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Abstract This paper addresses the model reduction

and the simulation of a damped Euler - Bernoulli - von

Kármán pinned beam excited by a distributed force.

This nonlinear problem is formulated as a PDE and

reformulated as a well-posed state-space system. The

model order reduction and simulation are derived by

combining two approaches: a Volterra series expansion

and truncation; a pseudo-modal truncation defined from

the eigenbasis of the linearized problem. The interest

of this approach lies in the large class of input wave-

shapes that can be considered and in the simplicity of

the simulation structure. This structure only involves

cascades of finite dimensional decoupled linear systems

and multilinear functions. Closed-form bounds depend-

ing on the model coefficients and the truncation orders

are provided for the Volterra convergence domain and
the approximation error. These theoretical results are

generalized to a large class of nonlinear models and re-

finement of bounds are also proposed for a large sub-

class. Numerical experiments confirm that the beam

model is well approximated by the very first Volterra

terms inside the convergence domain.
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1 Introduction

This paper addresses the model reduction and simula-

tion of a beam with external excitation for fast simula-

tion purpose. The model under consideration, proposed

in [9,11], represents a damped nonlinear pinned beam.

Under the simplifying assumptions of Euler-Bernoulli

and Von Karman’s kinematics coupled with viscous and

structural damping, the resulting model is expressed as

a nonlinear partial differential equation. Our objective

is to design and simulate an accurate reduced causal

model when the excitation is not known in advance

and may have any waveshape: the excitation is then

considered as the input of a beam system.

Model reduction for nonlinear systems, in particu-

lar nonlinear PDEs, is an important problem in engi-

neering sciences, that has been and is currently still

thoroughly studied through a wide variety of methods.

Among them, POD based approaches (including SVD,

PCA and KLD decomposition [21],[1]) coupled with

Galerkin projection are very popular (see for instance

[17], [18] and more recently [12]). Koopman based meth-

ods (see for instance [24], [3]) are also becoming increas-

ingly used. These methods are data driven in the sense

that they build approximate models based on values

collected from numerous real or numerical experiments:

to generate these data, the system is fed by a selected

set of inputs or forcing signals and a set of initial con-

ditions.
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In this work, we propose a different approach, based

on the exact knowledge of the systems equations, and

exploit two standard tools.

The first one is the Volterra series expansion. First

introduced by Vito Volterra [29], these series have been

widely used for signal processing, electronics, mechan-

ics, acoustics (etc), for model order reduction and real-

time simulation purposes, since they transform a non-

linear dynamical system into a series of linear sys-

tems cascaded with multilinear interconnecting func-

tions. There exists a vast literature concerning Volterra

series for ODEs. They were studied for instance in [10,8,

27,6,28]. Volterra series expansions can also be applied

to some classes of nonlinear PDEs, using space-time

kernels (see e.g. [26] for Green-Volterra series expan-

sions) or using infinite-dimensional (semigroup) Volterra

kernels [15] (see also [4] for a review). One important

issue raised by this approach in practical applications

is to find a bound on the system’s input magnitude for

which the series representation is convergent, and on

the series truncation error. This is still an active do-

main of research as evidenced in the recent paper [30]

and references therein (see also [2,25,20] for frequency

domain criteria). This paper relies on computable con-

vergence results valid for the class of bounded input sig-

nals, first established for linear-analytic ODE systems

in [14], and improved in [15] where tighter convergence

bounds and criterion are provided for both ODEs and

PDEs.

The second standard tool that we have at hand for

dynamical model reduction is the modal decomposition

of linear PDEs, followed by truncation and projection

on a finite dimension modal subspace spanned by the

first modes. In this context, the external excitation is

projected on this subspace, and the resulting system’s

trajectories correspond to a time varying excitation of

the finite modal basis. The resulting reduced model be-

comes a set of finite dimension ODE systems, whose

simulation is easy. This ability to approximate infinite

dimensional linear systems by finite dimension linear

ODE systems constitutes the main advantage of this

approach.

In this paper, as our model is both nonlinear and

infinite dimensional, we propose a method for combin-

ing both tools and exploit their respective advantages

in order to obtain an approximated model composed

of finite dimensional linear ODE systems and nonlinear

interconnections functions.

The paper is organized as follows: the notations and

mathematical results borrowed from [15] are briefly re-

called in section 2, and the beam model is introduced

in section 3, together with its state space representa-

tion. The linearized version of the model and its modal

decomposition are studied in 4. In this section, we also

introduce the notion of pseudo-modal truncation that

we use to formulate an approximated finite dimensional

nonlinear model in the modal sub-spaces. Section 5

presents the reduced model and provides a convergence

bound as well as an approximation error estimate, de-

pending on the input signal. These results also are gen-

eralized for a wide class of nonlinear models. Then, in

section 6, we develop new theoretical results that refine

convergence bounds for specific classes of nonlinearities,

and apply them to the beam model. Finally, numerical

simulations showing the application of our method to

two different parameter configurations are provided in

section 7.

2 Preamble

In [14,15], we have proved that the trajectories of a

class of input/output nonlinear systems can be decom-

posed into Volterra series expansions for any bounded

input in a computable convergence domain. A trunca-

tion error bound can be also computed. This section

reminds these results, based on which is addressed the

case of a damped nonlinear pinned beam excited by a

distributed force of any waveshape.

2.1 Class of nonlinear systems

We consider systems excited on positive times T = R+

by inputs u : T→U, with state-space representation of

state x : T→X, governed by

ẋ(t) = Ax(t) +B u(t) +

K∑

k=2

Ak
(
x(t), . . . , x(t)︸ ︷︷ ︸

(multilinear) k

)
, (1)

with initial condition

x(0) = xini ∈ X, (2)

where A : X → X and B : U → X are linear operators,

Ak : Xk → X are multilinear operators (accounting for

nonlinearities of homogeneous degree k w.r.t. x) and

where A is assumed to generate stable dynamics for

the linearized system (hypothesis H0).

Finite dimensional case (X = Rn, U = Rm). The state

x and the input u can be vectors, in which case A and B

can be represented by n×n and n×m matrices and the

Ak’s are multilinear functions. Hypothesis (H0) means

that A is a Hurwitz stable matrix1: A generates the

1 Every eigenvalue of A has strictly negative real part.
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flow S(t) = exp(At) on [0, T ], whose operator norm is

bounded by β exp(αt) for some β > 0 and a negative

growth bound2 α < 0.

Infinite dimensional case (X, U: Banach spaces). The

state x and the input u can also be space-dependent

functions, in which case A, B (resp., Ak) are linear

(resp., multilinear) space operators in the spaces setting

L(X), L(U,X) (resp.,MLk(X)) detailed in appendix A.

Technically, hypothesis (H0) means that A generates a

flow (called a strongly continuous semigroup) S with

negative growth bound α < 0 and with β > 0 such that

for all t ∈ T, ‖S(t)‖L(X,X) ≤ β exp(αt).

Systems under consideration. The class of problems (1-

2) with (H0) is examined in the framework of bounded

signals, namely

u ∈ U = L∞(T,U) and x ∈ X = L∞(T,X), (3)

case for which well-posed definitions of solutions (after-

named mild solutions) can be introduced (see details in

appendix A, see also [23,7] and [15,13] for more general

classes of systems).

2.2 Volterra series expansion

The trajectory x can be decomposed as a sum of con-

tributions with homogeneous of order m w.r.t. to input

u and initial condition xini, given by

x(t) =

+∞∑

m=1

xm(t), (4)

where the terms satisfy the sequence of linear problems

ẋ1(t) = Ax1(t) +B u(t) with x1(0) = xini, (5)

ẋm(t) = Axm(t) + χm(t) with xm(0) = 0, for m ≥ 2,

(6)

with χm(t) =

min(m,K)∑

k=2

∑

p∈Mkm

Ak
(
xp1(t), . . . , xpk(t)

)
, (7)

where the index set Mk
m:=

{
p ∈ (N∗)k

∣∣ p1+ · · · + pk =

m
}

selects occurrences xpi such that their combination

through the multi-linear operator Ak is of order m.

2 The maximal real part of the eigenvalues of A is the small-
est optimal bound α.

Solutions are given by a sequence of convolutions

with S

x1(t) = S(t)xini +

∫ t

0

S(t− τ)B u(τ) dτ, (8)

xm(t) =

∫ t

0

S(t− τ)χm(τ) dτ, for m ≥ 2, (9)

that exactly generate a Volterra series expansion (see

[15, Rk1]), whose kernels can be deduced from formula

(8-9).

Remark 1 (Link with the regular perturbation method)

Equation (8) isolates the classical solution of the lin-

earized problem (1-2 without the Ak’s). Solution (4-9)

formally results from the regular perturbation method [13]

applied to the input and the initial condition, both

marked by a common scalar ε (u = εũ, xini = εx̃ini),

by sorting terms along the powers of this marker ε

(xm = εmx̃m).

Remark 2 (Simulation issues) The truncated series is

well-adapted to time-domain simulation, since the sig-

nals xm can be processed by combining linear filters

(simulation of several occurrences of ẏ = Ay + v) and

instantaneous nonlinearities (multilinear operators Ak
with k ≤ m fed by subsets of yet-simulated signals xj
with j ≤ m− 1) [15, Rk2 and Fig.1] (see also fig. 3).

2.3 Convergence domain and truncation error bound

The series (4-9) converges towards a mild solution of

(1-2) in the space X of bounded trajectories, if the so-

lution (8) of the linearized problem is bounded as fol-

lows (see [14,15,5]):

if ‖x1‖X < ρ, then

‖x‖X < Φ
(
‖x1‖X

)
, (convergence in norm)(10)

∥∥∥x−
M∑

m=1

xm

∥∥∥
X
< RMΦ

(
‖x1‖X

)
, (error bound)(11)

where the convergence radius ρ, gain bound function Φ

and error bound function RMΦ are characteristic quan-

tities of the system.

In practice, they can be derived as follows:

Step 1: Compute the upper bounds ζk, for 2 ≤ k ≤ K,

ζk ≥
∫

T
‖S(t)Ak‖MLk(X,X) dt, (12)

Step 2: Define the function F , analytic at z = 0,

F (z) =
z

z − ζ(z)
with ζ(z) =

K∑

k=2

ζk z
k. (13)
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Step 3: Compute the unique root σ defined by

σ > 0 such that σ F ′(σ)− F (σ) = 0. (14)

Step 4: Compute the convergence radius ρ, given by

ρ = σ/F (σ) > 0. (15)

Step 5: Find the unique function analytic at z = 0

Φ(z)=

∞∑

m=1

φmz
m such that Φ(z) = z F

(
Φ(z)

)
. (16)

Step 6: Compute the remainder function given by

RMΦ(z) = Φ(z)−
M∑

m=1

φmz
m. (17)

Note that the coefficients φm are given by φ1 = 1 and,

for all m ≥ 2, φm =
∑m
k=2 ζk

∑
p∈Mkm

∏k
i=1 φpi .

Remark 3 (Convergence radius on the input) Following

[14,19], a convergence condition can be proposed on

the system input for zero initial conditions. From (8),

‖x1‖X ≤ γ‖u‖U with

γ ≥
∫

T
‖S(t)B‖L(U,X)dt. (18)

So, a sufficient condition for the series convergence is

‖u‖U ≤ ρu with ρu = ρ/γ. (19)

It is convenient in practice, since computing x1 is not

required. But it is conservative compared to ‖x1‖X < ρ.

3 Physical model: nonlinear boundary problem,

state-space representation and well-posedness

We consider an Euler-Bernoulli model of a damped non-

linear pinned beam, initially at rest. First, the govern-

ing equations of the nonlinear boundary problem are

presented in § 3.1. Then, the problem is reformulated

as a well-posed state-space representation (1-2): the lin-

earized problem is first examined in (§ 3.2), and then,

the full nonlinear problem in (§ 3.3).

3.1 Nonlinear boundary problem: governing equations

The considered Euler-Bernoulli model assumes the fol-

lowing hypotheses (see [9,11]):

(H1) Euler-Bernoulli kinematics (any cross-section be-

fore deformation remains straight after deformation);

(H2) Von Karman’s coupling (between the axial and

the bending movements) introducing a nonlinearity;

(H3) viscous and structural damping phenomena.

A dimensionless model governing the deflection waves

w : (z, t) ∈ [0, 1]× T→ R is given by (T = R+),

∂2tw+2 (a+b∂4z ) ∂tw+∂4zw−η
(∫ 1

0

(
∂zw

)2
dz

)
∂2zw = f,

(20)

for all (z, t) ∈ [0, 1] × T, with pinned-type boundary

conditions (fixed extremities and no momentum)

w(z, t) = 0 and ∂2zw(z, t) = 0 for all (z, t) ∈ {0, 1} × T,
(21)

and zero initial conditions

w(z, 0) = 0 and ∂tw(z, 0) = 0 for all z ∈ [0, 1]. (22)

Coefficients a > 0 and b > 0 are fluid and structural

damping parameters and η > 0 is the nonlinear cou-

pling coefficient between the bending momentum and

the displacement under the von Kármán assumption [22].

The excitation is assumed to be a time dependent

distributed force f(z, t), whose space profile is square

integrable, that is, f(·, t) belongs to the Lebesgue space

H := L2(0, 1) (square integrable functions), (23)

for each fixed time t. Moreover, we assume that

(H4) these integrals are bounded in time,

meaning that functions t 7→ f(·, t) belong to L∞(T,H).

Note that, compared to structured forcing terms3,

the range largeness of such excitation signals gives the
following method one of its main interests.

3.2 Linearized problem and state-space representation

The governing equations of the linearized boundary prob-

lem ((20-21) with η = 0) can be reformulated as

∂2tw + 2
[
aI + bB

]
(∂tw) + B(w) = f, (24)

for all (z, t) ∈ [0, 1]×T, with zero initial conditions (22),

where B is denotes the bi-Laplacian (B(w) = w(4)), op-

erating on the domain4 of sufficiently regular functions

that satisfy the boundary conditions (21).

This problem admits the state-space representation

ẋ = Ax+Bu, for all t ∈ T, with x(0) = 0, (25)

3 few oscillatory signals, sweeps or sequences of impulses...
4 see appendix A.3 for the detailed construction of the func-

tional setting.
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where the state x, input u, linear operators A and B

are

x(t) =

[
w(·, t)
∂tw(·, t)

]
, u(t) = f(·, t), (26)

Ax =

[
0 I

−B −2 (a I + bB)

]
x, Bu =

[
0

u

]
. (27)

This formulation is well-posed in the spaces of bounded

signals (3) for u(t) and x(t) living in, respectively,

U = H (in accordance with H4), (28)

X = H
1
2 ×H with ‖x‖X =

(
‖x1‖2H 1

2
+ ‖x2‖2H

) 1
2

, (29)

and norm ‖x1‖H 1
2

= ‖x(2)1 ‖H, where the complete func-

tional setting is detailed in appendix A.3. In this set-

ting,

A belongs to L(X) and generates a strongly continuous

semigroup S with negative growth bound,

B belongs to L(U,X) and ‖B‖ = 1,

proving that system (25-27) is in the class defined in

section 2.1.

3.3 Nonlinear problem and Volterra series convergence

The nonlinear problem (η > 0) described by (20-21)

can be recast in the state-space formulation (1-2) based

on definitions (26-27) and by complementing (25) as

follows

∂tx = Ax+A3(x, x, x) +Bu, (30)

with multi-linear operator

A3(a, b, c) =

[
0

−η
( ∫ 1

0
a′1(z) b′1(z) dz

)
c′′1

]
. (31)

This operator defined from X3 to X belongs toML3(X).

Indeed, its norm is bounded (proof in appendix B.1) as

‖A3‖ML3 ≤ a3 :=
η

3
√

10
. (32)

Hence, the state-space representation (30) belongs to

the class of the well-posed nonlinear problems intro-

duced in section 2.1.

According to section 2.3, there exists a positive ρ

such that the Volterra series expansion (4-9) is conver-

gent in norm if ‖x1‖X < ρ. Such a convergence radius

ρ can be derived using steps 1-4. Computations in ap-

pendix B.2 provide a bound estimate ζ3 related to γ

(defined in (18)) and to a3 (defined in (32)), and F is

given by

F (z) =
1

1− ζ3z2
with ζ3 := γa3. (33)

Solving F (σ) − σ F ′(σ) = 0 leads to σ = (3ζ3)−
1
2 . Fi-

nally, the convergence radius ρ = σ/F (σ) is given by

ρ =
2

3
√

3ζ3
, (34)

and ρu = ρ/γ in remark 3. Expressions of γ, ζ3 and ρ

(eq. 18, 33, 34) w.r.t. physical coefficients are provided

in section 4.2.

Moreover (steps 5-6), solving Φ(z) = zF
(
Φ(z)

)
, us-

ing the Cardano’s method and isolating the positive so-

lution on [0, ρ[ which is zero at 0 yields, for all z ∈ [0, ρ[,

Φ(z) = ρΨ

(
z

ρ

)
with Ψ(Z)=3 cos

(
π+arccosZ

3

)
. (35)

Its first Taylor coefficients are given by φ2p = 0 for all

p ≥ 1 and φ1 = 1, φ3 = 22

33ρ2 , φ5 = 24

35ρ4 , φ7 = 28

38ρ6 ,

φ9 = 28×5×11
312ρ8 (etc.), from which

RMφ(z) = Φ(z)−
M∑

m=1

φmz
m, (36)

is deduced. The gain bound function Φ and its remain-

der RMΦ are displayed in figure 1.
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Figure 2: a⃝ Function DϵΦ/ρ where DϵΦ(z) = Φ
(
z(1 + ϵ)

)
− Φ(z) for relative errors ϵ of

0.1%, 1% and 10%. b⃝ functions RMΦ/ρ (M = 1, . . . , 9) and Φ/ρ.

6.5. Numerical results

Two sets of parameters are studied.

Configuration 1. We consider a single mode (n = N = 1), a fluid damping

only (b=0) tuned to be close to the critical regime (a = 0.999π2). Parameter

η is chosen such that ρ = 1, which corresponds to η = 13.857. The excitation

duration is θ = 3. Four amplitudes are tested, chosen such that ∥x1∥X /ρ ∈
{0.8; 1; 1.2; 2}.

The nonlinear system is simulated using a standard ODE solver (ode15s,

Matlab). These trajectories are compared to those obtained from truncated

versions of (7) by simulating a sequence of linear systems (lsim, Matlab)

given in proposition 1. Signals w(z = 0.5, t) = X1(z = 0.5, t) are displayed

in figure 3 for several truncation orders M = 1, 3, 5, 7. For ∥x∥X = 0.8, a

good approximation is obtained as soon as M ≥ 3. For ∥x∥X = 1, the

approximations are significantly more accurate when increasing the order

M . This is no longer true for ∥x∥X = 1.2, for which the convergence seems

24

Fig. 1: Normalized gain bound function Φ/ρ and nor-

malized remainder functions RMΦ/ρ.

The truncated Volterra expansion (8-9) that solves

the nonlinear beam model (30-31) provides a finite cas-

cade of linear interconnected systems, with a controlled

approximation error. However, these linear systems are

infinite dimensional PDEs, so that their real-time simu-

lation may still be an issue. This is why in next section

we introduce a standard dimension reduction technique,

the modal decomposition, and investigate how it can be

combined with the Volterra expansion to yield a con-

trolled approximation of the beam model by a finite

cascade of finite dimension linear systems.
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4 Modal decomposition and projection

4.1 Spectral decomposition of A and projection spaces

Operator A is a spectral operator (see appendix A.3).

Its point spectrum is composed of the roots λ±n of the

characteristic polynomials

Pn(λ) = λ2 + 2(a+ bk4n)λ+ k4n with kn = nπ, (37)

for all n ≥ 1. In the following, the fluid and structural

damping coefficients a > 0 and b > 0 are supposed to

be such that

(H5) the first pair of roots (n = 1) corresponds to a

(second order) damped oscillator, which is true if

ξ1 := (a+bπ4)/π2 (damping ratio) is smaller than 1,

(H6) higher modal numbers n ≥ 2 yield faster decays5

than n = 1, which is true if 2b(a + bπ4) ≤ 1. Note

that when b > 0 the corresponding second order

systems can be oscillating at low n (if ξn := (a +

bk4n)/k2n is smaller than 1) and eventually become

overdamped. A lower bound for the damping ra-

tios is given by 2
√
b/a, almost reached when k2n ∼√

a/b.

Assuming that λ±n are always distinct, the associated

eigenfunctions of A are

e±n (z) =

[
1/λ±n

1

]
sn(z) with sn(z) =

√
2 sin(knz)

and kn = nπ (n ≥ 1). (38)

Functions sn form a orthonormal basis of H and func-

tions e±n form a basis of X. For N > 0 (modal trunca-

tion order), we introduce the approximation subspaces

of H = U (N -dimensional), H 1
2 (N -dimensional) and X

(2N -dimensional) generated by the first related basis

functions, as follows

Ĥ = Û := span(s1, . . . , sN ) ⊂ H = U, (39)

Ĥ
1
2 := span(s1, . . . , sN ) ⊂ H

1
2 , (40)

X̂ := span(e+1 , . . . , e
+
N , e

−
1 , . . . , e

−
N ) ⊂ X, (41)

equipped with norms ‖.‖H, ‖.‖
H

1
2

and ‖.‖X, respectively.

Using previous notations, we introduce the orthogonal

basis {S1, · · · , S2N} of X̂ defined by

Si =

(
si
0

)
if 1 ≤ i ≤ N,

and Si =

(
0

si−N

)
if N + 1 ≤ i ≤ 2N. (42)

This basis is the one used in the sequel. The associated

functional spaces Û and X̂ are summarized in table 1

(column 2).

5 characterized by the smallest absolute value of the real
part of λ±n .

4.2 Convergence bound estimate

A bound γ satisfying (18) can be derived as (see Ap-

pendix B.2 for details)

γ =

∫

T
sup
n≥1

√
|k4nhn(t)2 + h′n(t)2|dt, (43)

where the impulse responses hn of second order linear

systems are given according to the damping ratio ξn by

hn(t) =





e−k
2
nξnt

sin(k2n
√

1−ξ2nt)
k2n
√

1−ξ2n
if ξn < 1,

te−k
2
nt if ξn = 1,

e−k
2
nξnt

sinh(k2n
√
ξ2n−1t)

k2n
√
ξ2n−1

if ξn > 1.

Moreover, equations (33-34) become

ζ3 =
η

3
√

10
γ and ρ =

2 4
√

10

3

√
1

ηγ
. (44)

The convergence radius denominator is proportional to

the square root of the nonlinear stiffness η and to that

of γ which depends on the damping physical parame-

ters a and b in a complex way. It follows that decreas-

ing the nonlinear coefficient helps the convergence. It

can be shown that increasing a and b while keeping

the lower bound 2
√
b/a constant or increasing will also

help the convergence, and that no damping (γ → +∞)

prevents convergence6. Note also that, from remark 3,

a possibly conservative bound on the system input is
ρu = 2 4

√
10 /(3(γ)3/2

√
η).

4.3 Projection of the linearized problem

We denote ΠX : X → X̂ the orthogonal projection on

X̂. By construction of the modal basis, if x ∈ X is the

solution of (25) with input u ∈ U and initial condition

xini ∈ X, then x̂ = ΠX(x) ∈ X̂ is the solution of the

same problem with input û = ΠH(u) ∈ Û and initial

condition x̂ini = ΠX(xini) ∈ X̂. This corresponds to a

finite dimensional problem in which operators A and

B can be replaced by their restrictions Â : x ∈ X̂ 7−→
Ax ∈ X̂ and B̂ : u ∈ Û 7−→ Bu ∈ X̂, respectively. This

problem can be restated for the coordinates in the basis

{S1, · · · , S2N}, by introducing input v, initial condition

6 This case involves some so-called secular modes due to
internal and undamped resonances.
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yini and state y

v = [V 1, . . . , VN ]T ∈ V, s.t. û(t) =

N∑

i=1

V i(t)si,

(45)

yini = [Y
(0)
1 , . . . , Y

(0)
2N ]T ∈ Y, s.t. x̂ini =

2N∑

i=1

Y
(0)
i Si,

(46)

y = [Y1, . . . , Y2N ]T ∈ Y, s.t. x̂ =

2N∑

i=1

YiSi, (47)

where spaces V, Y and Y are defined in table 1 (col-

umn 3) and Y is equipped with the norm built from

X

‖y‖Y =

∥∥∥∥∥
2N∑

i=1

YiSi

∥∥∥∥∥
X

=
√
yTQy, (48)

with Q = diag(‖S1‖2X, . . . , ‖S2N‖2X)

=

[
π2diag(1, . . . , N)2 0N×N

0N×N IN

]
. (49)

The coordinates y ∈ Y of the trajectories are governed

by

ẏ(t) = AYy(t) +BYv(t), y(0) = yini ∈ Y, (50)

with

AY =

[
0N×N IN

−π4diag(1, . . . , N)4 −2
(
a IN+bπ4diag(1, . . . , N)4

)
]
,

(51)

BY =

[
0N×N
IN

]
, (52)

Note that by definition of the modal basis, when N →
+∞, the truncated system trajectory given by (47) con-

verges in norm towards the solution of (25) in X .

4.4 Projection of the nonlinear terms

Considering operator A3 defined in (31), we notice that

in the modal subspace X̂3 we have

for all (a, b, c) in X̂3, A3(a, b, c) ∈ X̂. (53)

This means that the restriction of A3 on X̂ defines a

multilinear operator on this space, that we denote Â3.

Consider the trajectory x of the nonlinear beam

model (30) with initial condition xini and input u re-

spectively in X and U. Then, we define the pseudo-

modal truncation of x on X̂ as the solution x̃ of problem

˙̃x = Âx̃+ B̂ΠHu+ Â3(x̃, x̃, x̃), (54)

x̂ini = ΠXxini ∈ X̂.

Note that x̃ does not identify with x̂ := ΠXx for a

solution x in general.

For sake of conciseness, in the sequel x̃ will be re-

ferred to as the pseudo-modal truncation of x omitting

the input u and initial condition xini. As in section 4.3,

the finite-dimensional problem (54) satisfied by x̃ on X̂
can be restated on Y for the coordinates in the basis S
as

ẏ(t) = AYy(t)+BYv(t)+AY3(y, y, y), y(0) = yini ∈ Y,
(55)

where AY3 ∈ML3(Y) is given by

AY3(a, b, c) = −η
(
aT π2diag(1, . . . , N, 01×N )2 b

)

×
[

0N×N 0N×N
−π2diag(1, . . . , N)2 0N×N

]
c. (56)

Remark 4 (Duffing oscillators) If the N first damping

ratios ξn are less than 1, then the pseudo-modal sys-

tem (55-56) exactly corresponds to N coupled damped

Duffing oscillators.

5 Reduced beam model combining Volterra

expansion and pseudo-modal truncation

This section presents the approximation of the beam

model by the truncated Volterra series of its pseudo-

modal approximation, with modal truncation orderN ≥
1 (defined in (54)) and Volterra series truncation order

M ≥ 1. Truncation error estimates are given, that take

into account both the modal and the Volterra trun-

cations. Moreover, hints to generalize the approach to

other nonlinear models are also provided.

5.1 Pseudo-modal Volterra approximation

For a solution of the beam model x, with initial condi-

tion xini and input u, we consider for order N ≥ 2 its

pseudo-modal truncation x̃ governed by system (54),

and introduce the first M terms of the Volterra expan-

sion of x̃ as

x̃1 = x̂1 = ΠX(x1), (57)

x̃m =

∫ t

0

eÂ(t−τ) ∑

p∈M3
m

Â3

(
x̃p1(τ), x̃p2(τ), x̃p3(τ)

)
dτ,

for all m such that 2 ≤ m ≤M. (58)

Then, we define the pseudo-modal Volterra approxima-

tion of x as

X̃M
N =

M∑

m=1

x̃m. (59)
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Original spaces Projection sub-spaces Modal coordinates spaces

U = H Û = Ĥ V = RN (equipped with 2-norm)

X = H× H
1

2 X̂ = Ĥ× Ĥ
1

2 (equipped with (29)) Y = R2N (equipped with ‖ · ‖Y, see (48))

U = L∞(T,U) Û = L∞(T, Û) V = L∞(T,V)

X = L∞(T,X) X̂ = L∞(T, X̂) Y = L∞(T,Y)

Table 1: Notations of the spaces involved in: (1) the original state-space problem, (2) the projected problem, (3) the

representation of (2) with coordinates

We first examine the convergence of this series, and sec-

ond, the error between x and the approximation X̃M
N .

5.2 Convergence

We apply the same steps as in sections 3.3 and 4.2

to (54) and the Volterra series decomposition (57-58).

This yields the estimates

γN =

∫

T

N
sup
n=1
|
√
k4nhn(t)2 + h′n(t)2|dt, (60)

and ‖Â3‖ML3(X̂) = ‖AY3‖ML3(Y) ≤ a3N with

a3N =
η

π2

(
N∑

n=1

1

n4

)1/2

. (61)

Then, we build

ζ3N = γN a3N , ρN =
2

3
√

3ζ3N
, (62)

and the gain bound function (see (35))

∀z∈ [0, ρN ), Φ̂N (z)= ρN Ψ

(
z

ρN

)
=
ρN
ρ
Φ

(
ρ

ρN
z

)
. (63)

Note that γN , a3N and ζ3N are all strictly lower than,

respectively, γ, a3 and ζ3 and tend towards them as

N → ∞. Then, the modal truncation makes the con-

vergence radius ρN increase according to the dilatation

factor

rN :=
ρN
ρ

=

√
ζ3
ζ3N

=

√
a3
a3N

√
γ

γN
> 1, (64)

through which the gain bound functions are related as

Φ̂N (z) = rNΦ(z/rN ). This factor combines a first di-

latation factor
√
a3/a3N > 1 depending on N only (see

values in table 2) and a second one
√
γ/γN > 1 de-

pending on a and b in a complex way but that can be

even more effective in practice.

Note also that, obviously, the Volterra series expan-

sion (4-9) of the pseudo-modal coordinate system has

the same convergence radius ρN and gain bound func-

tion Φ̂N , so that y =
∑∞
m=1 ym is convergent in norm

if ‖y1‖Y = ‖ < ρN . Moreover, we have ‖y‖Y = ‖x̃‖X̂ <
Φ̂N
(
‖x̃1‖X̂

)
= Φ̂N

(
‖y1‖Y

)
.

5.3 Truncation error estimates

Based on these results, we can now address the deriva-

tion of an estimate of the error bound of the pseudo-

modal Volterra approximation. Consider now an input

u = f ∈ U and an initial condition xini ∈ X such that

‖x1‖X < ρ. Assume that u and the linear response x1
can be accurately described by their N -order modal de-

composition û and x̂1 in the sense that

(A1) u = û+u⊥ where û = ΠUu and u⊥ = (Id−ΠU )u,

(A2) ‖x⊥1 ‖X ≤ ε‖x̂1‖X with ε� 1,

(A3) ‖x̂1‖X + ‖x⊥1 ‖X ≤ (1 + ε)‖x̂1‖X < ρ,

where x̂1 and x⊥1 denote the responses of the linearized

system excited by û and u⊥, respectively.

As x1 and x̂1 are in the convergence domain and

after (64), the series expansions x =
∑∞
m=1 xm for the

system excited by u and initial condition xini, and x̃ =∑∞
m=1 x̃m for the pseudo-modal truncation excited by û

and initial condition x̂ini are both convergent in norm.

The error on the approximated trajectory x̃ is bounded

as stated in the following proposition.

Proposition 1 (pseudo-modal truncation error

bound) Assume (A1-A3). Denote e = x− x̃ the error

on x due to the pseudo-modal truncation on X̂. Then,

e is bounded as

‖e‖X ≤ DεΦ
(
‖x̂1‖X

)
(65)

where DεΦ(z) := Φ
(
(1 + ε)z

)
− Φ(z).

The proof is given in C. Bound estimates are given in

figure 2 for several values of ε.

Moreover, as a consequence of (64), we have the follow-

ing corollary.

Corollary 1 (Pseudo-modal Volterra approxima-

tion error) With the above hypotheses, the error due to

the pseudo-modal Volterra approximation X̃M
N is bounded

by
∥∥∥x− X̃M

N

∥∥∥
X

≤ ‖x− x̃‖X +
∥∥x̃− X̃M

N

∥∥
X

≤ DεΦ
(
‖x̂1‖X

)
+RM Φ̂N

(
‖x̂1‖X

)
. (66)
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N 1 2 3 4 5 6 7 8

102(
√
a3/a3N − 1) 1.99 0.463 0.173 0.0826 0.0455 0.0277 0.0181 0.0124

Table 2: Coefficient
√
a3/a3N − 1 for 1 ≤ N ≤ 8 (lower rounded values in per cent).
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Figure 2: a⃝ Function DϵΦ/ρ where DϵΦ(z) = Φ
(
z(1 + ϵ)

)
− Φ(z) for relative errors ϵ of

0.1%, 1% and 10%. b⃝ functions RMΦ/ρ (M = 1, . . . , 9) and Φ/ρ.

6.5. Numerical results

Two sets of parameters are studied.

Configuration 1. We consider a single mode (n = N = 1), a fluid damping

only (b=0) tuned to be close to the critical regime (a = 0.999π2). Parameter

η is chosen such that ρ = 1, which corresponds to η = 13.857. The excitation

duration is θ = 3. Four amplitudes are tested, chosen such that ∥x1∥X /ρ ∈
{0.8; 1; 1.2; 2}.

The nonlinear system is simulated using a standard ODE solver (ode15s,

Matlab). These trajectories are compared to those obtained from truncated

versions of (7) by simulating a sequence of linear systems (lsim, Matlab)

given in proposition 1. Signals w(z = 0.5, t) = X1(z = 0.5, t) are displayed

in figure 3 for several truncation orders M = 1, 3, 5, 7. For ∥x∥X = 0.8, a

good approximation is obtained as soon as M ≥ 3. For ∥x∥X = 1, the

approximations are significantly more accurate when increasing the order

M . This is no longer true for ∥x∥X = 1.2, for which the convergence seems

24

Fig. 2: Function DεΦ/ρ (= DεΨ) for relative errors ε of

0.1%, 1% and 10% (see (35) and (65)).

5.4 Generalization of pseudo-modal Volterra

approximation

The pseudo-modal Volterra approximation (57-58) can

be generalized to models for which A3 does not fulfill

(53), or to more general models (1) such that Ak(X̂k) ⊆
X̂ does not hold.

Indeed, we considered so far a beam model for which

the definition of the pseudo modal decomposition (54)

and the definition of the pseudo-modal Volterra approx-

imation (57-58) crucially rely on (53), which is a par-

ticular feature of the model: operator A3 (the nonlinear

part of the model) defines a multilinear operator in the

modal subspace X̂.

We now consider a beam model with the same linear

part as above, but with a multilinear operator A3 such

that the order N modal subspace X̂ is not stable, that

is, A3(X̂) is not a subset of X̂ anymore. We assume that

a bound a3 of ‖A3‖ is available so that the new model

is in the class of well-posed problems defined in section

2.1. It follows that we obtain a convergence bound ρ

and a gain bound function Φ given by equations (34-

35) computed with the new value of a3.

For a solution of this new beam model x, with initial

condition xini and input u, we define its pseudo-modal

truncation at order N x̃m as in equation (54), where

Â3 is now defined as Â3 = ΠXA3, the projection of

A3 on the modal subspace X̂. Note that thanks to this

definition, x̃ belongs to X̂.

The pseudo-modal Volterra approximation of x is

now X̃M
N =

∑M
m=1 x̃m, the sum of the first M terms of

the Volterra expansion of x̃ defined as in (57-58). As

in previous section, the Volterra series expansion of x̃

on X̂ has a convergence radius ρ̂ greater than ρ since,

as ΠX is an orthogonal projection, ‖Â3‖ ≤ ‖A3‖ ≤ a3,

and a gain bound function Φ̂. Then, defining

‖A3−Â3‖X̂ = sup
(a,b,c)∈(X̂)3

‖a‖X̂,‖b‖X̂,‖c‖X̂=1

‖A3(a, b, c)−Â3(a, b, c)‖X, (67)

modified versions of proposition 1 and corollary 1 are

stated below, whose proof is given in appendix D.

Proposition 2 (pseudo-modal truncation error

bound) Assume (A1-A3). Denote e = x− x̃ the error

on x due to the pseudo-modal truncation on X̂. Then,

e is bounded as

‖e‖X ≤ DεΦ
(
‖x̂1‖X

)
+
‖A3 − Â3‖X̂

a3
Φ
(
‖x̂1‖X

)
, (68)

where DεΦ(z) is defined in proposition 1.

Corollary 2 (Pseudo-modal Volterra approxima-

tion error) With the above hypotheses, the error due

to the pseudo-modal Volterra truncation X̃M
N is bounded

by∥∥∥x− X̃M
N

∥∥∥
X
≤ DεΦ

(
‖x̂1‖X

)
+RM Φ̂N

(
‖x̂1‖X

)

+
‖A3 − Â3‖X̂

a3
Φ
(
‖x̂1‖X

)
.

Note that for the beam model under consideration in

the rest of the paper, because of (53), (67) is zero and

proposition 2 and corollary 2 boil down to proposition 1

and corollary 1. Note also that (67) is easy to compute

in the finite dimension space X̂ and that its value tends

to zero when the order N of the modal truncation goes

to infinity.

Finally, these results can be further extended to any

system in the class of well-posed problems (1-2) de-

fined in Hilbert spaces: if one can find a subspace X̂
stable for the linear part of the system, then propo-

sition 2 and corollary 2 hold replacing
‖A3−Â3‖X̂

a3
by

max
k∈{2,··· ,K}

‖Ak −ΠXAk‖X̂
ak

.

6 Refinements on convergence bounds

This section presents new results to improve conver-

gence and error bound estimates. We refine the theo-

retical results of section 2 for specific classes of nonlin-

earities (§ 6.1) and apply them to the beam (§ 6.2).
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6.1 New theoretical results for a class of nonlinearities

The convergence bounds in section 2.3 can be improved

if the multilinear operators Ak : Xk → X only act on

subspaces of X and admits a sandwich decomposition

Ak(x1, . . . , xk) = Bk A
†
k

(
Cx1 , . . . , Cxk

)
, (69)

where C :X→X†, A†k : (X†)k→W†k and Bk :W†k→X lie

respectively in L(X,X†), MLk(X†,W†k) and L(W†k,X).

Typically, X† and W†k refer to spaces (Rn†≤n or Banach)

smaller than X, and A†k to a reduced version of Ak. For

clarity, we stamp all the labels of the smaller or reduced

objects with the dagger symbol †.
The idea is to examine the convergence of (4) on x

through that on

x† = Cx, defined in X † = L∞(T,X†). (70)

Indeed, its Volterra series is the sum of x†m = C xm,

straightforwardly derived from (8-9) and (69) as

x†1(t) = CS(t)xini +

∫ t

0

S†1(t− τ)u(τ) dτ, (71)

x†m(t) =

min(m,K)∑

k=2

∑

p∈Mkm

∫ t

0

S†k(t− τ)A†k
(
x†p1(τ), . . . , x†pk(τ)

)
dτ,

for m ≥ 2, (72)

where we have defined, for 1 ≤ k ≤ K and B1 = B,

S†k(t) = C S(t)Bk. (73)

Then, we can compute new convergence estimates that
benefit from the focused action of operators S†k, A†k:

compared to S, Ak, these operators are circumscribed

to smaller spaces and expected to yield lower bound

estimates than ζk in (12). Thus, bounds ζk are replaced

in step 1 by the new estimates, for 2 ≤ k ≤ K,

ζ†k ≥
∫

T
‖S†k(t)A†k‖MLk(X†,X†) dt, (74)

some overestimated values of which are γ†k a
†
k with

a†k≥ ‖A
†
k‖MLk(X†,W†k), γ

†
k≥

∫

T
‖S†k(t)‖L(W†k,X†) dt. (75)

Using ζ†k instead of ζk in steps 2 to 6, we successively

define F †, ζ†, σ†, ρ† and Φ† and are ready to state the

following theorem.

Theorem 1 (Refined Volterra convergence and

error bounds) Assume that ‖x†1‖X † < ρ†. Then, the

Volterra series of x† and x converge in norm in X †

and X , respectively. Moreover, the following inequalities

hold:

‖x†‖X †< Φ†
(
‖x†1‖X †

)
(76)

∥∥∥x†−
M∑

m=1

x†m

∥∥∥
X †
< RMΦ

†(‖x†1‖X †
)
, for M≥1, (77)

∥∥∥x−
M∑

m=1

xm

∥∥∥
X
< rRMΦ

†(‖C x1‖X †
)
, for M≥1, (78)

‖x‖X < ‖x1‖X + r R1Φ
†(‖Cx1‖X †

)
, (79)

where r = max2≤k≤K(ζk/ζ
†
k).

The proof follows exactly the same steps as in [15].

Remark 5 (Supplement to remark 3) An alternative con-

vergence radius on the input is ρ†u = ρ†/γ†1 with γ†1 =∫
T ‖S

†
1‖L(U,X†)dt. Moreover, this radius can be adapted

and improved for specific inputs. As a simple exam-

ple, consider a scalar ODE of the form L(d/dt)ξ +∑K
k=2 αk ξ

k = u, for which we can choose x† = ξ and

A†k(ξ1, . . . , ξk)=αkξ1 . . . ξk. DenoteH the Laplace trans-

fer function and h the impulse response of its linear

part. If the system is excited by the specific input uω(t) =

U eiωt (harmonic regime), then ξ1(t) = H(iω)uω(t) leads

to a convergence bound for amplitude U that depends

on the pulsation, namely, |U | < ρ†/ |H(iω)|.

6.2 Application to the beam model

Operator A3 defined in (31) admits a sandwich decom-

position (69). It involves the deflection wave

w =: x† = Cx with C :

[
w

v

]
∈X 7−→ w∈H 1

2 , (80)

from which the nonlinear term in (20) is built using

A†3(wa, wb, wc) = −η
(∫ 1

0

w′a(z)w′b(z) dz
)
w′′c , (81)

and contributes to the state equation through (as inputu)

B3 = B : H→ X. (82)

Operator A†3 belongs toML3(X† := H 1
2 ,W†3 := H) and

has the same norm value as A3. Similarly, its restric-

tion Â†3 on Ĥ 1
2 , which generates Â3 = C Â†3(B·, B·, B·),

belongs to ML3(Ĥ 1
2 , Ĥ) and has the same norm value

as Â3.

Then, the nonlinear systems (30) governing the beam

state x and (54) governing its pseudo-modal trunca-

tion x̃ can both benefit from the refined convergence
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results presented in section 6.1. The estimates replac-

ing γN −→
N→+∞

γ are given by (see Appendix B.2)

γ†N :=

∫

T

N
sup
n=1

(
k2n |hn(t)|

)
dt,

with limit γ†, which are strictly lower than γN and γ

respectively, and from which we build ζ†3N = a3Nγ
†
N

and ζ† = a3γ
†. Finally, the improved convergence radii

are then

ρ†N =
2

3
√

3a3Nγ
†
N

>ρN >ρ and ρ† =
2

3
√

3a3γ†
>ρ,

(83)

and, in theorem 1, factors rN (for x̃) and r (for x) are

given by

rN =
ζ3N

ζ†3N
=
γN

γ†N
> 1 and r =

ζ3

ζ†3
=
γ

γ†3
> 1.

We may observe that the convergence criterion on x†1 is

actually weaker than the one on x1. Indeed, if ‖x1‖X <
ρ, then ‖x†1‖X † < ‖C‖L(X,X†) ‖x1‖X = ‖x1‖X <ρ < ρ†,
and the convergence radius dilatation is ρ†/ρ =

√
r > 1.

Moreover, following theorem 1 and assuming (A1-

A3) as in proposition 1 for u, x†1, ρ
† instead of u, x1, ρ,

corollary 1 is improved as follows.

Corollary 3 (Improved pseudo-modal Volterra ap-

proximation error) The error due to the pseudo-modal

Volterra approximation X̃M
N is bounded by

∥∥∥x† − CX̃M
N

∥∥∥
X †
≤ EMN and

∥∥∥x− X̃M
N

∥∥∥
X
≤ r EMN ,(84)

with EMN = DεΦ
†
(
‖x̂†1‖X †

)
+RM Φ̂

†
N

(
‖x̂†1‖X †

)
.

In the specific situation where N = 1 (the beam is

modelled as a single Duffing oscillator), setting h(t) =

k21h1(t), we obtain γ†1 = ‖h‖1 and the convergence bound

ρ†1 is expressed as

ρ†1 =
2

3
3
2

√
|α3|‖h‖1

. (85)

Remark 6 (Single Duffing oscillator in harmonic regime)

Following remark 5, the resulting conservative bound on

the systems input ρ†1u = ρ†1/‖h‖1 deduced from (85) al-

lows to recover the one given in ([19],[20]), established

for a Duffing oscillator, with impulse response h. In the

harmonic regime, we obtain a bound

ρ†1/|H(iω)| = 2/
(
3

3
2

√
|α3|‖h‖1|H(iω)|

)
.

As |H(iω)| < ‖h‖1, this last bound is close, but slightly

less than the bound obtained by these authors, whose

expression is 2/
(
(3|H(iω)|) 3

2

√
|α3|

)
. This illustrates that

for specific inputs and specific systems, the bounds we

provide can be improved, however our bound is relevant

for inputs with rich frequency content.

7 Numerical experiments

7.1 Numerical method

The trajectories of the Euler-Bernoulli beam are sim-

ulated, based on the truncated Volterra series of the

pseudo-modal solution described by (57-58). Numerical

experiments are processed inside the convergence do-

main, where the error estimate (84) is available (see

figures 1-2 and (63)), and outside the convergence do-

main to investigate the behaviour of the approximated

solution in this case.

The truncated series expansion is convenient for time-

domain simulation as it can be achieved by combining

linear systems and instantaneous nonlinearities. This

is described by the block-diagram in figure 3 (see re-

mark 2 and figure 1 in [15]) for the more general class

(1-2)), in which the finite dimensional linear systems

(W in grey) are simulated using a standard linear solver

(lsim, Matlab) and the evaluation of instantaneous op-

erators is exact. Moreover, to serve as a reference, the

trajectory of the nonlinear problem (54) on X̂ is com-

puted using a standard ODE solver on a refined time

grid (here, ode15s, Matlab).

Note that inside the guaranteed convergence domain

(constraint characterized in this paper), there can be

some benefits to using a Volterra series instead ODE

solvers. It yields explicit computation (no need for iter-

ative solver) which, through W in figure 3, reproduces

the exact spectral values at low amplitude, guarantees

stability (also in the nonlinear regimes) and, through

the expansion with respect to homogeneous orders, does

not introduce any cumulative error in the contributions

due to the (pre-computed) kernels. It also provides a

convenient form for application in control. Moreover,

when necessary in such applications (or also in telecom-

munications, audio, etc.), it also allows to reject the

aliasing due to nonlinearities by sandwiching the mul-

tilinear function Mk between an oversampler (of factor

k) and a Shannon anti-aliasing filter7. This strategy

extracts the correct signal in the frequency baseband,

whereas applying it on the ODE (or its field) modifies

the baseband behaviour.

7 Thanks to filter commutations and using an oversampler
(starting in the block-chain at input v or at the linear con-
tribution y1), this can be done by simply combining each W
with the anti-aliasing filter in the grey blocks.
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Fig. 3: Input-Output simulation based the Volterra series expansion (57-58) truncated at order M = 7. This

structure exploits that even order terms are zero and that AY3
=: M3 is symmetric with respect to the two first

variables (AY3
(a, b, c) = AY3

(b, a, c)). Triplets of numbers pqr above blocks M3 account for the terms M3(yp, yq, yr).

W and WB respectively denote the simulation of the semigroup generated by matrix AY and the one with input

matrix BY. The space-time function x̃trunc(z, t) = R(z) ytrunc(t) is built by aggregating the activated eigenfunctions

as in formula (47).

7.2 Parameters and input signal

Two configuration sets of experiments are examined.

Configuration 1 corresponds to a damped Duffing os-

cillator near the critical regime: only the first mode

of the beam is excited and we examine the nonlinear

system with respect to the convergence radius ρ†1 (see

(83)). Configuration 2 corresponds to the beam in os-

cillating regime, examined with respect to ρ† (see also

(83)) and an increasing number N of modes, on which

the force excitation is decomposed. The finite dimen-

sional system corresponds to coupled damped Duffing

oscillators.

For presentation purposes (without loss of general-

ity), systems are all built such that, given the linearized

model (here, given the damping coefficients a and b),

the nonlinear coefficient η is chosen to provide a uni-

tary convergence radius (ρ†1 for configuration 1 and ρ†

for the configuration 2). This yields

η =
4π2

27γ†1
(config. 1) and η =

4
√

10

9γ†
(config. 2). (86)

Moreover, in order to excite the beam by a relevant rich

spectral content, we choose inputs u : t 7→
(
z 7→ f(z, t)

)

in (30) with step time-shapes

f(z, t) = ftot g(z) 1[0,Te](t), (87)

where the total force ftot is spatially distributed accord-

ing to g > 0 (where
∫ 1

0
g(z)dz = 1).

As mentioned in section 7.1, we simulate the pseudo-

modal Volterra terms x̃m governed by (57-58) to build

the approximation (59), through the realisation in fig-

ure 3 that uses the coordinate description y in (55-56).

The two configurations are now detailed below, and

all the parameters (damping and nonlinear coefficients)

as well as the excitation (shape and duration) are sum-

marized in table 3.

Configuration 1 (non oscillating single mode) We con-

sider a fluid damping only (b= 0) tuned to be close to

the critical regime (a = 0.999π2). The excitation (87)

is spatially-distributed on the first mode only (g(z) =

s1(z) =
√

2 sin(πz) defined in (38)) and the step dura-

tion is Te = 3. We obtain γ†1 = 0.1013 and (86) yields

η = 14.434. Four amplitudes are tested. They are cho-

sen such that ‖x̃†1‖X † = A with A ∈ {0.8; 1; 1.2; 2}.
They correspond to excitation forces ftot = A/‖x̃†?1 ‖X †
where ‖x̃†?1 ‖X † is computed for the linear response x̃†?1
to unit force. This yields ftot ≈ 9.8696× A. The simu-

lation time-step is chosen as T = 10−3.

Configuration 2 The second configuration corresponds

to an oscillating beam, which can be used for sound

synthesis of e.g. vibraphones, xylophones, marimbas,

etc. Here, the damping parameters a=0.1 and b=10−6

(for which we obtain γ† = 8.774986 and η ≈ 0.1602)

are chosen so that it sounds like a “wooden beam”.

Note that to listen to a result with a first mode at

frequency f0 on a sound card with sampling frequency

fs, the simulated trajectories must be sampled at T =

2πf0/(fs=ms1) where (s1, s1) are the poles associated

with the first mode (T ≈ 2.4536× 10−3 for f0 =185Hz,

fs=48000Hz).
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Configuration 1 (non oscillating) 2 (oscillating+hammer)

Parameters: a, b a = 0.999π2 and b = 0 a = 0.1 and b = 10−6

Impulse response bound γ†1 ≈ 0.1013 γ† ≈ 8.7749
η (see 86) η ≈ 14.434 η ≈ 0.1602
Input (simulation on [0, 2Te]): N = 1 and Te = 3 N ∈ {2, 16} and Te = 40
f(z, t) = ftot 1[0,Te](t)

∑N
n=1 gnen(z) g1 = 1 gn: see (88) and fig. 4a

Table 3: Summary of the main physical parameters of the configurations 1 and 2 used for numerical experiments.

The reference excitation (87) is chosen with a step

duration of Te = 3. It is spatially distributed according

to a cosinusoidal activation of width δ = 1/8, centered

at zc = 1/7 described by g(z) = G cos(π(z − zc)/δ) on

[zc − δ/2, zc − δ/2] and zero outside, with G = π/(2δ).

The coefficients of the modal decomposition of g are,

for all n ≥ 1,

gn =

{
cos(nπδ/2)
1−(nδ)2 en(zc) if nδ 6= 1,
π
4 en(zc) otherwise.

(88)

These coefficients gn, function g and its approximation

with N = 2 and N = 16 modes are summarized in

figure 4.

Two sets of numerical experiments are performed:

(a) N = 2 modes, for which the improved convergence

radius on the modal subspace is ρ†2 ≈ 1.0498 and (b)N =

16 modes for which ρ†16 ≈ 1 + 2.64× 10−5 ≈ ρ†.
Three amplitudes are tested. They are chosen such

that ‖x̃†1‖X † = A with A ∈ {1; 3; 5} (still corresponding

to ftot = A/‖x̃†?1 ‖X † where computations yield ftot ≈
8.2002×A for N = 2 and ftot ≈ 7.9533×A for N = 16).

The deflection wave is observed at the center of the

distributed force (z = zc = 1/7).

7.3 Numerical results

Configuration 1 (non oscillating beam, single mode)

Deflection signals are simulated according to fig. 3 and

observed at the beam center (w(z = 0.5, t) = [x̃trunc
(
z =

0.5, t
)
]1), for truncation orders M = 1, 3, 5, 7. Results

are displayed in figure 5.

For ‖x̃†1‖X † = 0.8, a good approximation is obtained

as soon as M ≥ 3. As guaranteed by (10), the conver-

gence is numerically observed.

For ‖x̃†1‖X † = 1 = ρ < ρN (N = 1 mode), the

approximations are significantly more accurate when

increasing the truncation order M of the Volterra series

(see also the zoom in figure 6).

This is no longer true for ‖x̃†1‖X † = 1.2, for which

the convergence seems to be lost. For ‖x̃†1‖X † = 2, the

divergence is so fast (on the range 1 ≤ t ≤ 3) that the

best approximation is the linear approximation. More

precisely, nonlinear contributions ym≥3 build unrealistic

high amplitudes signals after the very beginning of the

trajectory. high order contributions xm have increasing

amplitudes with m

Thus, for this single mode system, the guaranteed

bound is close to the exact convergence radius.

Configuration 2 (multiple modes and damped oscillating

waves Three figures represent the deflection waves (at

z = zc = 1/7) for N = 2 compared to N = 16 for

three amplitudes: ‖x̃†1‖X † = 1, 3, 5 in figs. 7, 8 and 10,

respectively.

In figure 7 (‖x̃†1‖X † = 1 < ρ†16 < ρ†2), the conver-

gence is guaranteed. The signals appear to be well ap-

proximated as soon as M ≥ 3 (slight errors on the lin-

ear approximations are visible in the zoomed figures on

periods [20,22] and [30,32]). As expected, signals built

with N=16 modes (right column) are sharper (with a

richer spectral content) than with N=2 modes (left col-

umn).

In figure 8 (‖x̃†1‖X † = 3 > ρ†2 > ρ†16 > ρ† = 1),

the convergence is not guaranteed for any input wave-

form. However, for the tested excitation, the nonlinear

approximations at order M = 7 all appear to be nu-

merically accurate: the signal shape, the amplitude and

the synchronization with the reference solution are cor-

rect. This suggests that the generic convergence bound

may happen to be conservative when specific excita-

tions are applied to the beam model. For the linear

approximation, the shape and the synchronization are

lost (accounting for an accumulated delay due to fre-

quency shifts as expected in Duffing oscillators). Ap-

proximations at orders 3 and 5 are not sufficient but

illustrate how the summation of contributions operate

to reproduce the complete (hardening) nonlinear effect.

Moreover, in the frequency domain, approximations at

order 1 and 7 (figure 9) make clearly appear the fre-

quency structure: the eigenfrequencies (imaginary part

of the eigenvalues) are activated at order 1 and 7; the

approximation at order 7 makes clearly appear addi-

tional super-harmonics and inter-modulation (additive

and difference combination of these frequencies), gen-

erated by the nonlinear contributions.

In figure 10 (‖x̃†1‖X † = 5), the convergence is lost.

As in the case ‖x̃†1‖X † = 2 for configuration 1, the series

approximation is efficient at the very beginning of the
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Configuration 1 (non oscillating single mode). We consider a fluid damping only (b= 0) tuned196

to be close to the critical regime (a = 0.999⇡2). Parameter ⌘ is chosen such that ⇢ = 1, which197

corresponds to ⌘ = 13.857. The excitation of mode 1 is a step ftot 1[0,✓](t) of duration is ✓ = 3.198

Simulations are performed for a single mode (N =1). In this case (see table 2), the convergence199

radius bound is slightly dilated to ⇢N=1 = 1.0199.200

Four amplitudes are tested. They chosen such that ky1kX 2 {0.8; 1; 1.2; 2}.201

Configuration 2. The second configuration corresponds to an oscillating beam, which can be202

used for sound synthesis of e.g. vibraphones, xylophones, marimbas, etc. Here, the damping203

parameters a = 0.1 and b = 10�6 are chosen so that it sounds like a “wooden beam”. Note that204

to listen to a result with a first mode at frequency f0 on a sound card with sampling frequency205

fs, the simulated trajectories must be sampled at T =2⇡ f0/( fs=ms1) where (s1, s1) are the poles206

associated with the first mode (T ⇡ 0.0025 for f0=185Hz, fs=48000Hz). As for configuration 1,207

⌘ is chosen such that ⇢=1, that is, ⌘⇡0.1407.208

A reference excitation is chosen as f (z, t) = g(z) ftot1[0,✓](t) where the total force ftot is spa-
tially distributed according to g (where

R 1
0 g(z)dz = 1). Function g is a cosinusoidal activation of

width � = 1/8, centered at zc = 1/7 described by g(z) = G cos(⇡(z� zc)/�) on [zc � �/2, zc � �/2]
and zero outside, with G = ⇡/(2�). The coe�cients of the modal decomposition of g are, for all
n � 1,

gn =
cos(n⇡�/2)
1 � (n�)2 en(zc) if n� , 1 and gn =

⇡

4
en(zc) otherwise. (59)

These coe�cients gn, function g and its approximation with N = 2 and N = 16 modes are209

summarized in figure 4.
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Figure 4: Configuration 2. (a) First coe�cients gn. (b) Reference unitary spatial distribution g(z) (-) and its modal
reconstructions with N = 2 modes (· · · ) and N = 16 modes (��).

210

Two sets of numerical experiments are performed: (a) N = 2 modes and (b) N = 16 modes.211

In both cases, the total force is a time step ftot 1[0,✓](t) of duration is ✓ = 40. Three amplitudes212

are tested, chosen such that ky1kX 2 {1; 3; 5}. The deflection wave is observed at the center of the213

distributed force (z = zc = 1/7).214

6.3. Numerical results215

Configuration 1 (non oscillating beam, single mode). Deflection signals are simulated according216

to fig. 3 and observed at the beam center (w(z = 0.5, t) = [extrunc
�
z = 0.5, t

�
]1), for truncation217

orders M = 1, 3, 5, 7. Results are displayed in figure 5.218
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Fig. 4: Configuration 2. (a) First coefficients gn. (b) Reference unitary spatial distribution g(z) (-) and its modal

reconstructions with N = 2 modes (· · · ) and N = 16 modes (−−).
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Fig. 5: Configuration 1. Signals of the deflection wave at center.

simulation (over [0,12] at order 7) but the nonlinear

contributions eventually grow (the higher is order m,

the worse is ym) and produce large artifacts. This cor-

responds to the so-called phenomenon of secular modes.

This phenomenon is well-known for the Duffing oscil-

lator [22]. It is due to the nonlinear effect type: in this

system, the nonlinearity is mainly responsible for a fre-

quency modulation of the input signal for large mag-

nitudes. The Volterra series expansion is a regular per-

turbation method, which attempts to represent and ap-

proximate this frequency modulation with polynomial

combinations of fixed-frequency oscillating signals. In

the case of a conservative problem, this kind of approx-

imation produces signal envelopes that increase as tp−1

for orders m = 2p + 1. As a consequence, there is no

possible convergence over T = R and ρ is zero. In the

case of the damped beam, the damping makes these en-

velopes behaves as tp−1 exp
(
<e(λn)αnt

)
for each mode

n, so that signals xm are all bounded and the conver-

gence radius is nonzero. From these results and our nu-

merical simulations, the convergence radius ρ appears

to be a guaranteed bound on the linear response, and

therefore on the input signal, for which high order con-

tributions xm are not secular over T.

Finally, figure 11 illustrates the effect of the fluid

damping coefficient decrease: the parameters of config-
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Fig. 6: Configuration 1, ‖x̃†1‖X † = 1. Zoom of figure 5.

uration 2 are kept except that a is progressively de-

creased to 0.05, 0.02 and 0.01. In practice, it corrobo-

rates the previous observations for ‖x̃†1‖X † = 1, 3, 5 and

also makes appear that the smaller is the damping, the

larger are the difference between the linear approxima-

tion and the nonlinear response. This may be explained

by the presence of modes with slightly higher, but still

low damping and lower natural frequency than with

higher values of a as above, since according to section

4.1, H6, the lower bound for damping ratio is 2
√
b/a,

reached for natural frequencies close to
√
a/b, whose

linear response may significantly excite the nonlinear

part of the system.

8 Conclusion and perspectives

We proposed and analyzed a method, the pseudo-modal

Volterra approximation, that combines Volterra series

expansion and modal decomposition to provide a re-

duced order model representing the vibrations of a damped
nonlinear beam. This reduced model has a simple struc-

ture (finite dimension linear systems with nonlinear in-

terconnection), well suited for real time simulation.

The convergence analysis of the resulting expansion

provides a computable domain, available for bounded

excitation signals with any waveshape. Our theoreti-

cal results guarantee that in this domain the series ex-

pansion provides accurate approximations of the solu-

tion: this is well-adapted to account for distortions and

timbres modification of sounds and vibrations resulting

from the external input. Moreover, we showed that our

theoretical results on pseudo-modal Volterra approxi-

mation can be extended to a large class of systems.

However, as Volterra series approximation is a regu-

lar perturbation method, it cannot accommodate situa-

tions where the system exhibits secular modes, in which

case, other nonlinear approximation techniques such as

POD can be best suited. A perspective is then to pro-

pose extensions of this work to efficiently represent such

modulations, based on other perturbation methods and

approaches that are adapted to any input signal wave-

form.

A Well-posedness and definitions

A.1 General setting

The class of systems (1-2) is considered for the general fol-
lowing setting:

• T denotes the time set R+,
• U and X are Banach spaces on the field R,
• L(U,X) and L(X) are the sets of bounded linear operators

from U to X, and from X to X, respectively,
• MLk(X) (k ≥ 2) is the set of bounded multilinear oper-

ators from X× · · · × X︸ ︷︷ ︸
k

to X, equipped with norm

‖Ak‖ = sup
(x1,...,xk)∈Xk
‖x1‖=···=‖xk‖=1

‖Ak(x1, . . . , xk)‖X,

• U = L∞(T,U) and X = L∞(T,X) are standard
Lebesgue spaces (in which trajectories u and x live).

A.2 Mild solutions

For the linearized version of systems (1-2), mild solutions are
defined in the following way [23,7].

Definition 1 (Mild solution of a linear system) Let
u ∈ L∞loc(T,U). The mild solution of the linearized system is
the function x ∈ C0(T,X) defined for all t ∈ T as

x(t) = S(t)xini +

∫ t

0

S(t− τ)Bu(τ) dτ.

A similar definition is given for nonlinear systems.

Definition 2 (Mild solution of a nonlinear system) Let
u ∈ L∞loc(T,U). Then, x is said to be a mild solution of (1-2)
iff x ∈ C0(T,X) and satisfies, for all t ∈ T,

x(t) = S(t)xini+

∫ t

0

S(t− τ)×(
Bu(τ) + P

(
x(τ)

)
+Q

(
x(τ), u(τ)

))
dτ. (89)

As a standard result from [23], for a fixed u ∈ C0(T,U), there
exist tmax ∈ (0, T ] and a unique function x ∈ C0([0, tmax),X)
such that x is a mild solution in the sense of (89). For the
class of systems (1-2), it can be easily shown that the local
existence and uniqueness of mild solutions still holds when
the input u is taken in L∞loc(T,U), as stated in definition 2.

A.3 Functional setting for the linearized beam problem

In the linear problem8 (24), the bi-Laplacian B is defined as
the unbounded operator on H = L2(0, 1) with domain9

D(B) =
{
w ∈ H4(0, 1) s.t. w(0) = w(1) = 0,

w′′(0) = w′′(1) = 0
}
,

8 For recall, ∂2
tw+2

[
aI+bB

]
(∂tw)+B(w) = f on [0, 1]×T.

9 Hk(0, 1) is the standard Sobolev space of functions in
L2(0, 1) whose first k derivatives are in L2(0, 1).
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Figure 7: (Configuration 2, ky1kX = 1) Deflection waves at z = 1/7 for N = 2 modes (top and left figures) compared to
N = 16 modes (right and bottom figures). Note that Zoomed parts (starting at 0, 10, 20, 30, 40, 70 respectively, with
duration 2) have the same legend as the plain figures.
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Fig. 7: (Configuration 2, ‖x̃†1‖X † = 1) Deflection waves at z = 1/7 for N = 2 modes (top and left figures) compared

to N = 16 modes (right and bottom figures). Note that Zoomed parts (starting at 0, 10, 20, 30, 40, 70 respectively,

with duration 2) have the same legend as the plain figures.
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Figure 8: (Configuration 2, ky1kX = 3) To be compared to fig. 7.
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Fig. 9: (Configuration 2 ‖x̃†1‖X † = 3, N=16 modes) Spectrograms of w: (top) linear approximation ; (bottom)

order 7. Zooms in the low-frequency range (right column) detail the spectral differences.

such that B(w) = w(4) for all w ∈ D(B). This operator is
closed, densely defined, self-adjoint and positive on H. Hence,
we can introduce its uniquely defined positive square root K,
with domain

D(K) =
{
w ∈ H2(0, 1) s.t. w(0) = w(1) = 0

}
,

such that K(w) = −∆w. The domain D(K) equipped with
the K-norm defines a Hilbert space10:

H
1

2 := D(K) with ‖.‖
H

1
2

= ‖K .‖H.

Then, according to [16], the linearized problem (24) admits
the state-space representation (25-27), which is well-posed
for the functional setting U and X introduced in (28-29) and
defining operator A on domain D(A) as

A : D(A) −→ X with D(A) = {(u, v) ∈ H
1

2 × H
1

2 s.t.

2(a+ bB)v + Bu ∈ H}.

In this setting, A generates a C0 contraction semigroup on X
([16, (A1-A2), p. 6]), so that there exists a negative growth
bound α < 0. More precisely (see [16, corollary 5.2]), it is
a Riesz spectral operator on X which generates an analytic
semigroup S, provided that −1

b
is not in the point spectrum

of A. In addition, operator B belongs L(U,X) and ‖B‖ = 1.
Therefore, this linear problem is well-posed and is in the class
of systems defined in section 2.1.

10 This justifies the notation introduced in (29) where

‖x1‖H 1
2

= ‖K x1‖H = ‖x(2)1 ‖H.

B Estimates for the nonlinear beam model

B.1 Proof of equation (32)

For all X1 ∈ H
1

2 and z ∈ [0, 1], X1(z) = X′1(0) z +
∫ z
0

(z −
ζ)X′′1 (ζ) dζ which is zero at z = 1. Hence,

X1(z) =

∫ 1

0

K(z, ζ)X′′1 (ζ) dζ,

where K(z, ζ) = ζ(z − 1) if 0 ≤ ζ ≤ z and K(z, ζ) =
z(ζ − 1) if z ≤ ζ ≤ 1. Using the Cauchy-Schwartz inequal-

ity, it comes
∣∣X1(z)

∣∣ ≤ µ(z)
( ∫ 1

0
X′′1 (ζ)2 dζ

) 1

2 , where µ(z) =( ∫ 1
0
K(z, ζ)2 dζ

) 1

2 = z(1−z)√
3

. Then,
( ∫ 1

0

∣∣X1(z)
∣∣2 dz

) 1

2 ≤

ν
∥∥X1‖2

H
1
2
, where ν =

( ∫ 1
0
µ(z)2 dz

) 1

2 = 1

3
√

10
. Finally, for

all (X,Y, Z) ∈ X3,∥∥A3(X,Y, Z)‖X ≤ η
∣∣∣ ∫ 1

0

X′1(z)Y ′1 (z) dz
∣∣∣ ∫ 1

0

∣∣∣Z′′1 (z)
∣∣∣ dz

≤ η
∣∣∣ ∫ 1

0

X1(z)Y ′′1 (z) dz
∣∣∣ ( ∫ 1

0

∣∣∣Z′′1 (z)
∣∣∣2 dz

) 1

2

≤ η
(∫ 1

0

∣∣X1(z)
∣∣2 dz

) 1

2
∥∥Y1‖H 1

2

∥∥Z1‖H 1
2

≤ ν η
∥∥X1‖H 1

2

∥∥Y1‖H 1
2

∥∥Z1‖H 1
2

≤ ν η
∥∥X‖X ∥∥Y ‖X ∥∥Z‖X,

proves the result.
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Figure 9: (Configuration 2, ky1kX = 5) To be compared to fig. 7 and 8.
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Fig. 10: (Configuration 2, ‖x̃†1‖X † = 5) To be compared to fig. 7 and 8.
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ky1kY = 1 ky1kY = 3 ky1kY = 5

a
=

5
⇥

1
0
�

3

0 10 20 30 40 50 60 70 80

t

-0.04

-0.02

0

0.02

0.04

0.06

0.08

w

ode15s

order7

order5

order3

linear

10 10.2 10.4 10.6 10.8 11 11.2 11.4 11.6 11.8 12

t

0.015
0.02

0.025
0.03

0.035
0.04

0.045
0.05

0.055
0.06

w

30 30.2 30.4 30.6 30.8 31 31.2 31.4 31.6 31.8 32

t

0.028
0.03

0.032
0.034
0.036
0.038

0.04
0.042
0.044
0.046

w

40 40.2 40.4 40.6 40.8 41 41.2 41.4 41.6 41.8 42

t

-0.04
-0.03
-0.02
-0.01

0
0.01
0.02
0.03
0.04

w

70 70.2 70.4 70.6 70.8 71 71.2 71.4 71.6 71.8 72

t

-8
-6
-4
-2
0
2
4
6
8

w

t

0 10 20 30 40 50 60 70 80

t

-0.1

-0.05

0

0.05

0.1

0.15

0.2

0.25

w

ode15s

order7

order5

order3

linear

10 10.2 10.4 10.6 10.8 11 11.2 11.4 11.6 11.8 12

t

0.04
0.06
0.08
0.1

0.12
0.14
0.16
0.18
0.2

w

30 30.2 30.4 30.6 30.8 31 31.2 31.4 31.6 31.8 32

t

0.08
0.09
0.1

0.11
0.12
0.13
0.14
0.15

w
40 40.2 40.4 40.6 40.8 41 41.2 41.4 41.6 41.8 42

t

-0.1

-0.05

0

0.05

0.1

0.15

w

70 70.2 70.4 70.6 70.8 71 71.2 71.4 71.6 71.8 72

t

-0.025
-0.02

-0.015
-0.01

-0.005
0

0.005
0.01

0.015
0.02

0.025

w

t

0 10 20 30 40 50 60 70 80

t

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

w

ode15s

order7

order5

order3

linear

10 10.2 10.4 10.6 10.8 11 11.2 11.4 11.6 11.8 12

t

0
0.05
0.1

0.15
0.2

0.25
0.3

0.35
0.4

w

30 30.2 30.4 30.6 30.8 31 31.2 31.4 31.6 31.8 32

t

-0.2
-0.1

0
0.1
0.2
0.3
0.4
0.5

w

40 40.2 40.4 40.6 40.8 41 41.2 41.4 41.6 41.8 42

t

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

w

70 70.2 70.4 70.6 70.8 71 71.2 71.4 71.6 71.8 72

t

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

w

t

a
=

2
⇥

1
0
�

3

0 10 20 30 40 50 60 70 80

t

-0.04

-0.02

0

0.02

0.04

0.06

0.08

w

ode15s

order7

order5

order3

linear

10 10.2 10.4 10.6 10.8 11 11.2 11.4 11.6 11.8 12

t

0
0.01
0.02
0.03
0.04
0.05
0.06
0.07

w

30 30.2 30.4 30.6 30.8 31 31.2 31.4 31.6 31.8 32

t

0.015
0.02

0.025
0.03

0.035
0.04

0.045
0.05

0.055

w

40 40.2 40.4 40.6 40.8 41 41.2 41.4 41.6 41.8 42

t

-0.04
-0.03
-0.02
-0.01

0
0.01
0.02
0.03
0.04

w

70 70.2 70.4 70.6 70.8 71 71.2 71.4 71.6 71.8 72

t

-0.02
-0.015

-0.01
-0.005

0
0.005

0.01
0.015

0.02

w

t

0 10 20 30 40 50 60 70 80

t

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

0.25

w

ode15s

order7

order5

order3

linear

10 10.2 10.4 10.6 10.8 11 11.2 11.4 11.6 11.8 12

t

0

0.05

0.1

0.15

0.2

0.25

w

30 30.2 30.4 30.6 30.8 31 31.2 31.4 31.6 31.8 32

t

0.02
0.04
0.06
0.08
0.1

0.12
0.14
0.16
0.18
0.2

0.22

w

40 40.2 40.4 40.6 40.8 41 41.2 41.4 41.6 41.8 42

t

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

w

70 70.2 70.4 70.6 70.8 71 71.2 71.4 71.6 71.8 72

t

-0.08
-0.06
-0.04
-0.02

0
0.02
0.04
0.06
0.08

w

t

0 10 20 30 40 50 60 70 80

t

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

w

ode15s

order7

order5

order3

linear

10 10.2 10.4 10.6 10.8 11 11.2 11.4 11.6 11.8 12

t

-0.05
0

0.05
0.1

0.15
0.2

0.25
0.3

0.35
0.4

0.45

w

30 30.2 30.4 30.6 30.8 31 31.2 31.4 31.6 31.8 32

t

-0.8
-0.6
-0.4
-0.2

0
0.2
0.4
0.6
0.8

1
1.2

w

40 40.2 40.4 40.6 40.8 41 41.2 41.4 41.6 41.8 42

t

-2
-1.5

-1
-0.5

0
0.5

1
1.5

2

w

70 70.2 70.4 70.6 70.8 71 71.2 71.4 71.6 71.8 72

t

-1.5

-1

-0.5

0

0.5

1

1.5

w

t

a
=

1
⇥

1
0
�

3

0 10 20 30 40 50 60 70 80

t

-0.04

-0.02

0

0.02

0.04

0.06

0.08

w

ode15s

order7

order5

order3

linear

10 10.2 10.4 10.6 10.8 11 11.2 11.4 11.6 11.8 12

t

0
0.01
0.02
0.03
0.04
0.05
0.06
0.07

w

30 30.2 30.4 30.6 30.8 31 31.2 31.4 31.6 31.8 32

t

0.01

0.02

0.03

0.04

0.05

0.06

0.07

w

40 40.2 40.4 40.6 40.8 41 41.2 41.4 41.6 41.8 42

t

-0.04
-0.03
-0.02
-0.01

0
0.01
0.02
0.03
0.04

w

70 70.2 70.4 70.6 70.8 71 71.2 71.4 71.6 71.8 72

t

-0.03

-0.02

-0.01

0

0.01

0.02

0.03

w

t

0 10 20 30 40 50 60 70 80

t

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

w

ode15s

order7

order5

order3

linear

10 10.2 10.4 10.6 10.8 11 11.2 11.4 11.6 11.8 12

t

0

0.05

0.1

0.15

0.2

0.25

w

30 30.2 30.4 30.6 30.8 31 31.2 31.4 31.6 31.8 32

t

-0.05

0

0.05

0.1

0.15

0.2

0.25

w

40 40.2 40.4 40.6 40.8 41 41.2 41.4 41.6 41.8 42

t

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

w

70 70.2 70.4 70.6 70.8 71 71.2 71.4 71.6 71.8 72

t

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

w

t

0 10 20 30 40 50 60 70 80

t

-3

-2

-1

0

1

2

3

w

ode15s

order7

order5

order3

linear

10 10.2 10.4 10.6 10.8 11 11.2 11.4 11.6 11.8 12

t

-0.1

0

0.1

0.2

0.3

0.4

0.5

w

30 30.2 30.4 30.6 30.8 31 31.2 31.4 31.6 31.8 32

t

-1.5
-1

-0.5
0

0.5
1

1.5
2

w

40 40.2 40.4 40.6 40.8 41 41.2 41.4 41.6 41.8 42

t

-3

-2

-1

0

1

2

3

w

70 70.2 70.4 70.6 70.8 71 71.2 71.4 71.6 71.8 72

t

-3

-2

-1

0

1

2

3

w

t

Fig. 1: (Configuration 2 with smaller damping a = 0.05, 0.02, 0.01)Fig. 11: (Configuration 2 (N=16 modes) with smaller damping coefficient a = 0.05, 0.02, 0.01) To be compared to

fig. 7, 8 and 10.
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B.2 Proof of equations (33,43)

Functions e±n form an orthogonal basis of X, from which we
define an orthonormal basis

E+
n (z) =

1

k2n

[
1
0

]
sn(z) and E−n (z) =

[
0
1

]
sn(z)

On each modal subspace, the linearized system behaves like
second order system. Indeed, for all x ∈ H

S(t)Bx =

∞∑
n=1

κ−n S(t)E−n (90)

where κ−n =< Bx,E−n >X=< x, sn >H,
and

E+
n (z) =

(e+n − e−n )λ+
nλ
−
n

k2n(λ−n − λ+
n )

=
1

k2n

[
1
0

]
sn(z)

E−n (z) =
(λ+
n e

+
n − λ−n e−n )

λ+
n − λ−n

=

[
0
1

]
sn(z) (91)

From (91) we obtain

S(t)Bx =
∞∑
n=1

κ−n

(
λ+
n e
λ+
n
t

λ+
n − λ−n

e+n −
λ−n e

λ−
n
t

λ+
n − λ−n

e−n

)
=

∞∑
n=1

κ−n

(
k2n
eλ

+
n
t − eλ−n t

λ+
n − λ−n

E+
n +

λ+
n e
λ+
n
t − λ−n eλ

−
n
t

λ+
n − λ−n

E−n

)
(92)

Setting hn(t) = eλ
+
n t−eλ

−
n t

λ+
n
−λ−

n

and using the standard expres-

sions

hn(t) =


e−k

2
n
ξnt

sin(k2
n

√
1−ξ2

n
t)

k2
n

√
1−ξ2

n

if ξn < 1

te−k
2
n
t if ξn = 1

e−k
2
n
ξnt

sinh(k2
n

√
ξ2
n
−1t)

k2
n

√
ξ2
n
−1

if ξn > 1

we obtain that

‖S(t)Bx‖X =

√√√√ ∞∑
n=1

(κ−n )2(k4nhn(t)2 + h′n(t)2)

≤
√

sup
n
|k4nhn(t)2 + h′n(t)2| ‖x‖H

so that we can set

γ =

∫
T

√
sup
n
|k4nhn(t)2 + h′n(t)2|dt (93)

Now we notice that for all (x, y, z) in X,A3(x, y, z) = Bg(x, y, z)
where g is a third order multilinear operator from X3 to H,
such that ‖g‖ML(X,H) = a3. We therefore obtain that for all
(a, b, c) in X

‖
∫ t

0

S(t− τ)Bg(a, b, c)(τ)dτ‖X

≤
∫ t

0

‖S(t)Bx‖L(H,X)a3dτ‖a‖X ‖b‖X ‖c‖X

≤ γa3‖a‖X ‖b‖X ‖c‖X (94)

This proves that ζ3 ≤ γa3.
In the same way, for operator C, we obtain from (92) that

CS(t)Bx =
∞∑
n=1

κ−n
eλ

+
n
t − eλ−n t

λ+
n − λ−n

sn,

and

‖CS(t)Bx‖
L(H,H

1
2 )

=

√√√√ ∞∑
n=1

(κ−n )2k4nhn(t)2

≤ sup
n

(
k2n|hn(t)|

)
‖x‖H

It follows that ‖CS(t)Bx‖
L(H,H

1
2 )
≤ supn k

2
n|hn(t)|, so that

we can set

γ† =

∫
T

sup
n

(
k2n|hn(t)|

)
dt

r =

∫
T

√
supn |k2nhn(t)2 + h′n(t)2|dt∫

T supn (k2n|hn(t)|) dt

C Proof of proposition 1 (truncation error

estimate)

We assume (A1-A3) in section 5.3 and set Φ(z) =
∑∞
m=1 φmz

m

where the sequence (φm)m∈N∗ is defined by (see step 6 in
page 4)

φ1 = 1 and, for all m ≥ 2, φm = γa3
∑
p∈M3

m

φp1
φp2

φp3
,

with M3
m =

{
p ∈ (N∗)3

∣∣ p1 + p2 + p3 = m
}

. Then, the

trajectories x̃ =
∑∞
m=1 x̃m and x =

∑∞
m=1 xm are normally

convergent and such that, for all m ≥ 1,

‖x̃m‖X ≤ φm‖x̂1‖mX ,
‖xm‖X ≤ φm‖x1‖mX ≤ φm ((1 + ε)‖x̂1‖X )m ≤ βm‖x̂1‖mX ,

where the sequence (βm)m∈N∗ defined by βm = (1 + ε)mφm
is such that

β1 = 1 + ε and for all m ≥ 2, βm = γa3
∑
p∈M3

m

βp1
βp2

βp3
.

Now, for all m ≥ 1, denote the error terms em := xm − x̃m.
The first terms are such that ‖e1‖X = ε‖x̂1‖X (from (A2)),
‖e2‖X = 0. Moreover, for m ≥ 3, it follows from (9) that

em(t) =

∫ t

0

S(t− τ)
∑
p∈M3

m

(
A3

(
xp1

(τ), xp2
(τ), xp3

(τ)
)

−Â3

(
x̃p1

(τ), x̃p2
(τ), x̃p3

(τ)
))

dτ

=

∫ t

0

S(t− τ)
∑
p∈M3

m

Fp(τ)dτ, (95)

where we set
Fp(τ) = A3

(
xp1

(τ), xp2
(τ), xp3

(τ)
)
−A3

(
x̃p1

(τ), x̃p2
(τ), x̃p3

(τ)
)
.

It should be noted that (95) crucially depends on equation

(53), from which in X̂, Â3 is identical to A3.
Now, replacing xpi by x̃pi + epi and exploiting the multi-
linearity of A3 yield the following expansion (omitting vari-
able τ for sake of legibility)

Fp = A3

(
x̃p1

, x̃p2
, ep3

)
+A3

(
x̃p1

, ep2
, x̃p3

)
+A3

(
ep1

, x̃p2
, x̃p3

)
+A3

(
x̃p1

, ep2
, ep3

)
+A3

(
ep1

, x̃p2
, ep3

)
+A3

(
ep1

, ep2
, x̃p3

)
+A3

(
ep1

, ep2
, ep3

)
.
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Then, introducing ψm = βm − φm for all m ≥ 1, we prove
by induction that (claim Cm) ‖em‖X ≤ ψm‖x̂1‖mX :
(m = 1): the claim (C1) is true for m = 1 by construction;
(m ≥ 2):assume that Cp holds for all p ≤ m − 1, then using
expressions above, it follows that

‖em‖X ≤ γa3
∑
p∈M3

m

‖x̂1‖(p1+p2+p3)
X

(
φp1

φp2
ψp3

+ φp1
ψp2

φp3
+ ψp1

φp2
φp3

+ φp1
ψp2

ψp3

+ ψp1
φp2

ψp3
+ ψp1

ψp2
φp3

+ ψp1
ψp2

ψp3

)
≤ γa3‖x̂1‖mX

∑
p∈M3

m

(
βp1

βp2
βp3
− φp1

φp2
φp3

)
≤ (βm − φm)‖x̂1‖mX = ψm‖x̂1‖mX ,

so that Cm is satisfied.
An immediate consequence is that

‖e‖X ≤
∞∑
m=1

ψm‖x̂1‖mX =

∞∑
m=1

βm‖x̂1‖mX −
∞∑
m=1

φm‖x̂1‖mX

≤ Φ ((1 + ε)‖x̂1‖X )− Φ(‖x̂1‖X ),

which concludes the proof.

D Proof of generalized result

We assume (A1-A3) in section 5.3 and consider a beam model

with a third order nonlinearity A3 for which X̂ is not invari-
ant. We assume that a bound a3 of ‖A3‖X is available, and
define Φ(z) =

∑∞
m=1 φmz

m as in appendix C.

We denote Â3 = ΠXA3. Since ΠX is an orthogonal projec-
tion, ‖Â3‖X̂ ≤ ‖A3‖X ≤ a3, and therefore, as in appendix C,
the trajectories x̃ =

∑∞
m=1 x̃m and x =

∑∞
m=1 xm are con-

vergent and satisfy, for all m ≥ 1,

‖x̃m‖X ≤ φm‖x̂1‖mX ,
‖xm‖X ≤ φm‖x1‖mX ≤ φm ((1 + ε)‖x̂1‖X )m ≤ βm‖x̂1‖mX ,

where the sequence (βm)m∈N∗ was defined in appendix C.
Now, for all m ≥ 1, denote the error terms em := xm − x̃m.
The first terms are such that ‖e1‖X = ε‖x̂1‖X (from (A2)),
‖e2‖X = 0. Moreover, for m ≥ 3, it follows from (9) that

em(t) =

∫ t

0

S(t− τ)
∑
p∈M3

m

(
A3

(
xp1

(τ), xp2
(τ), xp3

(τ)
)

−Â3

(
x̃p1

(τ), x̃p2
(τ), x̃p3

(τ)
))

dτ

=

∫ t

0

S(t− τ)
∑
p∈M3

m

Fp(τ)dτ +

∫ t

0

S(t− τ)
∑
p∈M3

m

Gp(τ)dτ

(96)

where we set
Fp(τ) = A3

(
xp1

(τ), xp2
(τ), xp3

(τ)
)
−A3

(
x̃p1

(τ), x̃p2
(τ), x̃p3

(τ)
)

and

Gp(τ) = (A3 − Â3)
(
x̃p1

(τ), x̃p2
(τ), x̃p3

(τ)
)

Setting

‖A3 − Â3‖X̂ = sup
(a,b,c)∈(X̂)3

‖a‖X̂,‖b‖X̂,‖c‖X̂=1

‖A3(a, b, c)− Â3(a, b, c)‖X,

we have

‖Gp‖X ≤ ‖A3 − Â3‖X̂‖x̂1‖mX φp1
φp2

φp3

Then, following the same steps as in appendix C, we intro-
duce ψm = βm − φm, and obtain by induction that for all

m ≥ 1, ‖em‖X ≤ (ψm+
‖A3−Â3‖X̂

a3
φm)‖x̂1‖mX . An immediate

consequence is that

‖e‖X ≤
∞∑
m=1

(ψm +
‖A3 − Â3‖X̂

a3
φm)‖x̂1‖mX

≤
∞∑
m=1

βm‖x̂1‖mX − (1− ‖A3 − Â3‖X̂
a3

)

∞∑
m=1

φm‖x̂1‖mX

≤ Φ ((1 + ε)‖x̂1‖X )− (1− ‖A3 − Â3‖X̂
a3

)Φ(‖x̂1‖X ),

which concludes the proof.
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