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Abstract: We report coherent supercontinuum generation spanning from 2.8 to 5.7 µm in an 
all-normal dispersion SiGe-on-Si waveguide pumped with 205 fs pulses at 4 μm. We 
demonstrate by simulations pulse compression to around 22 fs.
OCIS codes: (320.6629) Supercontinuum generation; (190.4390) Nonlinear optics, integrated optics; (140.3070) 
Infrared and far-infrared lasers. 

Many fundamental molecules have sharp absorption lines in the mid-infrared (mid-IR, 2.5 – 15 μm), 

allowing for air quality and environmental monitoring applications [1]. However, mid-IR technologies are still 

limited in their range of applications, primarily due to devices' size and prohibitive costs [2, 3]. In this context, 

we aim to achieve a small footprint low-cost sensing platform with an integrated supercontinuum (SC) 

source. In the silicon germanium-on-silicon (SiGe-on-Si) platform we managed to experimentally 

demonstrate SC from 3 to 8.5 μm [4]. Furthermore, we demonstrated a post-fabrication technique for 

trimming dispersion [5], and we reported high coherence of an SC at frequencies separated by an octave [6].  

High-precision ultrafast spectroscopy requires coherent SC with ultrashort pulses. SC generation in all-

normal dispersion (ANDi) regime is a coherent process maintaining a single pulse allowing for pulse 

compression [7]. Following the SC generation reports in the ANDi regime in various fiber platforms [8-11], a 

chalcogenide chip [12], we report what we believe to be the first octave-spanning mid-infrared SC in an ANDi 

waveguide in a silicon-based chip [13].  

We designed our SiGe (40% Ge in alloy) waveguides, with 5.0 μm ⨯ 2.7 μm cross-section, to operate in the 

ANDi regime with low group-velocity dispersion (GVD < 100 ps/nm/km) across an octave bandwidth 

between 3 and 6 μm in TM polarization (see Fig. 1c). 

We characterized our waveguides using a standard free-space butt-coupling setup. Using a cut-back method 

and a 7.5 pico-second laser, we measured losses as low as 0.3 dB/cm between 4 and 5 μm in TM polarization. 

We then performed SC spectrum measurements by pumping a 2 cm long waveguide with 205 fs, 63 MHz 

repetition rate pulses at 4 µm. The Fig. 1a shows the measured output spectra, spanning over an octave from 

2.8 to 5.7 μm, obtained by pumping the waveguide with 40 mW (5.7 kW) coupled average (peak) power [13].  

Our simulations are in good agreement with the experimentally generated spectra (see Fig. 1a). We calculated 

the degree of first-order coherence g12 from 50 independent simulations showing a high-degree of coherence 

g12 equal to unity over the entire bandwidth (red curve in Fig. 1a). Such a fully coherent SC with a single pulse 

in time-domain can be compressed to a few-cycle limit after compensating the second- and third-order 

dispersion [14]. In Fig. 1b, we show the simulated spectrograms of the numerically generated SC at the 

waveguide output (left) and the compressed pulse (right). Our simulations show that it is possible, in 

principle, to exploit our SC to compress the 205 fs pump pulses down to 22 fs.  
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Fig. 1 a) Measured (solid) and simulated (dash-dotted) low-power (blue) and SC (black) spectra in the TM polarization. The top 
red curve shows the calculated coherence of the SC spectrum. b) Simulated pulse spectrograms for at the output (left) and 
compressed SC (right) at the 4 kW peak pump. White dashed lines give FWHM pulse durations. c) Calculated group velocity 
dispersion GVD for 5.0 μm ⨯ 2.7 μm cross-section air-clad SiGe-on-Si waveguide.  

In conclusion, we have demonstrated a fully coherent octave-spanning SC in an ANDi SiGe-on-Si waveguide. 

We found good agreement between measurements and simulations, allowing us to numerically confirm the 

full coherence of the generated SC across its entire bandwidth. The fully coherent SC achieved in this regime 

is suitable for efficient on-chip pulse compression schemes. 
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