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Let σ(n) be the sum of all divisors of n and let [t] be the integral part of t. In this paper, we shall prove that n≤xσ([x/n]) �

(π2/6)x log x + O(x(log x)(2/3)(log2 x)(4/3)) for x⟶∞, and that the error term of this asymptotic formula is Ω(x).

1. Introduction

As usual, denote by φ(n) the Euler function and by [t] the
integral part of real t, respectively. Recently, Bordellès et al.
[1] studied the asymptotic behaviour of the quantity

Sφ(x) ≔ 
n≤ x

φ
x

n
  , (1)

for x⟶∞. By exponential sum technique, they proved
that

2629
4009

·
6
π2 + o(1) x log x≤ Sφ(x)

≤
2629
4009

·
6
π2

+
1380
4009

+ o(1) x log x,

(2)

and conjectured that

Sφ(x) ∼
6
π2 x log x, asx⟶∞. (3)

Very recently, Wu [2] improved (2) and Zhai [3] re-
solved conjecture (3) by showing

Sφ(x) �
6
π2 x log x + O x(log x)

(2/3) log2 x( 
(1/3)

 , (4)

and also proved that the error term in (4) isΩ(x), where log2
denotes the iterated logarithm. Some related works can be
found in [4, 5]. Since the sum-of-divisors function
σ(n) ≔ d|nd has similar properties as the Euler function
φ(n) in many cases, it seems natural and interesting to
consider its analogy of (3).

Our result is as follows.

Theorem 1
(i) For x⟶∞, we have

Sσ(x) ≔ 
n≤ x

σ
x

n
   �

π2

6
x log x

+ O x(log x)
(2/3) log2 x( 

(4/3)
 .

(5)

(ii) Let E(x) be the error term in (5). ;en, for x⟶∞,
we have

E(x) � Ω(x), i.e. lim sup
x⟶∞

|E(x)|

x
> 0. (6)

Let μ(n) be the Möbius function and define id(n) � n

and 1(n) � 1 for all integers n≥ 1. *en, φ � id∗ μ and
σ � id∗ 1. In Zhai’s approach proving (4), the inequality
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n≤ x

μ(n)≪x exp − c

�����

log x



 , (x≥ 1), (7)

plays a key role, where c> 0 is a positive constant. Clearly,
such a bound is not true for 1. By refining Zhai’s approach,
we shall prove our result.

2. Preliminary Lemmas

As in [3], we need some bounds on exponential sums of the
type N≤n<N′e(T/n) where N<N′ ≤ 2N. For large values of
N, Zhai used the theory of exponent pair, and for smaller
ones the Vinogradov method. Both estimates are contained
in the following general theorem of Karatsuba [6, *eorem
1], which will be a key tool for proving *eorem 1.

Lemma 1. Let k≥ 2 and M and P be integers, P being
positive. Let f ∈ Ck+1([M, M + P];R). Suppose that there
exist positive absolute constants c0, c1, c2, c3, and c4 such that
c0 < 1, c1 < 1, and c2 + c4 < c1; an integer r such that
c0k≤ r≤ k; and distinct numbers sj ≥ 2(j � 1, . . . , r) not
exceeding k, such that for M≤ t≤M + P the following in-
equalities are satisfied:

(i) |f(k+1)(t)/(k + 1)!|≤P− c1(k+1).
(ii) P− c2sj ≤ |f(sj)(t)/sj!|≤P− c3sj , (j � 1, . . . , r).

;en, for each positive integer P1 not exceeding P, we have


M≤m≤M+P1− 1

e(f(m))




≤AP

1− c/k2( ), (8)

where e(t) ≔ e2πit and A> 0, c> 0 are absolute constants.

*e next two lemmas are essentially a special case of [7,
Lemmas 2.5 and 2.6] with a � 1. *e only difference is that
the ranges of T and N here are slightly larger than those of
[7, Lemmas 2.5 and 2.6] (T≥N2 in place of T≥N(3/2) and
N≤x(2/3) in place of N≤x(1/2), respectively). Although the
proof is completely similar, for the convenience of readers,
we still reproduce a proof here.

Lemma 2. Let e100 ≤N<N′ ≤ 2N and T≥N(3/2). ;en,
there exists an absolute positive constant c5 such that



N≤ n<N′

e
T

n
 ≪N exp −

c5log
3

N

log2 T
  , (9)

where the implied constant is absolute.

Proof. We apply Lemma 1 to f(t) ≔ (T/t) with
M � N, P � N, P1 � N′ − N. For this, we choose

c0 �
1
100

,

c1 �
99
100

,

c2 �
87
100

,

c3 �
3
4
,

c4 �
1
100

,

k � 100
log(T/n)

log N
 ,

(10)

and take the sj to be all integers s such that

4
log(T/n)

log N
≤ s≤ 5

log(T/n)

log N
· (11)

Obviously the number r of sj is between c0k and k. Next
we shall verify that f(t) satisfies the conditions (i) and (ii) of
Lemma 1 with the parameters chosen above.

For N≤ t≤ 2N, we have

f
(k+1)

(t)

(k + 1)!




� Tt

− k− 2 ≤TN
− k− 2

� N
− η1 , (12)

where

η1 ≔ k + 1 −
log(T/n)

log N
≥ k + 1 −

1
100

k≥
99
100

(k + 1) � c1(k + 1).

(13)

Similarly for N≤ t≤ 2N, we find the inequality
|f(sj)(t)/sj!|≤N− η3 , where

η3 ≔ sj −
log(T/n)

log N
≥
3
4
sj � c3sj. (14)

For the lower bound of (ii), we have

f
sj( 

(t)

sj!




� Tt

− 1− sj ≥T(2N)
− 1− sj � N

− η2 , (15)

where

η2 ≔ sj −
log(T/n)

log N
+
log 2
log N

sj + 1 

≤
4
5
sj +

log 2
100

sj + 1 ≤
87
100

sj � c2sj.

(16)

From Lemma 1, there exist two positive constants c and
A such that
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N≤ n<N′

e
T

n
 




≤AN

1− c/k2( ) ≤AN exp −
c5log

3
N

log2(T/n)
 ,

(17)

with c5 ≔ 10− 4c. *is completes the proof of Lemma 2. □

Lemma 3. Define ψ(t) ≔ t − [t] − (1/2). Let c5 be the
constant defined by Lemma 2 and c6 ≔ (8/9)2c5,

c∗ ≔ ((3/5)c6)
− (1/3). ;en, we have



N≤ n<N′

1
n
ψ

x

n
 ≪ e− c6(log N)3/(log x)2(log N)

3

(log x)
2 , (18)

uniformly for x≥ 10, exp c∗(log x)(2/3)
 ≤N≤x(2/3) and

N<N′ ≤ 2N.

Proof. By invoking a classical result on ψ(t) (see 8, page 39])
we can write, for any H≥ 1,



N≤ n<N′

ψ
x

n
 ≪NH

− 1
+ 

1≤ h≤H

h
− 1



N≤ n<N′

e
hx

n
 




.

(19)

An application of Lemma 2 with T � hx≥x≥N(3/2)

yields



N≤ n<N′

ψ
x

n
 ≪N H

− 1
+ e

− c5(log N)3/log2(Hx)log H .

(20)

Taking H � exp (log N)3/(log x)2 ≤ x(8/27), we easily
deduce that



N≤ n<N′

ψ
x

n
 ≪N e

− (log N)3/(log x)2
+ e

− c6(log N)3/(log x)2(log N)
3

(log x)
2 .

(21)

*e first term can be absorbed by the second, since c5 can
be chosen small enough to ensure that c6 < 1 and since
exp c∗(log x)(2/3)

 ≤N implies (log N)3/(log x)2 ≥ c∗.
Hence,



N≤ n<N′

ψ
x

n
 ≪Ne

− c6(log N)3/(log x)2(log N)
3

(log x)
2 , (22)

and an Abel summation produces the required result. □

Lemma 4. Let 2≤ z1 < z2 ≤ x and Fx(t) ≔ (1/t)ψ(x/t).
Denote by VFx

[z1, z2] the total variation of Fx on [z1, z2].
;en,

VFx
z1, z2 ≪

x

z
2
1

+
1
z1

, (23)

where the implied constant is absolute.

Proof. If z1 � t0 < t1 < · · · < tn � z2 is a partition of the in-
terval [z1, z2], then



n

k�1
Fx tk(  − Fx tk− 1( 


 � 

n

k�1

1
tk

ψ
x

tk

  −
1

tk− 1
ψ

x

tk− 1
 





≤ 
n

k�1

1
tk

−
1

tk− 1
 ψ

x

tk

 




+ 

n

k�1

1
tk− 1

ψ
x

tk

  − ψ
x

tk− 1
 




.

(24)

Since |ψ(t)|≤ 1 for all t, we have


n

k�1

1
tk

−
1

tk− 1
 ψ

x

tk

 




≤
1
z1

−
1
z2
<
1
z1

· (25)

On the other hand, since ψ(u) is of period 1, we have



n

k�1

1
tk− 1

ψ
x

tk

  − ψ
x

tk− 1
 





≤
1
z1

x

z1
+ 1 Vψ[0, 1]≤ 2

x

z
2
1

+
1
z1

 .

(26)

Inserting these two bounds into (24), we obtain the
required result. □

3. Proof of Theorem 1

3.1. A Formula on the Mean Value of σ(n)

Lemma 5

(i) For x≥ 2 and 1≤ z≤x(1/3), we have


n≤ x

σ(n) �
π2

12
x
2

− x
(z − [z])

2
+[z]

2z
+ O

x

z
  − Δ(x, z),

(27)

where

Δ(x, z) ≔ 
d≤ (x/z)

x

d
ψ

x

d
 . (28)

(ii) For x⟶∞, we have


n≤x

σ(n) �
π2

12
x
2

+ O(x log x). (29)

Proof. Using σ(n) � dm�nm, the hyperbole principle of
Dirichlet allows us to write


n≤ x

σ(n) � 
dm≤ x

m � S1 + S2 − S3, (30)

where
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S1 ≔ 
d≤(x/z)


m≤(x/d)

m,

S2 ≔ 
m≤ z


d≤(x/m)

m,

S3 ≔ 
d≤(x/z)


m≤z

m.

(31)

Firstly we have

S2 � 
m≤z

m
x

m
  � x[z] + O z

2
 , (32)

S3 �
x

z
 

[z]([z] + 1)

2
� x

[z]([z] + 1)

2z
+ O z

2
 . (33)

Secondly we can write

S1 �
1
2


d≤(x/z)

x

d
− ψ

x

d
  −

1
2

 
x

d
− ψ

x

d
  +

1
2

 

�
1
2


d≤(x/z)

x
2

d
2 − 2

x

d
ψ

x

d
  + ψ

x

d
 

2
−
1
4

 

�
π2

12
x
2

−
1
2

xz − Δ(x, z) + O(x/z),

(34)

where Δ(x, z) is as in (28). Inserting (32), (33), and (34) into
(30) and using z2 ≤ (x/z), we get (27).

Taking z � 1 in (27) and noticing that


d≤x

1
d
2 �

π2

6
+ O

1
x

 ,


d≤x

x

d
ψ

x

d
 




≪ x log x,

(35)

we obtain the required bound.*is completes the proof. □

3.2. Estimates of Error Terms

Lemma 6. Let N0 ≔ exp (6/c6)(log x)(2/3)(log2 x)(1/3)
 ,

where c6 is given as in Lemma 3. Let Δ(x, z) be defined by
(28). ;en, for x≥ 10 and 2≤ z≤

���
N0


, we have


N0<n≤

�
x

√
Δ

x

n
, z 




+ 

N0<n≤
�
x

√
Δ

x

n
− 1, z 





≪ x
1

(log x)
3 +

log x

z
 .

(36)

Proof. Denote by Δ1(x, z) and Δ2(x, z) two sums on the
left-hand side of (36), respectively. By (28) of Lemma 5, we
can write

Δ1(x, z) � x 
N0<n≤

�
x

√


d≤(x/(nz))

1
dn

ψ
x

dn
 

� x 

d≤ x/ N0z( )( )

1
d


N0<n≤min(

�
x

√
,x/(dz))

1
n
ψ

x

dn
 

� xΔ†1(x, z) + xΔ♯1(x, z),

(37)

where

Δ†1(x, z) ≔ 

d≤ x/ N0z( )( )

1
d



N0<n≤(x/d)(2/3)

1
n
ψ

x

dn
 ,

Δ♯1(x, z) ≔ 

d≤ x/ N0z( )( )

1
d



(x/d)(2/3)< n≤min
�
x

√
,(x/dz){ }

1
n
ψ

x

dn
 .

(38)

For 0≤ k≤ (log((x/d)(2/3)/N0))/log 2, let Nk ≔ 2kN0
and define

Sk(d) ≔ 
Nk< n≤ 2Nk

1
n
ψ

x

dn
 . (39)

Noticing that N0 ≤Nk ≤ (x/d)(2/3), we can apply Lemma
3 to derive that

Sk(d)≪ e− ϑ log Nk( )
3/(log(x/d))2( 

, (40)

with ϑ(t) ≔ c6t − log t. It is clear that ϑ(t) is increasing on
[c6,∞). On the other hand, for k≥ 0 and d≥ 1, we have

log Nk( 
3/(log(x/d))

2 ≥ log N0( 
3/(log x)

2
� 6/c6( log2 x.

(41)

*us,

ϑ
log Nk( 

3

(log(x/d))
2 ≥ ϑ

6
c6

 log2 x 

� 6 log2 x − log
6
c6

 log2 x ≥ 5 log2 x,

(42)

which implies that Sk(d)≪ (log x)− 5. Inserting this into
the expression of Δ†1(x, z), we get

Δ†1(x, z)≪ 

d≤ x/ N0z( )( )

1
d



2kN0≤(x/d)(2/3)

Sk(d)


≪ (log x)
− 3

.

(43)

Next we bound Δ♯1(x, z). Let F(t) be a function of
bounded variation on [n, n + 1] for each integer n and let
VF[n, n + 1] be the total variation of F on [n, n + 1]. Inte-
grating by parts, we have
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n+1

n
t − n −

1
2

 dF(t) �
1
2
(F(n + 1) + F(n)) − 

n+1

n
F(t)dt.

(44)

From this, we can derive that

1
2
(F(n + 1) + F(n)) � 

n+1

n
F(t)dt + O VF[n, n + 1]( ,

(45)

for n≥ 1. Summing over n, we find that


N1< n≤N2

F(n) � 
N2

N1

F(t)dt

+
1
2

F N1(  + F N2( (  + O VF N1, N2 ( .

(46)

We apply this formula to

F(x/d)(t) �
1
t
ψ

(x/d)

t
 ,

N1 � (x/d)
(2/3)

 ,

N2 � min
��
x

√
,

x

(dz)
  .

(47)

According to Lemma 4, we have
VF(x/d)

[N1, N2]≪ (x/d)− (1/3), and thus by putting
u � (x/d)/t, we obtain, with the notation
xd,1 � max(

��
x

√
/d, tz) and xd,2 � (x/d)(1/3),



(x/d)(2/3)<n≤min
�
x

√
,(x/(dz)){ }

1
n
ψ

x

dn
  � 

xd,2

xd,1

ψ(u)

u
du + O

x

d
 

− (1/3)

 

≪ z
− 1

+
x

d
 

− (1/3)

≪ z
− 1

,

(48)

where we have used the fact that z≤
���
N0


and

d≤ (x/(N0z))⇒z ≤ (x/d)(1/3) and the bound


xd,2

xd,1

ψ(u)

u
du � 

xd,2

xd,1


u

xd,1

 ψ(t)dt 
du

u
2 −

1
x

(2/3)
d,2


xd,2

xd,1

ψ(t)dt

≪x
− 1
d,1 + xd,2 

− (2/3)
≪ z

− 1
+(x/d)

− (2/3)≪ z
− 1

.

(49)

Using (48), a simple partial integration allows us to
derive that

Δ♯1(x, z)≪ z
− 1



d≤x/ N0z( )

d
− 1≪ z

− 1log x.
(50)

Combining (43) and (50), it follows that

Δ1(x, z)


≪ x(log x)
− 3

+ xz
− 1log x. (51)

Similarly, we can prove the same bound for |Δ2(x, z)|.
*is completes the proof. □

3.3. End of the Proof of ;eorem 1. Let c6 be the constant
given as in Lemma 3 and N0 ≔ exp (6/c6) (log x)(2/3)

(log2 x)(1/3)}. Let z ∈ [2,
���
N0


] be a parameter to be chosen

later.
Putting d � [x/n], we have (x/n) − 1< d≤ (x/n) and

x/(d + 1)< n≤ (x/d). We have, with the convention
σ(0) � 0,

Sσ(x) � 
d≤x

σ(d) 
(x/(d+1))<n≤(x/d)

1

� 
dn≤ x

σ(d) − 
dn≤ x,d≥2

σ(d − 1)

� 
dn≤x

(σ(d) − σ(d − 1)).

(52)

By the hyperbole principle of Dirichlet, we can write

Sσ(x) � S1(x, σ) + S2(x, σ) − S3(x, σ), (53)

where

S1(x, σ) ≔ 
d≤

�
x

√
,dn≤ x

(σ(d) − σ(d − 1)),

S2(x, σ) ≔ 
n≤

�
x

√
,dn≤x

(σ(d) − σ(d − 1)),

S3(x, σ) ≔ 
d≤

�
x

√
,n≤

�
x

√
(σ(d) − σ(d − 1)).

(54)

With the help of the bound σ(n)≪ n log2 n, we can
derive that

S3(x, σ) � [
��
x

√
]σ([

��
x

√
])≪x log2 x. (55)

For evaluating S1(x, σ), we write

S1(x, σ) � 
d≤

�
x

√
(σ(d) − σ(d − 1))

x

d
 

� x 
d≤

�
x

√

σ(d) − σ(d − 1)

d
+ O 

d≤
�
x

√
|σ(d) − σ(d − 1)|⎛⎝ ⎞⎠.

(56)

With the help of Lemma 5 (ii), a simple partial inte-
gration gives us
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d≤

�
x

√

σ(d) − σ(d − 1)

d
� 

d≤
�
x

√

σ(d)

d(d + 1)

� 
d≤

�
x

√

σ(d)

d
2 − 

d≤
�
x

√

σ(d)

d
2
(d + 1)

� 

�
x

√

1−
t
− 2d

π2

12
t
2

+ O(t log t)  + O(1)

�
π2

12
log x + O(1),


d≤

�
x

√
|σ(d) − σ(d − 1)|

≪ 
d≤

�
x

√
σ(d)≪x.

(57)

Inserting these estimates into (56), we find that

S1(x, σ) �
π2

12
x log x + O(x). (58)

Finally, we evaluate S2(x, σ). For this, we write

S2(x, σ) � S
†
2(x, σ) + S

♯
2(x, σ), (59)

where

S
†
2(x, σ) ≔ 

n≤N0,dn≤ x

(σ(d) − σ(d − 1)),

S
♯
2(x, σ) ≔ 

N0<n≤
�
x

√
,dn≤ x

(σ(d) − σ(d − 1)).
(60)

By the bound that σ(n)≪ n log2 n, we have

S
†
2(x, σ) � 

n≤N0

σ
x

n
  ≪ 

n≤N0

x

n
 log2 x

≪ x(log x)
(2/3) log2 x( 

(4/3)
.

(61)

On the other hand, (27) of Lemma 5 allows us to derive
that


d≤x

σ(d) − 
d≤x− 1

σ(d) �
π2

12
x
2

− (x − 1)
2

  − Δ(x, z)

+ Δ(x − 1, z) + O
x

z
 

�
π2

6
x − Δ(x, z) + Δ(x − 1, z) + O

x

z
 ,

(62)

where Δ(x, z) is given by (28). *us,

S
♯
2(x, σ) � 

N0<n≤
�
x

√

π2

6
·
x

n
− Δ

x

n
, z  + Δ

x

n
− 1, z  + O

x

nz
  

�
π2

12
x log x + O x(log x)

(2/3) log2 x( 
(1/3)

+ xz
− 1log x  − Δ1(x, z) + Δ2(x, z),

(63)

where

Δ1(x, z) ≔ 
N0<n≤

�
x

√
Δ

x

n
, z ≪ x(log x)

− 3
+ xz

− 1log x,

Δ2(x, z) ≔ 
N0<n≤

�
x

√
Δ

x

n
− 1, z ≪x(log x)

− 3
+ xz

− 1log x,

(64)

thanks to Lemma 6. Inserting these estimates into (59), we
find that

S2(x, σ) �
π2

12
x log x + O x(log x)

(2/3) log2 x( 
(4/3)

+ xz
− 1log x ,

(65)

Now (5) follows from (53), (55), (58), and (66) with the
choice of z � (log x)(1/3).

3.4. Proof of;eorem1. (ii) For any odd prime p, (52) allows
us to write


d ∣p

(σ(d) − σ(d − 1)) � Sσ(p) − Sσ(p − 1)

�
π2

6
(log p − log(p − 1)) + E(p) − E(p − 1)

≥E(p) − E(p − 1)≥ − 2E
∗
(p),

(66)

where E∗(p) ≔ max |E(p)|, |E(p − 1)| . On the other
hand, we have


d|p

(σ(d) − σ(d − 1)) � σ(p) − σ(p − 1) + 1

≤p + 1 − p − 1 +
1
2
(p − 1) + 2 + 1  + 1≤ −

1
4
p.

(67)

*us, E∗(p)≥ (1/8)p for all odd primes.
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