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Expectiles de ne a least squares analogue of quantiles. They have been
the focus of a substantial quantity of research in the context of actuarial and
nancial risk assessment over the last decade. The behaviour and estima-
tion of unconditional extreme expectiles using independent and identically
distributed heavy-tailed observations has been investigated in a recent se-
ries of papers. We build here a general theory for the estimation of extreme
conditional expectiles in heteroscedastic regression models with heavy-tailed
noise; our approach is supported by general results of independent interest on
residual-based extreme value estimators in heavy-tailed regression models,
and is intended to cope with covariates having a large but xed dimension.
We demonstrate how our results can be applied to a wide class of impor-
tant examples, among which linear models, single-index models as well as
ARMA and GARCH time series models. Our estimators are showcased on a
numerical simulation study and on real sets of actuarial and nancial data.

1. Introduction.

1.1. Motivation. A traditional way of considering extreme events is to estimate extreme
quantiles of a random variab¥ 2 R, such as the negative daily log-return of a stock market
index in nance, so that large values ¥fcorrespond to extreme losses on the market, or the
magnitude of a claim in insurance. A better understanding of the extreméscah often
be achieved by inferring the conditional extremesrofjiven a covariateX . Recent exam-
ples include the analysis of high healthcare costs in [49] and large insurance claims in [41].
We focus on the case wheh given X is heavy-tailed i(e. Paretian-tailed); this assump-
tion underpins the aforementioned papers and is generally appropriate to the modelling of
actuarial and nancial data. Under no further assumptions on the structiipé 0of ), non-
parametric smoothing methods such as those of [7, 18] can be used. Those techniques suffer
from the curse of dimensionality, compounded in conditional extreme value statistics by the
necessity to select only the few high observations relevant to the analysis. Early attempts at
tackling the low-dimensional restriction, such as [12], were built on parametric models. Later
attempts have mostly used quantile regression: a seminal paper is [6], developed further by
[23, 49, 50]. An approach based on Tail Dimension Reduction was adopted by [17].

These techniques, and more generally the current state of art in conditional extreme value
analysis, rely on quantiles, which only use the information on the frequency of tail events
and not on their actual magnitudes. This is an issue in risk assessment, where knowing the

MSC 2010 subiject classi cation®rimary 62G32; secondary 62G08, 62G20, 62G30
Keywords and phrase€xpectiles, extreme value analysis, heavy-tailed distribution, heteroscedasticity, re-
gression models, residual-based estimators, single-index model, tail empirical process of residuals
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magnitude of typical extreme losses is important. One way of tackling this problem is to work
with expectiles, introduced in [38]. Theth regression expectile of givenX is obtained
from the th regression quantile by replacing absolute deviations by squared deviations:

(YJX)=ar9$in EC (v )  (MIX =x);

where (y)=j 1fy  Ogjy? is the expectile check function arid g is the indicator
function. Expectiles are well-de ned and unique when the underlying distribution has a nite
rst moment (see [1] and Theorem 1 in [38]). Unlike quantiles, expectiles depend on both
the probability of tail values and their realisations (see [31]). In addition, expectiles induce
the only coherent, law-invariant and elicitable risk measure (see [55]) and therefore bene t
from the existence of a natural backtesting methodology. Expectiles are thus a sensible risk
management tool to use, as a complement or an alternative to quantiles.

The literature has essentially focused on estimating expectiles with a xed leyste
e.g.[27, 30]). The estimation of extreme expectiles, where ! 1 as the sample size

n tends to in nity, remains largely unexplored; it was initiated by [9, 11] in the unconditional
heavy-tailed case. Our focus is to provide and discuss the theory of estimators of extreme con-
ditional expectiles, in models that may cope with a large but xed dimension of the covariate
X . In doing so we shall develop a novel theory of independent interest for the asymptotic
analysis of residual-based extreme value estimators in heavy-tailed regression models.

1.2. Expectiles and regression modeld/Ne outline our general idea in the location-scale
shift linear regression model. LEXi;Y;),1 i n beasample fromarandom péx ;Y)
suchthaty = + >X +(1+ >X)" The parameters 2R, 2 R%and 2 RY are
unknown, and so are the distributions of the covarkte® RY and the unobserved noise
variable" 2 R. We also suppose that is independent of, and has a suppokt such that
1+ ~x > Oforallx 2 K. In this model, by location equivariance and positive homogeneity
of expectiles (Theorem 1(iii) in [38]), we may write(Yjx)= + “x+(1+ >x) ("):

A natural idea to estimate the extreme conditional expectjléY jx), where = ! 1as

n!l ,isto rstconstruct estimatorb, 0 andP of the model parameters using a weighted

least squares method and then construct residuals which can be used, instead of the unobserv-
able errors, to estimate extreme expectile’s. dtis expectile estimator can be adapted from,

for instance, an empirical asymmetric least squares method (see [9, 11jpdfa nite sec-

ond moment, the weighted least squares approach produtesonsistent estimators, and

it is reasonable to expect that the asymptotic normality properties of the estimators of [9, 11]
carry over to their residual-based versions. An estimator of the extreme conditional expectile

(Yjx) is then readily obtained & (Yjx)= b+ P>x +(@+ P>x)b (:

Our main objective in this paper is to generalise this construction in heteroscedastic regres-
sion models of the fornY = g(X )+ (X )" wheregand > 0 are two measurable func-

tions of X , so that  (Yjx)= g(x)+ (x) ,(").If " is centred and has unit variance,

this model can essentially be viewedBgrjX ) = g(X ) andVar(YjX )= 2(X), and is

called location-dispersion regression model [47]. Even though our theory will be valid

for arbitrary regression models of this form, one should keep in mind models adapted to the
consideration of a large dimensiah where the estimation af and will not suffer from

the curse of dimensionality and thus reasonable rates of convergence can be achieved. The
viewpoint we deliberately adopt is that the estimatiorgaind is the “easy” part of the
estimation of (Y ]x) because, depending on the model, it can be tackled by known para-
metric or semiparametric techniques that are easy to implement and converge faster than the
extreme value procedure for the estimation Qf("). This converts the problem of condi-

tional extreme value estimation into the question of being able to carry out extreme value
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inference based on residuals rather than the unobserved noise variables, which is nonetheless
a dif cult question because residuals are neither independent nor identically distributed.

In Section 2, given that residuals of the model are available, we provide high-level, fairly
easy to check and reasonable suf cient conditions under which the asymptotics of residual-
based estimators of (") are those of their unfeasible, unobserved error-based counterparts.
Several of our results are of independent interest: in particular, we prove in Section 2.2 a
non-trivial result on Gaussian approximations of the tail empirical process of the residuals,
which is an important step in proving asymptotic theory for extreme value estimators in gen-
eral regression models. The idea of carrying out conditional extreme value estimation using
residuals of location-scale regression models is not new: it has been used since at least [37]
and more recently in [2, 26, 35] in the context of the estimation of extreme conditional Value-
at-Risk and Expected Shortfall. A novel contribution of this paper is to provide a very general
theoretical framework for tackling such questions. In Section 3, we shall then consider ve
fully worked-out examples. We start with the location-scale shift linear regression model
in Section 3.1, a heteroscedastic single-index model in Section 3.2, and a heteroscedastic,
Tobit-type left-censored model in Section 3.3. The latter example allows us to show how
our method adapts to a situation where the matied g(X )+ (X )" is valid in the right

tail rather than globally. Aside from these three examples, we study the two general ARMA
and GARCH time series models in Section 3.4 as a way to illustrate how our results may be
used to tackle the problem of dynamic extreme conditional expectile estimation. Section 4
examines the behaviour of our estimators on simulated and real data, and Section 5 discusses
our ndings and research perspectives. All the necessary mathematical proofs, as well as fur-
ther details and results related to our nite-sample studies, are deferred to the Supplementary
Material [19].

2. General theoretical toolbox for extreme expectile estimation in heavy-tailed re-

gression models. Our general framework is the following. LEX;Y;),1 i n be part
of a (strictly) stationary sequence of copies of the random(pairy ), with Y 2 R, such that
) Y=9(X)+ (X)"

whereg and > 0 are two measurable functions ¥f. The unobserved noise varialyl

R is centred and independent ¥f; in other words, for each, X ; is independent of;,
although we do not assume independence between thg ®airs ). In addition, we suppose
throughout that th&; = (Y; g(X))= (X;) are independent.

It follows from this assumption that a conditional expectile(Yjx) can be written as
SYIX =x)=gx)+ (x) ("X =x)=g(x)+ (xX) ,(");where we used the loca-

tion equivariance and positive homogeneity to obtain the rst identity, and the independence

betweenX and" to get the second identity. We assume throughout Section 2jthad

have been estimated, and we concentrate on estimating the extreme expgctlevith the

objective of ultimately constructing an estimator of (Y jx). Denoting by 7! q (") the

quantile function of', we work under the following rst-order Pareto-type condition:

G ( ) The tail quantile function of, dened by U(t) = ¢ (") for t> 1, is regularly
varying with index > 0: U(tx)=U(t)! x ast!1l foranyx> 0.

ConditionG( ) is equivalent to assuming that the survival functiorf pflenoted hereafter
byF :x 7! P(">x ), is regularly varying with index 1= < 0(see [13], Proposition B.1.9).
Together with conditiorEj" j< 1 , where" =min(";0), the assumption< 1 ensures
that the rst moment of' exists, which entails that expectiles ‘bfof any order are well-
de ned. Both of these conditions shall be part of our minimal assumptions throughout.
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The essential dif culty to overcome in our setup is that theare unobserved. However,

becauseqy and have been estimated, lgyand— say, we have access to residu'q(l'é) =
(Yi 9(X;))="(X;) constructed from the regression model (1). Our idea in this section will

be to construct estimators of extreme expectiles based on the obsdt{\')%\bw]d study their
theoretical properties when they are in some sense “close” to the true, unobserved

We start by the case of antermediate level,,, meaning that,! landn(1 ,)!'1
Section 2.1 below focuses on a residual-based Least Asymmetrically Weighted Squares
(LAWS) estimator. Section 2.2 then introduces a competitor based on the connection be-
tween (theoretical) extreme expectiles and quantiles and new general results on tail empirical
processes of residuals in heavy-tailed models. Section 2.3 extrapolates these estimators to
properly extreme levels? using a Weissman-type construction warranted by the heavy-tailed
assumption (see [51]), and combines these extrapolated devices with the estimgtans of

to nally obtain an estimator of the extreme conditional expectilgY jx).

2.1. Intermediate step, direct construction: residual-based LAWSsume that,, is an
intermediate sequencee. ,! l1landn(l n)!1 . If the errors"; were available, we

could estimate , (") by 9, (") minimising ., "i  u) with respect tal. We replace

the unobservet]; by the observed residualbfs”), resulting in the LAWS estimator

X0
b ("y=argmin NCREEE
u2R i=1

Our rst main theorem is a exible result stating th@tn (") is aIO n(l ) relatively
asymptotically normal estimator of the high, intermediate expectjlg¢') provided the gap
between residuals and unobservable errors is not too large. For technical extensions to the
case of a random sample size or independent arrays, see Lemmas C.5 and C.8 of [19].

THEOREM 2.1. Assume that there is> 0 such thatEj" j?* < 1, that" satis es
conditionG( )withO< < 1=2and ," lissuchthan(1 ,)!1 .Suppose moreover

that the array of random variablebﬁ”), 1 i n,satises
P se(N)
@) Nl max P

1in 1+j"ij
|

b v 3
Thenwehavg nl n) () 1 1R 0; 2

REMARK 1. Theorem 2.1 is a non-trivial extension of Theorem 2 in [9] to the case
when the"; are unobserved. The difference lies in the fact that the estinl?a,t(j'r) is much
more dif cult to handle directly; Condition (2), on the weighted distance betweeri'ithe

and theh(”), allows for a control of the gap betweé?h (") and the unfeasiblé ("), with

the presence of the denominatbt j";j making it possible to deal with heteroscedasticity
in practice. We shall use this key condition again in our results in Section 2.2. It will be
satis edryvhen the structure of the modél= g(X )+ (X )" is estimated at a faster rate

thanthe n(1 ) rate of convergence of intermediate expectile estimators. The proof is
based on rigorously establishing tlﬁt(") andd, (") have the same asymptotic distribution;
the striking fact is that the theoretical arguments fundamentally only require stationarity of
the ", with independence only being crucial for concluding tBat(") is asymptotically
Gaussian by Theorem 2 in [9] and therefd}g(") must be so. Theorem 2.1 can then be
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expected to have analogues when 'thare stationary but weakly dependent, thus covering
(fordexample) regression models with time series errors as in [46], as long as one can prove

the: n(1 ) asymptotic normality ofl ("). An example of such a result for stationary
and mixing"; has been investigated in [10].

2.2. Intermediate step, indirect constructionWe start by recalling, as shown in Propo-
sition 2.3 of [3], that the heavy-tailed condition bi! U(t)= q;  :(") entails
lim (")
"1 (")
Therefore, if” is a consistent estimator of andq (") is a consistent estimator qf_ ("),
we can estimate the intermediate expectil|g") by the so-called indirect estimator

e.(M=("* 1 a,():

An extension of Theorem 1 in [9] (see Proposition A.1 in [19]) shows that under the follow-
ing classical second-order re nement of conditiGr( ), the asymptotic distribution of the

estimator® (") is determined under high-level conditionseng _(")).
G(; ;A ) Forallx> 0,

=( '

Iimi U(tx) X =xx 1.
o A®)  U(D) !

whereA is a function converging to 0 at in nity and having constant sign, and0. Here
and in what follows(x  1)= is to be read akgx when =0.

We now explain how one may construct and study residual-based estimatods ("). Let

Zin  Zon Zn:n be the ordered tuple associated with am tuple(z1;z2;:::;2zn).

A number of estimators of can be adapted to our case and written as a functional of the tail
empirical quantile process of the residuals, among which the popular Hill estimator ([24]):

K n 2y Ko
b=~ log B ieain log @WA ds:

m
k i=1 bn k;n 0 k;n

Hereb c denotes the oor function. We may also adapt in the same way the moment-type
statistics which intervene in the construction of the moment estimator of [14], and the general
class of estimators studied by [42]. These estimators depend on the choice of an effective
sample siz& = k(n)!'1 andk=n! O0;itis useful to think ok as beingk = bn(1  j)c.

It is therefore worthwhile to study the asymptotic behaviour of the tail empirical quantile

process 7! bf]”g ks, Of residuals, and of its log-counterpart. This is of course a dif cult task,

because the array of residuals is not made of independent random variables. To tackle this
problem, we rst recall that under conditio®( ; ;A ), one can write a weighted uniform
Gaussian approximation of the tail empirical quantile process of the (unobsg&rved)

S 1 1=2

nb kscn _ +s

h k=n (") -

uniformly in s 2 (0; 1], whereW, is a sequence of standard Brownian motions and0
i§7arbitrarily small (see Theorem 2.4.8 in [13]), provided k(n)!1 , k=n! 0, and

kA (n=k) = O(1) . Strictly speaking, this approximation is only valid for appropriate ver-
sions of the tail empirical quantile process on an appropriate probability space; since tak-
ing such versions has no consequences on weak convergence results, we do not empha-
sise this in the sequel. For certain results which require the study of the log-spacings

+ pl—k s Wp(s)+ IOEA(n:k)s op(1)
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09" b ksen  109"n Kk, Such as the convergence of the Hill estimator, an approximation
of the log-tail empirical quantile process is sometimes preferred: uniformdRi(o; 1],

} Iog "n b ksc;n
h k:n(")

Our next result is that, if the error made in the construction of the residuals is not too large,
then these approximations hold for the tail empirical quantile process of residuals as well.

S 1 -
+g 12

=log %+ p% s Wy (s)+ pEA(n=k)1 op(1)

where ,"1,n(1 )!'1 and n(1 AA@ ) H)=0(1). Suppose that the

array of random variableiq(”), 1 i n,satis es(2). Then there exists a sequentg of
standard Brownian motions such that, for arsy 0 suf ciently small: uniformly ins 2 (0; 1],

THEOREM 2.2. Assume that c%nditioﬁtz( ; A ) holds. Letk = k(n) = bn(1  p)c

K _
nb kscin PP s MWa(9)+ | KA(N=K)s lis =2 o)
th k=n( ) k
and
o 1
b _ p_
Liog@noksen Aol gt s 1w 9+ T kA= IS 1is 2 o
th k=n(") S k

Theorem 2.2 is the second main contribution of this paper. It is a non-trivial asymptotic result,
because there is no guarantee that ranks of the original error sequence are preserved in the
residual sequence, and it therefore is not obvious at rst sight that Condition (2) on the gap
between errors and their corresponding residuals is in fact suf cient to ensure that the tail
empirical quantile process based on residuals has similar properties to its unobserved errors-
based analogue. As an illustration, we work out the asymptotic properties of the residual-
based, Hill-type estimator of the extreme value indef the errors, as well as the asymptotic
behaviour of the related indirect intermediate expectile estimator in Corollary 2.1 below.

COROLLARb/ 2.1. Assume that conditio@( ; ;A ) holds. Let , " 1 satisfyn(1
D!l and n(l  DA(@  n) Y)! 2 R. Suppose that the array of random vari-

ablest{™, 1 i n,satises(2).1f "= byu jcandq ()= ) o then
. zZ,
P nl n) — q"(..) 11 + W(s) W(1) ds; W (1)
q.(") 1 0
whereW is a standard Brownian motion. In particular,
P—— q,(") d
n(l ; —— 1! 7)o
( n) qn( ) ( )
where N =(1 ); ? and N 0;_2 are independent. As a consequence, if
moreovelEj" j<1,0< < 1,E(")=0and n(1 ,)=q,(")=0(), one has
!
P— € (" m
W etk T ) emOR

wihm()=(1 ) log( ! Danap(; )= LD LD L
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This result is our third main contribution. Such results on residual-based extreme value esti-
mators appear to be quite scarce in the literature: see Section 2 in [50] and Section 3 in [49] in
linear quantile regression models, Proposition 2 in Appendix A of [26] in ARMA-GARCH
models, and Section 3 in [48] in a nonparametric homoscedastic quantile regression model.
Our result relaxes these strong modelling assumptions, and provides a reasonable general the-
oretical framework for the estimation of the extreme value index and intermediate quantile
via residuals of a regression model. Similarly to Theorem 2.2, this result is of wider interest

in general extreme value regression problems with heavy-tailed random errors.

REMARK 2. When, with probability 1g(X ) is bounded and (X ) is positive and
bounded (this is the setup of our simulation study for linear and single-index models, see
Section 4.1), one could estimataising theY; = g(X i)+ (X;)"; directly, because then the
Y; all have extre|g1e value index(see Lemma A.4 in [19]). A competitor to the estimalbpr
is thusge = k 1 i=1 109(Yn i+1:n=Yn Kn). A numerical comparison of the estimatdus
andgx (which we do not report to save space) shows, however, that the residual-based esti-
matorby has by far the best nite-sample performance. The idea is that the presence of the
shift g(X ;) and scaling (X ;) in theY; introduces a large amount of bias in the estimation
of by gx; removing these two components in the calculation of the residuals substantially
improves nite-sample results. A related point is made in [13] (p.83).

REMARK 3. The earlier work of [25] provides general tools to obtain the asymptotic
normality of the Hill estimator based on a ltered process. The essential difference with our
approach is that we put our assumptions directly on the gap between the residuals and the
unobserved noise variables; by contrast, the methodology of [25] essentially assumes that
the residuals are obtained through a parametric Iter, and makes technical assumptions on
the regularity of the parametric model and the gap between the estimated parameter and its
true value. The latter approach is very powerful when working with time series models, as
typical such models (ARMA, GARCH, ARMA-GARCH) have a parametric formulation.

By contrast, we avoid the parametric speci cation and therefore can handle a large class of
possibly semiparametric regression models (such as heteroscedastic single-index models, see
Section 3.2), while still providing useful results for time series models (see Section 3.4).

The theory in [25] allows for non-independent errors in autoregressive time series, see Sec-
tion 3.2 therein. This corresponds to when the lter does not correctly describe the underlying
structure of the time series, and can be used in misspeci ed models. Our results use the in-
dependence of the errors, but may also be extended to the stationary weakly dependent case:
our argument for the proof of Theorem 2.2 (and hence for Corollary 2.1) relies on, rst,
quantifying the gap between the tail empirical quantile process based on the unobserved er-
rors and its version based on the residuals (see Lemma A.3 of [19]), and then on a Gaussian
approximation of the tail empirical quantile process for independent heavy-tailed variables.
Inspecting the proofs reveals that both of these steps can in fact be carried out when the
are only stationary, mixing and satisfy certain anti-clustering conditions, because a Gaus-
sian approximation of the tail empirical quantile process also holds then, see for instance
Theorem 2.1 in [15].

2.3. Extrapolation for extreme conditional expectile estimatioWe nally develop
high-level results for the estimation of properly extreme conditional expectiles whose level
91 1 can converge to 1 at an arbitrarily fast rate. One would typically chgbsel p;,
for an exceedance probability not greater thati=n, seee.g.Chapter 4 of [13] in the context
of extreme quantile estimation. Following [51], intermediate quantiles of okdean be ex-
trapolated to the extreme leve), using the heavy-tailed assumption. This idea successfully
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carries over to expectile estimation because of the asymptotic proportionality relationship
(=g (! ( * 1) as "1,resulting in the following class of estimators of("):

1 9

1

—? n - n
o(")= ()
where™ and (") are consistent estimators ofand of the intermediate expectile, ().
In the context of a regression model of the form (1), these would be based on the residuals

obtained via estimatoig(x) and™(x) of g(x) and (x). One can then estimate. (Y jx) in
-0 -2
model (1) by o(Yjx)=g(x)+ ~(x) o("): We examine the convergence of this estimator.

THEOREM2.3. Assume thaEj" j< 1 and conditionG( ; ;A ) holds withO< < 1
and < 0. Assume further tha&(")=0 and ,; ;" 1satisfy

p___

1 r? ) n(l n) .

(3) nd a)tlos g n! 0; @ n)p=(1 o 1
4) PR IA@ . Y 2R and r:q(l(,,)”)zou):

Suppose also tha?t nl o) (M= .,(") 1)=0p@)and n@ ) ) 4
where is nondegenerate. Then
P— -2 !
n(l n) o(")  d

1
logl(1 )= A o)
Finally, if model(1) holds (withX independentrp'f) and, at a given point, the estimators

g(x) ands(x) satisfyg(x) g(x)=0p(l)and n(l ,)((x) (x)) =0 p(1), then
s !
PRE Y e(vix)

log[(1 )= 1 o(Yix)

! d

REMARK 4. This result applies to the residual-based direg,t LAWS estimator and indirect
guantile-based estimator under the conditions that ensure the{. ) consistency.
These conditions ﬁssentially amount to assuming that the structure of the model is estimated
at arate fasterthan n(1 ), see Theorem 2.1, the related Remark 1, and Corollary 2.1.

3. Applications of our theoretical results.

3.1. Location-scale shift linear regression modellVe concentrate here on applications
in the popular example of location-scale shift linear regression model, which we recall below.

Model (M;) Therandom paitX ;Y)issuchthaly = + >X +(1+ ~X)" Herethe
random covariatX isindependent of the centred noise varidhland has a density function
fx onRYwhose support is a compact $etsuch thatl+ >x > Oforallx 2 K .

Model (M 1) features heteroscedasticity. It is well-known that in this model, traditional meth-

ods such as ordinary least squares are consistent but inef cient. A particular concern in

our case is also to nd accurate estimators of the heteroscedasticity paraménedeed,
(Yx)= + x+@+ ~x) (")ywith (")!1 asn!l ,sothat, whem is

large, even a moderately large error in the estimation cén result in a substantial error in

the estimation of the extreme conditional expectilg Y jx). We suggest a two-stage proce-

dure to estimate (, , ), based on independent data poifXs;Yi)1 i n-
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1. (Preliminary step) Compute the ordinary least squares estimatargl € of and |,
and then the ordinary least squares estimator based on the absolute residu#s=
iYi  (e+ € X;)j, thatis,€= e=e and

X X
(e ®=argmin (Y, a b’X{)? (e e)=argmin (B c d> X%
@b) =1 (cd) =1
2. (Weighted step) Compute the least squares estimat@sd bof and |, weighted
using estimated standard deviations obtained8siand then the weighted least squares
estimator of based on the absolute residuflls= iYi  (b+ b>x i)j,.e. b= b=p and
I
X : >y 2 X . Sy 2
(b by=argmin Yi a bXi : (b b)=argmin —2' ¢ d”Xi
(@b) =1 1+ &X; (cd) =1 1+ ©X;

REMARK 5. This is a one-iteration version of a general weighted least squares procedure
where estimates obtained at a given step are fed back into the next iteration to update weights,
this procedure being repeataed times. Simulation results seem to indicate that iterating the
procedure further does not improve the accuracy of the estimators in practice.

Once these estimates have been obtained, we can construct the sample of (weighted) residuals
W =(Y, (b+ b>5 ))=(1 + 2> X,) satisfying Condition (2) since the weighted least
squares estimators aren consistent (see Lemma C.1 in [19] and also (52) in the proof of
Corollary 3.1). One can then estimate (") by the direct LAWS estimatdP (") described

in Section 2.1. The consistency and asymptotic normalit? af') are therefore a corollary
of Theorem 2.1, and this in turn yields the asymptotic behaviour of the estimators

b (vix)= b+ PPx+@+ Px)b (") (intermediate level)
1 9

n

and By (Yjx)= b+ P7x +(1+ Px) b (") (extreme level)

where™ is a consistent estimator ofconstructed on the residuals.

COROLLARY 3.1. Assume thatthe setup is that of the heteroscedastic linear r{iddé!
Assume that satis es conditionG( ) with0< < 1=2. Suppose also th&j" j** < 1

forsome > 0,andthat , " 1withn(1 ,)!'1
!

b (vi ' 3

LJ_X) 1 R| 0; 27
L (Yjx) 1 2

(i) Assume further that satis es conditionG( ; ;A ) with < 0. Suppose also that
no O™ 1 satisfy(3) and (4). If there is a nondegenerate limiting random variablesuch

that n(1 ) )!d , then

S LA )

log[(1  n)=1 A o(Yix)

(i) Thenforany 2 K, P nl )

We may similarly obtain the asymptotic normality of the indirect estimaforéY jx) and
e?R(YjX) of the intermediate and extreme expectile{Y jx) and o(Yjx), de ned as

€ (Yjx)= b+ b> x +(1+ b>x)(* 1 1) 7b§]ng n@ .)en
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0
and & (Yjx)= b+ P x +(1+ P x) i N G -

n nbn@ ,)cn

Here™ is the residual-based Hill estimator of the asymptotic properties of the estimators
are obtained using Corollary 2.1 and Theorem 2.3. See Corollary E.1in [19].

REMARK 6. Corollary 3.1 requires a second moment of the noise variallecause
of the use of the weighted least squares method and the residual-based LAWS estimator of
intermediate expectiles. The R pack&&Sdatasets contains numerous examples of real
actuarial data sets for which the assumption of a nite variance is perfectly sensible. When
this assumption is violated, the alternative is to use a more robust method for the estimation
of the model structure and then use the indirect expectile estimator of Section 2.2. A more
robust method for the estimation ofand s, for instance, the one-step estimator of [39].
Such methods typically require some regularity on the joint distributiqiXaf"), but avoid
moment assumptions. The convergence of the indirect expectile-based estimator built on the
residuals will then only require a nite rst moment, see Corollary 2.1 and Theorem 2.3.

3.2. Heteroscedastic single-index modeR model with greater exibility is the het-
eroscedastic single-index model; the single-index structure allows to handle complicated re-
gression equations in a satisfactory way, including when the dimeds®olarge.

Model (M,) The random paifX ;Y)issuchthaty = g( X )+ ( >X)" Heregand

> 0are measurable functions. The random covadatis independent of the noise variable
", and has a density functidry on RY whose support is a compact and convexieaith
nonempty interiokK °. Besides, the variableis centred and such thgj"j=1.

For identi ability purposes, we will assume thgtis continuously differentiablek k=1
(wherek k denotes the Euclidean norm) and that the rst non-zero component®pos-

itive. This guarantees that is identi able. Other sets of identi ability conditions are possi-

ble, seee.g.[28]. In this regression model, the conditional mean and variance have the same
single-index structure. There are analogue models where the direction of projectias in

a vector possibly different from (seee.g.[54]). In practice, mode{M ) is already very
exible, and for the sake of simplicity we therefore ignore this gore general case; in the lat-
ter, the direction in the variance component can be estimated atrtheate (see Theorem 1

in [54]), and it is readily checked that our methodology below extends to this case.

In model(M3), . (Yjx)=g9g( >x)+ ( >x) ,("): There are numerOLPsﬁ consistent
estimators of (seee.g.Chapter 2 of [28]). We thus assume that such an estimRitoas

been constructedle.” n(P  )=0 p(1). Estimate nowg with
| |

b, ()= YilfiYij thgl L = 21
._ hn - hn
i=1 i=1
HereL is a probability density function oR, h, ! 0is a bandwidth sequence ang! 1
is a positive truncating sequence. This is inspired by an estimator of [22]; truncating helps in
dealing with heavy tails. Besides, analogously to what we observed in rfiddg] ( > X)
is the conditional rstmomentgfy g( > X )j. Introduce then absolute residuiliﬁ1n 1, =

IYi  bn, . ( b>x i)j and consider a Nadaraya-Watson-type estimator:
| |

X L z —Ai b>xi :
hn

X n 0 ; bx. o
bn, t, (2) = Z’i;hn 1, 1 Z)i;hn t L -
i=1 hn i=1
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In Proposition C.1 (see [19]) we show that, under conditions tailored to our framework, both
of these estimators convegge uniformly on any compact subgelf the interior of the sup-

port of X at the raten®®="logn under the conditiomh3 ! ¢2 (0;1 ). Similar results,
mostly on the estimation of the link functiap are available in the literature; see for exam-

ple [32] for an estimator based on smoothing splines, as well as references therein.

The residuals are the!bf”) =(Y;i by, ;tn(b> X i))=bp, «, ( b>X i): Translated in terms of
these residuals, Proposition C.1 of [19] reads
2=5 ()

n jn i
for any compact subséd€ o of the interior of the support oK . The restriction to such a
compact subset makes sense since kernel regression estimators strongly suffer from boundary
effects (see, among many others, [33]). This restriction is not important in practice since one
would only trust the estimates gfand on a sub-domain of the support where suf ciently

many observations frol{ have been recorded. It implies, however, that the residoﬁ%s
that can be used for the estimation of the high conditional expectile are those forXvhith
Ko. More precisely, le (?&0; i (”k be those residuals whose corresponding covariate

vectorsX ; 2 KgandN = N(Kg;n)= in=1 1f X 2 Kog be their total number. De ne

X
b,()=argmin - (HY
uzrR 4 o

with y = 1 whenN = m> 0. This yields the estimators
b (Yix)= bh, 1, (P7X)+ b, ¢, (97x)P, () (intermediate level)

. -
and b?g (Yix) = bn, 1, (07 x)+ bn, 1, (P x) H b (") (extreme level).

Again, the estimator is typically calculated using high order statistics of the residtﬁfso;

for example, this can be the Hill estimator taking into account thebddfl  y)c order
statistics of these residuals (see Lemma C.6(ii) in [19] for the asymptotic properties of this
estimator). The next result focuses on the estimaﬁqr(stx) and b?g (Yjx).

THEOREM 3.1. Work in modelM ;). Assume that satis es conditionG( ) with 0<
< 1=2 and the conditions of Proposition C.1 in [19] hold. Legt =1 n 2 with a2
(1=5; 1), Ko be a compact subset Kf such thatP(X 2 K0)|> 0, andN = N (Kg;n).
b (vi ' 3
v (Yix) 12
(i) Assume moreover thatsatis es conditionG( ; ;A ) with < 0. Suppose also that
ns O™ 1 satisfy(3) and (4). If there is a nondegenerate limiting random variablesuch

that N(1 n)(T )!d , then for anyx 2 Ko,

pP—— B (v !
N1 «n) o (Yjx) d

log[(1  n)=(1 I g(Yix)

(i) We have, for anx 2 K, P N1 n)

REMARK 7. Compared to Corollary 3.1, Theorem 3.1 features the additional restriction
n=1 n @with a2 (1=5;1). This means that the intermediate expectile to be estimated
has to be high enough so that the rate of (semiparametric) estimation of the structure of the
model is faster than that of the intermediate expectile and the extreme value index
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REMARK 8. In Theorem 3.1, the order of the conditional expectile to be estimated and
rates of convergence are random and dictated by the nulhbemN (K g; n) of covariates
X i 2 Ko (where model structure can be estimated at then&te= logn). Random conver-
gence rates are not unusual in situations where the effective sample size is random: see, for
example, Corollary 1.1 in [43] and Theoremp3 in [52] in the context of randomly truncated
observations. The random rate of convergendd (1 ) in Theorem 3.1 can nonethe-
less be replaced ng a nonrandom rate because, with the notation of Theorem 3.1 and if
Po= P(X 2Kp), N@ n)=[npo]® @71+ 0p(1)) by the law of large numbers.
Similarly, in convergence (i) and if®=1 n Pwith b>a, one can replace ,9, by the
nonrandom sequende r?po =(npg) Pand the rate of convergence in (ii) can be substituted
with the nonrandom rate of convergerjopo]* @=?=[(b a)log(npo)].

Let us nally mention that, if~ is the residual-based Hill estimator, an analogous result
(Theorem E.1 in [19]) holds for the indirect extreme conditional expectile estimator

1 8 (— 1 1) 7bf\jn) :
1 N b NI n)ENKo

Again, its asymptotic distribution is controlled by thataf

& (Yix) = bh,x, (%) + br, g, (P %)

3.3. Heteroscedastic left-censored (Tobit) regression modéle brie y discuss how the
assumption that our model describes globally the structuf¥ ¢y ) can be relaxed, through
the example of the left-censored regression model below.

Model (M3) Therandom paifX ;Y) satisesY = g(X )+ (X )"wheng(X )+ (X)">

Yo, andY = yg otherwise. Hergg is known andg and > 0 are measurable functions. The
random covariatX 2 RY is independent of the centred noise varidbkuch thatEj"j = 1.
On the support oK , the functionggand are bounded and is bounded away from 0.

Wheng is linear and is constant, this is the Tobit model of [45] with non-Gaussian errors.
The heteroscedastic case is consideraddtj34, 40], where it is shown how a linegican be
estimated at the n rate, with standard nonparametric rates obtained under no assumption
ong. Such models are important in economics (see [45]) and insurance (to model a net loss,
i.e. claim amount minus deductible when the former exceeds the latter, and 0 otherwise).

Here, if" is heavy-tailed, there is. 2 (0; 1) such that for 2 [ ¢; 1], the conditional quantile
function of Y givenX satisesq (Yjx)= g(x)+ (x)q (") (see Lemma C.7(i) of [19]),
linking model (M 3) to the tail regression models of [48, 50]. We do not have an analogue
formula for expectiles because they are not equivariant by taking increasing transformations,
but

(Yjx) (gX)+ (X)X =x)=9g(x)+ (x) (") (see Lemma C.7(ii) of [19])

as " 1, which is much weaker than the relationshigYjx) = g(x)+ (x) (") true when

the regression model is valid globally. It is also weaker than a speci cation of the form
(Yjx)=r(x)+ (") for 2] ¢;1], which would be an expectile-based version of the

model of [48].

Assume that there are estimatdysf g andb of which arev, uniformly consistent (for
somev, !'1 ) on a measurable subd€y of the support ofX such thatP(X 2 Kg) > 0.
Let (X;;Yj;g) stand for all thoséN vectors (whereN is random) relative to noncensored
observations with covariate vectorskm, i.e. Y; = g(Xij)+ (Xj)g andX; 2 K for 1

i N. Construct residuals zh%N) =(Yi b(Xi)=b(X;). These approximate unobservable
g that, givenN = m > 0O, arem i.i.d. copies of a random variabkesuch thatP(e > t) =
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p 1P(">t) fort large enough, wherp= P("> (yo 9g(X))= (X)jX 2 Kg)> 0 (see

Lemma C.7(iii) of [19]). In particular one easily shows that'ihas extreme value index

p thene has too, and (")= (e¢)! p as ; 1(see Lemma C.7(iv) of [19]). Lelo =
L, 1fX; 2 Kog. The fact thatN=Ng is a’ n consistent estimator gf motivates the

estimators

N bona e

b (Yjx)= b(x)+ b(x) b (e) (intermediate level)

No
bon @ NDC 1 0 bon @ N)C
and b?N (Yjx) = b(x)+ b(x) Nl 1 N bN (e) (extreme level)
0 N

wherebN (e) is the LAWS estimator of the expectile efat level \, based on the residuals

Q(N), andbpy 1 )¢ IS the Hill estimator based on the topl (1 n )c elements of these
same residuals. We examine the convergence of the above estimators next.

THEOREM 3.2. Work in model(M 3). Assume that satis es conditionG( ; ;A ) with
0< < 1=2.Suppose also th&j" j?* < 1 forsome > 0, and suppose thdgandb are
vy uniformly consistent estimators (herg!1  )ofgand onKgwithP(X 2 Kg) > 0.
Let n=1 n 2@witha2 (0;1) and assume that! =2 ! 0.

() pr nl MA@ ) H! o 2 Randp n n)=q,(")! 2 Rthen, forany

X2Ko, |

P b (vix) .
NG W) g b R (b(; p; x);v(;p)) with
b(; ;p; X)
m m X) n yO g(X)
=ty pEros X I yok, B max Y 9%
( ) P ) 0 x)
1 1
, P logp p 1 .. H H 1 and
1 1
v(ip)= 2o +2ogp D s fiog p)? 2
’ 1 2 @ )2 '
(i) Assume moreover thatk Oand ,; 9" 1satisfy(3) and(4). Then, for anyk 2 Ko,
PNE T P
N1 ) o (Yjx) 1R 0 . 2

log[(1  n)=(1 I g (Yix) 1

Note that when observations witk 2 K are never censored, we nd=1, N =

in:1 1fX i 2 Kog, b(;; 1;x)=0 (becaus&(")=0)andv(; 1)=2 3=(1 2 ), which
then makes convergence (i) above analogous to Theorem 3.1(i). As expected, the asymptotic
distribution in (ii) is identical to that of the classical Weissman-Hill estimator wheri. .

3.4. Time series models.Expectiles can be interpreted in terms of the gain-loss ratio.
This is a popular performance measure in portfolio management, well-known in the literature
on no good deal valuation in incomplete markets (see [3] and references therein). Financial
applications typically require working with stationary but dependent time series data. We
present here, in two such time series contexts, applications of our results to the dynamic
prediction of extreme expectiles given past observations. We only focus on LAWS estimators;
extensions of our theory to indirect expectile estimation can be found in Appendix E of [19].
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3.4.1. The ARMA model. We start with the following general ARM/M?) model.

Model (T1) The stationary time seri¢¥;);>7 satis esY; = jpzl Yoo+ jqzl Mt
o Where L L FPZ R are unknown coef cients. The polynomiais(z) = 1

Jle iz andQ(z) =1+ jqzl iz have no common root, and no root inside the unit
disk of the complex plane. Finallg;;) is an i.i.d. sequence of copies'o$uch tha&(") =0,
E("?) < 1 ,andP(">x)=P(j"j>x)! ~2(0;1]asx!1

In model (T1), the procesqY;) is causal and invertible, and so can be represented as
a linear time series in they j, ] 0, by Theorem 3.1.1 in [4]. A g,onditional one-step
Bhead expectile based on data up to time then | (Yn+1 jFn) = jp:1 iYner j +

jqu i"ntl j ("{\_,wheran = (Yn;Yn 1;::)) isthe past eld attimen. In gen-
eral, P, jYns j+ L j"ns1 j dependsonthe unobservablg:::;"n+1 g, Which
are all linear functions ofYn+1 j); 1 since(Yt) is aninvertible ARMA process. This is why
the dynamic expectile  (Yn+1 jFn) to be estimated is conditional upon the whole gast
of the process; in the AR] case whem= 0, this becomes the simpler conditional expectile

Among others, the Gaussiandnaximum likelihood estimator and the ordinary least squares
estimator of the j and ; are’” n asymptotically normal becaudg("?) < 1 (see The-

orem 10.8.2 in [4]). We then assume that the estimaflrs;:::; Pon; Prn;iii; By are

such thatb,, = ;| +O0p(n ) andB, = ; +Op(n 1%2). To construgt residuals, set
B = =4" =0anddenel™ =, P by a by
max(p;a) g+l max( p;a) t j=1 ki Tt j=1 Jn :
formax(p;g+1 t n.We consider the asymptotic behaviour of the estimators
xXP Xxd
b (Yo jFn)= BaYos j+ Bt [+ P(") (nintermediate),
j=1 j=1
xP xa 1 0 -
b?r? (Yn+1jFn) = bj;n Yot jt+ bl;n bf:-)l it 1 : bn (" ( r?eXtreme)1
j=1 j=1

where bn (") is the LAWS estimator of (") and~ is a consistent estimator of, both

constructed on the residuaﬂg‘) fort, t nonly, wherety,=logn'!l andt,=n! O.
This condition ort, ensures that the in uence of the incorrect starting values for the residuals

has vanished; in the autoregressive aasd, one can use all th&”) forp+1 t n.

THEOREM 3.3. Work in the ARMA mod€IT;). Assume that satis es conditionG( )
with0< < 1=2. Suppose also that there is 0 such thatEj" j>* < 1 ,andthat ," 1
issuchthan(1 ,)!1

() fn2* (@ ,)! Oforsome > 0, then
!
P——— P (YnuFn) 2%
n(l 1 !RI 0, ———
LY (Yn+1JFn) 1 2
(i) Assume further that satis es conditionG( ; ;A ) with < 0. Suppose also that

n; 2" 1satisfy(3) and(4) (in additionton? * (1 ) ! 0). Ifthere is a nondegenerate
limiting random variable suchthat n(1 ,)(— ) 1 , then
!

PR PaYaiFa)

log[(1 n)=(1 A o(Yn+1iFn)

! d
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3.4.2. The GARCH model. ARMA models are widely applicable but well-known for
failing to replicate the time-varying volatility typically displayed by nancial time series. Our
next focus is on general GARCPpI(g) models, which arguably constitute the best-known and
most employed class of heteroscedastic time series models.

Model (T;{j The stationgry time serig;)i2z satisesY; = "¢, with > 0 such that

g=r+ P E L YA andl g g1 p> Oare unknown co-
ef cients, and (") is an i.i.d. sequence of copies bfsuch thatE(") =0, E("?) =1 and
P("?=1) < 1. Suppose also that the sequence of matrices

" " " ol

1t Qt2 lt2 Pt2

1 0O 0 0 0

0O 1 0 0 0 0
A = 0 01 O 0 0

1 q 1 p

0 0 1 0 O 0

0 0 0 1 0 0

0 0 0 01 O

has a negative top Lyapunov exponei®, limy; t E(logkAtA; 1 A1k) < 0 with
probability 1 (wherek Kk is an arbitrary matrix norm).

The above condition oKA;) is necessary and suf cient for the existence of a stationary,
nonanticipative solution, see Theorem 2.4 p.30 of [16]. CondiR@¢I? = 1) < 1 ensures
identi ability. In pure ARCH models = 0), one can estjmate the model with weighted
least squares regression4f on its past. This estimator Enﬁ asymptotically normal if
E(Y*) < 1 (see Theorem 6.3 p.132 in [16]). Under further conditions on model coef cients
(see p.41 of [16]), this may reduce " *) < 1 , but this is still a substantial restriction in
our coBtext of heavy-tailed An alternative is the weightdd® regression estimator of [29],
whose n asymptotic normality requires some regularity on the distributidhrather than
nite moments. In GARCH models, the self-weighted quasi-maximum exponential likeli-
hood estimator of [53]iS n asymptotically normal for square-integrable innovations.
Takepﬁ consistent estimatots, , bj. andbj;n . To construct residuals,sleggx(p;q) ol =

P
= bfggx(p;q) = by, and then de ne(b{™)? = b+~ P_; By (bM)2+ 7 L) b V2,

andt{" = Y;=b(", for max(p;g)+1 | n.Denoting again bf, the past ~ eld and
lettingbZ,; = bp+ P, B b2, |+ .1 bin Y, ; bethe predicted volatility at time
n+1, one-step ahead estimators of intermediate and extreme conditional expectiles are

. : 1R
bn(Yn+1]Fn)= bn+1 bn(") and b?n"(Yn+1JFn)= bn+1 1 ° bn(")
n

respectively, wheré’n (") is the LAWS estimator of _ (") and™ is a consistent estimator

of , both constructed on the residudi{g) fort, t nonly, wheret,=logn!1l and
thn=n! O (for pure ARCH models whep=0, all residuals fog+1 t n may be used).

THEOREM3.4. Work in the GARCH mod¢€T,). Assume thdt satis es conditionG( )
with 0< < 1=2. Suppose also that there is 0 such thatEj" j** < 1, andthat ,, =
1 n 2forsomea?2 (0;1).
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!
Do iFn) 02
(Yns1 jFn) 1 2
(i) Assume further that satis es conditionG( ; ;A ) with < 0. Suppose also that
n; " 1 satisfy(3) and (4). If there is a nondegenerate limiting random variableuch

that n@  m(C )'*  then

!
P nl n) b?r?(Yn+1an)

log[(1 n)=(1 I o(Yn+1 JFn)

0] Thenp nl )

d

4. Finite-sample study. We showcase our estimators on simulated data (Sections 4.1
and 4.2) and real data (Sections 4.3 and 4.4). Here we use, to estimate the extreme value
index, the following bias-reduced version of the Hill estimdigrsee [21]:

!

B no

RB _ .

bk - bk 1 1 b k y

where throughoutk = bn(1  j)c, andB and b are consistent estimators of the quantities
band under conditionG( ; ;A ) and the additional assumption th&a{t) = bt . The
estimatord andb may be found in [21] and are available from the R functivopin the R
packagesvtO ; of course, we shall use here their residual-based versions. We also consider
the following bias-reduced version of the family of direct extreme expectile estimatbrs of

. 1 9=k’ 1 b 1+77( 2 be®
b+[(1=bf® 1) P[1+r°( D] ° 1BOFEQ D °
: with
b+[(1=bRB 1) b[1+T(1 k=n)] ® 1ORB(n=k)®
| 0 l 1
b_ () b "y b
N (") 1 GO LN
r(l k=n)= 1 by 1 2Zen @1 + L b b 1; and
| |
b .’ B 1=pRE b -l
2 Oy — 1=2(") 1 1=hy 1 Oy b .
r(y,= 1 P,y 290 1 1+ 1 o b a ) 1

This expression is motivated by the proof of Proposition 1 and Corollary 1 in [Q]ﬁgre
is the empirical survival function.€. complementary distribution function) of the residuals.
We similarly consider the following bias-reduced version of the family of indirect estimators:

e’.’g;)RB (n): e?r?(n) 1+ [n(l r?):k] b 1%I(RB D b [1+T?( r?)] bFe

b k
1=bRE 1) P1+7r?( Q] ° 1
1+ 0 ) [b (n)] BRE(L  9) °

These procedures improve the accuracy of our estimators, without affecting their asymptotic
properties (see [20, 21]). They naturally give rise to extreme conditional expectile estimators
B%R8 (Y jx) and €7® (Y jx), to which we refer in the present section.
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4.1. Simulation study: linear and single-index model§Ve simulateN = 1;000samples
of n=1;0000bservationgX ;;Y;),1 i n.HereX 2 R* with independent components,
the rst three being uniformly distributed o(0; 1), and the fourth following a Be{a; 1)
distribution. We then simulate from two different models(@h; Y):

(G1) Y =1+ >X + 1=2+ >X .
(G2) Y=1+exp ~X 2+ 32+exp X 2 "

Model (G1) is a location-scale shift linear regression model, while model (G2) is a het-
eroscedastic single-index model. In both cases, the coef cient vectil ; 1; 1; 1) and" is

a noise variable, independent Xf, with a normalised symmetric Burr distribution, that is,
"= " o=B(( 1D=;( )= ); whereB is the Beta function antly has density

(5) fo)=(2 ) Yjxj = *a+jxj 7)¥ ' (x2R):
We consider the cases2 f 0:1; 0:2; 0:3; 0:4g and the second-order parameter 1.

Our aim is to estimate extreme expectiles(Yjx), in both of these models. We compare
the performances of several procedures, constructed using the following four strategies:

(S1) We assume that is linked toX by a location-scale shift linear regression model,
e.Y= + X+ 1+ ~X ".Themethodology used forthe estimation of(Y jx)
is outlined in Section 3.1, and the bias-reduced direct estimator is used.

(S1i) Identical to (S1), but the bias-reduced indirect estimator is used instead.

(52) We assume that is linked to X by the heteroscedastic single-index modek
g ~X + > X ".The vector is estimated using the algorithm of [54] (see 1.(a)-
(c) on page 1240 therein), withand estimated using the procedure described in Sec-
tion 3.2, withh, =0:3 andt,, = n?® 1585, The bias-reduced direct estimator is used.

(S2i) Identical to (S2), but the bias-reduced indirect estimator is used instead.

These procedures are compared with the following eight benchmarks:

(B1) We assume no speci ¢ structure 0K ;Y) and, atX = x, we use a local bias-reduced
direct estimator relying on thosé whoseX ; are the 100 nearest neighbourscofin this
procedure we usk =20, i.e. , =0:8for the extrapolation step.

(B1li) Identical to (B1), but the bias-reduced indirect estimator is used instead.

(B2) We assume the homoscedastic single-index médelgy X + " with known =
(1;1;1;1). The functiong is estimated through the Nadaraya-Watson estimator, with a
bandwidth chosen using the R packange The bias-reduced direct estimator is used.

(B3) Identical to (S2), although is assumed to be known and equa({191;1; 1).

(B4) We assume that the structure of the model linkintp X is fully known,i.e.we know

and the location and scale functions, and we use the direct estimator (no bias reduction).

(B4i) Identical to (B4), although the indirect estimator is used instead (no bias reduction).

(B5) Identical to (B4), although the bias-reduced direct estimator is used instead.

(B5i) Identical to (B5), although the bias-reduced indirect estimator is used instead.

In each procedure except (B1) and (B1i), the intermediate expectile level used as an anchor in
the extreme value index and extreme expectile estimators is xegla0:9, corresponding
tok=bn(l /)c=100;in (S2), (S2i), (B2) and (B3), we use the Epanechnikov kernel in
the estimation of the link functlong and . To assess the performance of our methods, we
compute, for a given estlmatoro(YJx) the Relative Mean Absolute Deviation (RMAD)

RMAD = medlﬁnW 1;
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wherex” = (1=2;1=2;1=2;1=3). The quantityf?"é(m)(ij) denotes the estimator calculated

on themth replication, at the level? =1 5=n=0:995 The erroRMAD gives an idea of

the uncertainty on extreme conditional expectiles at a typical data point in the centre of the
data cloud. Finally, for all 2 (0;1), the true expectiles (Y jx) are deduced from ("o),
obtained by sglving the equation(y)=(2 (y)+ y)=1 via the R functionuniroot

where (y) = yl P("o>1)dt is computed with the R functicimtegrate

Results are reported in Table F.1 of [19]. In the linear model (G1), methods (S1) and (S1i) are
clearly the best, and single-index based methods (S2) and (S2i) perform reasonably well. In
fact, for the heaviest tail, methods (S2) and (S2i) slightly outperform (S1) and (S1i) because
they are more robust to the highest values in the sample. In the single-index model (G2),
methods (S2) and (S2i) perform best, and method (S2) is quite close to the unrealistic bench-
mark (B3); methods (S1) and (S1i) are heavily penalised by the misspeci cation of the con-
ditional mean and variance. The nonparametric benchmarks (B1) and (B1i) are surprisingly
competitive, perhaps because they bene t from a degree of robustness against heteroscedas-
ticity. Not accounting for heteroscedasticity is indeed very detrimental, as a comparison of
method (S2) and benchmarks (B2), (B3) shows, even with the unrealistic advantage of a
correct pre-speci cation of the direction. Finally, a comparison of benchmarks (B4) and
(B5) shows that even though an unrealistic correct pre-speci cation of the model structure
is obviously bene cial, getting the extreme value step right is very important: in the linear
model (G1), method (S1) outperforms benchmark (B4) farf 0:1; 0:2g, and is competitive
otherwise, because it features a bias-reduction scheme at the extreme value step.

It appears that while knowing model structure is an advantage for lighter-tailed models, this
advantage disappears when the noise variable has a heavier tail, thus illustrating that the
extreme value step, rather than model estimation, is indeed the major contributor to estima-
tion error. For instance, when=0:2, the RMAD of benchmark (B5) is onl$% smaller

than the RMAD of method (S2) in the single-index model (G2), and method (S2) is even
slightly more accurate when is larger. The difference when=0:1 makes sense: in this
setup where extreme expectiles are comparatively smaller, an error on the conditional mean
or variance will have more consequences. Let us conclude that while we used the intermedi-
ate levelk,, = 100 for the sake of computational ef ciency, in practice one may want to use

a data-driven criterion for the choice kf. In Appendix F.1 of [19], we suggest an adapta-

tion of an Asymptotic Mean-Squared Error (AMSE) minimisation criterion; we repeated this
simulation exercise with this choice kf and observed that there is no obvious advantage in
the data-driven choice although results are competitive. Full results are reported in Table F.2
of [19].

4.2. Simulation study: time series modeld/Ve simulateN = 1;000replications of time
series of sizen + 1 =1 ;001 from two different models:

(T1) An ARMA(1;1) modelY; = Y 1+ "¢ 1+ "¢, where the parametersand are
estimated using default settings of the R func@oma from packagédseries

(T2) A GARCH(L;1) modelY; = (! + Y 2.+ 2 )", where!, and are esti-
mated using default settings of the R functgerch from packageseries

The" are i.i.d. with common dsnsit;lo asin (5) and = 1;inthe GARCH(,; 1) model,
these innovations are rescaledby(1 2 )(1+2 ) toguarantee thad['?]=1.

We estimate a one-step ahead extreme expectile/n+1 jFn), whereF, denotes the past
eld at time n. We then compute, on thmth sample, the target valué?)(Ynﬂ jFn),its
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direct estimatd’s <2 (™ (Y,,1 jF ) and its indirect counterpaf; © ™ (Yn+1 jF n), where
9=1 5=n=0:995andk, = n(1 ,)=100.We calculate their RMAD
—?;(m) .
Y, F o DR DR
RMAD = median E?m) (Yn+1]Fn) 1: with ’?(,)(m) _ b’?(,)RB,(m) or e’?(,)RB,(m):
Lm N %7 (Ynea jFn) ’ ' ’

In the ARMA model, we take; 2f0:1,0:5g; in the GARCH model, we x! =0:1
and take(; ) 2f(0:1;0:1);(0:1;0:45);(0:45;0:1);(0:1;0:85)g. In each model, we take

2 £ 0:1;0:2;0:3;0:4g. Note that the GARCH model is second-order stationary only if

+ < 1(see Theorem 2.5in[16]). Our methods are compared with the (unrealistic) bench-
marks generated from knowing model coef cients (and therefore observing the innovations).

Results are reported in Table F.3 of [19]. In the ARMA model, the RMAD does not seem
overly sensitive to the parametersand , but increases with the extreme value index

In the GARCH model, errors seem to be sensitive to whether the model is close to second-
order stationarity (note the slightly different errors in the case ) =(0:1;0:85) and 2
f0:1;0:2g). In both models, the indirect estimator has an advantage over the direct estimator,
which gets smaller as the tail gets heavier. Knowing the true values of the coef cients does
not bring a large improvement, except maybe for the lightest tails; this again underlines that
most of the estimation error, and hence of the uncertainty on the estimates, originates from
the extreme value step, rather than model estimation. With our data-driven chéicetioé
indirect estimator typically stays the best.

4.3. Real data analysis: Vehicle insurance datale consider the Vehicle Insurance Cus-
tomer Datd, made ofn = 9;134total (.e.cumulative over the duration of the contract) claim
amountsY of insurance policyholders according to their lifetime valXug(in USD), income
X2 (in USD), numbeiX 3 of months since last claim and numbéj of months since policy
inception. We follow the methodology of Section 3.2. A cross-validation procedure using
the R functionnpindexbw (from the packagep) gives a selected bandwidth  0:1
(for covariates standardised by their respective maxima). We also choesé . We ob-
tain b ( 0:9230:386, 0:001; 0:002), which seems to indicate that only lifetime value
X1 and incomeX , play a role in the prediction of . The estimated functiortg andb are
depicted in the top left panel of Figure 1 (the kernel functiois the Epanechnikov kernel).

We now estimate an extreme conditional expectilg(Y jx) at level =1 1=(nh )

0:999. The top right panel of Figure 1 shows the direct extreme conditional expectile esti-
mator fork =200 and =1 k =n (the bottom right panel of Figure 1 shows that the
heavy-tailed assumption on the noise is reasonable). The heteroscedastic single-index model
captures the variation in the shape of the data cloud fairly well, and the extreme conditional
expectile curve gives a reasonable idea of the conditional extremes of the data. Interpret-
ing an expectile curve, meanwhile, is not always straightforward. However, in this insurance
example, the expectile . (Y jx) satis es the following gain-loss ratio criterion (see [3]):

1 9 E(Y o(Yix) LY > o(Yjx)giX = Xx)

1 9 = . —
" g E(C o(Yix) Y)Y < o(Yjx)giX = x)
E(Y  o(YPX)IFY > o(Yjx)giX = x)
o(Yix) E(YjX =x)
!Available athttps://www.kaggle.com/ranja7/vehicle-insurance-customer-data and

from the authors upon request.
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In other words, o(Yjx) is the aggregate premium to be collected over the lifetime of the
contract so that, for customers having the list of characterigtjdbe ratio between aver-

age losses exclusively incurred by claims made by such customers above that level and net
average pro t is approximately the small quantity 9. This value o(Yjx) can be thus
interpreted as a high safety margin for the insurer, and has an even clearer meaning to rein-
surers, who only face a loss when the claim exceeds a certain high threshold.

We compare extreme conditional expectile and quantile estimates at the same) el

latter being obtained by combining the standard Weissman-type estimate of an extreme quan-
tile of the noise with our estimatdg and b. It can be seen in Figure 1 that the extreme
conditional quantile estimate is outside a pointw&6 bootstrap con dence interval for

the extreme conditional expectile (constructed using an adapted methodologyseatied
parametric Pareto tail bootstrapsee Appendix F.2 of [19]). This may be relevant to insur-
ance companies, for whom loweitg, more optimistic) assessments of risk translate into
marketable contracts with lower premiums and hence improved competitivity, while policy-
makers and regulators would favour the highe. fnore pessimistic) quantile estimates to
hedge better against systemic risk. Interestingly, the regression median is below the regres-
sion mean, so there is a qualitative difference between central and extreme assessments of risk
using expectiles and quantiles: a risk assessment based on the regressionareeaertral
conditional expectile) is more conservative than if it were based on the regression median
(i.e. a central conditional quantile), but extreme conditional expectile risk measurements are
less conservative than those made with extreme conditional quantiles.

4.4. Real data analysis: Australian dollar exchange rate$he analysis of exchange rate
risk is a key question in economics. An accurate analysis of exchange rate risk informs strate-
gic decisions made by rms, such as the extent to which they import and export and whether
they should invest in foreign markets, which have consequences on their competitiveness
on the global marketplace. We study the daily log-returns of the Australian Dollar/Swiss
Franc (AUD/CHF) and Australian Dollar/Swedish Krona (AUD/SEK) exchange rates from
1st March 2015 to 28th February 2019, represented in the left panels of Figure 2 (sam-
ple sizen = 1;043). The literature has suggested that expectiles can be fruitfully used to
estimate quantiles (sexg.[3, 44]). Our goal is to estimate the (dynamic) extreme condi-
tional quantileq o (Yn+1 jFn) of level 9=0:995 1 5=nonthe nal day. We consider
a GARCH(L; 1) model, motivated by the nding of [36] that GARCH models t past Aus-
tralian exchange rates well; the R functigarch (in the packageéseries ) returns, with
the notation of Section 3.4.2b,; by; bn) =(4:20 10 7;0:943 0:0465)for AUD/CHF and
(1:21 10 ®;0:576,0:119) for AUD/SEK. We construct the quantile estimator

) " bEB i ny.
= OfF) T 1T Ry,

Withk =50and ,=1 k =(n 1), we getb®® =0:189for AUD/CHF (resp.0:211 for

AUD/SEK) andly’y® (") = 2 :40 (resp.2:58) (graphical evidence of a heavy right tail ‘bs
given on the right panels of Figure 2). To check that our estimates make sense, we recall the
characterisation o o(") as0:995 = 9= E@1f" q 9(")g) and compare that with
1 X n (N) _ }2:RB u °
— 1 57<87 (" 0:99424for AUD/CHF (resp. 0.99520 for AUD/SEK)
i=2
This is indeed very close to the expected valfe= 0:995. Our estimate can be compared

with a bias-reduced versicq?éRB (") of the classical extrapolated estimate of [51]:
" !

b

ol

@y () =a,(") 1 bf®

x| >
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whereg’, (") is the residual-based Weissman quantile estimator Lb;jﬁgin its extrapo-
lation stép. This estimate &48 for AUD/CHF (resp.2:64 for AUD/SEK). Our expectile-
based estimate &40 (resp.2:58) is slightly lower; this makes sense, as the estimated value
of is lower thanl=4, and extreme expectile-based estimates can be thought to re ect this
rather light tail by producing lower point estimates than their quantile counterparts (and when
> 1=4, expectile-based quantile estimates seem to be higher than traditional estimates,
seee.g. Section 7.1 in [9]). This lower assessment of risk may be interesting to nancial
companies, as opposed to regulators who may prefer quantile-based estimates. Finally, the
predicted estimate af o(Yn+1 jFn) on 1st March 2019 i€:0138with Gaussian and semi-
parametric Pareto tail bootstr&%% con dence intervals (see Appendix F.2 of [19]) being
[0:0122 0:0154]and[0:0116 0:0160]for AUD/CHF (resp. 0.0156, Gaussian con dence in-
terval [0:0136 0:0178] and bootstrap con dence interv§d:0127 0:0191] for AUD/SEK).
This amounts to a daily variation df4% of the AUD/CHF exchange rate (resh6% for
AUD/SEK).

5. Discussion and perspectives.We provide a general toolbox for the estimation of
extreme conditional expectiles, by showing how a simple assumption on the residuals of
the model makes it possible to obtain the convergence of residual-based estimators of the
extremes of the noise. By applying our results in examples not limited to low dimensions,
we contribute to the broader question of how to model extremes with a large number of
covariates. The works of [17, 23, 49, 50] introduce dedicated modelling assumptions on
the tail conditional quantiles of . The tail linear quantile regression model of [50] is not
straightforward to interpret: even when the conditional quantile is in fact linear (for
any ), this model is the arguably complicated linear model linkihgo X with random
coef cients (see p.808 of [6]). Our generic model provides a straightforward way of seeing
the effectX has onY and avoids the crossing problem (unlike the method of [50]), since the
structure of the model is estimated only once. The nonparametric model of [17], meanwhile,
rests upon the estimation of a Tail Dimension Reduction subspace, which can only be done
using the pairgX;Y;) such thaty; is large. This entails a potentially substantial loss of
modelling strength compared to our approach. Besides, the aforementioned papers focus on
the case of i.i.d. datgX i; Y;); our method allows us to consider popular time series examples.

Among future research perspectives, it would be nice to extend our results for ARMA and
GARCH models in the ARMA-GARCH model, to allow for heteroscedasticity in time series
not having mean 0. Besides, the basic principle of our approach relies on location equivari-
ance and positive homogeneity, which are true for numerous interesting functiegate-

herent spectral risk measures, including the very recent concept of extremiles ([8]). Adapting
our approach to other risk measures constitutes an interesting avenue for further work. An-
other perspective is to relax the heavy-tailed assumption, to extend the applicability of our
method. As far as we know, even in the simple unconditional i.i.d. case, there are currently
no estimation procedures available for extreme expectiles of either light-tailed or short-tailed
distributions, which are the other setups one would consider in an extreme value framework.
Finally, an approach that fully accounts for joint uncertainty between model estimation and
extreme value estimation would be an important next step in order to handle the strongest
possible forms of heteroscedasticity. This will at least require uniform weighted Gaussian
approximations of the tail empirical residual-based quantile process; this very dif cult ques-
tion needs to be solved on a case-by-case basis, because the structure of residuals is com-
pletely controlled by the structure of the model. In linear regression, the current state of the
art seems to be uniform non-weighted approximations on the real line (see [5], especially
Section 6 therein). The absence of weighting makes it impossible to use such results for ex-
treme value inference. We are not aware of such results in single-index models, not even
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non-weighted and in the homoscedastic case. This is a very substantial research project in
itself which we defer to future work.
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SUPPLEMENTARY MATERIAL

The supplementary material document () contains the proofs of all theoretical results. It
also provides further theoretical results related to indirect estimators, and further details about

our nite-sample procedures and studies.

FiG 1. Vehicle Insurance Customer data. Top left: estimatas(oéd curve) and (blue curve) with a histogram

ofthe P> X ;. Top right: estimates of the regression mean (red line) and median (orange line) and of the estimated
conditional expectile (solid purple line; dotted lines represent bootstrap poin8&%econ dence intervals) and
quantile (green line) atlevel? =1  1=(nh ) 0:999in the (©> x;y) plane. Bottom left: curvek 7! b®

on the non- Itered dataY; (black curve) and residuals (red curve). Bottom right: Exponential QQ-plot of the
log-spacingdog (™, ., . (" a):1 ik =200. The straight line has slopef® =0:263.
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This supplementary material document contains the proofs of all theoret-
ical results in the main paper, preceded by auxiliary results and their proofs
(Sections A and B for the main results, and Sections C and D for the worked-
out examples). It also provides further theoretical results related to indirect
estimators in Section E, and further details about our nite-sample proce-
dures and studies in Section F.

APPENDIX A: THEORETICAL TOOLBOX: AUXILIARY RESULTS AND THEIR
PROOFS

Lemma A.1 below is a result on the mean excess function of a sample of heavy-tailed random
variables, used in the proof of Theorem 2.1.

LEMMA A.1.  Assume thdt satis es conditionG( ) withO< < 1=2and , " lissuch
thatn(1 ,)!1 .Letmoreovet,!1l be anonrandom sequence such thét,)=(1
n)! ¢2(0;1). Then

1 x p c
—— Mif"i>tpg! ——:
a1 . ilT7i>tng 1
PROOF. Write rst
1 X +o(1) X
—  "jlf"i>tpg= Tl E( ) "ilft >tho:
nta(1  n) i1 ntnF(th)
The idea is now to split the sum on the right-hand side as follows:
1 X 1 X 1 X
— "'lf"'>t = — 1f"'>t + — " t 1f"'>t .
Nt (tn) i117i>tnhg nFE(tn) ., i >ng Nt F (i) i=1( i th)lf"i>tng
Straightforward expectation and variance calculations yield
|
1 X '
— 1f "i >t ng - 1;
nF(tn) i=1

MSC 2010 subject classi cation®rimary 62G32; secondary 62G08, 62G20, 62G30
Keywords and phrase€xpectiles, extreme value analysis, heavy-tailed distribution, heteroscedasticity, re-
gression models, residual-based estimators, single-index model, tail empirical process of residuals
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1 X 1 1
Var — 1f"i>th,g =0 — =0 ——— 1 0
nF(tn)izl nF(tn) n(L )
I
. Z o
1 X 1Y F
—— (" ty)1lf">thg = — —f(X)dX! ;
ntnF(tn) |=1 tn tn F(tn) 1
|
1 X 1 1
andvar ———— (" t)if";>thg =0 — =0 ———— 1 O
ntnF(tn)izl nF (tn) n(l )
Therefore
1 x P C
- “i1f"i>thg! 1+ =
Nty (1 ) - i i nd C 1 1
as announced. O

The next auxiliary result is an extension of Theorem 1 in [10]. It drops the assumption of an
independent sequence and of an increasing underlying distribution function. We note that the
bias termb( ; ) of our result below is simpler than the corresponding bias term of Theorem 1
in [10], due to the assumption of a centred noise variable.

ProPOSITIONA.L1. Assume thaEj" j< 1 , that conditionG( ; ;6 ) holds with0 <

< 1, and thatE(")pz 0. Let 5" 1 be such thain(1 !l . n@ RA@
M D! 2Rand n(@  p)=q,(")=0(1) . Then, if
TR T g 1t ()
we have |
e =0 1 mO+ b

withm( )=(1 ) ! log( * 1)and

PrROOF Notethat(— 1 1) " !° (! 1) andg (")=q,(") 1!°

linearising leads to

0, so that

e _ ' 1y q,.(")
o YTty Y oge tared
1 "
6) v ! 1)(")0'"() 1 (1+0p(1):

To control the bias term, use Proposition 1 in [12], of which a consequence is, for the centred
variable",

1 " 1 1
( 1)(")qn() A G R G e

b(; )+o(1):

g n(l n)
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Reporting this in (6) and using the delta-method, we obtain
!

_____ e
TR W 1 mO+ b
This is precisely the required result. O

The following rearrangement lemma is an extension of Lemma 1 in [19], which we use in
the proof of Lemma A.3 below.

LEMMA A.2. Letn 2and(ai;:::;an) and(by;:::;b) betwon tuples of real num-

ProOF See the proof of Lemma 1 in [19], which, although the original result was stated
for n tuples featuring no ties, carries over to this more general case with no modi cation.
O

The following lemma is the key to the proof of Theorem 2.2. In our context, its interpretation

is that the gap between the tail empirical quantile process of the residuals and the analogue
process based on the unobserved errors is bounded above by the gap between errors and
their corresponding residuals; this will be used to give an approximation of the tail empirical
guantile process of the errors by the tail empirical quantile process of the residuals.

LEMMA A.3. Letk=k(n)!1 be asequence of integers wkkn! 0. Assume that
" has an in nite right endpoint. Suppose further that theare independent copies dfand

that the array of random variabldb?”), 1 i n,satises
. (n) -
- in i P
Ro:=mex =45+ ©
Then we have both 0
b(n) . b(n) .
sup NPKEN 9 —OL(R,) and sup log@ "PKENA L~ o (R,):
0<s 1 nb kscn O<s 1 n b ksc;n
PROOF. Clearly:
821 L:ing " Ra(+ "= i H7 ="+ Ra(l+]"i):

8i2f1;:::;ng in lq(;’r‘]) in

Note that for any 2 ( 1;1), the functionx 7! x + r(1 + jx]j) is increasing. Therefore, on
the evenf R,, 1=4g, whose probability gets arbitrarily high asncreases, we have:

8i2fL::5;ng "in Ra(l+j"ini)= in h(;?]) in = "in + Rn(1+ "in]):

Now, by Lemma 3.2.1 in [14] together with the equalltygrj U(Z) whereZ has a unit Pareto

distribution, we gety, «n !° +1 .Ontheevenf, = fR, 1=4g\f ", n 19, which
likewise has probability arbitrarily large, we obtain

8| n k, (1 Rn "i;n Rn h(,?]) (1+ Rn)"i;n + Rn
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In other words, oA, and for anys 2 (0; 1],

1 B e 1
2R, Ry 1+- nbksen 4 R1+ T 2Ry
n b ksc;n n b ksc;n n b ksc;n
This shows that
(n)
sup 21 =0 p(Ry):

0<s 1 nb kscn

Note further that, of\,

0
(n)

b :
8s2 (0;1]; log(1 2Rn) log@ "PKENAo4(1+2R,):
nb ksc;n
Sincelog(1+ x) x andlog(l x) 2x for all x 2 [0; 1=2], this yields, oA,
0 1

B e
8s2 (0;1]; log@ "PKENA yR -

n b ksc;n

As a consequence,

0 1
B
sup log@ "2KCENA =5 (R):
O<s 1 n b ksc;n
This concludes the proof. O

The nal auxiliary result of this section is used as part of Remark 2. It can be seen as a
Breiman-type result, see Proposition 3 in [4] for the original Breiman lemma.

LEMMA A.4. Suppose that the random variabfecan be writtenY = Z; + Z,", where

* 71 is a bounded random variable,

e Z, is a (strictly) positive and bounded random variable,
« " satis es conditionG( ),

e Z, is independent df.

ThenY satis es conditionGi( ).
PROOF. We prove that for alk > 0, P(Y >tx)=P(Y >t)! x ¥ ast!1 .Note that

if a;; by are such thaZ; 2 [az; ] with probability 1,

P(Z2">tx a1) P(Y >tx) P(Z2">tx b)),

P(Zo">t by P(Y >t) P(Z,">t ai)’
This entails, for any xed' 2 (0;1), that fort large enough,

P(Z2">t (x+ ")) P(Y >tx) P(Zx">t(x ")).

P(Zx">t (1 ")) P(Y >t) P(Zx">t(@+")’

Letk, > O be such thaZ, 2 (0; by] with probability 1. Sinc&, is independent of, we have
foranyt> 0

P(Z2">t) _ Z, P(">t=z)

P>ty o Pty
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Use now Potter bounds (seey.Proposition B.1.9.5 in [14]) and the dominated convergence
theorem to obtain
P(Z2">1)
P(">t) -
This implies tha#Z, " is, like", heavy-tailed with extreme value indexIn particular
P(Z2">t(x ")) _ P(Zx">t(x ")) P(Z2">t)
P(Z,">t (1 ")) P(Z,">t) P(Zx">t(@ "))
ast!1l . Conclude that

IC}zz Pz,(dz)= E(Z,) 2 (0;1 ):

@ ) E

- - . P(Y>tx) P(Y >tx) - -
" 1 " l Ll l " 1
@a " x+" Ilt!rqlnf PY 1) Ilrt?lsup Y S0 @a+"-=x "
forany" > 0, and let" #0 to complete the proof. O

APPENDIX B: THEORETICAL TOOLBOX: PROOFS OF THE MAIN RESULTS

PROOF OFTHEOREM2.1. I\Ilote that

b
P nl ) "(") 1 =argmin ,(u)
n( ) u2R
" ! #
wih o= oAy e g ()
2 2'.I (u) - n n n(l n) n n
De ne N . | 4
- 1 " u (") "
n(u):= 22 () . N . (") pﬁ . (i (")

In other words, ,(u) is the counterpart of ,(u) based on the true, unobservable ertors
Note that for anyn, u 7! (u) is a continuously differentiable convex function. We shall

prove that, pointwise i, (u) A(u) 17 0: The result will then be a straightforward
consequence of a convexity lemma stated as Theorem 5 in [33] together with the convergence
r
d 2 u?
u) ! uz + — asnl!l
(in the sense of nite-dimensional convergence, wittbeing standard Gaussian) shown in
the proof of Theorem 2 in [10].

We start by recalling that
1 y
S0 oy ()= Co(x t)dt
0
where' (y)=j 1fy Ogjy (see Lemma 2 in [10]). Therefore

n(U)  n(u)
z Pod—

u (M= n@ )
- ! AN O N W C CO R I

2" 21 O
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Setl,(u) =[0;juj n("):p n(l n)]. Since
jon(u)  n(u)j

L IR RN RNt
(") n@ o n) o itz (u)
it is enough to show that
1 X . (n) .
P sup (b ()0 LG () D)
L)@ ) =1 iti21, (u) |
@ 7o
We now apply Lemma 3 in [10], which gives, for aryh 2 R,
i (x hy " (x)jj hj@ +21fx> min(h;0)g):

Tn(u) =

This translates into

TN (S TN ) WL GO G WY

"o av21t () t>minCy o 857;0)):

Hence the inequality
(8) Ta(u)  Tyn+ Ton(u)
with

p 1 X0

Ton = W@Lﬁ ™ " and
n i=1
2 X] . (I']) n o n " H " (n)

Ton(u) = sup jb ijut (") t>min(" B 0)a:

n p 71\
(M) N n) o ti21a ()

We rst focus onTy.,. De ne Ry := jh(”) "ij=(1+ j"j) andR, =max1 ; n Rpi. We
have

‘P # X0 P!
n(l 1 - n(l
Tan MRn —  (+]"))=0p MRn
() n._ ()
by the law of large numbers. Note now that(*)!'1  and thus
p !
n(1 pP—
9) Tin=Op q((,,)”)Rn =op n(l Ry !0

by assumption. We now turn to the control®©#, (u), for which we write, for anyt,
L0 emint 470) () oo () t>0

It follows that, forn large enough, we have, for abguch thajtj 2 | ,(u),

a0 L) tmine 8750) ns D orgms o0,
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Now, for n large enough and with arbitrarily large probabilityras1 ,jh(”) i @+

because  (")!1 . Since the quantitx + jxj=2 can only be positive ik > 0, it follows
that, with arbitrarily large probability,

(n) G I S
(11) b >T) |>6n()-

Combining (10) and (11) results in the following bound, valid with arbitrarily large probabil-
ityasn!l

2 X (n) . 1
T . u [aY II' 1 Il_ > _ n
2n(U) n(,,)v 7n(1 3 i:1 iy i) i~ 5 . (")
By assumption orij(”) "i], this leads to
n p
N n) A S
Ton(u) 4 TRn mi:l il "> 6 . (")

Finally, the regular variation property &f and the asymptotic proportionality relationship
between (") andq, (") ensure that

. F ")=6 : . " .
lim FL.O=) exists, is positive and nite.
n'l 1 4
Lemma A.1 then entails
p
(12) Ton(W)=0p nL )Ry !° 0
by assumption. Combining (7), (8), (9) and (12) completes the proof. O
PROOF OFTHEOREM2.2. To prove the rst expansion, write
0 1
b(n) b(n) " b(”)
n b ksc;n —n b ksc;n n b ksc;n +s @ n b ksc;n 1A :
t k=n(") "nbkscn G k=n(") “nb kscn

Use Lemma A.3 and Theorem 2.4.8 in [14] to get
b(n) "

n b ksc;n n b ksc;n

Ilnb ksc;n th k:n(")

(13) = s Wy(s)+ pEA(n:k)s lis =2 op(1)

W-\? =

uniformly in s 2 (0; 1]. Applying Lemma A.3 again gives

(n) (n) _
bn b ksc;n bn b ksc;n S 1=

(14) s npxen g g 12 Nbeen L= =p——on(l)

n b ksc;n Iln b ksc;n
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uniformly in s 2 (0; 1]. Combine (13) and (14) to complete the proof of the rst expansion.
The proof of the second expansion is based on the equality

1 0
(n) n b(n)
Iog@ n b ksc;n A = Iog n b ksc;n +Iog @ nb ksc;nA
h k= n(") G k=n(") "nb ksc;n
and follows exactly the same ideas. O

PROOF OFCOROLLARY 2.1. Notice that, by Theorem 2.2, there is a sequaNgeof
standard Brownian motions such that, for amy 0 suf ciently small;

0
by = log @MA ds
0 (n)
k;n
Z,
= Iog%+ P s Wh(s) Wi(1) +A hs g2 op(l) ds:
0
We then obtain thdb, can be written
p Z 1
k(b )= 71—+ s Wn(s) Wn(1) ds+op(l):
0

Similarly,
Pr@ thkn 1A = W (1) + 0 p(L):

Noting that the Gaussian terms in these two asymptotic expansions are independent com-
pletes the proof. O

PROOF OFTHEOREM2.3. The key is to note that
!

To(Yix) a(x) LM
N R N Ol
9x)  gx) ax) ) (x) o)

+ :

gx)+ (x) o(") (x) o(") (x) o (")
Using the convergence (")=q (")! ( ! 1) as " 1 and the heavy-tailed condi-
tion, we nd 1= o(")=o(1= (")) =o0(1=q,(")). Our assumptions show that this is a
o(1= n(1 ,)) and therefore

> |
Paa (Y ix)
ogl@  w)=@ A1  o(Yix)
” !
T )

= m 1 (1+0p(1))+0p(1):
gl o=t 91 o - Grordroed
Our result is then shown by adapting the proof of Theorem 5 of [12], with the condition
< 0 being used exclusively to control the bias term appearing naturally because of the
extrapolation procedure applied to the heavy-tailed random variabMe omit the details.
O
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APPENDIX C: WORKED-OUT EXAMPLES: AUXILIARY RESULTS AND THEIR
PROOFS

Lemma C.1 gives the rate of convergence of the weighted least squares estimators in
model(M1). Here and throughout aldp(1) statements are meant componentwise.

LEMMA C.1. Assume tha{Xi;Y;); 1 are independent random pairs generated from
model(M 1). Suppose further tha&("2) < 1 . Then we have

PRacb )=0,@); PP )=0p@) and AP )=0p():

PrRoOF aNe intr(iduce th% not?[tion
>

1X 3 A
ng); ;X;Yz%);gand =diag(1+ ~X 1%+ TXaP):
1X 2 Ya

X0 h I 5
anda®>X> !Xa= 1+ “Xi J[ag+(a1;:::;aq)Xil?>0
i=1
with probability 1, becaus¥ has a continuous distribution (and as such, does not put mass
on af ne hyperplanes oRY). The symmetric matrice¥” X andX”  1X therefore have
full rank with probability 1. Since, by the law of large numbers,
h [ i h [
1 2

1
= X7X 1" E(XiX;) and= X~ X 1" E 1+ 7X XX
n i+1;)+1 n i+1;j+1

P

(where X =1 for notational convenience), the same argument showsxfat =n and
X~ 1X=n converge in probability to symmetric positive de nite matrices, and >
say.

p

Our rst step is to show that the preliminary estimatas € and € are” n consistent.

Rewrite mode(M 1) for the available data as

Y =X Xt
where"” =("1;:::;"n) and denotes the Hadamard (entrywise) product of matrices. By
standard least squares theory,
€ —_ > 1 >
e = X°X X7Y
A direct calculation then yields
p_
nfe ) > 11, 1
_ =n X X —X X "
ne ) P35

o _p
n 1=2 In:1 1+ >X| "i
=n XX %n 2L 1+ X X

P :
n 2L 1+ 7Xi Xig"
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Set for notational convenienégo = 1. Since, foranyn 2f 0; 1:::;dg, the random variables

1+ >X; Xim"i,1 i n,areindependent, centred and square-integrable, the standard
multivariate central limit theorem combined with the convergenc&” X tyP !
yields
Pp_— _ P— e _ :
(15) nfe )=0p() and  n( )=0 p(1):
We then prove thaFt) n(® )=0p(1). Recalling that
e=% and =—
e
where = Ej"j> 0and = ,itisenough to show th£[ n(e )=05p(1) andp n(e
)=0 p(1). De ning
0 . N 1
i (+ X4 1
Z = =X + X e,
Yoo (+ 7Xn)j
wheree” =(j"1j Ej"j;:::;i"n]  Ej"j), and de ning then® in the obvious way, we have
1
© = x>x x*=
e
We therefore obtain
p_
ne ) _ > 1 1
pﬁ( e ) =N X~ X %x X e
1 1 h [
(16) +n X~ X X~ % 2 Z
Sincee=|"j Ej"jisindependentaK and has a nite variance, repeating the proof of (15)
gives
> 1 1 > 1
(17) n XX %X X e =05p(1):
Furthermore, )
0 P h | 1
nt= 1 & z
h i 1=2P n h !
> pl—ﬁE , BN i-1 Xit B Z
=) “h i

n ¥ L X4 B Z

Recalling tha¥X lies in a compact set, we nd that foramy 2f 0;1;:::;dg,
h i

LN p_ : :
n¥? Xm & Z =0p n max j(e )+( € ) Xii =0p(1)
i=1
by (15)p Combining this with (JpG), (17) and the convergenceX ” X tyP 1 1 we get
indeed n(e )=0p(l)and n(e )=0p(1) andthus

(18) PRe =0,
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(op

We are now ready to prove the convergence of the weighted estimatdPsand b. By
standard weighted least squares theory,
g - x*e Ix xe ly.
It follows thag
ﬁ(b ) —_ > e 1 1 l > e 1 l n
(29) pﬁ(b y T n X X %X X
where € is obtained from in the obvious manner. Note that for aipy 2f 0;:::;dg,
h i X0
1 1 Xki Xk
—_ 1X___ == hk'—hand
n T M 14 X
h [
1> e 1y :1)@ I Xii Xk
: i Mg v e,

Recalling once again that lies in a compact set, that+ > X is bounded from below by
a positive constant, and (18), we nd, by the law of large numbers,

i i
1 P 1p 1

1
— — ! and thum ! .
(20) x> e 1x X> 1X 17 0andth x>e x
n n 2

Besides, foranyn 2f 0;1;:::;dg,

éxw 1 ox 1 " ple> 1oy 1 "
n n m+1

2 3

1 xh 1 1
:pﬁ 1+ X X|m |9| iZ h izg
i=1 1+ & X 1+ > X,

8 9

2 .o 2

- Poe 701 Xim " h 2+ >).( i EX Ly

>n 2” T I>

T = 1+ ©X;, 1+ >X; ;

Using again the properties &f and (18), some straightforward algebra yields that

2+ X+ €X; 2
Rp = P max R SRS =0p(1):
1in 2 1+ > X
1+ & X !
Conclude that
ple>e 1oy 1 " ple> 1oy 1 "
n ( " n # m4)-1
p_ > 1 X 2 Rn
= 2 n € — Xim"i —=+0 = X
nizl im i [1+ >Xi]2 P p*n i

Since" is centred and independentXf, we may combine the propertiesXf and (18) with
the law of large numbers to get

(21) pl—ﬁX>el x 1 " pl—ﬁX> 1oy 1 " =o0p(l):
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Now clearly
1 1 1 XX
—x> 1 X " =p= 0
pin m+1 pin i=1 l + 7 X i I

so that, by the standard multivariate central limit theorem,
1 11}

(22) pl—ﬁX> X =0p(1):
Combining (19), (20), (21) and (22) results in
pﬁ(b )=0 p(1) andpﬁ(b )=0 p(1):

MVe complete the proof le}y showing tt%ﬁ( b )=0p(1). Itis again enough to show that
n(b )=0p(l)and n(b )=0p(1). Write

P 1
DQEE ; =n x>€ Ix plﬁx>e L
h i
1
+n X>€ 1x x>elplﬁi) Z
Furthermore,
0 p_h i ,h i 1
n 172 in:1 1+ € X Ei Zi
H . = h i ,h i
1 ! n 1?2 L X1+ €X; B Z

P h - i ,h i
n 1?2 " X 1+€X; Bz

Recalling the properties of and thep n convergence ob, b and € we nd that for any
m2f0;1;:::;dg,

X0 h i ,h i o_
n 2 Xm 1+€X;, 2 Zz =0p n max j(b )+(D )X
. I n

=0 p(l):
Combining this with (20) and stra'}ghtforward adaptations of (21) and (22)aiithplace of
".wend n(b )=0p(@)and n(b )=0p(1) as required. O

Lemma C.2 is a general uniform consistency result which is useful for the analysis of the
single-index mode{M »).

LEMMA C.2. Assume thatX;;Y;); 1 areindependent copies of a bivariate random pair
(X;Y) such that:

« X has suppor{a; b, with a < b, and a density functiohyx which is uniformly bounded
on compact sub-intervals ¢&;b).

* There exists > 0 such thatEjYj?* < 1 and the conditional moment functian7!
E jYj?* jX = z is uniformly bounded on compact sub-intervalgayf).

Let further:
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* (Vi) be a sequence of independent copies of a bounded random vaviable
» L be a Lipschitz continuous function with support containef if; 1].

Assume nally thanh3! c2 (0;1 ), andt, = nt with2=(5+ ) <t< 2=5. Then for any
a2 [a;gwitha<ai<bi<b,
n2=5 1 X z X i 1 z X

" su YilfiYij tegVL 220 ZE vvL
OGN a, 2 b nhy _ 0 9N Ty b h

=1
=0 p(l)Z

We note that, as a consequence, we have a similar uniform consistency result for the non-
truncated version of the smoothed empirical moment, that is

n2=s 1 X z X i 1 z X
pP—— su YiViL —E YVL =05p(1
OGN a, 2 b Mha _ '~ hy hn hn P(1)
under the further assumptidjYj>?* < 1 . This follows from noting that
| |
[ ' ' i}
P fiYii>tag NP(Yj>tn)=0 ——— =0 n! 62)%+) =o)
i=1 tn_

by Markov's inequality. The stronger moment assumpiig¥j>=?* < 1 already appears
in [41] in the context of local polynomial estimation.

PrRoOOE The basic idea is to control the oscillation of the random function

ns 1 X z X 1 z X
7 Yi1fiY ] thgViL ~E YVL
“7 Plogn nh, T WGME TR b hn

=1
and then use this control to prove that it is suf cient to show uniform consistency over a ne

grid instead, which can be done by using Bernstein's exponential inequality. Our proof adapts
the method of [23] (proof of Theorem 2).

Dene Y™ = Yi Vi1fiYij ty,gandY® := YVIifjYj t,g. Then

n2=5 1 X o z X 1 z X
sup ——  Yi1fiYij tpgViL —E YVL
logn 4, Zpb_l nhp i1 I ng Vi hn hn hn
25 1 X X 1 X
" e = oy 22 2y 22
|Ogn a z b1 nhn i=1 hn hn hn
(23)
n2=> 1 z X
+ p—— sup ——E jYjjVj1fiYj >tng L
pilognal Zpbl h B IYIVILY] >tag h

The second term on the right-hand side of (23) is controlled by noting that, thanks to a change
of variables,

hiE iYiiVi1fiYj >tag L
n
z 1
=0 EGYjLfiYj >tngiX =z hnu]jL(Wjfx(z hpu)du
1

hn
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Zi h i
=0 t,! E jYj?* )X =z hpu jL(Wjfx(z hyu)du =0(t,! )
1

uniformly in z 2 [a;; by ]. Here the boundedness'éf the integrability ofLj and the assump-
tion that the(2 + ) conditional moment off and the density functiohy are uniformly
bounded on compact sub-intervals(af b) were all used. Finally

P
- logn
.1 =n 0 t=gn 25)=g nzi
so that
ns 1 e, z
(24) p—— sup —E jYjjVjlfjyj >tn,g L =0(1):
logna, z b hn hn
Combining (23) and (24), we nd that it is suf cient to show that
n2=s 1 X oy, oz X 1 z X
25) p—— sup — YL ==L ZE YL =0p(1):
(25) logn 4, zpbl nhn . I hn hn n P(L)

We now replace the supremum in (25) by a supremum over a grid by focusing on the oscilla-
tion of the left-hand side. For a giva? R, let

p___
. . logn
An(z):= 2%2[ay;bn] j2° zj hnTi
Then[ay; by] is covered by thé\,(z,; ), with
3 s %
. ogn . a
Znj =a1+1hn—nzzg5 =1 497:1 s = Noj
N n2=5

whereb cdenotes the oor function. Besides, writigg(z9 L(z)j C_jz° zj by Lips-
chitz continuity ofL, we also nd

i zj 1)j LY L@)j]j 2% zlL(z) withL(z):= CL1fizj 2g:

Let znj be a grid point and 2 Ap(z,;j ). By constructionz  zn; j=h, P log(n)=n%=>
which converges to 0, so that, forlarge enough,

P
. zZ X | Znj X | logn Znj X |
8i2f1::::ng; L L : =L :
g hn hn n2=> hn
Then
i Tymp 2Xi g ym 2 X
Tann i
ogn 224, (z,; ) Mn ., hn hn hn
n2:5 i)@ Y(n)L Zn] X| 1E Y(n)L Zn;j X
logn nhp - : hn n hn
X . )
+ i jYi(n)jL Zp;j X = jY(n)jL n;j X
nhp i1 hn n n
n2:5 1 )@ Y(n)L an X| 1E Y(n)L Zn;j X

logn ﬁi: ' hn N hn
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hn

iE iy (MjL Znj X
hn

+ = Y™y .
n

By the boundedness of, of fx and ofz 7! E[jY]jjX = z] over compact sub-intervals of
(a;b), we nd, for n large enough,

sup hiE iy (MjL

Co
a; z b !ln hn

whereCy is a nite constant. Consequently, for any const@nt 2C,

e v 22X g ymy 2X

|Ogﬂ ZzAn (Zn;j ) n n |=1 | hn n n
2=5 X . . .
n 1 Yi(n)L Znj X i iE vy Zni X
logn nhp i=1 hn n n
2=5 X . ) .
n l . (N). Zn'J X i 1 v (n): Zﬂ'j X

+ p—— Y 'jL ——— —E jY%"WjL —W—— +C
logn nh, Y1) A hyo 10 h

i=1

where the (crude) inequaliuyzz5=p logn 1, for n large enough, was used. Conclude, by
writing [az; 1] [ 1 j N,An(zn;), that

n2=5 1 X z X i 1

(n) m, ZX
p—— su — Y 'L —— —E YYWL —— > 3C
|Ogn a Zpbl nhn i=1 ! hn hn hn
!
nzs 1 Xz X 1 Znj X
N, max P p—— y'mWL ML —p vy T >C
"1 N, logn nhp _ hn n n
n?s 1 Xy zng X _ X
+ N, max P p—— y'MjiL M~ —gjyMmj . M sc
"1 N, logn nhp i:1] ] hn hyo MY hn
We nish the proof by showing
(26) !
25 X0 :
n“— 1 Yi(n)l- z Xi iE vy z X >C =0 1
logn nhp - hn hn hn n
and
27) !
nZ=> 1 X (n): z X 1 ) .
p— yijiL ==L —E jyMjL >C =0 =
logn nhy izlj ) hn hn AN hn n

for Cdarge enough, uniformly irz 2 [a;1;by]. SinceNy, is of ordern2:5=(hnp log(n))
n3=" log(n) = o( n), this will entail
|
2=5 X . '
P sup 1 yML 2 Xi e ymp 22X 4 =0(1)
- hn hn hn
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for C large enough, which is suf cient for our purposes. We only show (26) uniformly in
z 2 [ag; by]; the proof of (27) is identical. Rewrite the left-hand side of (26) as
!

> .
hn hn Cun ’

X
P YL
i=1
with uy, := n3=5hnp logn. Letv be a constant such thipfj v with probability 1. Note that
for anyi we have the crude bound

X X . .
ML 2L gy 22 2vt, max jL(u)j:
n n 1 ul
Remark also that, fan large enough,
X X
var YOO 22 2E y22 22 pp,
hn hn

for some nite constanD, by uniform boundedness df andz 7! E Y2jX =z over
compact sub-intervals @f; b). By the Bernstein exponential inequality we get
!

zZ X z X
S E vy(WL
hn hn

X (n)
P YL >Cun
i=1
C2u2=2

2e —
XP Dnhp +2Cvtaun max; 1.43jLj=3

Recalling that,, = nt with 2=(5+ ) <t< 2=5,up = n3=5hnp lognandnhX! c2 (0;1),
one nds
1 C2=2 cl=5c?
— ! asnl!l
logn  Dnhp +2Cvtaun max; 1.43jLj=3 2D

and therefore there is a const&ft> 0, independent of, such that fon large enough
!

P yimp 2210

i=1

Eymp 2X

n n

>Cu, 2exp C°C?logn

uniformly in z 2 [a;; by]. For C large enough, this yields

X X | X 1
P vy 220 ymy 2 >Cup =0 =
. hn hn
i=1
which is equivalent to (26). This completes the proof. O

Lemma C.3 provides a uniform control, tailored to the assumptions of Proposition C.1, of the
gap between smoothed moments and their asymptotic equivalents.

LEMMA C.3. Assume that the bivariate random pé¥ ; Y) is such that:

« X has supporfa; b, witha < b, and a density functiofiy which has a continuous deriva-
tive on(a; b).

* The conditional moment functionyx :z 7! E(YjX = z) is well-de ned and has a con-
tinuous derivative olfa; b).

» L is a bounded measurable function with support containdd i 1].

Then,ash! O:
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(i) Foranya;;b 2 [a;hjwitha<ai<bji<b, we have, uniformly iz 2 [a;by],

z 1
%E YL th = myx (fx(z)  L(u)du
1

Z,
hfm?{jx (2)fx (2) + myix (2)fR(2)9 luL(u)du+o( h):

(i) Ifmoreoverfx andmy;x are twice continuously differentiable ¢a; b) then, uniformly
inz2 [a; ],

1 z X
HE YL h
Z, Z,
= Myijx (2)fx (2) lL(U)du hfm$x (2)fx (2) + myjx (2)f 3 (2)g 1uL(U)du
Z,

+

h2
?f m¥x (2)fx (2) +2m{x (2R (2) + myix (2)FA2)g luzL(u)du +0(h?):

PrRoOOFE Note that

z
1 z X !
HE YL H . Myjx (z hu)fx(z hu)L(u)du:
Parts (i) and (ii) are obtained by using the following Taylor formulae with integral remainder:

z

z

‘z+ )= @+ 2+ [ A  Y2)]dt

z

and
2 Z z+
"zt )= @+ 9+ > Rz) + z+ % Rt

z
applied to the function :z 7! myjx (2)fx (z). To get a uniform control of the remainders,
use the fact that this function has uniformly continuous derivatives on any compact sub-
interval of[a; b], by Heine's theorem. O

Our next auxiliary result is the uniform consistency (with rate) of the estimatogsaot
in the heteroscedastic single-index model of Section 3.2.

ProPOSITIONC.1. Assume thafXi;Y;); 1 are independent random pairs generated
from the single-index modéM ,). Assume further that:

e The functiongg and > 0 are continuous oK and twice continuously differentiable
on the interiorK © of K .

» The projection > X has a density functiofi - x which is twice continuously differen-
tiable and positive oK °.

tinuously differentiable ok °.

» Thereis > Osuch thaEj"j?* <1 .
e L is a twice continuously differentiable and symmetric probability density function with
support contained i 1;1].
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Assume also thath} ! ¢2 (0;1 ), andt, = nt with2=(5+ ) <t< 2=5. Then, for any

compact subse o of K ° and any estimatoP such thatIO nb =0p(1), we have
n* sup by b>x >x  =0p(1)
pﬁ S KFZ nitn g P
n2=5
and p—— sup by ¢ Bx >x  =0p(1):
logn x2k,

Before proving this result, note that whinis convex, its projectiok = f “x;x 2Kg,

which is also the support of> X , is a compact interval containing at least two points (be-
causeK has a nonempty interior). Note also that Proposition C.1 is tailored to our framework
in the sense that the assumptijij>* < 1 , which puts a constraint on the tail heaviness

of the noise variable, is intuitively close to minimal for the estimatiomg@nd by esti-
mators of Nadaraya-Watson type. An inspection of the proof reveals that a similar theorem
holds ifbn, .1, andby, , are replaced by non-truncated versions, under the stronger moment
assumptiorEj"j°>=* < 1 ; see the comment below the statement of Lemma C.2. The regu-
larity assumption oz 7! E(Xjj X = z) is a technical requirement, which is for instance
satis ed if the density functioffix is continuously differentiable and positive &n .

PrRoOOF We start by proving the assertion b , . De ne a truncated pseudo-Nadaraya-
Watson estimator by
X z  7X; Xz >x,
&1, (D= VLY thgl = L =
s n L
i=1 i=1
The idea is to write

b, Px g “x g PPx g x
+ @, Ox g Px

(28) + bh,t, b>x 6h, it, b>x

and control each term on the right-hand side of (28) separately. To control the rst term, we
rst apply the mean value theorem:

> >

> >X+ b X

g ®x g >x b x sup ¢°
2[0;1]
SinceKy K2, the distance between the compact Ketand the (compact) topological
boundary oK is positivej.e. =inffkx yk;x2 Kg;y2 K nK°g> 0: Itis then straight-
forward to show that, lettingl =[u;v],wehave *x 2 [u+ =2;v =2]foranyx 2 K.
Since P is a consistent estimator of, we obtain that, with arbitrarily large probability as
n'i ,

(29) 8 2[0;1]; 8x 2Kg; “x+ b >x2[u+ =4;v =4]

Becausais continuous and therefore bounded on compact intervals contaifed/i this
gives
2=5 n2=5 1

n
30 — b> X =0p p—— p= =o0p(l):
(30) %XSZUKFZ g X g X P P?gn FFn 0p(1)
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To control the second term, we show the uniform consistency of the regression pseudo-
estimatomg,, ., . The assumptions of Lemma C.2 are ful lled foX ; Y; V) =( > X;Y;1)=
(>X;g X + >X ") and(X;Y;V)=( ~X;1,1). Recalling that' is inde-
pendent ofX and centred, Lemma C.2 then provides

> P—

iE VL Z X +0p Io_gn
(z)= n p
ghn,tn iE L 7 >X +O I‘Jlogn
hn hn P Th2s

%niformly on any ( xed) compact subset & ° = (u;v). Noting thath, (c=n)*> and
11 uL (u)du =0 (becausd. is symmetric), Lemma C.3(ii) therefore entails

p____
logn
f-x(2)9(2)+0p 7295 [ —
n logn
&, 1, (2)= P, =g(2)+0p —ar
ogn n
f-x(2)+0p s

uniformly on any compact subset @f; v), the last equality being correct becadse x is
bounded from below by a positive constant on such sets. Together with (29)far, this
yields

n2:5
(31) p——sup g1 P°x g PPx =0p):

logn x2k,

We conclude by controlling the third term in the right-hand side of (28). The idea is to de ne

Yi(”) = Yi1fj Y;j tngand, foranyz andp=0;1,
!

1 X h iy by
mPz)=—— y™ L =21
n (2)= o o h
1 X h ez >,
(P (7) = (n) i
and m” (z): nh- Y, L h-

i=1
With this notation,

i (2)  mh(2)
by (2) @y (2)
i (2) @y ey (2) [y (2) mn (2))e (2).

Oh,t,(2)  Gnh,t,(2)=

32 =
2 (@ (2)+ [0 (2) = @)my (2)
Since

(33) m©(z) fx(z) =op(1)and @M (z2) fx(2)9(z) =o0p(1)

uniformly on any compact subset @fi;v) by Lemmas C.2 and C.3(ii), we concentrate on
differences of the form
hoo ! )

1 X Ip z bx.’ z X
©) O (5= T (n) z X z X
oy (z) m®@y’(z) - \& L h- L ~
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By Taylor's theorem with integral remainder applied to the functigmwe nd
P (2) P (2)

_ 1 hY(n)'p (P rXioz *X
nhy hn hn
- ( ) 2

+ iw hY_(”)Ip 1 (b )" Xi 00 z X

nhy 0 2 hn n

|
@ h iy 2@ bx)=h, by >y

b1 Yi(”) z TXi s L%s) L% z TXi ds

nhn i1 (z >Xi)=h, hn hn
(34)

= Tun(2) + T2n(2) + Tan(2):
We handle these three terms separately.

Control of T1.n(z): Note that
" . #
1 X hY(n)lpLO Z >Xi X
il i A i
nhp - hn

Recall thatX has compact support; Lemma C.2 (choositrg X;,1 j d)thenyields

Tin(2)= h1n<b )

1 1 z °X logn
Tin(@= —(P )> —E YPLO TThe X +0p T:QS
n n n

E(YPXjj “X =z)=[1fp=0g+ g(z2)1fp=1g]E(X;j ~X = 2);

the conditional moment function 7! E(YPX;j X = z) satis es the regularity require-
ments of Lemma C.3(i). By Lemma C.3(i) and the symmetri. pf

1 z °X
ppo =~ =

h E YPL h X O(hp)

uniformly on any compact subset f; v). Since P =0 p(l=|O n), this yields
p____
1 I .
(35) Tin(2)=0p % =0p % uniformly on any compact subset @f; v):
Control of T2, (2z): Recall thatX has compact supporf =0 p(lzp n), andL %is
bounded to obtain, using the law of large numbers,
(36) ! 0
. : 1 X 1 1 logn

nggJTz,n(Z)J Op nhi jYi] Op ah2 Or 5% =0p 3%

Control of T3:n(2): Use a change of variables to rewrite the integral terisip(z) as
|

Z b> _ :

(z Xi)=h, b>x >x.
22 g %) L0Z 21 g

(Z >>(i):hn hn hn

Z s v — !
_ o CxeEm b)>x | u Lo Z X . Loo Z X
0 hn hn hn

du:
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SinceX has compact support arf =0 p(lzp n) we have
(95X Loy
lmia>§] he =0p ﬁ =o0p(1):

By uniform continuity of the continuous and compactly supported fundtiéhit follows
that

>y, >y
max sup sup Lo 2 "Xi o ez "Xi =0p(l):
LN Z2R jujj (- by x =, i i
We then get |
N L T 'S |
supjTzn(2)j=0p » iYijP H u du
z2R n iz 0 n
0 " A #,1
1 T ( )> X
—0p,@ P LA
op Ahn 1Yij hr
i=1
I
. pi
1 X 1 logn
(37) Op nhﬁ n - 1Yi) Op nhﬁ Op n2=5
Combine (32), (33), (34), (35), (36) and (37) to obtain
logn
Op —— P—
n2=5 logn
. . = a) =0
gﬂn th (Z) ghn th (Z) d Iogn P n2:5

f-x(z)+op h2s5

uniformly on any compact subset @f; v). Using (29) again with =1, we get
2=5

n
(38) pﬁ Py o, X Ghx, 07x =0p(D):
X 0

Combining (28), (30), (31) and (38) concludes the proof of the assertidQ, an.
We turn to the control oby, .., where the added dif culty is that the computation of the
estimator is based on the absolute resid#ls . = Y; bn 1, P>X; rather than on

the “true valuesZ; ;= Y; g ~X; .We thus introduce its pseudo-estimator analogue

based on th&;, | |

X b>y. X b>y .
@)= zi1fzZ tagl X L 2 X
nstn ] hn ] hn
i=1 i=1

and we seek to contrgby, -+, (z) T, (2)], forz = b>y uniformly inx 2 Kq. Write
bh,:t. (2)  “haita (2) | |
¥ h n o] i b>x_" X0 b>X-'
=" Bpal B tn ZilfZy thgL 21 L 2 A0
= o hi hn
Note that the only pairéX ;;Y;) making a nonzero contribution to this difference are those
for whichjz b>x il  hp.Forx 2 Ko, we thus focus on controlling

n 0 n

i=1

(0]
sup @i;hn;tnl Z’i;hn;tn th Zilfz; thg1l b>X b>Xi hn,
X2Kg
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Since B, 1 Zi bh« ©9°X; g >X; ,thetriangle inequality yields

n 0 n 0
sup Z’i;hn;tnl Zji;hn;tn tn ZilfZz; thg 1 b>X b>Xi hn
Xx2Ko
(39) sup max bt PXi g X
x2K0|Jb> b> X i h,
o} n o}
(40) +sup Z; 1 E;hn;tn tn  1fZi togl Px Px; n,

X2Kg

We focus on (39) rst, where the idea is to use our uniform convergence resug an.
Write

: b> > ; ; > > ; ; > : 1
iPx PPXihn)j BPxe TXG e+ (P )TXGj=ha 06 P
irrespective of the indekandx 2 K, so that, with arbitrarily large probability as! 1
8i2f1;::::ng; 8x 2 Ko jP®x  PXij hy)j PPx  >Xij  2ha:

Recall that, by (29),b>x 2 [u+ =4;v  =4]with arbitrarily large probability as ! 1
irrespective ok 2 K. Sinceh, ! 0, this yields, with arbitrarily large probability as! 1

8i2f1;::::ng; 8x 2 Ko jx  PXij hy) Xi2[u+ =8v =8|

In other words, for such indicas X ; belongs to the intersection &f and the inverse image
of the closed intervdlu+ =8;v  =8] by the (continuous) projection mapping7! ~Xx.
This intersection is itself a compact 4€t, say, and therefore, with arbitrarily large proba-
bilityasn!1l

8i2fL:::;ng; 8x 2Ko; jP>x  PXij hn) Xi2Kq:

Note alsothaK; K sinceK; is contained in the (open) inverse image of the open interval
(u+ =16,v =16) by the same projection mapping. It then follows from our uniform
convergence result dm, ., that

(41) sup max bt PXi g “X; =0p
x2Ko i:jP>x b>X,j h,

We can now control (40). Clearly
n 0

1 Z)i;hn;tn th 1fZ; tng
n (0] n 0
=1 Z)i;hn;tn th; Zi>th +1 Z)i;hn;tn >tn; Zi tn

Recall that B, . Z; bh« ©”X; g >X; and use (41) together with the

assumptiort, 'l to nd that with arbitrarily large probablllty an!l
0 0

8i2f1;:::;ng; sup Zj 1 2.h o th 1fZ; tngl b>x b>x, h,
X2Kg

ZilfzZ; 2tn;Zi>tag+ Zi1lfZ;i>t,=2,Z; tng
(42) Zilft,=2<Z; 2th0:
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Combine (41) and (42) to obtain, with arbitrarily large probabilityndsl

sup by, i, b>x haita b>x
X2K0
h i P logn
(43) sup 2t b>x Chpta=2 b>x +0p -
x2K o ' e n2=>
To conclude, note that sindg"j =1,
Z=Y g X = X+ X (" EjU)):

This single-index model linking@ to X has the same structure as mo¢hl,) and satis es
our assumptions, witly replaced by and" replaced byji"j Ej"j. Since for this model
“h,t, plays the role ofy, ., , we can use the rst part of the Proposition to get

n 2=5

(44) o, P7x >x  =0p(L):

logn x 2k,
The result then follows by using (43) to write
n2=5 n2=5

p—— sup by, P7x ” X P—— sup “h oo P7x X
logn x2k, logn 2k,

2=5

_ > >
logn x2k,

25

+ P sup “hoa Px X
logn x2k,

+0p(1)

and then by using (44) as well as its analogues witreplaced byt,=2 and2t,,. O

The following de-conditioning lemma is a stronger version of Lemma 8 in [49].

LEMMA C.4. LetN = N(n)! 1 be a random sequence of integers that, for each
n, takes its values if0; 1;:::;ng. Suppose thatG,) and (Hn,) are sequences of random
elements taking values in a metric sp&endowed with its Borel eld. Assume that

8n 1,8m2f1;:::;ng; GhjfN(n)= mgéj Hm:
Then:
@) FHy!
If moreoverS is a linear space endowed with a nokmk, then:
(i) f kHnk=05p(1), we havekGrk=0 p(1).
Finally, in the cases = R:

d Hasm!1l ,WehaveGn!d H asn!1l

(i) FHm!® +1 asm!l ,wehaveG,!" +1 asn!l



24

ProoF Use the law of total probability to write, for any positive integeg and any
Borel subseA of S,

X
P(Gh2A)= P(Gh2A;N(n) mg)+ P(Gh 2 AjN(n)= m)P(N (n)= m)
m=mg+1
X
(45) =P(Gh2 A;N(n) mp)+ P(Hm 2 A)P(N (n) = m):
m=mop+l

To show (i), letA be a continuity set dfl (in the sense th@®(H 2 @A =0, where@ As the
topological boundary of). By the Portmanteau theorem, there is an integgrsuch that
form>my, jP(Hn 2 A) P(H 2 A)j "=3. With this choice oimy we have, fom large
enough,

IP(Gh2A) P(H 2A)j
v X
P(Gh2 A;N(n) mg)+ P(H 2 A)P(N(n) mop)+ 3 P(N (n)=m)
m=mgy+1
14_ 1+ i: "-
3 3 3

This proves (i). To show statements (ii) and (iii), deduce from (45) that fomagy

P(Gh2A) sup P(Hnw2A)+0(1) asn!1l

m>m o

Fix "> 0. To prove (ii), letC > 0andmg be such thaP(kHnk>C) "=2foranym>m o,
and apply the above inequality with being the complement of the closed ball with centre
the origin and radiu€ along with this choice omg to getP(kGpk>C) " for n large
enough, which is the desired result. Finally, to prove (iii), pick an arbitteepd setA =
Ai=( 1 ;t]. Thereis an integemg such thatP(H, 2 A¢) "=2 for m > m o; applying
the above inequality with this choice ofy yieldsP(G, 2 A;) " for n large enough, which
is (iii). O

Our next result is a technical extension of Theorem 2.1 to the case when the sample size
is random. This will be key to the proof of our main theorems in Sections 3.2 and 3.3, where
one has to work with a selected subset of observations whosbl sg@edeed random.

LEMMA C.5. Assume that there is> 0 such thatEj" j>* < 1 ,that" satis es condi-

tion C( ) with0O< < 1=2and ," lissuchthan(l ,)!1 .LetN =N(n)!1
be a random sequence of integers that, for eactakes its values if0; 1;:::;ng. Suppose

that, for anyn and on the everftN > 0Og, h(”) and"i(”), 1 i N are given such that
e Foranyn 1l1landanym 2f 1;:::;ng, the distribution of("(ln); i :;"(N”)) givenN = m
is the distribution ofn independent copies 6f
* We have
p HONIOF
N1 n) max b LG

10 N 14 j"i(n)j
P
Let nally bN (")=argmin ,»r iNzl . (h(”) u) onfN > Og and 0 otherwise, as well as
n !

1 X (n) u (" (n) !
" () pPe—— v (5 W)

22 () _, " NI )

N (U) =
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n ! #
u (") mn
g LM )

NI n)

NS

and y(u)=

onfN > 0g, and 0 otherwise. Then we havg (u) N(u) ! P Dasn!l and
!

P b

Z
—~
[EN
P
~
z

z

~

N—r
[ERN
N

PrROOF To show that y (u) NMOE P 0, following the ideas of the proof of Theo-
rem 2.1, it is enough to prove that

"1 N ) P
(46) Tin = Tpﬁ jlq )P0
N i=1
and that, ifly (U) = [0:juj . ()= N@  n)l.
2
TZ’N (U): o n—
LT NT W)
X
sup qu(”) "i(”)jlf"i(”) L) t> min("i(”) 'q(n);O)g
=1 Jti2 1y (u)
(47) P oo

Clearly, sinceN = N(n) 17 and in particulaN > 0 with arbitrarily large probability,
I

_ 1 X (M) =
Tin =0p N (1+j"77) =op(1)
i=1
where th Iaw of large numbers is combined with the de-conditioning Lemma C.4(i), to show
thatN 1! (1+ J' (”)J) 171+ Ej"j < 1 . This proves (46). We now turn to the control

of To.n (u). Use thatN = N (n) g and follow the ideas leading to (11) in the proof of
Theorem 2.1 to nd, fom large enough,

™0 e mine® g0 0> ()

with arbitrarily large probability, irrespective of2f 1;:::;Ng andt such thaftj 2 I (u).
Therefore, with arbitrarily large probablllty as! 1

. 2 M) M, w1
T N)iq ol =
2,N(U) () N(l N)Il.q i J i >6 N()
|
_ 1 X W) w1,
TNLOE v, e D

i=1
Combine Lemma A.1 with the de-conditioning Lemma C.4(i) to get

Ton (U) =0p(1):
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This is (47). Combine (46) and (47) to get (u) N(u) ! P 0. Now a combination of the
conclusion of the proof of Theorem 2 in [10] and the de-conditioning Lemma C.4(i) yields
r
d 2 u?
= + ! + — !
N (W) n(U)+0op(l) uz 1 2 > asn!l

in the sense of nite-dimensional convergence, vdtheing standard Gaussian. Singg(u)

is convex inu, the conclusion follows using the convexity lemma stated as Theorem 5 in [33].
O

Lemma C.6(i) below is a technical extension of Lemma A.3 to the case of a random sam-
ple size. It is essential in, among others, proving that the Hill estimator based on a random
number of residuals is asymptotically Gaussian, which is stated below as Lemma C.6(ii); this
will be used extensively in Sections 3.2 and 3.3.

LEMMA C.6. Letk=k(n)!1 be asequence of integers wkhn! 0. Assume that
" has an in nite right endpoint. LeN = N (n) ! q be a random sequence of integers
that, for eachn, takes its values if0; 1;:::;ng. Suppose that, for any and on the event
fN > 0g, ™ and"{™,1 i N are given such that

* Foranyn 1landanym 2f 1;:::;ng, the distribution of("(”) -----

is the distribution ofm mdependent copies 6f

* We have
a(n) u(n);
Ry = max Jhi(n)l P o
1 i N 1+ J" J
(i) Then we have both
1
(n)
sup b?'n)bMN)SCN 1 =0p(Ry) and sup. Iog@"'t’?'n)b KN)SEN A = 0 p(Ry ):
0ss 1 7Nb k(N)scN N b k(N)scN

n(n)
N b k(N)sc;N

gi) If moreover" satis es conditionG( ; ;A ) and ," lis suchthain(l ,)!'1
nl JDA@ o) H! 2Rand N(@ n)Rn!T 0, then the Hill estimator

Here by conventionm,\ln b k(N)sG:N and are equal to 1 on the eveiiN =0g.

b 1 bN (¥ N)CI B
= 0 |
bN (1 n)C bN (1 N)C i=1 k (n)b N1 «~)cN

issuchthaPN(l N)(Bon @ w)e )!RI (=1 ); ?.

ProoF We follow the proof of Lemma A.3. Onthe eveéitl > Og\f Ry 1=4g, having
arbitrarily high probability, we may write

8i2fLunNg " Ru@+iRD) By I+ R @+ )

Given N = m, the random varlabléN K(N)N has the same distribution &ds, Kkm):m.

the (m k(m))th order statistic of a sample ah independent copies of. Since
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"m Kk(m):m 1P +1 asm!1 , we obtain Iikewise"f\l”) K(N)N ] by the de-

conditioning Lemma C.4(iii). On the eveAt, := fN > 0g\f Ry 1=4g\f " k)N
1g, whose probability tends to 1, we have

8i N k(N); (1 Ry)"N Rn HY  (@+Rn)"{N +Rn:
Therefore, oAy,

(n)
bN b k(N)sc;N

n(n)
N b k(N)sc;N

8s2 (0;1]; 2Rn 1 2Rn:

Mimic then the nal stages of the proof of Lemma A.3 to conclude the proof of (i).
(ii) De ne

1 NGk nde "E\Jn)i+1-N
. - lo '
BN w)e™ By 1 nwn)c i=1 ’ "(N”)b N1 n)cGN

By (i) and the assumptiorr)l N(1 nN)RN P 0}

P — p
N@T  ~N)bBoniag e )= N@  N)(enag o) )*rop(l):
Combine Lemma C.4(i) and Theorem 3.2.5 in [14] to conclude the proof of (ii). O

Lemma C.7 contains the crucial arguments behind our construction in Section 3.3.

LEMMA C.7. Work in mode[(M 3). Assume that satis es conditionG( ) and thatK o
is a measurable subset of the supporKofsuch thatP(X 2 Kg) > 0.

(i) There exists¢; 2 (0;1) suchthag (Yjx)= g(x)+ (x)q (") forany 2][ ¢;1]andany
X in the support oiX .
(i) IfE" j<1 andO< < 1,onehas

(Yix)=g(x)+ (x) (max(";(yo 9(x))= (x))):

In particular the expectile (YjX = x) is asymptotically equivalent to (g(X ) +
(X)"jX =x)as "1

(iiiy The probabilityP("> (yo 9(X))= (X);X 2 Kp) is not zero. Lek have the same
distribution as(Y g(X ))= (X) giventhatg(X )+ (X )">ypandX 2 Kg. Then
fort so large thatlyp, g(X ))= (X ) t with probability 1,

_ P(">t) _
P("> (yo 9(X))= (X)jX 2Ko)
In particular, e satis es conditionG( ).

(iv) Letp=P("> (yo 9(X))= (X)jX 2Kygp).Theng (")=q(e)! p as " 1.If more-
overEj" j<1 andO< < 1,then (")= (e)! p as "1

(v) If, in addition toEj" j< 1 andO< < 1, the random variable¢ satis es condition
G(; ;A ), thenesatis es conditionG(; ;p A)and,as " 1,

P(e>t)

E?§:1+ p(ql(")l) E" "> yo()%()x);x 2Ko +0(1)
pPo g, 2D 02D g a@ )Y
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(vi) Under the assumptions of (v), as 1,

(Yjx)
gx)+ (x) ()
_ (' . Yo g(x) : 1.
=1+ 7q @) E max ,7()() +0(1) +o(jA((1 ) i)

PROOE The key point is to remark that = max(g(X )+ (X )";yo). By independence
betweenX and", the conditional distribution of givenX = x is then the distribution of

max(g(x)+ (x)"yo)= g(x)+ (x)max("; (Yo 9(x))= (x)).
(i) The th conditional quantile o¥ givenX = x is

q (Yix)=g(x)+ (x)max(qg (");(yo 9(x))= (x)):
Sinceg and1= are bounded on the supportX¥fandqg (*)!1 as "1, one hagy (") >
(Yo 9(x))= (x) for large enough, irrespective af. Conclude that there i 2 (0; 1)
with g (Yjx)= g(x)+ (x)g (") forany 2] ;1] and anyx in the support ofX , as
required.
(i) By location equivariance and positive homogeneity of expectiles, theconditional
expectile ofY givenX = X is

(Yix)=g(x)+ (x) (max(";(yo 9(x))= (x)):

To conclude, itis suf cient to show that for anty, the extreme expectiles blandmax(";t o)
are asymptotically equivalent. To do so we note that the de nition of tileunconditional
expectile (") of " as

(")=argmin EC (" ) (")
2R

can equivalently be obtained as thth quantile associated to the distribution functién
de ned as

E (" y)lf">y g .
2E (" Y)liwyg ty E[]
Seee.g.the nal paragraph of p.373 in [1]. Similarly theth expectile (max(";tg)) of

max(";to) is obtained as theth quantile associated to the distribution functieg de ned
as

1 E(y)=

1 EO(y)= E (maX(";to) Y)lfmax(";t0)>yg .
2E (max(";to) Y)ltmax(to)syg * Y Elmax(';to)]l

It is straightforward to check that fgr>t g
E (" y)lf">y g .
2E (" Y)lfsyg +y E[max(;to)l
Lemma 3(i) in [49] (withf therein chosen as the identity function avd 1) entails that 7!
1=(1 E(y)) andy 7! 1=(1 Eq(y)) are asymptotically equivalentgd 1  and regularly

varying with positive index. Lety andUg denote the pertaining tail quantile functions, the
left-continuous inverses d=(1 E) and1=(1 Ey); these are also regularly varying, and

1 Eo(y)=
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we will conclude by proving that) andUg are asymptotically equivalent. A combination of
Equations (1.2.26) and (1.2.28) in [14] and the regular variation propettyeritails

t ! t ! t !
im —————=Ilm ————— =i =1
W @ E)U@M) ' @ Eo(U()  tI' (T Eo)(Uo(t)

Jim ¢ lua=1 E)1)= lim t lua=a Eo)(t)= lim t lUo(1=(1 Eq)(t))=1:

Apply Proposition B.1.9.10 in [14] to obtain thet andUp are indeed asymptotically equiv-
alent, thus completing the proof of (ii).

(iii) First of all, if Px denotes the distributizon of ,

P("> (yo 9(X))= (X);X 2Ko)=  P("> (yo 9(x))= (x))Px (dx)>0

Ko
becaus®(" > (yo g(x))= (x)) > 0foranyx (since" is heavy-tailed) an®(X 2 Kgo) >
0. Write then
Ple>t)=P(">t jg(X)+ (X)">yo;X 2Ky)

_PC>"> (Yo g(X))= (X);X 2Ko).

P("> (yo 9(X))= (X);X 2Ky)
Itis indeed possible to takeso large thafyg g(X ))= (X ) t with probability 1 sincey
andl= are bounded on the supportXf. For sucht,

P(">t; X 2Kp) _ P(">t)
P("> (Yo 9(X))= (X);X 2Ko) P("> (yo 9(X))= (X)jX 2Ky)
by independence betweeh and”, which is the required result.
(iv) Thatg (")=q(e)! p as " 1directly follows from the identityP(e >t) = p P(">
t) for t large enough, and therefoge(e) = o ,1 (") for close enough to 1, combined
with the regular variation property of7! U(t)= q;  :("). The convergence (")= (e)!
p as " 1follows from the asymptotic proportionality relationship between extreme quan-
tiles and expectiles applied to battand" (which have the same extreme value index).

P(e>t)=

(v) Recall from the proof of (iv) that for close enough to 1q (€) = & p1 ("). Set
V(t)= g ¢ :(e) and pickx > 0. Fort large enough, we nd

V(tx) _ U(p Mx) _

1
VO C U o)

x +Ap W) x 2

—x +p A x Lo

by assumptiorG( ; ;A ) on" and regular variation ofAj with index (see Section 2.3
in [14]). This exactly means thatsatis es conditionG( ; ;p  A). Write then

(e __aqaf(e (& 1 a().
O a0 a9 ¢ P oy
Use again the identity (e) = o, p1 (") for close enough to 1 to get
Qe _ U )hH_ p 1
Pay TP u@ Hy T

(48) p (*

(49) +o(l) A(@ )Y
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Proposition 1(i) in [12] applied to the random variabléhaving expectation 0) entails
q (")
()
(' 1 (*1y 1 1 1

+ +0(1) A((1 +0 ——
: O A@ ) Hro

This same result applied to the random variadlevhich satis es conditiorG( ; ;p  A),
gives

( *

(50) =1

(e _ ('

1 7 = - 7
(' Voe ™t g E©@ro)
' (11 Do 5D Lom poaw )Y
_ (' g Yo 9(X).
-1+pW E > X) ;X 2Kp +0(1)
(5) o D 0D Low aa )y
Combine (48), (49), (50) and (51) to get (V).
(vi) From (ii),
(Yix) 1= OO0 (max(*; (yo g(x))= (x))) @)
gx)+ (x) (") gx)+ (x) (")
(max(*; (Yo ("g)y(x)): L)) RN
because (")!1 as " 1. To complete the proof we show that for afy
Smaito) gy C 0D (Ema(stol+ o) +o( jAQ ) b

(") aq (")

as " 1. Thisis done by, rst, writing
(max(";to)) _  (max(";to)) g (max(“;to)) q(")_ (max(*;to)) q()

") g (max(";to)) q (") (") g (max(";to)) ")

for close enough to 1. Then, using the fact thrx(";to) and" have the same quantile
function for large enough, we obtain, by Proposition 1(i) in [12],

1 (max(";to)) _ (1 1
( 1 q (max(";tg)) 1+ 9 (E[max(";to)] + o(1))
+ (1 1) + ( 1 1+0(1) A1 ) Y.
Combining this with (50) completes the proof. O

Our nal auxiliary result is a direct extension of Theorem 2.1 to the case when the residuals

B") approximate an array{™, with 1 i s, !1 . This will be useful to deal with the
case of ARMA and GARCH models.
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LEMMA C.8. Let(s,) be a positive sequence of integers tending to in nity. Assume that,
foranyn, the"i(”), 1 i sy, areindependent copies of a random variabkuch that there
is > Owith Ej" j2* <1 and" satis es conditionG( ) withO< < 1=2. Let ,"1

be such thas,(1 ,)!1 . Suppose moreover that the array of random variamf&,
1 i sp,satises

(M) u(n):
sn(1 n)lmax M P o

i Sn 1+ j..(n)j

De ne

D
b ("y=argmin n(h(”) u):
UZR ¢
|

by 23
" LN 1 2

Then we havg sn(l 1)

APPENDIX D: WORKED-OUT EXAMPLES: PROOFS OF THE MAIN RESULTS

PROOF OFCOROLLARY 3.1. (i) The key is to write
!

P—— D (vix)
LN 57
I
_ 1+ >x) (") pP—— b
SR R O L O N
p
1 p_— b >
e xear o L, Pt "
pib n
+ 1 n n() _ pﬁ(b )>X
+ 2x+(1+ 7x) (")
Now
h(n) "i: b+( b)>X| +( b)>Xi.|i:
1+ b x; 1+ b x;
Then clearly, by Lemma C.1 and sin¥e has a compact support,
(n) -
p_ in ij _ .

which proves the high-level condition (2). We conclude by combining Lemma C.1, Theo-
rem 2.1 and the convergence (") !'1

(i) Combine (i) with the second convergence in Theorem 2.3. O

PrROOF OFTHEOREM 3.1. (i) We rst show
!

P Db, L 28
(53) NL n) G 1 1R 01



note that glverN =m> 0, ("1Kker it "NK )—( "1;0:0"m). BesidesN = N (Kgq;n) is
a binomial random variable with parameterand P(X 2 Kg), so thatN=n ! P P(X 2
Ko)> 0.Since =1 n 2witha2 (1=5;1),

PRA W)= NG 92=0,(nt 92)=0,(n25=" logn)
so that

(n) woo (n) .
p— h Kol _ J'q il
N N)lmiaN 1+J|KOJ - op |Ogn1m|an 1+ "

1fXi2Kog =0p(1):

Apply then Lemma C.5 to get (53). Statement (i) then follows in a straightforward way from
Proposition C.1 and the representation

b (Yix) - B () g 7x) b (X)) (%) e
L (Yix) of )+ (7x) () 9>+ (7x) ()
( *x) b.()
(>x)+o( )= () (")

1 9
(ii) Set b2, (M= —N b ("). Use the ideas of the proof of Theorem 2.3 to nd that
N N N

1
| |
Na v B PNa o o)
log[(1  n)=(1 I g(Yix) log[(1  n)=(2 I (M
have the same asymptotic distribution. Our result is then shown by using the assumption
NI N )! d , as well as convergence (53) and by adapting directly the proof
of Theorem 5 of [12] to obtain '
PRe . RO
log[@  ~)=1 I (") '
We omit the details. O

PrRooOF oOFTHEOREM 3.2. First of all, de ne
N bpn 1 N)C

b (my - % b
= (9
sothatt  (Yjx)= b(x)+ b(x)P, ("). Then
b (Yix)
L (Yix) |
B0+ bOOD, () g+ () ()
g+ (x) () L (Yix)
L g0+ (X)L, ()
V)
oo
- 8 1 (L+0p(L)+0p(b(x) g(x))+Op bg; 1
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(P D oY gx)

q, (") o (X)
by Lemma Cp7(vi), the consistency assumptiongpand b, andN = N (n) 19 . Now
1=v, =op(l= N(1 )); becausen! 2=2! OandN(1 )= N
Vyp consistency of andb then elntails

+op(l) +0p(A(L n) D)

P b Yy P b
N (1 " 1 = N1 N 1 (1+o0p(1
O O S L)
(54) ( ! 1) E max w(fgx) +0p(1):
It is therefore suf cierllt to consider the convergencebqf("). Write
b () N N
lo N =(b log — + o lo
I = (bong ) )log N, 9 Ng gp
|
b (e (e)
+lo N +lo ~
N C BN O

The quantityN:Nods aIO n consistent estimator gf > 0, thus making the second term a

Op(1=" n)=op(l= N(1 n)),andthe fourth termis controlled with Lemma C.7(v) and
a Taylor expar:sion. Therefore

! !
b (") b ()

log NG =[log p+op(DI(bong ) ) *log NG
1 wowg Yo 9(X).
e ) B T
+ P 11+ ('Y +(11) ! P
I1 NI )
. !
(55) +0p pﬁ

It remains to analyse the joint convergenceéogf; ). and b . (€). First, clearly

. (n) .
B ej_ N
M T e =0p(1=wn)=0p(1= N n));
which is (2) adapted to the random numbepf noncensored observations (see Lemma C.6).
Here thev, uniform consistency df andb onK g and boundedness &f on the support of

X were used, along with againt =2 ! 0, andtheidentitN (1 n)= N @ nl &

Set then

1 bN (§< N)C bﬁ\ln)
b = lo
e bN (1 i=1 ° (n)b N1 )eN
- N )C;

bN (5( N )C

i+1;N

eN i+1:N

OeS m————— log :
PTBN@E N ENbN(E w)CN

and ey (1
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By Lemma C.6(i),
p
Ponia w)e=€mn@a o)etor(l= NI n))
and therefore

p— — p—
(56) N@T ~N)bBoniag oy )= N@  N)(€nag o) )*rop(l):
Let further

b X ) DA
N (e)=arg£an (B u)and®, (e)=arg£an (& )
u i=1 u i=1
along with
" | "
_ 1 X u (e
N (u) - m - N ei N (e) m N (ei N (e))
N " ! #
_ 1 (n) u (e (n)
and y(u)= m _ v B W (€ pﬁ « (B v (€)

Lemma C.5 entails y (u) = N (u) + 0p(1). Recall the notation (y) = j 1fy Ogjy
and write, as in the proof of Theorem 2 in [10]y (u) = uTyn + To:n (U) With

1 X
Tin = P "L (8 v (€
and
TZ;N (u)
L XN Zu e Na o
= == (& w(© 20 " (& L (9)dz
(&) ., o
The distribution of thes, 1 i N, givenN = m, is the distribution ofm independent

copies ofe. Using the arguments of the proof of Theorem 2 in [10] and Lemma C.4(i) and (ii),
we obtainT;.y = O p(1) and Ty (u) ! P u2=2 . It follows that

2
V(W)= N (U)+0p(1)= % UTin +0p(L):

Conclude, by the basic corollary on p.2 in [28], that the minimisersypfand  are both
only aop(1) away from the minimiser of the right-hand side, and thus ontp@) away
from each other. This can be rephr?sed as

b (9 . _ P €9

N N C)

Finally, the distribution of the paifes 1, )c; €, (€)) givenN = m is equal to the dis-

tribution of their counterpart§gona . )c: 9., (€)) based onm independent copies &.
Combine then Theorem 3 in [12], which provides the bivariate asymptotic distribution of
(Gom@  .)ei 9, (€)), with Lemma C.4(i) to get

p e
(59) NG W) e e G g

67)  TNE@ W) 1 +op(L):

1 R BGp)V())
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withB(;p)=(p =(1 );0) (recall thate satis es conditionG( ; ;p A))and
0 , 301 1) 1

@ )2 %
V()= :
) % 3( 1 1) 2 3

a1 )2 1 2
Combining (54), (55), (56), (57), (58) with the delta method completes the proof of (i).
(ii) De ne

P oy . 1 0 bona e l bon @ N)cb
0 (= 7 E No . (8
so that®, (Yjx) = g(x) + b(x)P, (*). Then
|
b?o Y b?o " .
m 1= 8 1 (1+0p())+0p(b(x) 9(X))+Op bg; 1

+0 P(1=Q,‘j (") +op(JA((1 ﬁ) 1)])

by Lemma C.7(vi), the consistency assumptiorgandb, andN = N (n) ! 7 . Ourbias
conditions combined with the regular variation properties 8f op  :(") andt 7! j A(t)j
and thev,, uniform consistency ofy andb onK g yield

|
b?ﬁ (ij) _ b?,g (") . _p E—
W 1= W 1 (1+0P(1))+0P(1_ N(l N))

Since, from the proof of (i),

p
NE Wbwa e )N (eo=a )P
b !
andIo N1 ) ”8 1 =0p(1);
a direct adaptation of the proof of Theorem 5 of [12] produces
p a7 N b) n !
N1 n) o (") p—
y 1 = NQ@ b +0p(1
| )
N e
We omit the details. O
PROOF OFTHEOREM 3.3. (i) Write rst
|
p— b (Yn+1 jFn)
n(1 ——= 1
( ") » (Yns1 JFn)
[
mn b n )

oy iYeer jt 0 e g () ()
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PIO b
+PRE P = Gy Yo |
n i i n n
Pz iYesr jt N e gt ()
P
+p70 J'q:]_(bj;lb j) n+l j
n(l n)' p Y .+' q . L+ "
j=1 j Yn+l | j=1 j o+l (")
P
Qb e
+pmp j=1 1n (t'b+1 i n+l ])

P : q : " -
i=1 JYn+1 J+ j=1 1 n+l J+ n()

To control the gap between residuals and unobserved innovations (and hence check the
high-level condition (2)), we rewrite the ARMA model in vector form, namelyYag =

0 L 0 k
YYt 10 0
t 1
Yip = % . § andA=F 0 1 0 ¢
Y p+1 O S 1' 0
0 1
0 . 1 . .
" 1 O 0
“tq = % : § andB = 0 1 0
"t g1 O 1 0

P P
Setr =max(p;d). Sincef™ =Y, P Bave ;L B forr+1 t n,we

haveYyp = RnYe 1p @n'q(”)l;q + ‘bf;”), where the notation is de ned by replacing the
i and ; by the{™, B, andB, . It follows that for sucht

Y "w=(A A)Yip B BH+ B, "t 1)
ro Xxr
= B! }A 'd?n)Yt ip B! (B F-Ipn)"t ig
j=1 j=1
r
(59) Bl 1B )My "t ia) B' g
j=1

becausébﬁ;ra) = 0pObserve now that by causality ¢¥i)i2z, the Y; have the linear rep-
resentationY; = j1:0 i"t j; and it is a consequence of the arguments in the proof of
Theorem 3.1.1 in [5] that the; de ne a summable series and decay geometrically fast,
e.j jj C Rl for real constant§ > Oandg 2 (0;1).1Write, forl t n,

oG it it @A max i+ CRRY"
j=0 j=t j=0 1=0
The last sum on the right-hand side is nite with probability 1 becdukas a nite rst mo-

ment. Conclude thahax; ; njYij=0p(l+maxi t nj"tj). Since the'; are independent
and satisfyG( ), we nd

(60) 1mtaxj"tj =O0p(n ) and thenlmtaijtj =0p(n ¥ ) forany > O;
n n
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by conditionP(" > x )=P(j"j>x)! "2 (0;1]asx!1 ,combined with Theorem 1.1.6 and
Lemma 1.2.9 in [14], and Potter bounds (geg. Proposition B.1.9.5 inj14]). Notice now
thatB is essentially the companion matrix of the polynonigk) =1 + jqzl jZ . Itisa
standard exercise in linear algebra to show Bhatas characteristic polynomial

Xxd .
det( I, B)= 9+ ; 91= 9Q(1=):
j=1
SinceQ has no rootz such thatizj 1, all eigenvalues oB must then have a modulus

smaller than 1i.e.its spectral radius(B ) is smaller than 1. Let k denote indifferently the
supremum norm oRY spaces and the induced operator norm on square matrices, and recall

thatkBIk 1 (B)asj!1 (thisis in fact true for any operator norm), which means
in particular that the series o kB Ik is summable. De ninghﬁ") = = (”)q =0 for the
sake of convenience, we obtain
. (n) - . (n) "y P
maxinT g mex BT ma i
R . b3 .
k A Ak kBlkmaxjYij+kB B,k kBIk max "
=0 1tn =0 1It n
* j (n) o
+kB Bk kBlkmaxjn™ "j+ 1+supkBik maxj"j:
i=0 1tn i 0 1tr

By Pa consistency of the?,, and B, kA A.k=0p(n 2) andkB Bk =

Op(n 72). Isolate thermax; ¢ nj'q(”) ".j to conclude that
. (n) "o 1=2 . . ‘s _
= 1+ Yi] + = 1
max jiy tj=0Op n max jYij + max j"] Op(1)

by (60) and the assumption< 1=2. We now use (59) again, this time to control
max;, t r,jbEn) "tj to apply Theorem 2.1 (for the sample size t, +1= n(1+0(1)),

since the estimato'l’f)n (") is based upon the last t, +1 residuals). Fot t,!'1 ,
kBt "™qk k B "kk"rgkandt r tp=2for n large enough; hence, by (59), the bound
!

. (n) "o 1=2 H i 1" j
= 1+ m Yij + ma + kB !k
tnm?lxnj'q tj=0p n ! ?xnj t) n txnj t) jSLtan=2

SincekB!1k¥@ 1 (B)2[0;1)asj!1 ,we have fom large enough

a(n) e 1=2 T o t
= 1+ m Yii+ m +(1 "
tnm?\xnjb[ tJ=0p n max Jyy + max ] ( )

forsome 2 (0;1). We havep n(1 )" ! Obecausé,=logn!1 . Conclude that

max M:o max jf" "j =Op(n 2*) forall > 0
th t n 14" Pt ton ! P

and therefore (2) is proved:
IS

p -
N ) max =T =oe(L):

Complete the proof by combining tl‘f()eﬁ consistency of the estimatow"i%,-;n and t};n ,
Lemma C.8 (an extension of Theorem 2.1 necessary here since at each step, the indices
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of the relevant; may not be contained in those relevant to the previous step and thus, strictly
speaking, we do not work with a single i.i.d. sequence) and the convergerftg! 1

(i) Set

0
Ty= L P

1
and write |
PR Te(aaiFa)
logl(1 o)=L A o(YnsriFn)
P . !
_p pe(") nd_ n) %) 1
P Y1 i+ 0 e gt o) Jogl AT A ()
p___
+ nl n) p Jpzl(bj;r!b i) Yn+1 |
log[(1 n)=1 9] jp:1 jYner jF jq:]_ i"ner )t o(M)
pi P n
+ n(l n) p jq:]_(bj;l'b j) n+l j
logl )= A1 o iYeer i+ jTne g+ (%)
pi P n
nl n) b b1 B, (bgl)l i ne )

+ 0 p T " "
log[(1 n)=1 ) =1 jYner jt jo jMne gt o()

Combine then what was obtained in (i) with the rst convergence in Theorem 2.3. [J
PROOF OFTHEOREM 3.4. (i) Recall thab,, theb;;, and theb,;n are consistent estima-

tors of (strictly) positive parameters, and thus are positive with arbitrarily high probability as
n!l .Inwhatfollows we implicitly work on this high probability event. Write
I |

P D(auifn) | P D)

A Ay H N O
P buu b ().
+ n(1l L) ™ 1 ok

Let us rst check the high-level condition (2). De ne= max( p; d). For anyt withr + 1
t n,

(61) B toq = 2 (b2 ¢
L4t p b(™( ¢+ ™) (b{")?
0 , 1 0 P 0 1
P+ 9 -YZ 1
t j=1 17t J 1
¢ 0
_ t 1 . _ _ 0
Vip = % : %’ Zq = % : and B = %
2 '
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Similarly 87) = 2{7) + @nbt(”)l;p where the notation is de ned by replacing thg, ! , the
j and j by the(bt(”))z, by, thebj andb,;n .Forr+1 t nthen,

txr 1 _ txr 1 '
Vgp = B!Zt jq+B' "vep; bt(;?)) = @%Pt(nj):q + B "oy
j=0 j=0
and therefore
bt(:g) Vip
txr 1 ' txr 1 ' _
= @Jn(z)t(nl):q Zt jq)* (B BHZy jq+ B "0 B "y
j=0 j=0

This readily provides
I
. !

(n)y2 Xt i X 2 t ry(n)
(b™)?= " BLLD) bat b Y +(B] b))
j=0 i=1
whereu (1) denotes the rst element of a vectar and A (1; 1) the top left element of a
matrix A , and similarly
tx 1 xa !
(b2 Z= B by L+ (b DY

j=0 i=1
txy 1 ) xd !
+ (Bh(L;1) BI(L1) !+ Y
j=0 i=1
(62) +(BL o) B Tvep)(1):

We compare each term in (62) ([bt(”))z. First of all

1 XX xa
e ®L(1;1) by '+ (b DYE
(b(”))z _ . J
t j=0 i=1
I xda ) .
(63) b, ! + b|,n i =0p(n 1:2):
bn i=1 bi;n
Now B and®, are positive matrices, so that if, :==max; ;| pjBn i, clearly®,

(1+ n1)B elementwise and thu®), 1+ ,)B! elementwise for any. In particular
BL(1:1) @+ »)Bi(1;1)andlikewiseBi(1;1) (1+ n) BhL(1;1). Hence the bound

BL(LY) B [+ o) 1maxB!(1;1);BL(1;1)
i n@+ o) Imax(B!(1;1);®(1;1)
(64) i n(@+ n)3 1BI(1;1):

Like in the proof of Theorem 3.3, lé&t k denote indifferently the supremum norm Eﬁ
spaces and the induced operator norm on square matrices. Notig8 tiiat1)j k B'k;
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sincekBI k¥ 1 (B)2[0;1)asj!1 (to chﬁzck that indeed the spectral radi8 ) 2
[0;1), use Corollary 2.2 in [17]) and, = O p(1=" n), we have

R _ .
j®h(1;1) BI(1;1)j=0p( n)=0p(n )
j=0

P

Recallingtha(bt(n))2 b, ! I'> 0, we therefore obtain

txr 1
(B (1;1) BI(1;1) =0p(n ):
j=0

(65) r+r1na'[X n (bt(n))z

Next we write, foranyi 2f 1;:::;qg,

tX

1 t 1:i1- i (1-1\i 2
1 . . X liph) BI(LL) Y2, .
o BhL;1) BIL) Y " R
(b{M?2 5 =0 b+ BA(LDbn Y2,
Similarly to (64),j®4(1;1) Bi(L;1)j | o1+ )3 ®L(1;1). Thus, for anys > 0,
1 tx 1

o (BhLY BIEL) v

(by )% =0

t 1 j . —
o e a1 PR DN YE, Dy
bin | 1+ Bh(1;1)bin Y2, =by

ji
|

. g

St )1 Bh(1:1)bin Y2, |
in i =0 n

_ i bin ° X
" bi;n bn

ja+ ¥ A+ B Y

j=0

where the inequalityx=(1 + x)  x°, valid for anys and x > 0, was used. Because
jBI(1;1)] k BlkandkB/k¥ I (B)2[0;1)asj!1 ,aswellas ,! O0in proba-
bility, we have

i+ 3 Y@+ )iBi@E1)s<1
j=0
with arbitrarily high probability am ! 1 . Hence the bound

tX

1
(B)(L;1) BI(L1) Y2, ; =Op n 2 max ¥

r+TatXn (Ny2 1tn
(by )% =0

valid for anys > 0. Recall that there isg > 0 such thalE(YfS") < 1 (see Corollary 2.3
p.36 in [17]). Using the identity

1
E(Y2*) = . P(Y2* >y)dy<1
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and noting that the function 7! P(Yl280 >y ) is nonnegative and nonincreasing, it is a stan-
dard exercise to show thB(Yl250 >y)=o(y 1) asy!1l .Conclude that, forang sg,
nP(Y2>ns%)= nP(Y* >n)=0(1), and then that

P max YE>nS%  nP(Y2>n5%)=0(1);
n
of which a consequence is thatax; ¢ n Y>> = O p(nS%) for anys so. In particular,
sinces can be chosen arbitrarily small,
tx 1

(BL(1;1) BI@1) Y2, ; =0p(n ) forall > 0;
j=0

(66) r+r1‘naiX n (bt(n))z

Finally, fort t, andn large enough,

tr (n) tory. ;
max (b(n))zj(@ b B "vip)(D)]
|
1 _ o) n 0 n 0’
= sup k@lnk+ kBik max b™+ , =0Op sup kB®lk+kBlik
bn ] th =2 r p+1 tr J th =2
by consistency oby, de nition of b(”)ID+1 Tin b( ) and niteness of at least a fractional

moment of the ; (and hence niteness of thet with probability 1; see Corollary 2.3 p.36
in [17]). Besides, itis a simple exermss in linear algebra to show thatdor d matrix with

nonnegative elementkAk =maxy i ¢ ;- 1A(| j ); consequently
!

ma (n) J(@t rb(n) Bt l'Vr;p)(l)j:OP sup (1+ n)jkBjk
th t n(b )2 i th=2

Recall thakB k& | (B)2[0;1)asj!1 and ,! O0in probability, so that

(67) (B Bm B Tvep)(1)j=0p(n ¥?)

o (™2
" (be™)
becausdn=logn!1 . Combine (61), (62), (63), (65), (66), (67) and recall that 1
n @to nd

2 n)

{ P P b( t) 1?0

p__
n(1 n)tnmet;\xn (bt(n))z 1! 0andthen n(1 )tnmt 0 1]

by (61). Condition (2) thus holds. Second, the inequgbity; = n+1 4 j b2,,= 2., 1]
and a similar argument yield

P——— b

nL ) ]

11 O

n+1l
Conclude by applying Lemma C.8 (for the sample sigze= n t, +1= n(1+o0(1)),
since the estimatolif’n (") is based upon the last t, + 1 residuals; this array version of
Theorem 2.1 is necessary once again here).
(i) Set
1 0
1

b?r? (") =
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and write |
T Ca— &, (Yosr jFn)
logl(1 )= I o(Yn+1jFn)
p__ } !
_ n@  n) %)
log[(1 W)= N o(")
p A N n
.\ nd ) by, To().
logl(1 W)= ] o(")
To conclude, combine (i) with the relationshiig+1 = n+1 =1+0 p(lzIO n(l ) and
the rst convergence in Theorem 2.3. O

APPENDIX E: ADDITIONAL RESULTS ON INDIRECT ESTIMATORS AND THEIR
PROOFS

This section focuses on the indirect versions of our extreme expectile estimators. The rst
result is an analogue of Corollary 3.1 in the heteroscedastic linear regression (iadel

for the indirect estimator§ (Y jx) and e?no(ij) de ned as

e (Yjx)= b+ b>x +(1+ PPx)(— 1 1) 7b§1nt)) n@ )en

19
1

Here™ = byh1 ,)c IS assumed to be the Hill estimator based on residuals, as in Section 2.2.

(— 1 1) *b(n)

and e?no(ij): b+ 0>x +(1+ b>X) hbn@ .)en’

COROLLARY E.1. Assume that the setup is that of the heteroscedastic linear r(iddé!
Suppose theEj" j?< 1 . Assume further thatsatis es conditionG( ; ;A ) withO< <
1=2, < O,andthat ,; 9" 1 satlisfy(3) and (4). Then for any 2 K ,

P——-F+ €.(Yix) m( ) 2 2
n ' . . .
"W g LR T b 2 LHmOP?
with the notation of Corollary 2.1, and '
pP— . -
n@ n) e?r?(YJX) { .2
log[(1  n)=1 ]  o(Yix) 1
PROOF OFCOROLLARY E.1. To obtain the rst convergence, repeat the proof of Corol-
lary 3.1, withP (") replaced byg_ (") =( bbnl(1 e 1) Pmaee m a@ .yens @ndap-
ply Corollary 2.1 rather than Theorem 2.1. The second convergence is obtained by combining
the rst convergence with Theorem 2.3. O

The second result considers, in the context of the heteroscedastic single-index ggel
the indirect estimator§ , (Yjx) and e?ﬁ (Yjx) de ned, for anx 2 Ko, as

eN (YJX): ghn ;tn(b>x)+ bhn ;tn(b>x)(7 ! 1) 7b$\|n)b N(@ n)GNK
at the intermediate level, and

1 R 1 gy M
( l) lbNbN(l n)CNK o

&, (Yix) = bh, 1, (P %)+ bp, 1, (D7)
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at the extreme level. Here= byy 1 )c is assumeghto be the Hill estimator based on the
random number of residua (1~ n)cwhereN = L, 1fX; 2 Kog.

THEOREME.1. Work in mode(M ). Assume thdlt satis es conditionG( ; ;A ) with
0< < 1=2and < 0 and that the conditions of Proposition C.1 in Appendix C hold. Let
Ko be a compact subset & such thatP(X 2 Kg) > 0, andN = N (Kg;n). In addition,
suppose that the sequencgs=1 n 2 with a2 (1=5;1) and 0" 1 satisfy(3) and (4).

Then, for any 2 K,
I

P e (Yjx) . m() .. .
NG W) e 1 1R T b)) P iemOP
with the notation of Corollary 2.1, and
!
T R 104 .0 B N
log[(1  nN)=1 I g (Yix) ' 1 7

PROOF OFTHEOREME.1. Combine Corollary 2.1 with the de-conditioning Lemma C.4(i)
to obtain

e n
Na e PO s 2 aemee
whereeN(")z(bb,\ll(1 e D Bow @ wa\ln)bN(l )Nk - Complete the proof by fol-

lowing the nal four lines of the proof of Theorem 3.1(i) (this crucially relies on the assump-
tions of Proposition C.1) and the proof of Theorem 3.1(ii). O

The third result focuses on the indirect estimators

i X X (n) 1 -
€ (Yn+1 jFn)= bj;n Yn+1 j + l:};n o] j +(~ 1) a9, (")
j=1 j=1
xXP xd 1 o _
and e?no (Yn+1 an) = bj;n Yn+1 jt bJ;n bgrl)l j + 1 : (7 ! 1) q, (")
j:]_ J:]_

1 . my (n)
in the ARMA(p; g model(T1). Hereq (") = b 41 b (N tA)(d  a)on th+l

der statistic of the last  t, + 1 residualst{™ ;5" ;:::;t5", with t,=logn ! 1 and
tn=n! 0, and— is assumed to be the Hill estimator based on these residuals.

is a top or-

THEOREME.2. Workin mode(T1). Assume further thatsatis es conditiorG( ; ;A )
with0< < 1=2and < 0, and that ,; 9" 1 satisfy(3) and (4). If moreovem? * (1

n)! Oforsome > O, then
!

P———— € (Yp41jFn) m( )
n(1 BEASILe S LA Vo T ™) ey 2 1eim( )2
O A T b)) [m( )]
with the notation of Corollary 2.1, and
P . !
nl n) e?g(Ynﬂan) R L2

log[(1 n)=(1 I o(Yn+1 JFn) . 1 ’
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PrROOF OFTHEOREME.2. Mimic the proof of Theorem 3.3, applying (an array version
of) Corollary 2.1 rather than Lemma C.8. O

The fourth and nal result gives the asymptotic properties of the indirect estimators
€ (Yn+1jFn)= bnaa (T ! 1) 7q (M)

1 R

_ 1 —  /n
a0

and e?no(Yn+1 JFn)= bn+1

in the GARCHp; ) model(T2), where agai, ()= 5, .1y wana e te1 1S

andtp,=n! 0, and™ is assumed to be the Hill estimator based on these residuals.

THEOREME.3. Workin mode(T,). Assume further thatsatis es conditiorG( ; ;A )
with0< < 1=2and < 0.Suppose alsothah; ;" 1satisfy(3)and(4)with =1 n @

fora2 (0;1). Then
!

P——< € (Yn+1jFn) m( ) 2 2
n(1 " 1 !f{l — ; X 1+[m :
O AT T ) [m( )]
with the notation of Corollary 2.1, and
!
AT GalFl) -
log[(1 n)=(1 1  o(Yn+1]Fn) ' 1

PROOF OFTHEOREM E.3. Mimic the proof of Theorem 3.4, applying (an array version
of) Corollary 2.1 rather than Lemma C.8. O

APPENDIX F: FINITE-SAMPLE STUDY: DETAILS ON COMPUTATIONAL
PROCEDURES AND FURTHER FINITE-SAMPLE RESULTS

F.1. Optimal choice of the intermediate level ,,. In the calculation of our extreme
value estimates, the intermediate levgls a tuning parameter that has to be chosen. This is
of course essentially equivalent to choosing the paramkgterbn(1  ,)crepresenting the
effective sample size in the Hill estimator used for the extrapolation. There are various ways
of choosingk,, ; we brie y discuss here a procedure based on an asymptotic mean-squared
error minimisation criterion. As highlighted in Equation (3.2.13) p.77 in [14], the asymptotic
mean-squared error of the Hill estimator un@gf ; ;A ) is:

1 n 2 2

Let us consider the typical case of an auxiliary functieft) = bt , as in our simulation

study. Minimising the AMSE with respect tg, yields an optimal valug&, given by
$

1 )2 1= 2) ”
K = ( ) 2=(1 2)

n = 2b2 :

This optimal value ofk, fullls the well-known bias-variance trade-off in extreme value
analysis, by balancing in an optimal way the variance increasing wittkjpand the bias

increasing with highk,. In practice, this value ok, is of course unavailable because it
depends on the unknown values gfb and . In our simulation study where a sample of
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n = 1;000data points is available, we therefore suggest to use the sample courﬁﬁrpart

k, obtained through plugging in a prior estimate ofalculated using the bias-reduced Hill
estimator withk, = n=10 = 100, along with estimates dfand obtained using the function
mopfrom the R packagevtO , all based of course on residuals of the model rather than the
unobservable noise variables.

To check the quality of the estimation with this choh;,eof kn, we repeated our simulation
studies in Sections 4.1 and 4.2, with the same parameters buE,yvithpIace ofkn, = 100.

Results are reported in Tables F.2 and F.4. It is readily seen there that there is no obvious
advantage in using a data-driven criterion for the choick,efand in fact results tend to be
slightly worse. This is most likely because a data-driven choide,as itself random and
therefore may contribute to estimation uncertainty.

Model Procedure =0:1 =0:2 =0:3 =0:4
(S1) 229 10 2 | 356 10 2 | 6:46 10 2 | 1:13 10 !
S1i) 1.37 10 7 [ 3114 10 2 | 651 10 2 | 1:21 10 ¢
(
(S2) 273 10 2 | 376 10 2 | 6:17 10 2 | 9:86 10 2
(S2i) 311 10 2 [ 357 10 2 | 593 10 2 | 1.05 10
(B1) 126 10 ©* [ 806 10 2 | 9:89 10 ? | 1:93 10 ©
Linear (G1) (B1i) 158 10 T | 7:85 10 2 | 975 10 2 | 1.96 10 *
(B2) 122 10 ¥ [ 1:09 10 * [ 9:90 10 ? | 1:08 10 ©
(B3) 252 10 2 [ 393 10 2 | 6:78 10 2 | 1.16 10 *
(B4) 482 10 2 | 413 10 2 | 634 10 2 | 1.04 10
(B4i) 815 10 ° | 273 10 2 | 623 10 ? | 1:.18 10 *
(B5) 226 10 2 | 353 10 2 | 6:23 10 2 | 1.06 10 *
B5i 9:47 10 ° | 3:09 10 2 | 638 10 2 | 1:12 10
(
(S1) 1:83 10 ' [ 1:10 10 1 [ 813 10 2 [ 1:09 10 T
(S10) 1:.96 10 © | 1:18 10 * | 6:97 10 2 | .01 10 *
(S2) 390 10 7 | 438 10 2 | 6:89 10 2 | 1.08 10
(S2i) 575 10 2 | 427 10 2 | 653 10 2 | 1.08 10
(B1) 14310 T [ 889 10 2 | 1:18 10 * | 2:06 10 *
. . (B1i) 174 10 T [ 764 10 2 | 1:14 10 © | 2:05 10 °©
Single index (G2) — gy —326 10 T [ 279 10 T | 237 10 T | 195 10 *
(B3) 297 10 2 | 420 10 2 | 7:20 10 2 | 120 10 *
(B4) 584 10 2 | 482 10 2 | 714 10 ? | 1:13 10 *
B4i) 9:86 10 ° | 3119 10 2 | 7:01 10 ? | 1.28 10 *
(
(B5) 273 10 2 | 412 10 2 | 7:01 10 ? | 115 10 *
B5i 115 10 2 [ 361 10 2 | 7:18 10 2 | 1:22 10 ¢©
(

TABLE F.1
RMAD of methods (S1), (S2), (S1i) and (S2i), and of benchmarks (B1)—(B5i), in models (G1)—(G2). Estimators
based on the xed intermediate leve] = n=10 =100.

F.2. Pointwise con dence interval construction. We have explained, following our
simulation studies in Sections 4.1 and 4.2, that most of the uncertainty in the problem of es-
timating extreme conditional expectiles appears indeed to come from the extreme value step.
This seems to be particularly the case as soon a$):2. One may then use the asymptotic
results developed in this paper to carry out pointwise inference about extreme conditional
guantiles. Indeed, in typical cases the limit law in Theorem 2.3 is standard, and in fact is
even Gaussian, because it is the limiting distribution of the extreme value index estimator
—; under their respective suitable conditions, all common extreme value index estimators are
asymptotically Gaussian. This is the case for the Hill estimator, of course, as we state in our
Corollary 2.1, but also for, among others, the Pickands estimator, the Maximum Likelihood
estimator constructed using the Generalised Pareto approximation, the moment estimator
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Model Procedure =0:1 =0:2 =0:3 =0:4
(S1) | 2:30 10 2 | 3:82 10 7 | 655 10 2 | 1:18 10 °

(S1) | 145 10 2 | 3:36 10 7 | 6:75 10 2 | 1:25 10 °

(S2) | 287 10 2 [ 398 10 | 6:39 10 2 | 1.06 10 !

(S2i) | 325 10 2 | 362 10 7 | 611 10 2 | 1:08 10 *

(B) | 126 10 ' | 806 10 2 | 9:89 10 Z | 1.93 10 |

Linear (G1) (BL) | 158 10 ' | 7:85 10 2 | 9:75 10 2 | 1.96 10 *
(B2) | 127 10 ' | 1:.09 10 ¥ | 1.01 10 ' | 115 10 |

(B3) | 243 10 2 | 398 10 2 | 7:31 10 ? | 1.26 10 |

(B4 | 482 10 7 | 458 10 2 | 597 10 2 | 107 10 ¢

(B4) | 907 10 ° [ 312 10 2 | 6:90 10 Z | 1.31 10 |

(B5) | 239 10 ? | 367 10 2 | 6:39 10 Z | 104 10 |

(B5) | 965 10 ° [ 315 10 2 | 6:41 10 2 | 111 10 ¢

(S1) [ 1:84 10 | 111 10 ' | 7:96 10 2 | 1:10 10 °

(S1) | 1.96 10 * | 1.19 10 * | 7:08 10 2 | 1:.03 10 °

(S2) | 404 10 2 | 443 10 Z | 691 10 2 | 1:11 10 °

(S2) | 586 10 2 | 437 10 7 | 651 10 2 | 1:09 10 *

(B) | 143 10 ' | 889 10 2 | 1.18 10 * | 206 10 |

o (BL) | 174 10 ' [ 764 10 2 | 114 10 * | 205 10 ¢
Single index (G2)— gy — 348 10 T [ 279 10 T | 232 10 * | 191 10 °
(B3) | 292 10 ? | 438 10 2 | 7:85 10 ? | 132 10 |

(B4) | 584 107 | 535 10 2 | 672 10 2 | 117 10 ¢

(B4) | 110 10 2 | 3:64 10 2 | 7:76 10 Z | 143 10 |

(B5) | 289 10 2 | 428 10 2 | 7.18 10 % | 114 10 |

(B5) | 117 10 2 [ 368 10 2 | 7:21 10 2 | 120 10 ¢

TABLE F.2
RMAD of methods (S1), (S2), (S1i) and (S2i), and of benchmarks (B1)—(B5i), in models (G1)—-(G2). Estimators
based on the data-driven intermediate Ieb,el

of [15] and probability weighted moment estimators (see respectively Theorems 3.3.5, 3.4.2,
3.5.4 and 3.6.1 in [14]). Asymptotic bias terms depend pthe second-order parameter

and the auxiliary functiod, while asymptotic variances are functions adnly. For instance,

if ~is the Hill estimatofby,; )¢ as in Corollary 2.1, Theorem 2.3 reads, in model (1),

P - !
@ o) B 2

logl(1 )= A o(Yix) 1

Consistent estimators ofandA are available from the work of [22], adapted here by using
residuals instead of the unobserved errors. In each case the asymptotic bias and variance
terms can then be estimated, and carrying out inference on the extreme conditional expectile
of interest is, in principle, straightforward.

For consistency with our nite-sample studies and especially our real data analyses, we
discuss the implementation of such con dence intervals based on the bias-reduced es-
timators bRE, obtained by a bias reduction of the Hill estimatny (where throughout

k=bn(l ,)c)and If"')éRB("), obtained by a bias reduction of the direct extrapolated esti-
mator b-’g("), whose expression can be found at the beginning of Section 4. Combined with
appropriate model structure estimators converging quickly enough, these naturally give rise
to an estimato’y*® (Y jx) which, by Theorem 2.3, should satisfy

P — B?:RB (v ; !
nd_») O R o 2

log[(1  n)=(1 Q) o(Yix)
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Model Parameters Estimator =0:1 =0:2 =0:3 =0:4
(; )=(0:1;0:1) Direct | 475 10 ? | 631 10 ? | 957 10 [ 1:37 10
(estimated) Indirect | 3:00 10 2 | 5:43 10 2 | 9:47 10 ? | 1:50 10 *

(; )=(0:1;01) Direct | 4:49 10 “ | 6:06 10 “ [ 930 10 © | 1.37 10 '
(known, benchmark) Indirect | 1:96 10 % | 5:32 10 2 | 962 10 2 | 1:48 10 !
(; )=(0:1;05) Direct | 469 10 | 6:25 10 “ [ 957 10 * [ 1:38 10 *
(estimated) Indirect | 3:09 10 2 | 5:36 10 2 | 9:88 10 2 | 1:49 10 !

(; )=(0:1,0:5) Direct | 4:46 10 * | 6:30 10 * | 9:37 10 “ | 1:36 10 °©
(known, benchmark) Indirect | 2:04 10 2 | 5:45 10 2 | 9551 10 2 | 1:45 10 !
ARMA (; )=(0:5;01) Direct | 493 10 “ | 651 10 “ [ 959 10 © | 1.37 10 '
(estimated) Indirect | 3:14 10 2 | 5:79 10 2 | 1:01 10 * | 1:50 10 !

(; )=(0:5;0:1) Direct | 453 10 “ | 6:28 10 “ [ 9:30 10 # | 1.36 10 !
(known, benchmark) Indirect | 2:06 10 2 | 5:47 10 % | 957 10 2 | 1:46 10 !
(; )=(0:5;0:5) Direct | 451 10 * | 6:62 10 | 9:87 10 * | 1:142 10 *
(estimated) Indirect | 3:06 10 2 | 5:91 10 2 | 1:02 10 * | 1:57 10 !

(; )=(0:5;05) Direct | 4:17 10 6:28 10 © | 955 10 “ | 1:35 10 *
(known, benchmark) Indirect | 1:96 10 2 | 5:53 10 2 | 972 10 2 | 1:47 10 !
(; )=(0:1,0:1) Direct | 442 10 2 [6:03 10 2 [ 901 10 2| 1:31 10 *
(estimated) Indirect | 1:92 10 2 | 5:22 10 2 | 9142 10 2 | 1:39 10 !

(; )=(:1,01) Direct | 444 10 * | 6:03 10 * | 934 10 * | 1:.35 10 *©
(known, benchmark) Indirect | 1:88 10 2 | 5:23 10 2 | 9:49 10 2 | 1:45 10 !
(; )=(0:1,0:45) Direct | 4:44 10 5:99 10 | 9:00 10 * | 1:25 10 *
(estimated) Indirect | 1:87 10 2 | 5:15 10 2 | 9:06 10 2 | 1:33 10 !

(; )=(0:1,0:45) Direct | 444 10 “ | 603 10 “ [ 934 10 [ 1.35 10 !
GARCH | (known, benchmark) Indirect | 1:88 10 21523102 | 949 10 2 | 1:45 10!
(; )=(0:4501) Direct | 451 10 * | 6:03 10 # | 930 10 * | 1:31 10 *©
(estimated) Indirect | 1:92 10 2 | 5:29 10 2 | 9:64 10 2 | 1:39 10 !

(; )=(0:450:1) Direct | 4:44 10 6:03 10 © | 9:34 10 * | 1.35 10 *
(known, benchmark) Indirect | 1:88 10 % | 5:23 10 2 | 9:49 10 2 | 1:45 10 !
(; )=(0:1,0:85) Direct | 450 10 “ | 7:31 10 “ [ 964 10 “ | 1.20 10 !
(estimated) Indirect | 2:65 10 2 | 6:68 10 2 | 957 10 2 | 1:14 10 !

(; )=(0:1,0:85) Direct | 444 10 * | 6:03 10 # | 934 10 * | 1:.35 10 *©
(known, benchmark) Indirect | 1:88 10 2 | 5:23 10 2 | 9149 10 2 | 1:45 10 !

TABLE F.3
RMAD of the (bias-reduced) direct and indirect extreme conditional expectile estimators in ARMA and GARCH
models. Estimators based on the xed intermediate lkyet n=10 = 100.

In line with standard practice in extreme value analysis for heavy tails, we consider instead
the equivalent version

!
p m b?rtj)RB(YjX) 'Rl

ool = 1'% T e(Vix)

©; 3

obtained via the delta-method, as this has been observed several times to yield more reason-
able con dence intervals when using Weissman-type extrapolated estimatoesd§&6] in

the context of extreme quantile estimation). This immediately provides an asymptotic point-
wise 95% con dence interval for o(Yjx) as

- 0
PP(x)= D8 (vjx)exp 1:96'09[(}0¢ ”)]bgnﬁl

nl n)

A slightly different construction, also motivated by Theorem 2.3, is possible by building the
con dence interval directly on the estimat@?éRB(") rst and combining with location and

I#

n)C
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Model Parameters Estimator =0:1 =0:2 =0:3 =0:4
(; )=(0:1;0:1) Direct | 491 10 ? | 655 10 2 | 9:72 10 [ 1:42 10
(estimated) Indirect | 3:05 10 2 | 5:61 10 2 | 9:79 10 ? | 1:51 10 *

(; )=(0:1;01) Direct | 474 10 * | 624 10 # | 970 10 * | 1:.38 10 *
(known, benchmark) Indirect | 1:93 10 % | 5:47 10 2 | 970 10 2 | 1:48 10 !
(; )=(0:1;05) Direct | 5:07 10 6:64 10 9:51 10 © | 1:38 10 *
(estimated) Indirect | 3:17 10 2 | 5:74 10 2 | 9:80 10 2 | 1:48 10 !

(; )=(0:1,0:5) Direct | 4:89 10 * | 6:38 10 # | 9:81 10 * | 1:38 10 *©
(known, benchmark) Indirect | 2:04 10 2 | 5:52 10 2 | 9:71 10 2 | 1:48 10 !
ARMA (; )=(0:501) Direct | 5:00 10 2 | 6:88 10 2 | 9:94 10 2 | 1.44 10 ®
(estimated) Indirect | 3:13 10 2 | 591 10 2 | 1:02 10 * | 1.54 10 !

(; )=(0:5;0:1) Direct | 493 10 “ | 6:47 10 # [ 979 10 [ 1:38 10 *
(known, benchmark) Indirect | 2:13 10 2 | 5:55 10 2 | 9:80 10 2 | 1:50 10 *
(; )=(0:5;0:5) Direct | 470 10 * | 7:36 10 # | 1:.01 10 ' [ 1143 10 *©
(estimated) Indirect | 3:09 10 2 | 6:29 10 2 | 1:04 10 * | 1:56 10 *

(; )=(0:505) Direct | 485 10 6:74 10 2 | 1.01 10 * | 1:42 10 ©
(known, benchmark) Indirect | 2:00 10 2 | 5:77 10 2 | 1:.02 10 * | 1:52 10 !
(; )=(0:1,0:1) Direct | 465 10 2 [ 622 10 2 [ 922 10 2 [ 1:34 10 1
(estimated) Indirect | 1:90 10 2 | 5:45 10 2 | 9223 10 2 | 1:39 10 !

(; )=(:1,01) Direct | 461 10 * | 6:19 10 # | 955 10 * | 1:37 10 °©
(known, benchmark) Indirect | 1:90 10 2 | 5:16 10 2 | 956 10 2 | 1:48 10 !
(; )=(0:1,0:45) Direct | 4:72 10 6:29 10 © | 909 10 * | 1.28 10 *
(estimated) Indirect | 1:87 10 2 | 5:33 10 2 | 9223 10 2 | 1:35 10 !

(; )=(0:1,0:45) Direct | 461 10 | 6:19 10 # [ 955 10 # | 1.37 10 !
GARCH |_(known, benchmark) Indirect | 1:90 10 21516 10 2 | 9:56 10 2 | 1:148 10 !
(; )=(0:4501) Direct | 471 10 * | 6:30 10 # | 9:80 10 * | 1:35 10 *©
(estimated) Indirect | 1:93 10 2 | 5:50 10 2 | 9:86 10 2 | 1:41 10 !

(; )=(0:450:1) Direct | 4:61 10 6:19 10 © | 955 10 # | 1.37 10 *
(known, benchmark) Indirect | 1:90 10 % | 5:16 10 2 | 956 10 2 | 1:48 10 !
(; )=(0:1,0:85) Direct | 455 10 | 7240 10 ©# [ 971 10 © | 1.22 10 !
(estimated) Indirect | 2:67 10 2 | 6:80 10 2 | 9:31 10 2 | 1:14 10 !

(; )=(0:1,0:85) Direct | 461 10 | 6:19 10 # | 955 10 * | 1:.37 10 *©
(known, benchmark) Indirect | 1:90 10 2 | 5:16 10 2 | 956 10 2 | 1:48 10 !

TABLE F.4
RMAD of the (bias-reduced) direct and indirect extreme conditional expectile estimators in ARMA and GARCH
models. Estimators based on the data-driven intermediate hiavel

scale afterwards. In this case, an asymptotic point@igé con dence interval for (") is
11} !#

_ 0

n n)

In the class of regression models (1) wherg(Yjx) = g(x) + (x) o("), this yields an
alternative asymptotic pointwi#b%con dence interval for o(Yjx) as

n)C

I#

n)C

- 0
P2 (x)= g(x)+ —(x)FRE (") exp 1:96'09[(%) LY CR ) b
n n n(l n)
if gand are estimated by and— suf ciently fast that the asymptotic behaviour B§*® (*)
dominates. In a model where the conditional mean is assumed to be 0 (for example GARCH
models), the interval®® andP® coincide. We illustrate the behaviour Bf (x) (calcu-

lated on the bias-reduced direct estimator) in the top left panel of Figure F.1 below, on the
example of the Vehicle Insurance Customer data of Section 4.3.

Finite-sample coverages of these two intervals a8t nominal level are compared in the
setups of Section 4.1 (see Table F.5) and Section 4.2 (see Table F.6) for an extreme value
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index equal tdl=4 = 0:25. Interval P yields sensible results at a central poinin regres-

sion models, as can be seen from the leftmost table in Table F.5. Inféﬂ/eﬂas a lower
coverage probability and seems to be too narrow. It is interesting to note that the difference
between the performance of intervals constructed using estimated model parameters (ignor-
ing the uncertainty incurred at the model estimation step) and of those obtained with the
unrealistic knowledge of model structure is negligible; in the regression case, this can be
seen by comparing procedures (S1) and (S1i) with benchmarks (B5) and (B5i) in the linear
model (G1), and (S2) and (S2i) with benchmarks (B5) and (B5i) in the single-index model
(G2). This illustrates once again that the extreme value step, rather than model estimation,
is indeed the major contributor to estimation uncertainty as long as the model can be esti-
mated ef ciently. We illustrate this point further in our time series models, where it can be
seen that for both intervals, the coverage probabilities obtained by assuming knowledge of
the model are essentially identical to those where the model structure has to be estimated. In
our time series examples, coverage of the Gaussian con dence intervals is in fact arguably
quite poor (around0% in most models), but this will be due to the fact that the sample
size is not yet large enough for the Gaussian approximation to be reasonable for sample
expectiles. This is not due to the uncertainty in model estimation not being accounted for,
since assuming knowledge of the model does not improve coverage substantially. Issues with
nite-sample coverage of Gaussian con dence intervals for the estimation of extreme con-
ditional risk measures such as the Expected Shortfall (closely related to the expectile) have
been reported before, seq.[29].

Model Procedure b(? b(zg) Model Procedure p(? p(?
(1) | 0910 0.746 (S1) [ 0.740] 0.468

(ST) | 0.924] 0.758 (ST) | 0.740 | 0.458

(S2) [ 0.924] 0.764 (S2) [ 0236 0.114

(S2i) 0.942 | 0.780 (S2i) 0.230 | 0.120

(B2) [ 0.816] 0.484 (B2) | 0.000 | 0.000

. (B3) | 0.908 | 0.720 . (B3) | 0.343 | 0.154
Linear (G1) ®4) |o0o1aloveo]| -near(Gl) (B4) 0932 0.760
(B4) [ 0.980 0.840 (B4) | 0.988] 0.840

(B5) | 0.932| 0.774 (B5) | 0.944 | 0.774

(B5) | 0.944| 0.784 (B5) | 0.962 | 0.784

(S1) [ 0.844] 0590 (S1) [ 0.034] 0.026

(ST) | 0.862| 0.646 (ST) | 0.034 | 0.024

(S2) [ 0920 0.802 (S2) [ 0590 0.442

(S2) | 0.932] 0836 (S2)) | 0.596 | 0.452

(B2) [ 0.158 0.060 (B2) [ 0.060 | 0.081
S = e
(B4) [ 0.962] 0.840 (B4) [ 0.952] 0.840

(B5) [ 0.896] 0.774 (B5) [ 0.888] 0.774

(B5) | 0.920] 0.784 (B5) | 0.908] 0.784

TABLE F.5

Empirical coverage probabilities of the Gaussian asymptotic con dence inter9af fiominal level)
associated with methods (S1), (S2), (S1i) and (S2i), and benchmarks (B2)—(B5i), in models (G1)—(G2).
Estimators based on the xed intermediate lekel= n=10 = 100, left table: central point
x =(1=2;1=2;1=2; 1=3), right table: noncentral poink = (0 :1;0:1;0:1; 0:1). The extreme value indexis set
to the valuel=4 = 0:25. Benchmarks (B1) and (B1i) are not location-scale approaches and therefore have been
excluded from this comparative table.
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Model Parameters Estimator p(lo) p(zo)
(; )=(0:101) Direct 0.769 | 0.776
(estimated) Indirect | 0.785| 0.794

(; )=(0:101) Direct 0.806 | 0.804
(known, benchmark) Indirect | 0.824 | 0.822
(; )=(0:1;05) Direct 0.766 | 0.787

(estimated) Indirect | 0.779 | 0.791
(; )=(0:105) Direct 0.773 | 0.804
(known, benchmark) Indirect | 0.792 | 0.822

ARMA (; )=(0:5;01) Direct 0.756 | 0.776
(estimated) Indirect | 0.764 | 0.794

(; )=(0:5;0:1) Direct 0.759 | 0.804

(known, benchmark) Indirect | 0.783 | 0.822

(; )=(0:5;0:5) Direct 0.698 | 0.783
(estimated) Indirect | 0.707 | 0.795

(; )=(0:5;0:5) Direct 0.697 | 0.804

(known, benchmark) Indirect | 0.709 | 0.822

(; )=(0:101) Direct 0.800 | 0.800
(estimated) Indirect | 0.817 | 0.817

(; )=(0:1;0:2) Direct 0.804 | 0.804

(known, benchmark) Indirect | 0.815| 0.815

(; )=(0:1;0:45) Direct 0.793 | 0.793
(estimated) Indirect | 0.806 | 0.806

(; )=(0:1;0:45) Direct 0.795| 0.795

GARCH (known, benchmark) Indirect | 0.818 | 0.818

(; )=(0:45,0:1) Direct 0.793 | 0.793
(estimated) Indirect | 0.802 | 0.802
(; )=(0:450:1) Direct 0.784 | 0.784
(known, benchmark) Indirect | 0.803 | 0.803
(; )=(0:1;0:85) Direct 0.710| 0.710
(estimated) Indirect | 0.732 | 0.732
(; )=(0:1;0:85) Direct 0.686 | 0.686
(known, benchmark) Indirect | 0.717 | 0.717
TABLE F.6
Empirical coverage probabilities of the Gaussian asymptotic con dence inter9&P fominal level)
associated with the (bias-reduced) direct and indirect one-step ahead extreme expectile estimators in ARMA and
GARCH models. Estimators based on the xed intermediate level n=10 = 100. The extreme value index
is set to the valué=4 = 0:25.

Situations where trusting these Gaussian con dence intervals might be dif cult include re-
gression models featuring the estimation of a nonparametric component (such as the het-
eroscedastic single-index model in Section 3.2, used for the analysis of the Vehicle Insurance
Customer data) whose rate of convergence may be close to the rate of convergence of the
extreme value estimator. In such models, disregarding the uncertainty incurred at the model
estimation stage may be problematic in regions where data is relatively sparse. This is illus-
trated in the rightmost table of Table F.5, where it can be seen that a noncentrat pint
the regression problem, coverage of the proposed Gaussian asymptotic con dence intervals
dramatically decreases, especially in the heteroscedastic single-index model. It may then be
more prudent to move away from the asymptotic approximation and use instead an approach
that fully takes into account the uncertainty in the estimation. We propose and contrast here
a couple of alternatives based on regression bootstrap methods. We develop our ideas in the
example of the heteroscedastic single-index model of Section 3.2. Suppose that from a data
set(Xi;Yi)1 i n, Wwe have estimated a direction vectBranng with mean and standard
deviation functiondgy andb. One possibility to describe the uncertainty in the estimation of
o(Yjx) is to use the wild bootstrap, widespread in the heteroscedastic regression literature
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and whose origins can be traced back to [60]. This consists in resanfling; )1 i n as
follows:

EE COOETOTN L)) N

where(";)1 i n arei.i.d. copies of a random variable having mean 0 and variance 1. A
natural, possible choice fdr is the standard normal distribution. We illustrate this method-
ology on the example of the Vehicle Insurance Customer data of Section 4.3. We simulated
N =5,;000such bootstrap samplé€X i;Y; )1 i n;ineach sample, we kept the direction vec-

tor P xed and equal to its estimated value based on the original sample, and we estimated
the functiongy and using the same method as in the real data analysis in Section 4.3. This
is sensible because the estimaboconverges much faster than the nonparametric estimators
of gand , and therefore keeping the direction xed is very unlikely to be incorrect as far as
uncertainty quanti cation is concerned. Using residuals and the direct, bias-reduced extreme
conditional expectile estimator results in an estimate ofY jx) which, for thej th bootstrap

sample, we denote H?yni)RB;(’ )(Yjx). We nally build, for a xed x, pointwise95%bootstrap

con dence intervals calculated by taking the empirical quantiles at |8k and 97:5%

of the IC’?éRB;(J)(ij), 1 j N.These are reported in the top right panel of Figure F.1.

At extreme levels (say heré) =1  1=(nh ), with h =0:1) the con dence intervals look
reasonable on the right half of the graph. However, they seem to very substantially overes-
timate the uncertainty in the left half, where data is sparser; this is especially clear around
b>x = 0:2, where the estimated extreme conditional expectile curve already extrapolates
far beyond the observations locally relevant, which suggests that the upper bound of the as-
sociated con dence interval should be relatively close to the point estimate, but this is not
the case. Moreover, the wild bootstrap method appears to be very sensitive to the choice
of distribution of" (alternative choices include the Rademacher distribution or asymmetric
two-point distributions such as the one on p.257 of [39]). Our interpretation is that the wild
bootstrap is too conservative here because it fails to get a good idea of the right tail behaviour
in the data.

To remedy this problem we suggest a second, semiparametric bootstrap method. This time,
theY; ,1 i n,aresimulated as

Yi = (0" X0+ b(P* X))
where the'; are obtained by

1. Simulatingu; from the standard uniform distribution ¢o; 1],

2. Ifui 2[p;1 p], fora xed p2 (0;1), taking”, = o Y(u), where® is the empirical
distribution function of the residuats,

3. Ifui>1 p,taking”; =((1 u)=p PP (1 p), whereb= bRB is the bias-reduced
Hill estimator (withk, =200 as in Section 4.3) based on the residdals::; b,

4. Ifu; <p, taking”; =(ui=p) °® 1(p), whereb = bRB is the bias-reduced Hill estima-
tor (with kp, =200) based on the negative residualby;:::; b,.

We chosep=0:001; further investigations, which we do not report here, suggest that results
are not too sensitive to the choice phs long agp 2 [0:001; 0:01]. The idea of steps 3 and

4 above is to allow the resampling algorithm to give a faithful idea of the right and left tails
of the data through the use of the Pareto approximations of these tails. We call this algorithm
the semiparametric Pareto tail bootstraomewhat similar ideas have appeared before in
the literature, see.g.[61] whose aim was to approximate the distribution of extreme order
statistics.
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We illustrate this methodology again on the example of the Vehicle Insurance Customer data
of Section 4.3. We simulatll = 5,000 bootstrap sample€Xi;Y; )1 i n and, like previ-

ously, we keep the direction vect8r xed and estimate the functiorgsgand using the same
method as in Section 4.3. This yields extrapolated direct bias-reduced estimatesrgk )

in each sample and therefore pointw@&obootstrap con dence intervals calculated by tak-

ing the empirical quantiles at levels5% and97:5% of these estimates. These intervals are
reported in the bottom left panel of Figure F.1; all three intervals are compared to each other
on the bottom right panel of this Figure. All intervals are roughly similar on the right part

of the graph, but on the left part where data is more sparse, the semiparametric Pareto tail
bootstrap intervals appear to give a much better idea of the type of tail the data exhibits. In
practice, we therefore recommend reporting the Gaussian con dence intervals along with the
semiparametric Pareto tail bootstrap con dence intervals, since the latter may give a more
accurate picture of uncertainty where data is sparser. This is the approach we adopt in the
real data analyses of Sections 4.3 and 4.4.
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A comprehensive analysis of the nite-sample coverage of the proposed semiparametric
Pareto tail bootstrap con dence interval is unfortunately not yet feasible in a reasonable
amount of time because the calculation of these intervals is computationally very expen-
sive: a rough estimation of the amount of time needed to compute the Pareto tail bootstrap
con dence interval in a sample of size= 1;000 (from any one of the models we examine

in the simulation study) leads to one hour of computational time. Multiplied by the number
of replications N = 1,;000independent samples in each model), the number of methods and
the number of models we consider, a full study in the spirit of Sections 4.1 and 4.2 would
require at least several months of calculation even if the code were parallelised. To get an idea
of how the proposed bootstrap methodology performs in practice, we suggest the following
small simulation experiment inspired from the kind of general model we consider in this
paper. Consider a sample of (location-scale) random varidhles: ; Y, de ned through

Yi=m+ "
Here the mean parametemis= 2, the standard deviation parameter is 1, and the random

symmetric rescaled Burr distribution as in Section 4.2, with0:25and = 1. The goal

is to infer an extreme expectile of leve] =1 5=n=0:9950f Y by lItering rst the mean

and scale components. This very closely resembles the approach adopted throughout the
paper in location-scale heteroscedastic regression models. The following estimation methods
are compared:

(E1) We estimate rsin and by the empirical meam and standard deviation. We then
construct the residuats = (Y; m)="and estimate o(") using the bias-reduced direct

and indirect estimatord’i"® (") and€’*® (") calculated on théy with =1 100=n=
0:9. We nally deduce the two extreme expectile estimatBi§® (v) = m + —07F ()
and € RB(Y)= m+ —€RB("):

(E2) Same as in (E1), with and— calculated using only the rst=2 observations.

(E3) Same as in (E1), witim and™ calculated using only the rah=4 observations.
(E4) Same as in (E1), witth and™ calculated using only the rat=10 observations.

This is compared to the unrealistic benchmark (BE) wimer@nd are assumed to be known

and thus the trué; are accessible. Note that, following the discussion at the top of p.83

in [14], this benchmark should be seen as enjoying a strong advantage over (E1)—(E4), since
the shifted variable¥; have a second-order parameter=  1=4, which is much closer to

0 than the original second-order parameter 1 of the";. The latter are, strictly speaking,

only accessible in the framework of this unrealistic benchmark (BE). The point of considering
the estimation of the mean and scale components using progressively lower sample sizes is
to assess the in uence of the rate of estimation of location-scale model components; in (E4),
there are onlypl%variables used to calcyiatand—, meaning that the “rate of convergence”

ofmand—is 100=10, exactly equalto n(1 ) which is the rate of convergence of
the extreme value step.

For each method, we compare three con dence intervals. These are, rst of all, the two Gaus-
sian asymptoti®5%con dence intervals

1%
_ 0
b(n%)z B%RE (Y ) exp 1:96|Og[(1p¢ n)]bt?nB(l ")C
nl n)
and
mn !#
. log[(1 n)=(1 9

PY = m+ 8 (exp 196 g[(pn(;)() ”)]bﬁﬁl 2)e

n
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Approach Expectile estimator P(lg) p(? P(Zf“‘)
Bias-reduced direct| 0.994 (1.082)| 0.796 (0.516)| 0.896 (0.739)
Benchmark (BE)| pias reduced indirect 0.998 (1.080)| 0.798 (0.514)| 0.880 (0.679)
Method (E1) Bias-reduced direct| 0.992 (1.083)| 0.790 (0.517)| 0.898 (0.742)
Bias-reduced indirect 0.998 (1.081)| 0.804 (0.515)| 0.882 (0.681)
Method (E2) Bias-reduced direct| 0.992 (1.082)| 0.792 (0.517)| 0.900 (0.739)
Bias-reduced indirect 0.998 (1.080)| 0.798 (0.515)| 0.880 (0.680)
Method (E3) Bias-reduced direct| 0.996 (1.081)| 0.792 (0.516)| 0.900 (0.741)
Bias-reduced indirect 1.000 (1.079)| 0.800 (0.514)| 0.884 (0.682)
Method (E4) Bias-reduced direct| 0.994 (1.083)| 0.790 (0.516)| 0.896 (0.741)
Bias-reduced indirect 0.994 (1.081)| 0.800 (0.514)| 0.884 (0.681)

TABLE F.7
Empirical coverage probabilities of the Gaussian asymptotic con dence intervals and semiparametric Pareto
tail bootstrap con dence interval96% nominal level) associated with the (bias-reduced) direct and indirect
extreme expectile estimators in the location-scale my¥delm + " . Between brackets: associated average
lengths of the con dence intervals.

We compare these intervals with the semiparametric Pareto tail boogifagon dence
intervals generated as follows: we simulatg= 500 bootstrap samples;:::;", by

1. Simulatingu; from the standard uniform distribution ¢o; 1],

2. Ifui 2 [p;1 p),forp=0:001 taking”; = © I(u;), where® is the empirical distribution
function of the residuall,

3. Ifu;>1 p,taking”; =((1 u)=p °P (1 p), whereb = bRB is the bias-reduced
Hill estimator (withk = 200) based on the residuds; :: :; i,

4. If uj <p, taking", = (uj=p) ®® 1(p), whereb = bRB is the bias-reduced Hill estima-
tor (with k = 200) based on the negative residualby;:::; bH,.

We then deduce bootstrap sampl¥s;:::;Y,)=(m+ ™ ;;::;m+ ™ ). For each sam-
ple, we estimate the extreme expectile at leyE(the bias-reduced direct estimator is em-
ployed), and take the empiric@l025and0:975quantiles of than, estimates to construct our

bootstrap con dence intervd¥2°® . This is the exact analogue of the construction we pro-
posed above, adapted to this nsimpler location-scale example. We also compare these intervals
with their versions obtained using the bias-reduced indirect estimators. We record empirical
coverage probabilities and average lengths of the intervals. Results are presented in Table F.7.

It is readily seen, rst of all, that results are almost completely unaffected by the knowl-
edge of the location-scale model structure, and similarly unaffected by the number of data
points used for the estimation of the mean and scale parameters. It is also seen that the
two Gaussian con dence intervals behave quite poorly, being either too conservative or too
narrow and achieving a coverage rate far from the nominal rate. By contrast, the proposed
semiparametric Pareto tail bootstrap con dence interval behaves fairly well, with a typical
coverage probability of abo@0% This seems to be quite robust to the number of bootstrap
replications: a larger number of bootstrap replications was also considered without chang-
ing results substantially. This constitutes reasonable grounds for recommending the use of
the semiparametric Pareto tail bootstrap con dence interval, although of course a full-scale
simulation study should be carried out in future work to assess its accuracy in the regression
context (subject to computational improvements that are beyond the scope of this article).



