendent ofX and centred, Lemma C.2 then provides

eghn ;t n (z) =

1
hn

E
�
Y L

�
z � � > X

hn

��
+ O P

� p
logn

n2=5

�

1
hn

E
�
L

�
z � � > X

hn

��
+ O P

� p
logn

n2=5

�

uniformly on any (�xed) compact subset ofK o
� = ( u; v). Noting thathn � (c=n)1=5 and

R1
� 1 uL (u)du = 0 (becauseL is symmetric), Lemma C.3(ii) therefore entails

eghn ;t n (z) =
f � > X (z)g(z) + O P

� p
logn

n2=5

�

f � > X (z) + O P

� p
logn

n2=5

� = g(z) + O P

� p
logn

n2=5

�

uniformly on any compact subset of(u; v), the last equality being correct becausef � > X is
bounded from below by a positive constant on such sets. Together with (29) for� = 1 , this
yields

(31)
n2=5

p
logn

sup
x 2 K 0

�
�
�eghn ;t n

�
b� > x

�
� g

�
b� > x

� �
�
� = O P(1):

We conclude by controlling the third term in the right-hand side of (28). The idea is to de�ne
Y (n)

i := Yi 1fj Yi j � tng and, for anyz andp = 0 ;1,

bm(p)
n (z) :=

1
nhn

nX

i =1

h
Y (n)

i

i p
L

 
z � b� > X i

hn

!

and em(p)
n (z) :=

1
nhn

nX

i =1

h
Y (n)

i

i p
L

�
z � � > X i

hn

�
:

With this notation,

bghn ;t n (z) � eghn ;t n (z) =
bm(1)

n (z)

bm(0)
n (z)

�
em(1)

n (z)

em(0)
n (z)

=
[ bm(1)

n (z) � em(1)
n (z)] em(0)

n (z) � [ bm(0)
n (z) � em(0)

n (z)] em(1)
n (z)

( em(0)
n (z) + [ bm(0)

n (z) � em(0)
n (z)]) em(0)

n (z)
:(32)

Since

(33)
�
�
� em(0)

n (z) � f X (z)
�
�
� = o P(1) and

�
�
� em(1)

n (z) � f X (z)g(z)
�
�
� = o P(1)

uniformly on any compact subset of(u; v) by Lemmas C.2 and C.3(ii), we concentrate on
differences of the form

bm(p)
n (z) � em(p)

n (z) =
1

nhn

nX

i =1

h
Y (n)

i

i p
(

L

 
z � b� > X i

hn

!

� L
�

z � � > X i

hn

� )

:
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By Taylor's theorem with integral remainder applied to the functionL , we �nd

bm(p)
n (z) � em(p)

n (z)

= �
1

nhn

nX

i =1

h
Y (n)

i

i p
�

( b� � � )> X i

hn
L 0

�
z � � > X i

hn

�

+
1

nhn

nX

i =1

h
Y (n)

i

i p
�

1
2

(
( b� � � )> X i

hn

) 2

L 00
�

z � � > X i

hn

�

+
1

nhn

nX

i =1

h
Y (n)

i

i p
�

Z (z� b� > X i )=hn

(z� � > X i )=hn

 
z � b� > X i

hn
� s

! �
L 00(s) � L 00

�
z � � > X i

hn

��
ds

=: T1;n (z) + T2;n (z) + T3;n (z):
(34)

We handle these three terms separately.

Control of T1;n (z): Note that

T1;n (z) = �
1

hn
( b� � � )>

"
1

nhn

nX

i =1

h
Y (n)

i

i p
L 0

�
z � � > X i

hn

�
X i

#

:

Recall thatX has compact support; Lemma C.2 (choosingV = X j , 1 � j � d) then yields

T1;n (z) = �
1

hn
( b� � � )>

�
1

hn
E

�
Y pL 0

�
z � � > X

hn

�
X

�
+ O P

� p
logn

n2=5

��

uniformly on any compact subset of(u; v). Because for anyj 2 f 1; : : : ; dg,

E(Y pX j j� > X = z) = [ 1f p = 0g+ g(z)1f p = 1g]E(X j j� > X = z);

the conditional moment functionz 7! E(Y pX j j� > X = z) satis�es the regularity require-
ments of Lemma C.3(i). By Lemma C.3(i) and the symmetry ofL ,

1
hn

E
�

Y pL 0
�

z � � > X
hn

�
X

�
= O( hn )

uniformly on any compact subset of(u; v). Sinceb� � � = O P(1=
p

n), this yields

(35) T1;n (z) = O P

�
1

p
n

�
= o P

� p
logn

n2=5

�
uniformly on any compact subset of(u; v):

Control of T2;n (z): Recall thatX has compact support,b� � � = O P(1=
p

n), andL 00is
bounded to obtain, using the law of large numbers,
(36)

sup
z2 R

jT2;n (z)j = O P

 
1

nh3
n

�
1
n

nX

i =1

jYi jp
!

= O P

�
1

nh3
n

�
= O P

�
1

n2=5

�
= o P

� p
logn

n2=5

�
:

Control of T3;n (z): Use a change of variables to rewrite the integral term inT3;n (z) as
Z (z� b� > X i )=hn

(z� � > X i )=hn

 
z � b� > X i

hn
� s

! �
L 00(s) � L 00

�
z � � > X i

hn

��
ds

=
Z (� � b� )> X i =hn

0

 
(� � b� )> X i

hn
� u

! �
L 00

�
z � � > X i

hn
+ u

�
� L 00

�
z � � > X i

hn

��
du:
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SinceX has compact support andb� � � = O P(1=
p

n) we have

max
1� i � n

�
�
�
�
�
(� � b� )> X i

hn

�
�
�
�
�
= O P

�
1

hn
p

n

�
= o P(1):

By uniform continuity of the continuous and compactly supported functionL 00, it follows
that

max
1� i � n

sup
z2 R

sup
juj�j (� � b� )> X i j=hn

�
�
�
�L

00
�

z � � > X i

hn
+ u

�
� L 00

�
z � � > X i

hn

� �
�
�
� = o P(1):

We then get

sup
z2 R

jT3;n (z)j = o P

 
1

nhn

nX

i =1

jYi jp
�
�
�
�
�

Z (� � b� )> X i =hn

0

�
�
�
�
�
(� � b� )> X i

hn
� u

�
�
�
�
�
du

�
�
�
�
�

!

= o P

0

@ 1
nhn

nX

i =1

jYi jp
"

(� � b� )> X i

hn

#2
1

A

= o P

 
1

nh3
n

�
1
n

nX

i =1

jYi jp
!

= O P

�
1

nh3
n

�
= o P

� p
logn

n2=5

�
:(37)

Combine (32), (33), (34), (35), (36) and (37) to obtain

bghn ;t n (z) � eghn ;t n (z) =
oP

� p
logn

n2=5

�

f � > X (z) + o P

� p
logn

n2=5

� = o P

� p
logn

n2=5

�

uniformly on any compact subset of(u; v). Using (29) again with� = 1 , we get

(38)
n2=5

p
logn

sup
x 2 K 0

�
�
�bghn ;t n

�
b� > x

�
� eghn ;t n

�
b� > x

� �
�
� = o P(1):

Combining (28), (30), (31) and (38) concludes the proof of the assertion onbghn ;t n .

We turn to the control ofb� hn ;t n , where the added dif�culty is that the computation of the

estimator is based on the absolute residualsbZ i;h n ;t n =
�
�
�Yi � bghn ;t n

�
b� > X i

� �
�
� rather than on

the “true values”Z i :=
�
�Yi � g

�
� > X i

� �
� . We thus introduce its pseudo-estimator analogue

based on theZ i ,

� hn ;t n (z) :=
nX

i =1

Z i 1 f Z i � tng L

 
z � b� > X i

hn

! ,
nX

i =1

L

 
z � b� > X i

hn

!

and we seek to controljb� hn ;t n (z) � � hn ;t n (z)j, for z = b� > x , uniformly in x 2 K 0. Write

b� hn ;t n (z) � � hn ;t n (z)

=
nX

i =1

h
bZ i;h n ;t n 1

n
bZ i;h n ;t n � tn

o
� Z i 1 f Z i � tng

i
L

 
z � b� > X i

hn

! ,
nX

i =1

L

 
z � b� > X i

hn

!

:

Note that the only pairs(X i ;Yi ) making a nonzero contribution to this difference are those
for which jz � b� > X i j � hn . Forx 2 K 0, we thus focus on controlling

sup
x 2 K 0

�
�
� bZ i;h n ;t n 1

n
bZ i;h n ;t n � tn

o
� Z i 1 f Z i � tng

�
�
� 1

n�
�
� b� > x � b� > X i

�
�
� � hn

o
:
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Since
�
�
� bZ i;h n ;t n � Z i

�
�
� �

�
�
�bghn ;t n

�
b� > X i

�
� g

�
� > X i

� �
�
� , the triangle inequality yields

sup
x 2 K 0

�
�
� bZ i;h n ;t n 1

n
bZ i;h n ;t n � tn

o
� Z i 1 f Z i � tng

�
�
� 1

n�
�
� b� > x � b� > X i

�
�
� � hn

o

� sup
x 2 K 0

max
i : j b� > x � b� > X i j� hn

�
�
�bghn ;t n

�
b� > X i

�
� g

�
� > X i

� �
�
�(39)

+ sup
x 2 K 0

Z i

�
�
�1

n
bZ i;h n ;t n � tn

o
� 1 f Z i � tng

�
�
� 1

n�
�
� b� > x � b� > X i

�
�
� � hn

o
:(40)

We focus on (39) �rst, where the idea is to use our uniform convergence result onbghn ;t n .
Write

j b� > x � b� > X i j � hn ) j b� > x � � > X i j � hn + j( b� � � )> X i j = hn + O P

�
1

p
n

�

irrespective of the indexi andx 2 K 0, so that, with arbitrarily large probability asn ! 1 ,

8i 2 f 1; : : : ; ng; 8x 2 K 0; j b� > x � b� > X i j � hn ) j b� > x � � > X i j � 2hn :

Recall that, by (29),b� > x 2 [u + �= 4; v � �= 4] with arbitrarily large probability asn ! 1 ,
irrespective ofx 2 K 0. Sincehn ! 0, this yields, with arbitrarily large probability asn ! 1 ,

8i 2 f 1; : : : ; ng; 8x 2 K 0; j b� > x � b� > X i j � hn ) � > X i 2 [u + �= 8; v � �= 8]:

In other words, for such indicesi , X i belongs to the intersection ofK and the inverse image
of the closed interval[u + �= 8; v � �= 8] by the (continuous) projection mappingx 7! � > x .
This intersection is itself a compact setK 1, say, and therefore, with arbitrarily large proba-
bility as n ! 1 ,

8i 2 f 1; : : : ; ng; 8x 2 K 0; j b� > x � b� > X i j � hn ) X i 2 K 1:

Note also thatK 1 � K � sinceK 1 is contained in the (open) inverse image of the open interval
(u + �= 16; v � �= 16) by the same projection mapping. It then follows from our uniform
convergence result onbghn ;t n that

(41) sup
x 2 K 0

max
i : j b� > x � b� > X i j� hn

�
�
�bghn ;t n

�
b� > X i

�
� g

�
� > X i

� �
�
� = O P

� p
logn

n2=5

�
:

We can now control (40). Clearly
�
�
�1

n
bZ i;h n ;t n � tn

o
� 1 f Z i � tng

�
�
�

= 1
n

bZ i;h n ;t n � tn ; Z i > t n

o
+ 1

n
bZ i;h n ;t n > t n ; Z i � tn

o
:

Recall that
�
�
� bZ i;h n ;t n � Z i

�
�
� �

�
�
�bghn ;t n

�
b� > X i

�
� g

�
� > X i

� �
�
� and use (41) together with the

assumptiontn ! 1 to �nd that, with arbitrarily large probability asn ! 1 ,

8i 2 f 1; : : : ; ng; sup
x 2 K 0

Z i

�
�
�1

n
bZ i;h n ;t n � tn

o
� 1 f Z i � tng

�
�
� 1

n�
�
� b� > x � b� > X i

�
�
� � hn

o

� Z i 1 f Z i � 2tn ; Z i > t ng+ Z i 1 f Z i > t n=2; Z i � tng

� Z i 1 f tn=2 < Z i � 2tng:(42)
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Combine (41) and (42) to obtain, with arbitrarily large probability asn ! 1 ,

sup
x 2 K 0

�
�
�b� hn ;t n

�
b� > x

�
� � hn ;t n

�
b� > x

� �
�
�

� sup
x 2 K 0

h
� hn ;2t n

�
b� > x

�
� � hn ;t n =2

�
b� > x

�i
+ O P

� p
logn

n2=5

�
:(43)

To conclude, note that sinceEj" j = 1 ,

Z :=
�
�
�Y � g

�
� > X

� �
�
� = �

�
� > X

�
+ �

�
� > X

�
(j" j � Ej" j):

This single-index model linkingZ to X has the same structure as model(M 2) and satis�es
our assumptions, withg replaced by� and " replaced byj" j � Ej" j. Since for this model
� hn ;t n plays the role ofbghn ;t n , we can use the �rst part of the Proposition to get

(44)
n2=5

p
logn

sup
x 2 K 0

�
�
� � hn ;t n

�
b� > x

�
� �

�
� > x

� �
�
� = O P(1):

The result then follows by using (43) to write

n2=5
p

logn
sup

x 2 K 0

�
�
�b� hn ;t n

�
b� > x

�
� �

�
� > x

� �
�
� �

n2=5
p

logn
sup

x 2 K 0

�
�
� � hn ;2t n

�
b� > x

�
� �

�
� > x

� �
�
�

+
n2=5

p
logn

sup
x 2 K 0

�
�
� � hn ;t n =2

�
b� > x

�
� �

�
� > x

� �
�
�

+
n2=5

p
logn

sup
x 2 K 0

�
�
� � hn ;t n

�
b� > x

�
� �

�
� > x

� �
�
�

+ O P(1)

and then by using (44) as well as its analogues withtn replaced bytn=2 and2tn .

The following de-conditioning lemma is a stronger version of Lemma 8 in [49].

LEMMA C.4. Let N = N (n) P�! 1 be a random sequence of integers that, for each
n, takes its values inf 0; 1; : : : ; ng. Suppose that(Gn ) and (Hm ) are sequences of random
elements taking values in a metric spaceS endowed with its Borel� � �eld. Assume that

8n � 1; 8m 2 f 1; : : : ; ng; Gn j f N (n) = mg d= Hm :

Then:

(i) If Hm
d�! H asm ! 1 , we haveGn

d�! H asn ! 1 .

If moreoverS is a linear space endowed with a normk � k, then:

(ii) If kHm k = O P(1), we havekGnk = O P(1).

Finally, in the caseS = R:

(iii) If Hm
P�! + 1 asm ! 1 , we haveGn

P�! + 1 asn ! 1 .
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PROOF. Use the law of total probability to write, for any positive integerm0 and any
Borel subsetA of S,

P(Gn 2 A) = P(Gn 2 A;N (n) � m0) +
nX

m= m 0 +1

P(Gn 2 A j N (n) = m)P(N (n) = m)

= P(Gn 2 A;N (n) � m0) +
nX

m= m 0 +1

P(Hm 2 A)P(N (n) = m):(45)

To show (i), letA be a continuity set ofH (in the sense thatP(H 2 @A) = 0 , where@Ais the
topological boundary ofA). By the Portmanteau theorem, there is an integerm0 such that
for m > m 0, jP(Hm 2 A) � P(H 2 A)j � "=3. With this choice ofm0 we have, forn large
enough,

jP(Gn 2 A) � P(H 2 A)j

� P(Gn 2 A;N (n) � m0) + P(H 2 A)P(N (n) � m0) +
"
3

nX

m= m 0 +1

P(N (n) = m)

�
"
3

+
"
3

+
"
3

= ":

This proves (i). To show statements (ii) and (iii), deduce from (45) that for anym0,

P(Gn 2 A) � sup
m>m 0

P(Hm 2 A) + o(1) asn ! 1 :

Fix " > 0. To prove (ii), letC > 0 andm0 be such thatP(kHm k > C ) � "=2 for anym > m 0,
and apply the above inequality withA being the complement of the closed ball with centre
the origin and radiusC along with this choice ofm0 to getP(kGnk > C ) � " for n large
enough, which is the desired result. Finally, to prove (iii), pick an arbitraryt and setA =
A t = ( �1 ; t]. There is an integerm0 such thatP(Hm 2 A t ) � "=2 for m > m 0; applying
the above inequality with this choice ofm0 yieldsP(Gn 2 A t ) � " for n large enough, which
is (iii).

Our next result is a technical extension of Theorem 2.1 to the case when the sample sizen
is random. This will be key to the proof of our main theorems in Sections 3.2 and 3.3, where
one has to work with a selected subset of observations whose sizeN is indeed random.

LEMMA C.5. Assume that there is� > 0 such thatEj" � j2+ � < 1 , that " satis�es condi-

tion C1( ) with 0 <  < 1=2 and � n " 1 is such thatn(1 � � n ) ! 1 . LetN = N (n) P�! 1
be a random sequence of integers that, for eachn, takes its values inf 0; 1; : : : ; ng. Suppose
that, for anyn and on the eventf N > 0g, b" (n)

i and" (n)
i , 1 � i � N are given such that

• For anyn � 1 and anym 2 f 1; : : : ; ng, the distribution of(" (n)
1 ; : : : ; " (n)

N ) givenN = m
is the distribution ofm independent copies of" ,

• We have

p
N (1 � � N ) max

1� i � N

jb" (n)
i � " (n)

i j

1 + j" (n)
i j

P�! 0:

Let �nally b� � N (" ) = arg min u2 R
P N

i =1 � � N (b" (n)
i � u) on f N > 0g and 0 otherwise, as well as

 N (u) =
1

2� 2
� N

(" )

NX

i =1

"

� � N

 

" (n)
i � � � N (" ) �

u� � N (" )
p

N (1 � � N )

!

� � � N (" (n)
i � � � N (" ))

#
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and � N (u) =
1

2� 2
� N

(" )

NX

i =1

"

� � N

 

b" (n)
i � � � N (" ) �

u� � N (" )
p

N (1 � � N )

!

� � � N (b" (n)
i � � � N (" ))

#

on f N > 0g, and 0 otherwise. Then we have� N (u) �  N (u) P�! 0 asn ! 1 and

p
N (1 � � N )

 
b� � N (" )
� � N (" )

� 1

!
d�! N

�
0;

2 3

1 � 2

�
:

PROOF. To show that� N (u) �  N (u) P�! 0, following the ideas of the proof of Theo-
rem 2.1, it is enough to prove that

(46) T1;N =
p

1 � � N

� � N (" )
p

N

NX

i =1

jb" (n)
i � " (n)

i j P�! 0

and that, ifI N (u) = [0 ; juj� � N (" )=
p

N (1 � � N )],

T2;N (u) =
2

� � N (" )
p

N (1 � � N )

�
NX

i =1

sup
jt j2 I N (u)

jb" (n)
i � " (n)

i j1f " (n)
i � � � N (" ) � t > min(" (n)

i � b" (n)
i ; 0)g

P�! 0:(47)

Clearly, sinceN = N (n) P�! 1 and in particularN > 0 with arbitrarily large probability,

T1;N = o P

 
1
N

NX

i =1

(1 + j" (n)
i j)

!

= o P(1)

where the law of large numbers is combined with the de-conditioning Lemma C.4(i), to show

thatN � 1 P N
i =1 (1 + j" (n)

i j) P�! 1 + Ej" j < 1 . This proves (46). We now turn to the control

of T2;N (u). Use thatN = N (n) P�! 1 and follow the ideas leading to (11) in the proof of
Theorem 2.1 to �nd, forn large enough,

" (n)
i � � � N (" ) � t > min(" (n)

i � b" (n)
i ; 0) ) " (n)

i >
1
6

� � N (" )

with arbitrarily large probability, irrespective ofi 2 f 1; : : : ;N g andt such thatjt j 2 I N (u).
Therefore, with arbitrarily large probability asn ! 1 :

T2;N (u) �
2

� � N (" )
p

N (1 � � N )

NX

i =1

jb" (n)
i � " (n)

i j1
�

" (n)
i >

1
6

� � N (" )
�

= o P

 
1

N� � N (" )(1 � � N )

NX

i =1

" (n)
i 1

�
" (n)

i >
1
6

� � N (" )
� !

:

Combine Lemma A.1 with the de-conditioning Lemma C.4(i) to get

T2;N (u) = o P(1):
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This is (47). Combine (46) and (47) to get� N (u) �  N (u) P�! 0. Now a combination of the
conclusion of the proof of Theorem 2 in [10] and the de-conditioning Lemma C.4(i) yields

� N (u) =  N (u) + o P(1) d�! � uZ

r
2

1 � 2
+

u2

2
asn ! 1

in the sense of �nite-dimensional convergence, withZ being standard Gaussian. Since� N (u)
is convex inu, the conclusion follows using the convexity lemma stated as Theorem 5 in [33].

Lemma C.6(i) below is a technical extension of Lemma A.3 to the case of a random sam-
ple size. It is essential in, among others, proving that the Hill estimator based on a random
number of residuals is asymptotically Gaussian, which is stated below as Lemma C.6(ii); this
will be used extensively in Sections 3.2 and 3.3.

LEMMA C.6. Let k = k(n) ! 1 be a sequence of integers withk=n ! 0. Assume that

" has an in�nite right endpoint. LetN = N (n) P�! 1 be a random sequence of integers
that, for eachn, takes its values inf 0; 1; : : : ; ng. Suppose that, for anyn and on the event
f N > 0g, b" (n)

i and" (n)
i , 1 � i � N are given such that

• For anyn � 1 and anym 2 f 1; : : : ; ng, the distribution of(" (n)
1 ; : : : ; " (n)

N ) givenN = m
is the distribution ofm independent copies of" ,

• We have

RN := max
1� i � N

jb" (n)
i � " (n)

i j

1 + j" (n)
i j

P�! 0:

(i) Then we have both

sup
0<s � 1

�
�
�
�
�
�

b" (n)
N �b k(N )sc;N

" (n)
N �b k(N )sc;N

� 1

�
�
�
�
�
�
= O P(RN ) and sup

0<s � 1

�
�
�
�
�
�
log

0

@
b" (n)

N �b k(N )sc;N

" (n)
N �b k(N )sc;N

1

A

�
�
�
�
�
�
= O P(RN ):

Here by conventionb" (n)
N �b k(N )sc;N and" (n)

N �b k(N )sc;N are equal to 1 on the eventf N = 0g.

(ii) If moreover " satis�es conditionC2(; �;A ) and � n " 1 is such thatn(1 � � n ) ! 1 ,
p

n(1 � � n )A((1 � � n ) � 1) ! � 2 R and
p

N (1 � � N )RN
P�! 0, then the Hill estimator

b bN (1� � N )c =
1

bN (1 � � N )c

bN (1� � N )cX

i =1

log
b" (n)

N � i +1 ;N

b" (n)
N �b N (1� � N )c;N

is such that
p

N (1 � � N )(b bN (1� � N )c �  ) d�! N (�= (1 � � );  2).

PROOF. We follow the proof of Lemma A.3. On the eventf N > 0g\f RN � 1=4g, having
arbitrarily high probability, we may write

8i 2 f 1; : : : ;N g; " (n)
i;N � RN (1 + j" (n)

i;N j) � b" (n)
i;N � " (n)

i;N + RN (1 + j" (n)
i;N j):

Given N = m, the random variable" (n)
N � k(N );N has the same distribution as"m� k(m);m ,

the (m � k(m)) th order statistic of a sample ofm independent copies of" . Since
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"m� k(m);m
P�! + 1 as m ! 1 , we obtain likewise" (n)

N � k(N );N
P�! + 1 by the de-

conditioning Lemma C.4(iii). On the eventAn := f N > 0g \ f RN � 1=4g \ f "N � k(N );N �
1g, whose probability tends to 1, we have

8i � N � k(N ); (1 � RN )" (n)
i;N � RN � b" (n)

i;N � (1 + RN )" (n)
i;N + RN :

Therefore, onAN ,

8s 2 (0;1]; � 2RN �
b" (n)

N �b k(N )sc;N

" (n)
N �b k(N )sc;N

� 1 � 2RN :

Mimic then the �nal stages of the proof of Lemma A.3 to conclude the proof of (i).

(ii) De�ne

e bN (1� � N )c =
1

bN (1 � � N )c

bN (1� � N )cX

i =1

log
" (n)

N � i +1 ;N

" (n)
N �b N (1� � N )c;N

:

By (i) and the assumption
p

N (1 � � N )RN
P�! 0,

p
N (1 � � N )(b bN (1� � N )c �  ) =

p
N (1 � � N )(e bN (1� � N )c �  ) + o P(1):

Combine Lemma C.4(i) and Theorem 3.2.5 in [14] to conclude the proof of (ii).

Lemma C.7 contains the crucial arguments behind our construction in Section 3.3.

LEMMA C.7. Work in model(M 3). Assume that" satis�es conditionC1( ) and thatK 0
is a measurable subset of the support ofX such thatP(X 2 K 0) > 0.

(i) There exists� c 2 (0;1) such thatq� (Y jx ) = g(x ) + � (x )q� (" ) for any� 2 [� c; 1] and any
x in the support ofX .

(ii) If Ej" � j < 1 and0 <  < 1, one has

� � (Y jx ) = g(x ) + � (x )� � (max("; (y0 � g(x ))=� (x ))) :

In particular the expectile� � (Y jX = x ) is asymptotically equivalent to� � (g(X ) +
� (X )" jX = x ) as � " 1.

(iii) The probabilityP(" > (y0 � g(X ))=� (X );X 2 K 0) is not zero. Lete have the same
distribution as(Y � g(X ))=� (X ) given thatg(X ) + � (X )" > y 0 and X 2 K 0. Then
for t so large that(y0 � g(X ))=� (X ) � t with probability 1,

P(e > t ) =
P(" > t )

P(" > (y0 � g(X ))=� (X ) j X 2 K 0)
:

In particular, e satis�es conditionC1( ).
(iv) Letp = P(" > (y0 � g(X ))=� (X ) j X 2 K 0). Thenq� (" )=q� (e) ! p as� " 1. If more-

overEj" � j < 1 and0 <  < 1, then� � (" )=� � (e) ! p as � " 1.
(v) If, in addition toEj" � j < 1 and 0 <  < 1, the random variable" satis�es condition

C2(; �;A ), thene satis�es conditionC2(; �; p � � A) and, as� " 1,

p � � (e)
� � (" )

= 1 + p  ( � 1 � 1)

q� (" )

�
E

�
"

�
�
�
� " >

y0 � g(X )
� (X )

; X 2 K 0

�
+ o(1)

�

+
p� � � 1

�

�
1 + �

�
( � 1 � 1)� �

1 �  � �
+

( � 1 � 1)� � � 1
�

�
+ o(1)

�
A((1 � � ) � 1):
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(vi) Under the assumptions of (v), as� " 1,

� � (Y jx )
g(x ) + � (x )� � (" )

= 1 +
 ( � 1 � 1)

q� (" )

�
E

�
max

�
";

y0 � g(x )
� (x )

��
+ o(1)

�
+ o( jA((1 � � ) � 1)j):

PROOF. The key point is to remark thatY = max( g(X ) + � (X )"; y0). By independence
betweenX and" , the conditional distribution ofY givenX = x is then the distribution of
max(g(x ) + � (x )"; y0) = g(x ) + � (x )max("; (y0 � g(x ))=� (x )) .

(i) The � th conditional quantile ofY givenX = x is

q� (Y jx ) = g(x ) + � (x )max(q� (" ); (y0 � g(x ))=� (x )) :

Sinceg and1=� are bounded on the support ofX andq� (" ) ! 1 as� " 1, one hasq� (" ) >
(y0 � g(x ))=� (x ) for � large enough, irrespective ofx . Conclude that there is� c 2 (0;1)
with q� (Y jx ) = g(x ) + � (x )q� (" ) for any � 2 [� c; 1] and anyx in the support ofX , as
required.

(ii) By location equivariance and positive homogeneity of expectiles, the� th conditional
expectile ofY givenX = x is

� � (Y jx ) = g(x ) + � (x )� � (max("; (y0 � g(x ))=� (x ))) :

To conclude, it is suf�cient to show that for anyt0, the extreme expectiles of" andmax("; t 0)
are asymptotically equivalent. To do so we note that the de�nition of the� th unconditional
expectile� � (" ) of " as

� � (" ) = arg min
� 2 R

E(� � (" � � ) � � � (" ))

can equivalently be obtained as the� th quantile associated to the distribution functionE
de�ned as

1 � E(y) =
E

�
(" � y)1f ">y g

�

2E
�
(" � y)1f ">y g

�
+ y � E[" ]

:

Seee.g. the �nal paragraph of p.373 in [1]. Similarly the� th expectile� � (max("; t 0)) of
max("; t 0) is obtained as the� th quantile associated to the distribution functionE0 de�ned
as

1 � E0(y) =
E

�
(max("; t 0) � y)1f max( ";t 0 )>y g

�

2E
�
(max("; t 0) � y)1f max( ";t 0 )>y g

�
+ y � E[max("; t 0)]

:

It is straightforward to check that fory > t 0

1 � E0(y) =
E

�
(" � y)1f ">y g

�

2E
�
(" � y)1f ">y g

�
+ y � E[max("; t 0)]

:

Lemma 3(i) in [49] (withf therein chosen as the identity function anda = 1 ) entails thaty 7!
1=(1 � E (y)) andy 7! 1=(1 � E0(y)) are asymptotically equivalent asy ! 1 and regularly
varying with positive index. LetU andU0 denote the pertaining tail quantile functions,i.e.the
left-continuous inverses of1=(1 � E ) and1=(1 � E0); these are also regularly varying, and
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we will conclude by proving thatU andU0 are asymptotically equivalent. A combination of
Equations (1.2.26) and (1.2.28) in [14] and the regular variation property ofU entails

lim
t !1

t � 1

(1 � E )(U(t))
= lim

t !1

t � 1

(1 � E0)(U(t))
= lim

t !1

t � 1

(1 � E0)(U0(t))
= 1 ;

lim
t !1

t � 1U(1=(1 � E )( t)) = lim
t !1

t � 1U(1=(1 � E0)( t)) = lim
t !1

t � 1U0(1=(1 � E0)( t)) = 1 :

Apply Proposition B.1.9.10 in [14] to obtain thatU andU0 are indeed asymptotically equiv-
alent, thus completing the proof of (ii).

(iii) First of all, if PX denotes the distribution ofX ,

P(" > (y0 � g(X ))=� (X );X 2 K 0) =
Z

K 0

P(" > (y0 � g(x ))=� (x )) PX (dx ) > 0

becauseP(" > (y0 � g(x ))=� (x )) > 0 for anyx (since" is heavy-tailed) andP(X 2 K 0) >
0. Write then

P(e > t ) = P(" > t j g(X ) + � (X )" > y 0;X 2 K 0)

=
P(" > t; " > (y0 � g(X ))=� (X );X 2 K 0)

P(" > (y0 � g(X ))=� (X );X 2 K 0)
:

It is indeed possible to taket so large that(y0 � g(X ))=� (X ) � t with probability 1 sinceg
and1=� are bounded on the support ofX . For sucht ,

P(e > t ) =
P(" > t; X 2 K 0)

P(" > (y0 � g(X ))=� (X );X 2 K 0)
=

P(" > t )
P(" > (y0 � g(X ))=� (X ) j X 2 K 0)

by independence betweenX and" , which is the required result.

(iv) That q� (" )=q� (e) ! p as� " 1 directly follows from the identityP(e > t ) = p� 1P(" >
t) for t large enough, and thereforeq� (e) = q1� p(1� � ) (" ) for � close enough to 1, combined
with the regular variation property oft 7! U(t) = q1� t � 1 (" ). The convergence� � (" )=� � (e) !
p as� " 1 follows from the asymptotic proportionality relationship between extreme quan-
tiles and expectiles applied to bothe and" (which have the same extreme value index).

(v) Recall from the proof of (iv) that for� close enough to 1,q� (e) = q1� p(1� � ) (" ). Set
V(t) = q1� t � 1 (e) and pickx > 0. For t large enough, we �nd

V(tx )
V (t)

=
U(p� 1tx )
U(p� 1t)

= x  + A(p� 1t)
�

x  x � � 1
�

+ o(1)
�

= x  + p� � A(t)
�

x  x � � 1
�

+ o(1)
�

by assumptionC2(; �;A ) on " and regular variation ofjAj with index � (see Section 2.3
in [14]). This exactly means thate satis�es conditionC2(; �; p � � A). Write then

(48) p � � (e)
� � (" )

= p q� (e)
q� (" )

� ( � 1 � 1) � � (e)
q� (e)

� ( � 1 � 1)�  q� (" )
� � (" )

:

Use again the identityq� (e) = q1� p(1� � ) (" ) for � close enough to 1 to get

(49) p q� (e)
q� (" )

= p U(p� 1(1 � � ) � 1)
U((1 � � ) � 1)

= 1 +
�

p� � � 1
�

+ o(1)
�

A((1 � � ) � 1):
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Proposition 1(i) in [12] applied to the random variable" (having expectation 0) entails

( � 1 � 1)�  q� (" )
� � (" )

= 1 �
�

( � 1 � 1)� �

1 �  � �
+

( � 1 � 1)� � � 1
�

+ o(1)
�

A((1 � � ) � 1) + o
�

1
q� (" )

�
:(50)

This same result applied to the random variablee, which satis�es conditionC2(; �; p � � A),
gives

( � 1 � 1) � � (e)
q� (e)

= 1 +
 ( � 1 � 1)

q� (e)
(E(e) + o(1))

+
�

( � 1 � 1)� �

1 �  � �
+

( � 1 � 1)� � � 1
�

+ o(1)
�

p� � A((1 � � ) � 1)

= 1 + p  ( � 1 � 1)

q� (" )

�
E

�
"

�
�
�
� " >

y0 � g(X )
� (X )

; X 2 K 0

�
+ o(1)

�

+ p� �
�

( � 1 � 1)� �

1 �  � �
+

( � 1 � 1)� � � 1
�

+ o(1)
�

A((1 � � ) � 1):(51)

Combine (48), (49), (50) and (51) to get (v).

(vi) From (ii),

� � (Y jx )
g(x ) + � (x )� � (" )

� 1 =
� (x )[� � (max("; (y0 � g(x ))=� (x ))) � � � (" )]

g(x ) + � (x )� � (" )

=
�

� � (max("; (y0 � g(x ))=� (x )))
� � (" )

� 1
�

(1 + o(1))

because� � (" ) ! 1 as� " 1. To complete the proof we show that for anyt0,

� � (max("; t 0))
� � (" )

= 1 +
 ( � 1 � 1)

q� (" )
(E[max("; t 0)] + o(1)) + o( jA((1 � � ) � 1)j)

as� " 1. This is done by, �rst, writing

� � (max("; t 0))
� � (" )

=
� � (max("; t 0))
q� (max("; t 0))

�
q� (max("; t 0))

q� (" )
�

q� (" )
� � (" )

=
� � (max("; t 0))
q� (max("; t 0))

�
q� (" )
� � (" )

for � close enough to 1. Then, using the fact thatmax("; t 0) and" have the same quantile
function for � large enough, we obtain, by Proposition 1(i) in [12],

( � 1 � 1) � � (max("; t 0))
q� (max("; t 0))

= 1 +
 ( � 1 � 1)

q� (" )
(E[max("; t 0)] + o(1))

+
�

( � 1 � 1)� �

1 �  � �
+

( � 1 � 1)� � � 1
�

+ o(1)
�

A((1 � � ) � 1):

Combining this with (50) completes the proof.

Our �nal auxiliary result is a direct extension of Theorem 2.1 to the case when the residuals
b" (n)

i approximate an array" (n)
i , with 1 � i � sn ! 1 . This will be useful to deal with the

case of ARMA and GARCH models.
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LEMMA C.8. Let (sn ) be a positive sequence of integers tending to in�nity. Assume that,
for anyn, the" (n)

i , 1 � i � sn , are independent copies of a random variable" such that there
is � > 0 with Ej" � j2+ � < 1 and " satis�es conditionC1( ) with 0 <  < 1=2. Let � n " 1
be such thatsn (1 � � n ) ! 1 . Suppose moreover that the array of random variablesb" (n)

i ,
1 � i � sn , satis�es

p
sn (1 � � n ) max

1� i � sn

jb" (n)
i � " (n)

i j

1 + j" (n)
i j

P�! 0:

De�ne

b� � n (" ) = arg min
u2 R

snX

i =1

� � n (b" (n)
i � u):

Then we have
p

sn (1 � � n )

 
b� � n (" )
� � n (" )

� 1

!
d�! N

�
0;

2 3

1 � 2

�
:

APPENDIX D: WORKED-OUT EXAMPLES: PROOFS OF THE MAIN RESULTS

PROOF OFCOROLLARY 3.1. (i) The key is to write

p
n(1 � � n )

 
b� � n (Y jx )
� � n (Y jx )

� 1

!

=
(1 + � > x )� � n (" )

� + � > x + (1 + � > x )� � n (" )
�

p
n(1 � � n )

 
b� � n (" )
� � n (" )

� 1

!

+
p

1 � � n

� + � > x + (1 + � > x )� � n (" )
�

p
n

�
b� � � +

�
b� � �

� >
x

�

+
p

1 � � n b� � n (" )
� + � > x + (1 + � > x )� � n (" )

�
p

n( b� � � )> x :

Now

b" (n)
i � " i =

� � b� + ( � � b� )> X i

1 + b� > X i
+

(� � b� )> X i

1 + b� > X i
" i :

Then clearly, by Lemma C.1 and sinceX has a compact support,

(52)
p

n max
1� i � n

jb" (n)
i � " i j
1 + j" i j

= O P(1);

which proves the high-level condition (2). We conclude by combining Lemma C.1, Theo-
rem 2.1 and the convergence� � n (" ) ! 1 .

(ii) Combine (i) with the second convergence in Theorem 2.3.

PROOF OFTHEOREM 3.1. (i) We �rst show

(53)
p

N (1 � � N )

 
b� � N (" )
� � N (" )

� 1

!
d�! N

�
0;

2 3

1 � 2

�
:



32

Let "1;K 0 ; : : : ; "N;K 0 be those noise variables whose corresponding covariatesX i 2 K 0, and

note that givenN = m > 0, ("1;K 0 ; : : : ; "N;K 0 ) d= ( "1; : : : ; "m ). Besides,N = N (K 0; n) is

a binomial random variable with parametersn andP(X 2 K 0), so thatN=n P�! P(X 2
K 0) > 0. Since� n = 1 � n� a with a 2 (1=5;1),

p
N (1 � � N ) = N (1� a)=2 = O P(n(1� a)=2) = o P(n2=5=

p
logn)

so that

p
N (1 � � N ) max

1� i � N

jb" (n)
i;K 0

� " i;K 0 j

1 + j" i;K 0 j
= o P

 
n2=5

p
logn

max
1� i � n

jb" (n)
i � " i j
1 + j" i j

1f X i 2 K 0g

!

= o P(1):

Apply then Lemma C.5 to get (53). Statement (i) then follows in a straightforward way from
Proposition C.1 and the representation

b� � N (Y jx )
� � N (Y jx )

� 1 =
bghn ;t n ( b� > x ) � g(� > x )

g(� > x ) + � (� > x )� � N (" )
+

b� hn ;t n ( b� > x ) � � (� > x )
g(� > x ) + � (� > x )� � N (" )

b� � N (" )

+
� (� > x )

� (� > x ) + g(� > x )=� � N (" )

 
b� � N (" )
� � N (" )

� 1

!

:

(ii) Set b� ?
� 0

N
(" ) =

�
1 � � 0

N

1 � � N

� � 
b� � N (" ). Use the ideas of the proof of Theorem 2.3 to �nd that

p
N (1 � � N )

log[(1 � � N )=(1 � � 0
N )]

 b� ?
� 0

N
(Y jx )

� � 0
N

(Y jx )
� 1

!

and

p
N (1 � � N )

log[(1 � � N )=(1 � � 0
N )]

 b� ?
� 0

N
(" )

� � 0
N

(" )
� 1

!

have the same asymptotic distribution. Our result is then shown by using the assumption
p

N (1 � � N )(  �  ) d�! � , as well as convergence (53) and by adapting directly the proof
of Theorem 5 of [12] to obtain

p
N (1 � � N )

log[(1 � � N )=(1 � � 0
N )]

 b� ?
� 0

N
(" )

� � 0
N

(" )
� 1

!
d�! � :

We omit the details.

PROOF OFTHEOREM 3.2. First of all, de�ne

b� � N (" ) :=
�

N
N0

� b bN (1 � � N ) c

b� � N (e)

so thatb� � N (Y jx ) = bg(x ) + b� (x )b� � N (" ). Then

b� � N (Y jx )
� � N (Y jx )

� 1

=

 
bg(x ) + b� (x )b� � N (" )
g(x ) + � (x )� � N (" )

� 1

!
g(x ) + � (x )� � N (" )

� � N (Y jx )

+
�

g(x ) + � (x )� � N (" )
� � N (Y jx )

� 1
�

=

 
b� � N (" )
� � N (" )

� 1

!

(1 + o P(1)) + o P(jbg(x ) � g(x )j) + O P

� �
�
�
�
b� (x )
� (x )

� 1

�
�
�
�

�
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�
 ( � 1 � 1)

q� N (" )

�
E

�
max

�
";

y0 � g(x )
� (x )

��
+ o P(1)

�
+ o P(jA((1 � � N ) � 1)j)

by Lemma C.7(vi), the consistency assumption onbg and b� , andN = N (n) P�! 1 . Now
1=vn = o P(1=

p
N (1 � � N )) ; becausen1� a=v2

n ! 0 andN (1 � � N ) = N 1� a � n1� a. The
vn � consistency ofbg andb� then entails

p
N (1 � � N )

 
b� � N (Y jx )
� � N (Y jx )

� 1

!

=
p

N (1 � � N )

 
b� � N (" )
� � N (" )

� 1

!

(1 + o P(1))

�  ( � 1 � 1) E
�
max

�
";

y0 � g(x )
� (x )

��
� + o P(1):(54)

It is therefore suf�cient to consider the convergence ofb� � N (" ). Write

log

 
b� � N (" )
� � N (" )

!

= ( b bN (1� � N )c �  ) log
�

N
N0

�
+ 

�
log

�
N
N0

�
� logp

�

+ log

 
b� � N (e)
� � N (e)

!

+ log
�

p � � N (e)
� � N (" )

�
:

The quantityN=N0 is a
p

n� consistent estimator ofp > 0, thus making the second term a
OP(1=

p
n) = o P(1=

p
N (1 � � N )) , and the fourth term is controlled with Lemma C.7(v) and

a Taylor expansion. Therefore

log

 
b� � N (" )
� � N (" )

!

= [log p + o P(1)](b bN (1� � N )c �  ) + log

 
b� � N (e)
� � N (e)

!

+ p  ( � 1 � 1)
�

E
�
"

�
�
�
� " >

y0 � g(X )
� (X )

; X 2 K 0

� �
�

p
N (1 � � N )

+
p� � � 1

�

�
1 + �

�
( � 1 � 1)� �

1 �  � �
+

( � 1 � 1)� � � 1
�

��
�

p
N (1 � � N )

+ o P

 
1

p
N (1 � � N )

!

:(55)

It remains to analyse the joint convergence ofb bN (1� � N )c andb� � N (e). First, clearly

max
1� i � N

jbe(n)
i � ei j
1 + jei j

= O P(1=vn ) = o P(1=
p

N (1 � � N )) ;

which is (2) adapted to the random numberN of noncensored observations (see Lemma C.6).
Here thevn � uniform consistency ofbg andb� onK 0 and boundedness of1=� on the support of
X were used, along with againn1� a=v2

n ! 0, and the identityN (1 � � N ) = N 1� a � n1� a.
Set then

b bN (1� � N )c =
1

bN (1 � � N )c

bN (1� � N )cX

i =1

log
be(n)

N � i +1 ;N

be(n)
N �b N (1� � N )c;N

and e bN (1� � N )c =
1

bN (1 � � N )c

bN (1� � N )cX

i =1

log
eN � i +1 ;N

eN �b N (1� � N )c;N
:
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By Lemma C.6(i),

b bN (1� � N )c = e bN (1� � N )c + o P(1=
p

N (1 � � N ))

and therefore

(56)
p

N (1 � � N )(b bN (1� � N )c �  ) =
p

N (1 � � N )(e bN (1� � N )c �  ) + o P(1):

Let further

b� � N (e) = arg min
u2 R

NX

i =1

� � N (be(n)
i � u) ande� � N (e) = arg min

u2 R

NX

i =1

� � N (ei � u)

along with

 N (u) =
1

2� 2
� N

(e)

NX

i =1

"

� � N

 

ei � � � N (e) �
u� � N (e)

p
N (1 � � N )

!

� � � N (ei � � � N (e))

#

and� N (u) =
1

2� 2
� N

(e)

NX

i =1

"

� � N

 

be(n)
i � � � N (e) �

u� � N (e)
p

N (1 � � N )

!

� � � N (be(n)
i � � � N (e))

#

:

Lemma C.5 entails� N (u) =  N (u) + o P(1). Recall the notation' � (y) = j� � 1f y � 0gjy
and write, as in the proof of Theorem 2 in [10], N (u) = � uT1;N + T2;N (u) with

T1;N =
1

p
N (1 � � N )

NX

i =1

1
� � N (e)

' � N (ei � � � N (e))

and

T2;N (u)

= �
1

� 2
� N

(e)

NX

i =1

Z u� � N (e)=
p

N (1� � N )

0
(' � N (ei � � � N (e) � z) � ' � N (ei � � � N (e))) dz:

The distribution of theei , 1 � i � N , given N = m, is the distribution ofm independent
copies ofe. Using the arguments of the proof of Theorem 2 in [10] and Lemma C.4(i) and (ii),

we obtainT1;N = O P(1) andT2;N (u) P�! u2=2 . It follows that

� N (u) =  N (u) + o P(1) =
u2

2
� uT1;N + o P(1):

Conclude, by the basic corollary on p.2 in [28], that the minimisers of� N and N are both
only a oP(1) away from the minimiser of the right-hand side, and thus only aoP(1) away
from each other. This can be rephrased as

(57)
p

N (1 � � N )

 
b� � N (e)
� � N (e)

� 1

!

=
p

N (1 � � N )

 
e� � N (e)
� � N (e)

� 1

!

+ o P(1):

Finally, the distribution of the pair(e bN (1� � N )c; e� � N (e)) given N = m is equal to the dis-

tribution of their counterparts(q bm(1� � m )c; q� � m (e)) based onm independent copies ofe.
Combine then Theorem 3 in [12], which provides the bivariate asymptotic distribution of
(q bm(1� � m )c; q� � m (e)) , with Lemma C.4(i) to get

(58)
p

N (1 � � N )

 

e bN (1� � N )c � ;
e� � N (e)
� � N (e)

� 1

!
d�! N (B(�; p );V( ))
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with B(�; p ) = ( p� � �= (1 � � ); 0) (recall thate satis�es conditionC2(; �; p � � A)) and

V( ) =

0

B
B
B
@

 2  3( � 1 � 1)

(1 �  )2

 3( � 1 � 1)

(1 �  )2

2 3

1 � 2

1

C
C
C
A

:

Combining (54), (55), (56), (57), (58) with the delta method completes the proof of (i).

(ii) De�ne

b� ?
� 0

N
(" ) :=

�
1 � � 0

N

1 � � N

� � b bN (1 � � N ) c
�

N
N0

� b bN (1 � � N ) c

b� � N (e)

so thatb� ?
� 0

N
(Y jx ) = bg(x ) + b� (x )b� ?

� 0
N

(" ). Then

b� ?
� 0

N
(Y jx )

� � 0
N

(Y jx )
� 1 =

 b� ?
� 0

N
(" )

� � 0
N

(" )
� 1

!

(1 + o P(1)) + o P(jbg(x ) � g(x )j) + O P

� �
�
�
�
b� (x )
� (x )

� 1

�
�
�
�

�

+ O P(1=q� 0
N

(" )) + o P(jA((1 � � 0
N ) � 1)j)

by Lemma C.7(vi), the consistency assumption onbg andb� , andN = N (n) P�! 1 . Our bias
conditions combined with the regular variation properties oft 7! q1� t � 1 (" ) and t 7! j A(t)j
and thevn � uniform consistency ofbg andb� on K 0 yield

b� ?
� 0

N
(Y jx )

� � 0
N

(Y jx )
� 1 =

 b� ?
� 0

N
(" )

� � 0
N

(" )
� 1

!

(1 + o P(1)) + o P(1=
p

N (1 � � N )) :

Since, from the proof of (i),
p

N (1 � � N )(b bN (1� � N )c �  ) d�! N (p� � �= (1 � � );  2)

and
p

N (1 � � N )

 
b� � N (" )
� � N (" )

� 1

!

= O P(1);

a direct adaptation of the proof of Theorem 5 of [12] produces
p

N (1 � � N )
log[(1 � � N )=(1 � � 0

N )]

 b� ?
� 0

N
(" )

� � 0
N

(" )
� 1

!

=
p

N (1 � � N )(b bN (1� � N )c �  ) + o P(1)

d�! N
�

p� � �
1 � �

;  2
�

:

We omit the details.

PROOF OFTHEOREM 3.3. (i) Write �rst

p
n(1 � � n )

 
b� � n (Yn+1 j F n )
� � n (Yn+1 j F n )

� 1

!

=
� � n (" )

P p
j =1 � j Yn+1 � j +

P q
j =1 � j "n+1 � j + � � n (" )

�
p

n(1 � � n )

 
b� � n (" )
� � n (" )

� 1

!
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+
p

n(1 � � n )

P p
j =1 ( b� j;n � � j )Yn+1 � j

P p
j =1 � j Yn+1 � j +

P q
j =1 � j "n+1 � j + � � n (" )

+
p

n(1 � � n )

P q
j =1 (b� j;n � � j )"n+1 � j

P p
j =1 � j Yn+1 � j +

P q
j =1 � j "n+1 � j + � � n (" )

+
p

n(1 � � n )

P q
j =1

b� j;n (b" (n)
n+1 � j � "n+1 � j )

P p
j =1 � j Yn+1 � j +

P q
j =1 � j "n+1 � j + � � n (" )

:

To control the gap between residuals and unobserved innovations (and hence check the
high-level condition (2)), we rewrite the ARMA model in vector form, namely asYt;p =
AY t � 1;p � B" t � 1;q + " t;q with

Yt;p =

0

B
B
B
@

Yt
Yt � 1

...
Yt � p+1

1

C
C
C
A

andA =

0

B
B
B
B
B
@

� 1 � � � � � � � � � � p
1 0 � � � � � � 0
0 1 � � � � � � 0
...

... ... ...
...

0 � � � � � � 1 0

1

C
C
C
C
C
A

;

" t;q =

0

B
B
B
@

" t
" t � 1

...
" t � q+1

1

C
C
C
A

andB =

0

B
B
B
B
B
@

� � 1 � � � � � � � � � � � q
1 0 � � � � � � 0
0 1 � � � � � � 0
...

... ... ...
...

0 � � � � � � 1 0

1

C
C
C
C
C
A

:

Setr = max( p;q). Sinceb" (n)
t = Yt �

P p
j =1

b� j;n Yt � j �
P q

j =1
b� j;n b" (n)

t � j for r + 1 � t � n, we

haveYt;p = bA nYt � 1;p � bB n b" (n)
t � 1;q + b" (n)

t;q , where the notation is de�ned by replacing the" t ,

� j and� j by theb" (n)
t , b� j;n andb� j;n . It follows that for sucht

b" (n)
t;q � " t;q = ( A � bA n )Yt � 1;p � (B � bB n )b" (n)

t � 1;q + B (b" (n)
t � 1;q � " t � 1;q)

=
t � rX

j =1

B j � 1(A � bA n )Yt � j;p �
t � rX

j =1

B j � 1(B � bB n )" t � j;q

�
t � rX

j =1

B j � 1(B � bB n )( b" (n)
t � j;q � " t � j;q ) � B t � r " r;q(59)

becauseb" (n)
r;q = 0 . Observe now that by causality of(Yt )t2 Z , the Yt have the linear rep-

resentationYt =
P 1

j =0  j " t � j ; and it is a consequence of the arguments in the proof of
Theorem 3.1.1 in [5] that the j de�ne a summable series and decay geometrically fast,
i.e. j j j � C Rj for real constantsC > 0 andR 2 (0;1). Write, for 1 � t � n,

jYt j �
t � 1X

j =0

j j jj " t � j j +
1X

j = t

j j jj " t � j j �

0

@
1X

j =0

j j j

1

A max
1� t � n

j" t j + CR
1X

l=0

Rl j" � l j:

The last sum on the right-hand side is �nite with probability 1 because" has a �nite �rst mo-
ment. Conclude thatmax1� t � n jYt j = O P(1 + max 1� t � n j" t j). Since the" t are independent
and satisfyC1( ), we �nd

(60) max
1� t � n

j" t j = O P(n + � ) and then max
1� t � n

jYt j = O P(n + � ) for any � > 0;



EXTREME CONDITIONAL EXPECTILE ESTIMATION 37

by conditionP(" > x )=P(j" j > x ) ! ` 2 (0;1] asx ! 1 , combined with Theorem 1.1.6 and
Lemma 1.2.9 in [14], and Potter bounds (seee.g.Proposition B.1.9.5 in [14]). Notice now
thatB is essentially the companion matrix of the polynomialQ(z) = 1 +

P q
j =1 � j zj . It is a

standard exercise in linear algebra to show thatB has characteristic polynomial

det(� Ip � B ) = � q +
qX

j =1

� j � q� j = � qQ(1=� ):

SinceQ has no rootz such thatjzj � 1, all eigenvalues ofB must then have a modulus
smaller than 1,i.e. its spectral radius� (B ) is smaller than 1. Letk � k denote indifferently the
supremum norm onRd spaces and the induced operator norm on square matrices, and recall
that kB j k1=j ! � (B ) as j ! 1 (this is in fact true for any operator norm), which means
in particular that the series

P
j � 0 kB j k is summable. De�ningb" (n)

1 = � � � = b" (n)
r � q = 0 for the

sake of convenience, we obtain

max
1� t � n

jb" (n)
t � " t j � max

r +1 � t � n
jb" (n)

t � " t j + max
1� t � r

j" t j

� k A � bA nk
1X

j =0

kB j k max
1� t � n

jYt j + kB � bB nk
1X

j =0

kB j k max
1� t � n

j" t j

+ kB � bB nk
1X

j =0

kB j k max
1� t � n

jb" (n)
t � " t j +

 

1 + sup
j � 0

kB j k

!

max
1� t � r

j" t j:

By
p

n� consistency of theb� j;n and b� j;n , kA � bA nk = O P(n� 1=2) and kB � bB nk =

OP(n� 1=2). Isolate thenmax1� t � n jb" (n)
t � " t j to conclude that

max
1� t � n

jb" (n)
t � " t j = O P

�
1 + n� 1=2

�
max

1� t � n
jYt j + max

1� t � n
j" t j

��
= O P(1)

by (60) and the assumption < 1=2. We now use (59) again, this time to control
maxt n � t � n jb" (n)

t � " t j to apply Theorem 2.1 (for the sample sizen � tn + 1 = n(1 + o(1)) ,
since the estimatorb� � n (" ) is based upon the lastn � tn + 1 residuals). Fort � tn ! 1 ,
kB t � r " r;q k � k B t � r kk" r;q k andt � r � tn=2 for n large enough; hence, by (59), the bound

max
t n � t � n

jb" (n)
t � " t j = O P

 

n� 1=2
�
1 + max

1� t � n
jYt j + max

1� t � n
j" t j

�
+ sup

j � t n =2
kB j k

!

:

SincekB j k1=j ! � (B ) 2 [0;1) asj ! 1 , we have forn large enough

max
t n � t � n

jb" (n)
t � " t j = O P

�
n� 1=2

�
1 + max

1� t � n
jYt j + max

1� t � n
j" t j

�
+ (1 � � )t n

�

for some� 2 (0;1). We have
p

n(1 � � )t n ! 0 becausetn=logn ! 1 . Conclude that

max
t n � t � n

jb" (n)
t � " t j
1 + j" t j

= O P

�
max

t n � t � n
jb" (n)

t � " t j
�

= O P(n � 1=2+ � ) for all � > 0

and therefore (2) is proved:

p
n(1 � � n ) max

t n � t � n

jb" (n)
t � " t j
1 + j" t j

= o P(1):

Complete the proof by combining the
p

n� consistency of the estimatorsb� j;n and b� j;n ,
Lemma C.8 (an extension of Theorem 2.1 necessary here since at each step, the indices
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of the relevant" i may not be contained in those relevant to the previous step and thus, strictly
speaking, we do not work with a single i.i.d. sequence) and the convergence� � n (" ) ! 1 .

(ii) Set

b� ?
� 0

n
(" ) =

�
1 � � 0

n

1 � � n

� � 
b� � n (" )

and write
p

n(1 � � n )
log[(1 � � n )=(1 � � 0

n )]

 
b� ?
� 0

n
(Yn+1 j F n )

� � 0
n
(Yn+1 j F n )

� 1

!

=
� � 0

n
(" )

P p
j =1 � j Yn+1 � j +

P q
j =1 � j "n+1 � j + � � 0

n
(" )

�

p
n(1 � � n )

log[(1 � � n )=(1 � � 0
n )]

 
b� ?
� 0

n
(" )

� � 0
n
(" )

� 1

!

+

p
n(1 � � n )

log[(1 � � n )=(1 � � 0
n )]

�

P p
j =1 ( b� j;n � � j )Yn+1 � j

P p
j =1 � j Yn+1 � j +

P q
j =1 � j "n+1 � j + � � 0

n
(" )

+

p
n(1 � � n )

log[(1 � � n )=(1 � � 0
n )]

�

P q
j =1 (b� j;n � � j )"n+1 � j

P p
j =1 � j Yn+1 � j +

P q
j =1 � j "n+1 � j + � � 0

n
(" )

+

p
n(1 � � n )

log[(1 � � n )=(1 � � 0
n )]

�

P q
j =1

b� j;n (b" (n)
n+1 � j � "n+1 � j )

P p
j =1 � j Yn+1 � j +

P q
j =1 � j "n+1 � j + � � 0

n
(" )

:

Combine then what was obtained in (i) with the �rst convergence in Theorem 2.3.

PROOF OFTHEOREM 3.4. (i) Recall thatb! n , theb� j;n and theb� j;n are consistent estima-
tors of (strictly) positive parameters, and thus are positive with arbitrarily high probability as
n ! 1 . In what follows we implicitly work on this high probability event. Write

p
n(1 � � n )

 
b� � n (Yn+1 j F n )
� � n (Yn+1 j F n )

� 1

!

=
p

n(1 � � n )

 
b� � n (" )
� � n (" )

� 1

!

+
p

n(1 � � n )
�

b� n+1

� n+1
� 1

� b� � n (" )
� � n (" )

:

Let us �rst check the high-level condition (2). De�ner = max( p;q). For anyt with r + 1 �
t � n,

(61)
jb" (n)

t � " t j
1 + j" t j

�

�
�
�
�
�

� t

b� (n)
t

� 1

�
�
�
�
�
=

�
�
�
�
�

� 2
t � (b� (n)

t )2

b� (n)
t (� t + b� (n)

t )

�
�
�
�
�
�

�
�
�
�
�

� 2
t

(b� (n)
t )2

� 1

�
�
�
�
�
:

We focus onj(b� (n)
t )2 � � 2

t j. Note thatv t;p = Z t;q + Bv t � 1;p with

v t;p =

0

B
B
B
@

� 2
t

� 2
t � 1
...

� 2
t � p+1

1

C
C
C
A

; Z t;q =

0

B
B
B
@

! +
P q

j =1 � j Y 2
t � j

0
...
0

1

C
C
C
A

and B =

0

B
B
B
B
B
@

� 1 � � � � � � � � � � p
1 0 � � � � � � 0
0 1 � � � � � � 0
...

... ... ...
...

0 � � � � � � 1 0

1

C
C
C
C
C
A

:
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Similarly bv (n)
t;p = bZ (n)

t;q + bB n bv (n)
t � 1;p where the notation is de�ned by replacing the� 2

t , ! , the

� j and� j by the(b� (n)
t )2, b! n , theb� j;n and b� j;n . For r + 1 � t � n then,

v t;p =
t � r � 1X

j =0

B j Z t � j;q + B t � r vr;p ; bv (n)
t;p =

t � r � 1X

j =0

bB j
n

bZ (n)
t � j;q + bB t � r

n bv (n)
r;p

and therefore

bv (n)
t;p � v t;p

=
t � r � 1X

j =0

bB j
n ( bZ (n)

t � j;q � Z t � j;q ) +
t � r � 1X

j =0

( bB j
n � B j )Z t � j;q + bB t � r

n bv (n)
r;p � B t � r vr;p :

This readily provides

(b� (n)
t )2 =

t � r � 1X

j =0

bB j
n (1; 1)

 

b! n +
qX

i =1

b� i;n Y 2
t � j � i

!

+ ( bB t � r
n bv (n)

r;p )(1)

whereu(1) denotes the �rst element of a vectoru and A (1;1) the top left element of a
matrix A , and similarly

(b� (n)
t )2 � � 2

t =
t � r � 1X

j =0

bB j
n (1; 1)

 

b! n � ! +
qX

i =1

(b� i;n � � i )Y 2
t � j � i

!

+
t � r � 1X

j =0

( bB j
n (1; 1) � B j (1; 1))

 

! +
qX

i =1

� i Y 2
t � j � i

!

+ ( bB t � r
n bv (n)

r;p � B t � r vr;p )(1) :(62)

We compare each term in (62) to(b� (n)
t )2. First of all

1

(b� (n)
t )2

�
�
�
�
�
�

t � r � 1X

j =0

bB j
n (1; 1)

 

b! n � ! +
qX

i =1

(b� i;n � � i )Y 2
t � j � i

! �
�
�
�
�
�

�

�
�
�
�
b! n � !

b! n

�
�
�
� +

qX

i =1

�
�
�
�
b� i;n � � i

b� i;n

�
�
�
� = O P(n� 1=2):(63)

Now B and bB n are positive matrices, so that if� n := max 1� i � p j b� i;n � � i j, clearly bB n �
(1 + � n )B elementwise and thusbB j

n � (1 + � n ) j B j elementwise for anyj . In particular
bB j

n (1; 1) � (1 + � n ) j B j (1; 1) and likewiseB j (1; 1) � (1 + � n ) j bB j
n (1; 1). Hence the bound

j bB j
n (1; 1) � B j (1; 1)j � [(1 + � n ) j � 1]max(B j (1; 1); bB j

n (1; 1))

� j� n (1 + � n ) j � 1 max(B j (1; 1); bB j
n (1; 1))

� j� n (1 + � n )2j � 1B j (1; 1):(64)

Like in the proof of Theorem 3.3, letk � k denote indifferently the supremum norm onRd

spaces and the induced operator norm on square matrices. Notice thatjB j (1; 1)j � k B j k;
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sincekB j k1=j ! � (B ) 2 [0;1) as j ! 1 (to check that indeed the spectral radius� (B ) 2
[0;1), use Corollary 2.2 in [17]) and� n = O P(1=

p
n), we have

1X

j =0

j bB j
n (1; 1) � B j (1; 1)j = O P(� n ) = O P(n� 1=2):

Recalling that(b� (n)
t )2 � b! n

P�! ! > 0, we therefore obtain

(65) max
r +1 � t � n

1

(b� (n)
t )2

�
�
�
�
�
�

t � r � 1X

j =0

( bB j
n (1; 1) � B j (1; 1))

�
�
�
�
�
�
= O P(n� 1=2):

Next we write, for anyi 2 f 1; : : : ; qg,

1

(b� (n)
t )2

�
�
�
�
�
�

t � r � 1X

j =0

( bB j
n (1; 1) � B j (1; 1))� i Y 2

t � j � i

�
�
�
�
�
�
�

t � r � 1X

j =0

j bB j
n (1; 1) � B j (1; 1)j� i Y 2

t � j � i

b! n + bB j
n (1; 1)b� i;n Y 2

t � j � i

:

Similarly to (64),j bB j
n (1; 1) � B j (1; 1)j � j� n (1 + � n )2j � 1 bB j

n (1; 1). Thus, for anys > 0,

1

(b� (n)
t )2

�
�
�
�
�
�

t � r � 1X

j =0

( bB j
n (1; 1) � B j (1; 1))� i Y 2

t � j � i

�
�
�
�
�
�

� � n
� i

b� i;n

t � r � 1X

j =0

j (1 + � n )2j � 1
bB j

n (1; 1)b� i;n Y 2
t � j � i =b! n

1 + bB j
n (1; 1)b� i;n Y 2

t � j � i =b! n

� � n
� i

b� i;n

t � r � 1X

j =0

j (1 + � n )2j � 1

 
bB j

n (1; 1)b� i;n Y 2
t � j � i

b! n

! s

� � n �
� i

b� i;n

�
b� i;n

b! n

� s

�
t � r � 1X

j =0

j (1 + � n )2j � 1 �
(1 + � n ) j B j (1; 1)

� s
Y 2s

t � j � i

where the inequalityx=(1 + x) � xs, valid for any s and x > 0, was used. Because
jB j (1; 1)j � k B j k andkB j k1=j ! � (B ) 2 [0;1) as j ! 1 , as well as� n ! 0 in proba-
bility, we have

1X

j =0

j (1 + � n )2j � 1((1 + � n ) j B j (1; 1))s < 1

with arbitrarily high probability asn ! 1 . Hence the bound

max
r +1 � t � n

1

(b� (n)
t )2

�
�
�
�
�
�

t � r � 1X

j =0

( bB j
n (1; 1) � B j (1; 1))� i Y 2

t � j � i

�
�
�
�
�
�
= O P

�
n� 1=2 max

1� t � n
Y 2s

t

�

valid for anys > 0. Recall that there iss0 > 0 such thatE(Y 2s0
1 ) < 1 (see Corollary 2.3

p.36 in [17]). Using the identity

E(Y 2s0
1 ) =

Z 1

0
P(Y 2s0

1 > y ) dy < 1
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and noting that the functiony 7! P(Y 2s0
1 > y ) is nonnegative and nonincreasing, it is a stan-

dard exercise to show thatP(Y 2s0
1 > y ) = o( y� 1) asy ! 1 . Conclude that, for anys � s0,

n P(Y 2s
1 > n s=s0 ) = n P(Y 2s0

1 > n ) = o(1) , and then that

P
�

max
1� t � n

Y 2s
t > n s=s0

�
� n P(Y 2s

1 > n s=s0 ) = o(1) ;

of which a consequence is thatmax1� t � n Y 2s
t = O P(ns=s0 ) for any s � s0. In particular,

sinces can be chosen arbitrarily small,

(66) max
r +1 � t � n

1

(b� (n)
t )2

�
�
�
�
�
�

t � r � 1X

j =0

( bB j
n (1; 1) � B j (1; 1))� i Y 2

t � j � i

�
�
�
�
�
�
= O P(n� � 1=2) for all � > 0:

Finally, for t � tn andn large enough,

max
t n � t � n

1

(b� (n)
t )2

j( bB t � r
n bv (n)

r;p � B t � r vr;p )(1) j

�
1
b! n

sup
j � t n =2

n
k bB j

nk + kB j k
o

max
r � p+1 � t � r

n
b� (n)

t + � t

o
= O P

 

sup
j � t n =2

n
k bB j

nk + kB j k
o

!

by consistency ofb! n , de�nition of b� (n)
r � p+1 ; : : : ; b� (n)

r and �niteness of at least a fractional
moment of the� t (and hence �niteness of the� t with probability 1; see Corollary 2.3 p.36
in [17]). Besides, it is a simple exercise in linear algebra to show that for ad � d matrix with
nonnegative elements,kAk = max 1� i � d

P d
j =1 A(i; j ); consequently

max
t n � t � n

1

(b� (n)
t )2

j( bB t � r
n bv (n)

r;p � B t � r vr;p )(1) j = O P

 

sup
j � t n =2

�
(1 + � n ) j kB j k

	
!

:

Recall thatkB j k1=j ! � (B ) 2 [0;1) asj ! 1 and� n ! 0 in probability, so that

(67) max
t n � t � n

1

(b� (n)
t )2

j( bB t � r
n bv (n)

r;p � B t � r vr;p )(1) j = O P(n� 1=2)

becausetn=logn ! 1 . Combine (61), (62), (63), (65), (66), (67) and recall that� n = 1 �
n� a to �nd

p
n(1 � � n ) max

t n � t � n

�
�
�
�
�

� 2
t

(b� (n)
t )2

� 1

�
�
�
�
�

P�! 0 and then
p

n(1 � � n ) max
t n � t � n

jb" (n)
t � " t j
1 + j" t j

P�! 0

by (61). Condition (2) thus holds. Second, the inequalityjb� n+1 =� n+1 � 1j � j b� 2
n+1 =� 2

n+1 � 1j
and a similar argument yield

p
n(1 � � n )

�
�
�
�
b� n+1

� n+1
� 1

�
�
�
�

P�! 0:

Conclude by applying Lemma C.8 (for the sample sizesn = n � tn + 1 = n(1 + o(1)) ,
since the estimatorb� � n (" ) is based upon the lastn � tn + 1 residuals; this array version of
Theorem 2.1 is necessary once again here).

(ii) Set

b� ?
� 0

n
(" ) =

�
1 � � 0

n

1 � � n

� � 
b� � n (" )
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and write
p

n(1 � � n )
log[(1 � � n )=(1 � � 0

n )]

 
b� ?
� 0

n
(Yn+1 j F n )

� � 0
n
(Yn+1 j F n )

� 1

!

=

p
n(1 � � n )

log[(1 � � n )=(1 � � 0
n )]

 
b� ?
� 0
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To conclude, combine (i) with the relationshipb� n+1 =� n+1 = 1 + O P(1=
p

n(1 � � n )) and
the �rst convergence in Theorem 2.3.

APPENDIX E: ADDITIONAL RESULTS ON INDIRECT ESTIMATORS AND THEIR
PROOFS

This section focuses on the indirect versions of our extreme expectile estimators. The �rst
result is an analogue of Corollary 3.1 in the heteroscedastic linear regression model(M 1),
for the indirect estimatorse� � n (Y jx ) ande� ?

� 0
n
(Y jx ) de�ned as

e� � n (Y jx ) = b� + b� > x + (1 + b� > x )(  � 1 � 1)�  b" (n)
n�b n(1� � n )c;n
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(Y jx ) = b� + b� > x + (1 + b� > x )
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n�b n(1� � n )c;n :

Here = b bn(1� � n )c is assumed to be the Hill estimator based on residuals, as in Section 2.2.

COROLLARY E.1. Assume that the setup is that of the heteroscedastic linear model(M 1).
Suppose thatEj" � j2 < 1 . Assume further that" satis�es conditionC2(; �;A ) with 0 <  <
1=2, � < 0, and that� n ; � 0

n " 1 satisfy(3) and(4). Then for anyx 2 K ,
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PROOF OFCOROLLARY E.1. To obtain the �rst convergence, repeat the proof of Corol-
lary 3.1, withb� � n (" ) replaced bye� � n (" ) = ( b � 1

bn(1� � n )c � 1)� b bn (1 � � n ) c b" (n)
n�b n(1� � n )c;n , and ap-

ply Corollary 2.1 rather than Theorem 2.1. The second convergence is obtained by combining
the �rst convergence with Theorem 2.3.

The second result considers, in the context of the heteroscedastic single-index model(M 2),
the indirect estimatorse� � N (Y jx ) ande� ?

� 0
N

(Y jx ) de�ned, for anx 2 K 0, as

e� � N (Y jx ) = bghn ;t n ( b� > x ) + b� hn ;t n ( b� > x )(  � 1 � 1)�  b" (n)
N �b N (1� � N )c;N;K 0

at the intermediate level, and

e� ?
� 0

N
(Y jx ) = bghn ;t n ( b� > x ) + b� hn ;t n ( b� > x )
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N �b N (1� � N )c;N;K 0
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at the extreme level. Here = b bN (1� � N )c is assumed to be the Hill estimator based on the
random number of residualsbN (1 � � N )c whereN =

P n
i =1 1f X i 2 K 0g.

THEOREM E.1. Work in model(M 2). Assume that" satis�es conditionC2(; �;A ) with
0 <  < 1=2 and � < 0 and that the conditions of Proposition C.1 in Appendix C hold. Let
K 0 be a compact subset ofK � such thatP(X 2 K 0) > 0, andN = N (K 0; n). In addition,
suppose that the sequences� n = 1 � n� a with a 2 (1=5;1) and � 0

n " 1 satisfy(3) and (4).
Then, for anyx 2 K 0,
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PROOF OFTHEOREM E.1. Combine Corollary 2.1 with the de-conditioning Lemma C.4(i)
to obtain
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N �b N (1� � N )c;N;K 0
. Complete the proof by fol-

lowing the �nal four lines of the proof of Theorem 3.1(i) (this crucially relies on the assump-
tions of Proposition C.1) and the proof of Theorem 3.1(ii).

The third result focuses on the indirect estimators
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in the ARMA(p;q) model(T1). Hereq� n
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n� t n +1 �b (n� t n +1)(1 � � n )c;n � t n +1 is a top or-

der statistic of the lastn � tn + 1 residualsb" (n)
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n , with tn=logn ! 1 and
tn=n ! 0, and is assumed to be the Hill estimator based on these residuals.

THEOREME.2. Work in model(T1). Assume further that" satis�es conditionC2(; �;A )
with 0 <  < 1=2 and � < 0, and that� n ; � 0
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PROOF OFTHEOREM E.2. Mimic the proof of Theorem 3.3, applying (an array version
of) Corollary 2.1 rather than Lemma C.8.

The fourth and �nal result gives the asymptotic properties of the indirect estimators

e� � n (Yn+1 j F n ) = b� n+1 ( � 1 � 1)�  q� n
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in the GARCH(p;q) model(T2), where againq� n
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n� t n +1 �b (n� t n +1)(1 � � n )c;n � t n +1 is

a top order statistic of the lastn � tn + 1 residualsb" (n)
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t n +1 ; : : : ; b" (n)

n , with tn=logn ! 1
andtn=n ! 0, and is assumed to be the Hill estimator based on these residuals.

THEOREME.3. Work in model(T2). Assume further that" satis�es conditionC2(; �;A )
with 0 <  < 1=2 and� < 0. Suppose also that� n ; � 0

n " 1 satisfy(3) and(4) with � n = 1 � n� a
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PROOF OFTHEOREM E.3. Mimic the proof of Theorem 3.4, applying (an array version
of) Corollary 2.1 rather than Lemma C.8.

APPENDIX F: FINITE-SAMPLE STUDY: DETAILS ON COMPUTATIONAL
PROCEDURES AND FURTHER FINITE-SAMPLE RESULTS

F.1. Optimal choice of the intermediate level� n . In the calculation of our extreme
value estimates, the intermediate level� n is a tuning parameter that has to be chosen. This is
of course essentially equivalent to choosing the parameterkn = bn(1 � � n )c representing the
effective sample size in the Hill estimator used for the extrapolation. There are various ways
of choosingkn ; we brie�y discuss here a procedure based on an asymptotic mean-squared
error minimisation criterion. As highlighted in Equation (3.2.13) p.77 in [14], the asymptotic
mean-squared error of the Hill estimator underC2(; �;A ) is:

AMSE(kn ) :=
1

(1 � � )2

�
A

�
n
kn

�� 2

+
 2

kn
:

Let us consider the typical case of an auxiliary functionA(t) = bt � , as in our simulation
study. Minimising the AMSE with respect tokn yields an optimal valuek�

n given by

k�
n =

$�
(1 � � )2

� 2�b 2

� 1=(1� 2� )

n� 2�= (1� 2� )

%

:

This optimal value ofkn ful�lls the well-known bias-variance trade-off in extreme value
analysis, by balancing in an optimal way the variance increasing with lowkn and the bias
increasing with highkn . In practice, this value ofk�

n is of course unavailable because it
depends on the unknown values of , b and � . In our simulation study where a sample of
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n = 1 ;000data points is available, we therefore suggest to use the sample counterpartbk�
n of

k�
n obtained through plugging in a prior estimate of calculated using the bias-reduced Hill

estimator withkn = n=10 = 100, along with estimates ofband� obtained using the function
mopfrom the R packageevt0 , all based of course on residuals of the model rather than the
unobservable noise variables.

To check the quality of the estimation with this choicebk�
n of kn , we repeated our simulation

studies in Sections 4.1 and 4.2, with the same parameters but withbk�
n in place ofkn = 100.

Results are reported in Tables F.2 and F.4. It is readily seen there that there is no obvious
advantage in using a data-driven criterion for the choice ofkn , and in fact results tend to be
slightly worse. This is most likely because a data-driven choice ofkn is itself random and
therefore may contribute to estimation uncertainty.

Model Procedure  = 0 :1  = 0 :2  = 0 :3  = 0 :4

Linear (G1)

(S1) 2:29 � 10� 2 3:56� 10� 2 6:46� 10� 2 1:13� 10� 1

(S1i) 1:37 � 10� 2 3:14� 10� 2 6:51� 10� 2 1:21� 10� 1

(S2) 2:73 � 10� 2 3:76� 10� 2 6:17� 10� 2 9:86� 10� 2

(S2i) 3:11 � 10� 2 3:57� 10� 2 5:93� 10� 2 1:05� 10� 1

(B1) 1:26 � 10� 1 8:06� 10� 2 9:89� 10� 2 1:93� 10� 1

(B1i) 1:58 � 10� 1 7:85� 10� 2 9:75� 10� 2 1:96� 10� 1

(B2) 1:22 � 10� 1 1:09� 10� 1 9:90� 10� 2 1:08� 10� 1

(B3) 2:52 � 10� 2 3:93� 10� 2 6:78� 10� 2 1:16� 10� 1

(B4) 4:82 � 10� 2 4:13� 10� 2 6:34� 10� 2 1:04� 10� 1

(B4i) 8:15 � 10� 3 2:73� 10� 2 6:23� 10� 2 1:18� 10� 1

(B5) 2:26 � 10� 2 3:53� 10� 2 6:23� 10� 2 1:06� 10� 1

(B5i) 9:47 � 10� 3 3:09� 10� 2 6:38� 10� 2 1:12� 10� 1

Single index (G2)

(S1) 1:83 � 10� 1 1:10� 10� 1 8:13� 10� 2 1:09� 10� 1

(S1i) 1:96 � 10� 1 1:18� 10� 1 6:97� 10� 2 1:01� 10� 1

(S2) 3:90 � 10� 2 4:38� 10� 2 6:89� 10� 2 1:08� 10� 1

(S2i) 5:75 � 10� 2 4:27� 10� 2 6:53� 10� 2 1:08� 10� 1

(B1) 1:43 � 10� 1 8:89� 10� 2 1:18� 10� 1 2:06� 10� 1

(B1i) 1:74 � 10� 1 7:64� 10� 2 1:14� 10� 1 2:05� 10� 1

(B2) 3:46 � 10� 1 2:79� 10� 1 2:37� 10� 1 1:95� 10� 1

(B3) 2:97 � 10� 2 4:20� 10� 2 7:20� 10� 2 1:20� 10� 1

(B4) 5:84 � 10� 2 4:82� 10� 2 7:14� 10� 2 1:13� 10� 1

(B4i) 9:86 � 10� 3 3:19� 10� 2 7:01� 10� 2 1:28� 10� 1

(B5) 2:73 � 10� 2 4:12� 10� 2 7:01� 10� 2 1:15� 10� 1

(B5i) 1:15 � 10� 2 3:61� 10� 2 7:18� 10� 2 1:22� 10� 1

TABLE F.1
RMAD of methods (S1), (S2), (S1i) and (S2i), and of benchmarks (B1)–(B5i), in models (G1)–(G2). Estimators

based on the �xed intermediate levelkn = n=10 = 100.

F.2. Pointwise con�dence interval construction. We have explained, following our
simulation studies in Sections 4.1 and 4.2, that most of the uncertainty in the problem of es-
timating extreme conditional expectiles appears indeed to come from the extreme value step.
This seems to be particularly the case as soon as � 0:2. One may then use the asymptotic
results developed in this paper to carry out pointwise inference about extreme conditional
quantiles. Indeed, in typical cases the limit law in Theorem 2.3 is standard, and in fact is
even Gaussian, because it is the limiting distribution of the extreme value index estimator
 ; under their respective suitable conditions, all common extreme value index estimators are
asymptotically Gaussian. This is the case for the Hill estimator, of course, as we state in our
Corollary 2.1, but also for, among others, the Pickands estimator, the Maximum Likelihood
estimator constructed using the Generalised Pareto approximation, the moment estimator
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Model Procedure  = 0 :1  = 0 :2  = 0 :3  = 0 :4

Linear (G1)

(S1) 2:30 � 10� 2 3:82� 10� 2 6:55� 10� 2 1:18� 10� 1

(S1i) 1:45 � 10� 2 3:36� 10� 2 6:75� 10� 2 1:25� 10� 1

(S2) 2:87 � 10� 2 3:98� 10� 2 6:39� 10� 2 1:06� 10� 1

(S2i) 3:25 � 10� 2 3:62� 10� 2 6:11� 10� 2 1:08� 10� 1

(B1) 1:26 � 10� 1 8:06� 10� 2 9:89� 10� 2 1:93� 10� 1

(B1i) 1:58 � 10� 1 7:85� 10� 2 9:75� 10� 2 1:96� 10� 1

(B2) 1:27 � 10� 1 1:09� 10� 1 1:01� 10� 1 1:15� 10� 1

(B3) 2:43 � 10� 2 3:98� 10� 2 7:31� 10� 2 1:26� 10� 1

(B4) 4:82 � 10� 2 4:58� 10� 2 5:97� 10� 2 1:07� 10� 1

(B4i) 9:07 � 10� 3 3:12� 10� 2 6:90� 10� 2 1:31� 10� 1

(B5) 2:39 � 10� 2 3:67� 10� 2 6:39� 10� 2 1:04� 10� 1

(B5i) 9:65 � 10� 3 3:15� 10� 2 6:41� 10� 2 1:11� 10� 1

Single index (G2)

(S1) 1:84 � 10� 1 1:11� 10� 1 7:96� 10� 2 1:10� 10� 1

(S1i) 1:96 � 10� 1 1:19� 10� 1 7:08� 10� 2 1:03� 10� 1

(S2) 4:04 � 10� 2 4:43� 10� 2 6:91� 10� 2 1:11� 10� 1

(S2i) 5:86 � 10� 2 4:37� 10� 2 6:51� 10� 2 1:09� 10� 1

(B1) 1:43 � 10� 1 8:89� 10� 2 1:18� 10� 1 2:06� 10� 1

(B1i) 1:74 � 10� 1 7:64� 10� 2 1:14� 10� 1 2:05� 10� 1

(B2) 3:48 � 10� 1 2:79� 10� 1 2:32� 10� 1 1:91� 10� 1

(B3) 2:92 � 10� 2 4:38� 10� 2 7:85� 10� 2 1:32� 10� 1

(B4) 5:84 � 10� 2 5:35� 10� 2 6:72� 10� 2 1:17� 10� 1

(B4i) 1:10 � 10� 2 3:64� 10� 2 7:76� 10� 2 1:43� 10� 1

(B5) 2:89 � 10� 2 4:28� 10� 2 7:18� 10� 2 1:14� 10� 1

(B5i) 1:17 � 10� 2 3:68� 10� 2 7:21� 10� 2 1:20� 10� 1

TABLE F.2
RMAD of methods (S1), (S2), (S1i) and (S2i), and of benchmarks (B1)–(B5i), in models (G1)–(G2). Estimators

based on the data-driven intermediate levelbk �
n .

of [15] and probability weighted moment estimators (see respectively Theorems 3.3.5, 3.4.2,
3.5.4 and 3.6.1 in [14]). Asymptotic bias terms depend on , the second-order parameter�
and the auxiliary functionA , while asymptotic variances are functions of only. For instance,
if  is the Hill estimatorb bn(1� � n )c as in Corollary 2.1, Theorem 2.3 reads, in model (1),
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Consistent estimators of� andA are available from the work of [22], adapted here by using
residuals instead of the unobserved errors. In each case the asymptotic bias and variance
terms can then be estimated, and carrying out inference on the extreme conditional expectile
of interest is, in principle, straightforward.

For consistency with our �nite-sample studies and especially our real data analyses, we
discuss the implementation of such con�dence intervals based on the bias-reduced es-
timators b RB

k , obtained by a bias reduction of the Hill estimatorb k (where throughout
k = bn(1 � � n )c) and b� ?;RB

� 0
n

(" ), obtained by a bias reduction of the direct extrapolated esti-

matorb� ?
� 0

n
(" ), whose expression can be found at the beginning of Section 4. Combined with

appropriate model structure estimators converging quickly enough, these naturally give rise
to an estimatorb� ?;RB

� 0
n

(Y jx ) which, by Theorem 2.3, should satisfy
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Model Parameters Estimator  = 0 :1  = 0 :2  = 0 :3  = 0 :4

ARMA

(�; � ) = (0 :1; 0:1) Direct 4:75 � 10� 2 6:31 � 10� 2 9:57� 10� 2 1:37� 10� 1

(estimated) Indirect 3:00 � 10� 2 5:43 � 10� 2 9:47� 10� 2 1:50� 10� 1

(�; � ) = (0 :1; 0:1) Direct 4:49 � 10� 2 6:06 � 10� 2 9:30� 10� 2 1:37� 10� 1

(known, benchmark) Indirect 1:96 � 10� 2 5:32 � 10� 2 9:62� 10� 2 1:48� 10� 1

(�; � ) = (0 :1; 0:5) Direct 4:69 � 10� 2 6:25 � 10� 2 9:57� 10� 1 1:38� 10� 1

(estimated) Indirect 3:09 � 10� 2 5:36 � 10� 2 9:88� 10� 2 1:49� 10� 1

(�; � ) = (0 :1; 0:5) Direct 4:46 � 10� 2 6:30 � 10� 2 9:37� 10� 2 1:36� 10� 1

(known, benchmark) Indirect 2:04 � 10� 2 5:45 � 10� 2 9:51� 10� 2 1:45� 10� 1

(�; � ) = (0 :5; 0:1) Direct 4:93 � 10� 2 6:51 � 10� 2 9:59� 10� 2 1:37� 10� 1

(estimated) Indirect 3:14 � 10� 2 5:79 � 10� 2 1:01� 10� 1 1:50� 10� 1

(�; � ) = (0 :5; 0:1) Direct 4:53 � 10� 2 6:28 � 10� 2 9:30� 10� 2 1:36� 10� 1

(known, benchmark) Indirect 2:06 � 10� 2 5:47 � 10� 2 9:57� 10� 2 1:46� 10� 1

(�; � ) = (0 :5; 0:5) Direct 4:51 � 10� 2 6:62 � 10� 2 9:87� 10� 2 1:42� 10� 1

(estimated) Indirect 3:06 � 10� 2 5:91 � 10� 2 1:02� 10� 1 1:57� 10� 1

(�; � ) = (0 :5; 0:5) Direct 4:17 � 10� 2 6:28 � 10� 2 9:55� 10� 2 1:35� 10� 1

(known, benchmark) Indirect 1:96 � 10� 2 5:53 � 10� 2 9:72� 10� 2 1:47� 10� 1

GARCH

(�; � ) = (0 :1; 0:1) Direct 4:42 � 10� 2 6:03 � 10� 2 9:01� 10� 2 1:31� 10� 1

(estimated) Indirect 1:92 � 10� 2 5:22 � 10� 2 9:42� 10� 2 1:39� 10� 1

(�; � ) = (0 :1; 0:1) Direct 4:44 � 10� 2 6:03 � 10� 2 9:34� 10� 2 1:35� 10� 1

(known, benchmark) Indirect 1:88 � 10� 2 5:23 � 10� 2 9:49� 10� 2 1:45� 10� 1

(�; � ) = (0 :1; 0:45) Direct 4:44 � 10� 2 5:99 � 10� 2 9:00� 10� 2 1:25� 10� 1

(estimated) Indirect 1:87 � 10� 2 5:15 � 10� 2 9:06� 10� 2 1:33� 10� 1

(�; � ) = (0 :1; 0:45) Direct 4:44 � 10� 2 6:03 � 10� 2 9:34� 10� 2 1:35� 10� 1

(known, benchmark) Indirect 1:88 � 10� 2 5:23 � 10� 2 9:49� 10� 2 1:45� 10� 1

(�; � ) = (0 :45; 0:1) Direct 4:51 � 10� 2 6:03 � 10� 2 9:30� 10� 2 1:31� 10� 1

(estimated) Indirect 1:92 � 10� 2 5:29 � 10� 2 9:64� 10� 2 1:39� 10� 1

(�; � ) = (0 :45; 0:1) Direct 4:44 � 10� 2 6:03 � 10� 2 9:34� 10� 2 1:35� 10� 1

(known, benchmark) Indirect 1:88 � 10� 2 5:23 � 10� 2 9:49� 10� 2 1:45� 10� 1

(�; � ) = (0 :1; 0:85) Direct 4:50 � 10� 2 7:31 � 10� 2 9:64� 10� 2 1:20� 10� 1

(estimated) Indirect 2:65 � 10� 2 6:68 � 10� 2 9:57� 10� 2 1:14� 10� 1

(�; � ) = (0 :1; 0:85) Direct 4:44 � 10� 2 6:03 � 10� 2 9:34� 10� 2 1:35� 10� 1

(known, benchmark) Indirect 1:88 � 10� 2 5:23 � 10� 2 9:49� 10� 2 1:45� 10� 1

TABLE F.3
RMAD of the (bias-reduced) direct and indirect extreme conditional expectile estimators in ARMA and GARCH

models. Estimators based on the �xed intermediate levelkn = n=10 = 100.

In line with standard practice in extreme value analysis for heavy tails, we consider instead
the equivalent version

p
n(1 � � n )

log[(1 � � n )=(1 � � 0
n )]

log

 
b� ?;RB
� 0

n
(Y jx )

� � 0
n
(Y jx )

!
d�! N (0;  2)

obtained via the delta-method, as this has been observed several times to yield more reason-
able con�dence intervals when using Weissman-type extrapolated estimators (seee.g.[16] in
the context of extreme quantile estimation). This immediately provides an asymptotic point-
wise95%con�dence interval for� � 0

n
(Y jx ) as

bI (1)
� 0

n
(x ) =

"

b� ?;RB
� 0

n
(Y jx )exp

 

� 1:96
log[(1 � � n )=(1 � � 0

n )]
p

n(1 � � n )
b RB

bn(1� � n )c

!#

:

A slightly different construction, also motivated by Theorem 2.3, is possible by building the
con�dence interval directly on the estimatorb� ?;RB

� 0
n

(" ) �rst and combining with location and
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Model Parameters Estimator  = 0 :1  = 0 :2  = 0 :3  = 0 :4

ARMA

(�; � ) = (0 :1; 0:1) Direct 4:91 � 10� 2 6:55 � 10� 2 9:72� 10� 2 1:42� 10� 1

(estimated) Indirect 3:05 � 10� 2 5:61 � 10� 2 9:79� 10� 2 1:51� 10� 1

(�; � ) = (0 :1; 0:1) Direct 4:74 � 10� 2 6:24 � 10� 2 9:70� 10� 2 1:38� 10� 1

(known, benchmark) Indirect 1:93 � 10� 2 5:47 � 10� 2 9:70� 10� 2 1:48� 10� 1

(�; � ) = (0 :1; 0:5) Direct 5:07 � 10� 2 6:64 � 10� 2 9:51� 10� 2 1:38� 10� 1

(estimated) Indirect 3:17 � 10� 2 5:74 � 10� 2 9:80� 10� 2 1:48� 10� 1

(�; � ) = (0 :1; 0:5) Direct 4:89 � 10� 2 6:38 � 10� 2 9:81� 10� 2 1:38� 10� 1

(known, benchmark) Indirect 2:04 � 10� 2 5:52 � 10� 2 9:71� 10� 2 1:48� 10� 1

(�; � ) = (0 :5; 0:1) Direct 5:00 � 10� 2 6:88 � 10� 2 9:94� 10� 2 1:44� 10� 1

(estimated) Indirect 3:13 � 10� 2 5:91 � 10� 2 1:02� 10� 1 1:54� 10� 1

(�; � ) = (0 :5; 0:1) Direct 4:93 � 10� 2 6:47 � 10� 2 9:79� 10� 2 1:38� 10� 1

(known, benchmark) Indirect 2:13 � 10� 2 5:55 � 10� 2 9:80� 10� 2 1:50� 10� 1

(�; � ) = (0 :5; 0:5) Direct 4:70 � 10� 2 7:36 � 10� 2 1:01� 10� 1 1:43� 10� 1

(estimated) Indirect 3:09 � 10� 2 6:29 � 10� 2 1:04� 10� 1 1:56� 10� 1

(�; � ) = (0 :5; 0:5) Direct 4:85 � 10� 2 6:74 � 10� 2 1:01� 10� 1 1:42� 10� 1

(known, benchmark) Indirect 2:00 � 10� 2 5:77 � 10� 2 1:02� 10� 1 1:52� 10� 1

GARCH

(�; � ) = (0 :1; 0:1) Direct 4:65 � 10� 2 6:22 � 10� 2 9:22� 10� 2 1:34� 10� 1

(estimated) Indirect 1:90 � 10� 2 5:45 � 10� 2 9:23� 10� 2 1:39� 10� 1

(�; � ) = (0 :1; 0:1) Direct 4:61 � 10� 2 6:19 � 10� 2 9:55� 10� 2 1:37� 10� 1

(known, benchmark) Indirect 1:90 � 10� 2 5:16 � 10� 2 9:56� 10� 2 1:48� 10� 1

(�; � ) = (0 :1; 0:45) Direct 4:72 � 10� 2 6:29 � 10� 2 9:09� 10� 2 1:28� 10� 1

(estimated) Indirect 1:87 � 10� 2 5:33 � 10� 2 9:23� 10� 2 1:35� 10� 1

(�; � ) = (0 :1; 0:45) Direct 4:61 � 10� 2 6:19 � 10� 2 9:55� 10� 2 1:37� 10� 1

(known, benchmark) Indirect 1:90 � 10� 2 5:16 � 10� 2 9:56� 10� 2 1:48� 10� 1

(�; � ) = (0 :45; 0:1) Direct 4:71 � 10� 2 6:30 � 10� 2 9:80� 10� 2 1:35� 10� 1

(estimated) Indirect 1:93 � 10� 2 5:50 � 10� 2 9:86� 10� 2 1:41� 10� 1

(�; � ) = (0 :45; 0:1) Direct 4:61 � 10� 2 6:19 � 10� 2 9:55� 10� 2 1:37� 10� 1

(known, benchmark) Indirect 1:90 � 10� 2 5:16 � 10� 2 9:56� 10� 2 1:48� 10� 1

(�; � ) = (0 :1; 0:85) Direct 4:55 � 10� 2 7:40 � 10� 2 9:71� 10� 2 1:22� 10� 1

(estimated) Indirect 2:67 � 10� 2 6:80 � 10� 2 9:31� 10� 2 1:14� 10� 1

(�; � ) = (0 :1; 0:85) Direct 4:61 � 10� 2 6:19 � 10� 2 9:55� 10� 2 1:37� 10� 1

(known, benchmark) Indirect 1:90 � 10� 2 5:16 � 10� 2 9:56� 10� 2 1:48� 10� 1

TABLE F.4
RMAD of the (bias-reduced) direct and indirect extreme conditional expectile estimators in ARMA and GARCH

models. Estimators based on the data-driven intermediate levelbk �
n .

scale afterwards. In this case, an asymptotic pointwise95%con�dence interval for� � 0
n
(" ) is

"

b� ?;RB
� 0

n
(" ) exp

 

� 1:96
log[(1 � � n )=(1 � � 0

n )]
p

n(1 � � n )
b RB

bn(1� � n )c

!#

:

In the class of regression models (1) where� � 0
n
(Y jx ) = g(x ) + � (x )� � 0

n
(" ), this yields an

alternative asymptotic pointwise95%con�dence interval for� � 0
n
(Y jx ) as

bI (2)
� 0

n
(x ) =

"

g(x ) + � (x )b� ?;RB
� 0

n
(" ) exp

 

� 1:96
log[(1 � � n )=(1 � � 0

n )]
p

n(1 � � n )
b RB

bn(1� � n )c

!#

if g and� are estimated byg and� suf�ciently fast that the asymptotic behaviour ofb� ?;RB
� 0

n
(" )

dominates. In a model where the conditional mean is assumed to be 0 (for example GARCH
models), the intervalsbI (1)

� 0
n

and bI (2)
� 0

n
coincide. We illustrate the behaviour ofbI (1)

� 0
n

(x ) (calcu-
lated on the bias-reduced direct estimator) in the top left panel of Figure F.1 below, on the
example of the Vehicle Insurance Customer data of Section 4.3.

Finite-sample coverages of these two intervals at the95%nominal level are compared in the
setups of Section 4.1 (see Table F.5) and Section 4.2 (see Table F.6) for an extreme value
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index equal to1=4 = 0:25. Interval bI (1)
� 0

n
yields sensible results at a central pointx in regres-

sion models, as can be seen from the leftmost table in Table F.5. IntervalbI (2)
� 0

n
has a lower

coverage probability and seems to be too narrow. It is interesting to note that the difference
between the performance of intervals constructed using estimated model parameters (ignor-
ing the uncertainty incurred at the model estimation step) and of those obtained with the
unrealistic knowledge of model structure is negligible; in the regression case, this can be
seen by comparing procedures (S1) and (S1i) with benchmarks (B5) and (B5i) in the linear
model (G1), and (S2) and (S2i) with benchmarks (B5) and (B5i) in the single-index model
(G2). This illustrates once again that the extreme value step, rather than model estimation,
is indeed the major contributor to estimation uncertainty as long as the model can be esti-
mated ef�ciently. We illustrate this point further in our time series models, where it can be
seen that for both intervals, the coverage probabilities obtained by assuming knowledge of
the model are essentially identical to those where the model structure has to be estimated. In
our time series examples, coverage of the Gaussian con�dence intervals is in fact arguably
quite poor (around80% in most models), but this will be due to the fact that the sample
size is not yet large enough for the Gaussian approximation to be reasonable for sample
expectiles. This is not due to the uncertainty in model estimation not being accounted for,
since assuming knowledge of the model does not improve coverage substantially. Issues with
�nite-sample coverage of Gaussian con�dence intervals for the estimation of extreme con-
ditional risk measures such as the Expected Shortfall (closely related to the expectile) have
been reported before, seee.g.[29].

Model Procedure bI (1)
� 0

n
bI (2)
� 0

n

Linear (G1)

(S1) 0.910 0.746
(S1i) 0.924 0.758
(S2) 0.924 0.764
(S2i) 0.942 0.780
(B2) 0.816 0.484
(B3) 0.908 0.720
(B4) 0.914 0.760
(B4i) 0.980 0.840
(B5) 0.932 0.774
(B5i) 0.944 0.784

Single index (G2)

(S1) 0.844 0.590
(S1i) 0.862 0.646
(S2) 0.920 0.802
(S2i) 0.932 0.836
(B2) 0.158 0.060
(B3) 0.858 0.750
(B4) 0.872 0.760
(B4i) 0.962 0.840
(B5) 0.896 0.774
(B5i) 0.920 0.784

Model Procedure bI (1)
� 0

n
bI (2)
� 0

n

Linear (G1)

(S1) 0.740 0.468
(S1i) 0.740 0.458
(S2) 0.236 0.114
(S2i) 0.230 0.120
(B2) 0.000 0.000
(B3) 0.343 0.154
(B4) 0.932 0.760
(B4i) 0.988 0.840
(B5) 0.944 0.774
(B5i) 0.962 0.784

Single index (G2)

(S1) 0.034 0.026
(S1i) 0.034 0.024
(S2) 0.590 0.442
(S2i) 0.596 0.452
(B2) 0.060 0.081
(B3) 0.242 0.152
(B4) 0.868 0.760
(B4i) 0.952 0.840
(B5) 0.888 0.774
(B5i) 0.908 0.784

TABLE F.5
Empirical coverage probabilities of the Gaussian asymptotic con�dence intervals (95% nominal level)
associated with methods (S1), (S2), (S1i) and (S2i), and benchmarks (B2)–(B5i), in models (G1)–(G2).

Estimators based on the �xed intermediate levelkn = n=10 = 100, left table: central point
x = (1 =2; 1=2; 1=2; 1=3), right table: noncentral pointx = (0 :1; 0:1; 0:1; 0:1). The extreme value index is set
to the value1=4 = 0 :25. Benchmarks (B1) and (B1i) are not location-scale approaches and therefore have been

excluded from this comparative table.
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Model Parameters Estimator bI (1)
� 0

n
bI (2)
� 0

n

ARMA

(�; � ) = (0 :1; 0:1) Direct 0.769 0.776
(estimated) Indirect 0.785 0.794

(�; � ) = (0 :1; 0:1) Direct 0.806 0.804
(known, benchmark) Indirect 0.824 0.822
(�; � ) = (0 :1; 0:5) Direct 0.766 0.787

(estimated) Indirect 0.779 0.791
(�; � ) = (0 :1; 0:5) Direct 0.773 0.804

(known, benchmark) Indirect 0.792 0.822
(�; � ) = (0 :5; 0:1) Direct 0.756 0.776

(estimated) Indirect 0.764 0.794
(�; � ) = (0 :5; 0:1) Direct 0.759 0.804

(known, benchmark) Indirect 0.783 0.822
(�; � ) = (0 :5; 0:5) Direct 0.698 0.783

(estimated) Indirect 0.707 0.795
(�; � ) = (0 :5; 0:5) Direct 0.697 0.804

(known, benchmark) Indirect 0.709 0.822

GARCH

(�; � ) = (0 :1; 0:1) Direct 0.800 0.800
(estimated) Indirect 0.817 0.817

(�; � ) = (0 :1; 0:1) Direct 0.804 0.804
(known, benchmark) Indirect 0.815 0.815
(�; � ) = (0 :1; 0:45) Direct 0.793 0.793

(estimated) Indirect 0.806 0.806
(�; � ) = (0 :1; 0:45) Direct 0.795 0.795
(known, benchmark) Indirect 0.818 0.818
(�; � ) = (0 :45; 0:1) Direct 0.793 0.793

(estimated) Indirect 0.802 0.802
(�; � ) = (0 :45; 0:1) Direct 0.784 0.784
(known, benchmark) Indirect 0.803 0.803
(�; � ) = (0 :1; 0:85) Direct 0.710 0.710

(estimated) Indirect 0.732 0.732
(�; � ) = (0 :1; 0:85) Direct 0.686 0.686
(known, benchmark) Indirect 0.717 0.717

TABLE F.6
Empirical coverage probabilities of the Gaussian asymptotic con�dence intervals (95% nominal level)

associated with the (bias-reduced) direct and indirect one-step ahead extreme expectile estimators in ARMA and
GARCH models. Estimators based on the �xed intermediate levelkn = n=10 = 100. The extreme value index

is set to the value1=4 = 0 :25.

Situations where trusting these Gaussian con�dence intervals might be dif�cult include re-
gression models featuring the estimation of a nonparametric component (such as the het-
eroscedastic single-index model in Section 3.2, used for the analysis of the Vehicle Insurance
Customer data) whose rate of convergence may be close to the rate of convergence of the
extreme value estimator. In such models, disregarding the uncertainty incurred at the model
estimation stage may be problematic in regions where data is relatively sparse. This is illus-
trated in the rightmost table of Table F.5, where it can be seen that a noncentral pointx of
the regression problem, coverage of the proposed Gaussian asymptotic con�dence intervals
dramatically decreases, especially in the heteroscedastic single-index model. It may then be
more prudent to move away from the asymptotic approximation and use instead an approach
that fully takes into account the uncertainty in the estimation. We propose and contrast here
a couple of alternatives based on regression bootstrap methods. We develop our ideas in the
example of the heteroscedastic single-index model of Section 3.2. Suppose that from a data
set (X i ;Yi )1� i � n , we have estimated a direction vectorb� along with mean and standard
deviation functionsbg andb� . One possibility to describe the uncertainty in the estimation of
� � 0

n
(Y jx ) is to use the wild bootstrap, widespread in the heteroscedastic regression literature
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and whose origins can be traced back to [60]. This consists in resampling(X i ;Y �
i )1� i � n as

follows:

Y �
i = bg( b� > X i ) + ( Yi � bg( b� > X i )) " �

i ;

where(" �
i )1� i � n are i.i.d. copies of a random variable" � having mean 0 and variance 1. A

natural, possible choice for" � is the standard normal distribution. We illustrate this method-
ology on the example of the Vehicle Insurance Customer data of Section 4.3. We simulated
N = 5 ;000such bootstrap samples(X i ;Y �

i )1� i � n ; in each sample, we kept the direction vec-
tor b� �xed and equal to its estimated value based on the original sample, and we estimated
the functionsg and� using the same method as in the real data analysis in Section 4.3. This
is sensible because the estimatorb� converges much faster than the nonparametric estimators
of g and� , and therefore keeping the direction �xed is very unlikely to be incorrect as far as
uncertainty quanti�cation is concerned. Using residuals and the direct, bias-reduced extreme
conditional expectile estimator results in an estimate of� � 0

n
(Y jx ) which, for thej th bootstrap

sample, we denote byb� ?;RB ;(j )
� 0

n
(Y jx ). We �nally build, for a �xed x , pointwise95%bootstrap

con�dence intervals calculated by taking the empirical quantiles at levels2:5% and97:5%
of the b� ?;RB ;(j )

� 0
n

(Y jx ), 1 � j � N . These are reported in the top right panel of Figure F.1.
At extreme levels (say here� 0

n = 1 � 1=(nh � ), with h� = 0 :1) the con�dence intervals look
reasonable on the right half of the graph. However, they seem to very substantially overes-
timate the uncertainty in the left half, where data is sparser; this is especially clear around
b� > x = � 0:2, where the estimated extreme conditional expectile curve already extrapolates
far beyond the observations locally relevant, which suggests that the upper bound of the as-
sociated con�dence interval should be relatively close to the point estimate, but this is not
the case. Moreover, the wild bootstrap method appears to be very sensitive to the choice
of distribution of" � (alternative choices include the Rademacher distribution or asymmetric
two-point distributions such as the one on p.257 of [39]). Our interpretation is that the wild
bootstrap is too conservative here because it fails to get a good idea of the right tail behaviour
in the data.

To remedy this problem we suggest a second, semiparametric bootstrap method. This time,
theY �

i , 1 � i � n, are simulated as

Y �
i = bg( b� > X i ) + b� ( b� > X i )" �

i ;

where the" �
i are obtained by

1. Simulatingui from the standard uniform distribution on[0; 1],
2. If ui 2 [p;1 � p], for a �xed p 2 (0;1), taking " �

i = bF � 1(ui ), where bF is the empirical
distribution function of the residualsb" i ,

3. If ui > 1� p, taking" �
i = ((1 � ui )=p) � b bF � 1(1 � p), whereb = b RB is the bias-reduced

Hill estimator (withkn = 200 as in Section 4.3) based on the residualsb"1; : : : ; b"n ,
4. If ui < p , taking" �

i = ( ui =p) � b ` bF � 1(p), whereb ` = b RB
` is the bias-reduced Hill estima-

tor (with kn = 200) based on the negative residuals� b"1; : : : ; � b"n .

We chosep = 0 :001; further investigations, which we do not report here, suggest that results
are not too sensitive to the choice ofp as long asp 2 [0:001;0:01]. The idea of steps 3 and
4 above is to allow the resampling algorithm to give a faithful idea of the right and left tails
of the data through the use of the Pareto approximations of these tails. We call this algorithm
the semiparametric Pareto tail bootstrap. Somewhat similar ideas have appeared before in
the literature, seee.g.[61] whose aim was to approximate the distribution of extreme order
statistics.
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We illustrate this methodology again on the example of the Vehicle Insurance Customer data
of Section 4.3. We simulateN = 5 ;000 bootstrap samples(X i ;Y �

i )1� i � n and, like previ-
ously, we keep the direction vectorb� �xed and estimate the functionsg and� using the same
method as in Section 4.3. This yields extrapolated direct bias-reduced estimates of� � 0

n
(Y jx )

in each sample and therefore pointwise95%bootstrap con�dence intervals calculated by tak-
ing the empirical quantiles at levels2:5% and97:5% of these estimates. These intervals are
reported in the bottom left panel of Figure F.1; all three intervals are compared to each other
on the bottom right panel of this Figure. All intervals are roughly similar on the right part
of the graph, but on the left part where data is more sparse, the semiparametric Pareto tail
bootstrap intervals appear to give a much better idea of the type of tail the data exhibits. In
practice, we therefore recommend reporting the Gaussian con�dence intervals along with the
semiparametric Pareto tail bootstrap con�dence intervals, since the latter may give a more
accurate picture of uncertainty where data is sparser. This is the approach we adopt in the
real data analyses of Sections 4.3 and 4.4.
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A comprehensive analysis of the �nite-sample coverage of the proposed semiparametric
Pareto tail bootstrap con�dence interval is unfortunately not yet feasible in a reasonable
amount of time because the calculation of these intervals is computationally very expen-
sive: a rough estimation of the amount of time needed to compute the Pareto tail bootstrap
con�dence interval in a sample of sizen = 1 ;000 (from any one of the models we examine
in the simulation study) leads to one hour of computational time. Multiplied by the number
of replications (N = 1 ;000 independent samples in each model), the number of methods and
the number of models we consider, a full study in the spirit of Sections 4.1 and 4.2 would
require at least several months of calculation even if the code were parallelised. To get an idea
of how the proposed bootstrap methodology performs in practice, we suggest the following
small simulation experiment inspired from the kind of general model we consider in this
paper. Consider a sample of (location-scale) random variablesY1; : : : ;Yn de�ned through

Yi = m + �" i :

Here the mean parameter ism = 2 , the standard deviation parameter is� = 1 , and the random
variables"1; : : : ; "n aren = 1 ;000 independent and identically distributed realisations of a
symmetric rescaled Burr distribution as in Section 4.2, with = 0 :25 and� = � 1. The goal
is to infer an extreme expectile of level� 0

n = 1 � 5=n = 0 :995of Y by �ltering �rst the mean
and scale components. This very closely resembles the approach adopted throughout the
paper in location-scale heteroscedastic regression models. The following estimation methods
are compared:

(E1) We estimate �rstm and� by the empirical meanm and standard deviation� . We then
construct the residualsb" i = ( Yi � m)=� and estimate� � 0

n
(" ) using the bias-reduced direct

and indirect estimatorsb� ?;RB
� 0

n
(" ) ande� ?;RB

� 0
n

(" ) calculated on theb" i with � n = 1 � 100=n =

0:9. We �nally deduce the two extreme expectile estimatorsb� ?;RB
� 0

n
(Y ) = m + � b� ?;RB

� 0
n

(" )

ande� ?;RB
� 0

n
(Y ) = m + � e� ?;RB

� 0
n

(" ):
(E2) Same as in (E1), withm and� calculated using only the �rstn=2 observations.
(E3) Same as in (E1), withm and� calculated using only the �rstn=4 observations.
(E4) Same as in (E1), withm and� calculated using only the �rstn=10 observations.

This is compared to the unrealistic benchmark (BE) wherem and� are assumed to be known
and thus the true" i are accessible. Note that, following the discussion at the top of p.83
in [14], this benchmark should be seen as enjoying a strong advantage over (E1)–(E4), since
the shifted variablesYi have a second-order parameter�  = � 1=4, which is much closer to
0 than the original second-order parameter� = � 1 of the" i . The latter are, strictly speaking,
only accessible in the framework of this unrealistic benchmark (BE). The point of considering
the estimation of the mean and scale components using progressively lower sample sizes is
to assess the in�uence of the rate of estimation of location-scale model components; in (E4),
there are only 100 variables used to calculatem and� , meaning that the “rate of convergence”
of m and� is

p
100 = 10, exactly equal to

p
n(1 � � n ) which is the rate of convergence of

the extreme value step.

For each method, we compare three con�dence intervals. These are, �rst of all, the two Gaus-
sian asymptotic95%con�dence intervals
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n
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"

b� ?;RB
� 0

n
(Y )exp
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n )]
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and
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� 0

n
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n
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� 1:96
log[(1 � � n )=(1 � � 0
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Approach Expectile estimator bI (1)
� 0

n
bI (2)
� 0

n
bI (boot)
� 0

n

Benchmark (BE)
Bias-reduced direct 0.994 (1.082) 0.796 (0.516) 0.896 (0.739)

Bias-reduced indirect 0.998 (1.080) 0.798 (0.514) 0.880 (0.679)

Method (E1)
Bias-reduced direct 0.992 (1.083) 0.790 (0.517) 0.898 (0.742)

Bias-reduced indirect 0.998 (1.081) 0.804 (0.515) 0.882 (0.681)

Method (E2)
Bias-reduced direct 0.992 (1.082) 0.792 (0.517) 0.900 (0.739)

Bias-reduced indirect 0.998 (1.080) 0.798 (0.515) 0.880 (0.680)

Method (E3)
Bias-reduced direct 0.996 (1.081) 0.792 (0.516) 0.900 (0.741)

Bias-reduced indirect 1.000 (1.079) 0.800 (0.514) 0.884 (0.682)

Method (E4)
Bias-reduced direct 0.994 (1.083) 0.790 (0.516) 0.896 (0.741)

Bias-reduced indirect 0.994 (1.081) 0.800 (0.514) 0.884 (0.681)
TABLE F.7

Empirical coverage probabilities of the Gaussian asymptotic con�dence intervals and semiparametric Pareto
tail bootstrap con�dence intervals (95% nominal level) associated with the (bias-reduced) direct and indirect
extreme expectile estimators in the location-scale modelY = m + �" . Between brackets: associated average

lengths of the con�dence intervals.

We compare these intervals with the semiparametric Pareto tail bootstrap95% con�dence
intervals generated as follows: we simulatenb = 500 bootstrap samples" �

1; : : : ; " �
n by

1. Simulatingui from the standard uniform distribution on[0; 1],
2. If ui 2 [p;1� p], for p = 0 :001, taking" �

i = bF � 1(ui ), wherebF is the empirical distribution
function of the residualsb" i ,

3. If ui > 1� p, taking" �
i = ((1 � ui )=p) � b bF � 1(1 � p), whereb = b RB is the bias-reduced

Hill estimator (withk = 200) based on the residualsb"1; : : : ; b"n ,
4. If ui < p , taking" �

i = ( ui =p) � b ` bF � 1(p), whereb ` = b RB
` is the bias-reduced Hill estima-

tor (with k = 200) based on the negative residuals� b"1; : : : ; � b"n .

We then deduce bootstrap samples(Y �
1 ; : : : ;Y �

n ) = ( m + �" �
1; : : : ;m + �" �

n ). For each sam-
ple, we estimate the extreme expectile at level� 0

n (the bias-reduced direct estimator is em-
ployed), and take the empirical0:025and0:975quantiles of thenb estimates to construct our
bootstrap con�dence intervalbI (boot)

� 0
n

. This is the exact analogue of the construction we pro-
posed above, adapted to this simpler location-scale example. We also compare these intervals
with their versions obtained using the bias-reduced indirect estimators. We record empirical
coverage probabilities and average lengths of the intervals. Results are presented in Table F.7.

It is readily seen, �rst of all, that results are almost completely unaffected by the knowl-
edge of the location-scale model structure, and similarly unaffected by the number of data
points used for the estimation of the mean and scale parameters. It is also seen that the
two Gaussian con�dence intervals behave quite poorly, being either too conservative or too
narrow and achieving a coverage rate far from the nominal rate. By contrast, the proposed
semiparametric Pareto tail bootstrap con�dence interval behaves fairly well, with a typical
coverage probability of about90%. This seems to be quite robust to the number of bootstrap
replications: a larger number of bootstrap replications was also considered without chang-
ing results substantially. This constitutes reasonable grounds for recommending the use of
the semiparametric Pareto tail bootstrap con�dence interval, although of course a full-scale
simulation study should be carried out in future work to assess its accuracy in the regression
context (subject to computational improvements that are beyond the scope of this article).


