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Introduction

The aim of this article is to study existence and properties of nonnegative singular solutions of the following equation

L M p,q u := -∆u + u p -M |∇u| q = 0 (1.1) in a domain Ω of R N or in R N (N ≥ 2)
, where M is a real number and p > q > 1.

In the case M < 0 many results dealing with isolated singularities have been obtained in [START_REF] Nguyen | Isolated singularities of positive solutions with weighted gradient term[END_REF]. Therefore we will mainly concentrate on the case M > 0 where the two nonlinear terms act in a opposite direction: one is an absorption and the other is a source. Furthermore they are not of the same type, one involves the function and the other its gradient.

First we consider the case q = 2p p+1 . Then (1.1) becomes

L M p, 2p p+1 
u := -∆u + u p -M |∇u| 2p p+1 = 0, (1.2) 
and this equation is invariant under the scaling transformation T , > 0, defined by

T [u](x) = α u( x). (1.3) 
In that case there may exist self-similar solutions, necessarily under the form u(x) = u(r, s) = r -α ω(s), where (r, s) ∈ R + × S N -1 are the spherical coordinates in R N . The function ω is a solution of the following equation on S N -1

-∆ ω + N,p ω + ω p -M α 2 ω 2 + |∇ ω| 2 p p+1 = 0, (1.4) where ∆ and ∇ denote respectively the Laplace-Beltrami operator and the tangential gradient on S N -1 , identified with the covariant gradient on S N -1 for the metric induced by the standard one in R N , and where α = 2 p -1 and N,p = αK (1.5)

with

K = N -2 -α = (N -2)p -N N -2 . (1.6)
The nonzero constant solutions of (1.4) are the positive zeros of the function

P M (x) = x p-1 -M α 2p p+1 x p-1 p+1 + N,p . (1.7) 
The following value of the parameter M , which exists only if N ≥ 3 and p ≥ N N -2 , plays an important role in the study of (1.4):

m * := (p + 1) (N -2)p -N 2p p p+1
.

(1.8)

The separable solutions obtained in the next theorem are at the core of the process of describing the behaviour of positive solutions of (1.1) near an isolated singularity or in an exterior domain of R N . 

S N -1 ω ≤ x 1,M ≤ max S N -1 ω ≤ x 2,M .
(1.9)

Furthermore, if

m * < M < m := (p + 1) 2 2 (N -2)p 2 -(N + 2) 4p 2 p p+1 , (1.10) 
then x 1,M and x 2,M are the only positive solutions, and

m m * > p + 1 2p p p+1 p + 1 2 > N -1 N -2 N -1 N N 2(N -1) > 1.
( 1.11) .

Not all the singular positive solutions of (1.2) are self-similar since there exist solutions with a weak singularity, which means (i) lim

x→0 |x| N -2 u(x) = k if N ≥ 3, (ii) lim x→0 ln |x| -1 u(x) = k if N = 2.
(1.12)

Thanks to the existence of positive radial sigular solutions in R N \{0} we are able to prove the existence of non-radial positive solution in a punctured bounded domain with prescribed boundary value. This is a very general tool which is developed in Section 4 for obtaining singular solutions, and as an example we prove the following result.

Theorem 1.2 Let Ω be a bounded smooth domain of R N (N ≥ 3) containing 0 and φ ∈ W 1,∞ (∂Ω). If 1 < p < N N -2 then for any real M > 0 and k > 0 there exists a minimal positive solution u k of (1.2) in Ω \ {0} satisfying (1.12) and such that u = φ on ∂Ω. Furthermore, k → u k is increasing and u k ↑ u ∞ where u ∞ is the minimal solution of (1.2) in Ω \ {0} satisfying (1.12), such that u = φ on ∂Ω and satisfying

lim x→0 |x| 2 p-1 u ∞ (x) = x M .
(1.13)

If p ≥ N N -2 it is proved in [START_REF] Bidaut-Véron | Measure data problems for a class of elliptic equations with mixed absorption-reaction[END_REF] that there exists no positive solution of (1.2) with weak singularity at 0 and that any positive solution in Ω \ {0} can be extended as a weak solution in whole Ω. However weak solutions may be unbounded. The different kinds of singular solutions play a key role for describing the behaviour near 0 of any positive solution of (1.2) in Ω \ {0}. If Ω is replaced by R N there holds: Theorem 1.3 Let N ≥ 3 and 1 < p < N N -2 . Then for any real M > 0 and k > 0 there exists a unique positive solution u k of (1.2) in R N \ {0} satisfying (1.12) and

lim |x|→∞ |x| 2 p-1 u k (x) = x M .
(1.14)

Furthermore u k is radial and u k ↑ u x M as k → ∞, where u x M (x) = x M |x| -α .

When p ≥ N N -2 new phenomena appear.

Theorem 1.4 Let N ≥ 3, p = N N -2 and M > 0. Then the function

u x M (x) = x M |x| 2-N = (N -2)M N -1 N N -2 |x| 2-N
is the unique radial positive solution of (1.2) in R N \{0} satisfying lim (ii) lim

|x|→∞ |x| N -2 u S (x) = (N -2)M N -1 N N -2
.

(1.15)

Furthermore u s is the unique positive solution (not only radial) satisfying (1.15).

The proof of existence is based upon a dynamical system formulation of the equation, see (2.16). Such a formulation, as well as similar ones, will be much used in the sequel. Furthermore, for any k > 0 there exists also a radial positive solution u k of (1.2) in R N \ {0} satisfying (1.17) with x 1,M replaced by x m * . It is unique among the positive radial solutions satisfying (1.17) and it satisfies the same scaling invariance as (i).

The previous results allow to describe the behaviour at infinity of radial positive solutions of (1.2) in the complement of a ball. The next result will be partially extended to non-radial solutions in Section 5.

Proposition 1.6 Let N ≥ 1, p > 1, M > 0 and u be a positive radial solution of (1.2) in R N \ B R for some R > 0. Next, we consider equation (1.1) when q = 2p p+1 . In that case, the asymptotics of the solutions are governed either by the Emden-Fowler operator u → L p u := -∆u + u p , (1.19) or by the Riccati operator .20) or by the eikonal operator

u → R M q u := -∆u -M |∇u| q , ( 1 
u → E M p,q u := u p -M |∇u| q .

(1.21)

When 1 < q < 2p p+1 the governing equation is the Emden-Fowler equation L p u = 0 near a singularity and the Riccati equation R M q u = 0 at infinity. When 2p p+1 < q < p, the situation is reversed. The following exponents play a crucial role α = 2 p -1 , β = 2 -q q -1 and γ = q p -q if q = p, (1.22) and σ = (p + 1)q -2p. (1.23) We also define

κ = (N -1)q -N q -1 if q > 1, (1.24) 
and θ = (N -1)q -(N -2)p p -q = γ + 2 -N if q = p.

(1.25)

Theorem 1.7 Let N ≥ 1, M > 0 and 2p p+1 < q < p. If there exists a radial positive solution u of (1.1) in B R \ {0} which is unbounded near 0, then 1-either lim

x→0 |x| γ u(x) = X M where X M = (M γ q ) 1 p-q , (1.26) 
2-or (1.26) does not hold. In that case q ≤ 2, N ≥ 2 and the following situation occurs:

2-a-if N N -1 < q < 2, then

lim x→0 |x| β u(x) = ξ M where ξ M = 1 β κ M (M γ q ) 1 q-1 , (1.27) 2-b-if q = 2, then lim x→0 | ln |x|| -1 u(x) = N -2 M if N ≥ 3, or lim x→0 (ln | ln |x||) u(x) = 1 M if N = 2,
(1.28) 2-c-if q < N N -1 , then there exists k > 0 such that

lim x→0 |x| N -2 u(x) = k if N ≥ 3 and lim x→0 | ln |x|| -1 u(x) = k if N = 2, (1.29) 2-d-if q = N N -1 , then (i) lim x→0 ||x| ln |x|| N -1 u(x) = 1 N -1 N -1 M N -1 if N ≥ 3 (ii) lim x→0 | ln |x|| -1 u(x) = k > 0 if N = 2
(1.30)

In the case 1 < q < 2p p+1 the description of isolated singularities is simpler and it is similar to the one of the positive solutions of (1.19).

Theorem 1.8 Let M > 0, 1 < p < N N -2 if N ≥ 3, any p > 1 if N = 1, 2
, and 1 < q < 2p p+1 . Assume that there exists a radial positive solution u of (1.1) in B R \{0} which is unbounded near 0. Then the following alternative holds: 1-either lim

x→0 |x| α u(x) = x 0 := (α|K|) 1 p-1 , (1.31) 2-or N ≥ 2 and (i) lim x→0 |x| N -2 u(x) = k > 0 if N ≥ 3 (ii) lim x→0 | ln |x|| -1 u(x) = k > 0 if N = 2. (1.32)
It is noticeable that all the behaviours described in the previous two theorems occur. The behaviour at infinity of positive solutions of (1.1) in B c R inherits this complexity due to the value of q with respect to 2p p+1 , and the situation is less intricated in the case 2p p+1 < q < p than in the case 1 < q < 2p p+1 .

Theorem 1.9 Let N ≥ 1, M > 0 and 2p p+1 < q < p. Assume that there exists a radial positive solution u of 

(1.1) in B c R . Then 1-If 1 < p < N N -2 (any p > 1 if N = 1, 2),
2 |x| N -2 u(x) = N -2 √ 2 N -2 . (1.35) Theorem 1.10 Let N ≥ 2, M > 0 and 1 < q < 2p p+1 . If u is a radial positive solution of (1.1) in B c R , there holds. 1-If q > N N -1
, one of the three following situations occurs: 1-a-either lim

|x|→∞ |x| γ u(x) = X M , (1.36) 1-b-or lim |x|→∞ |x| β u(x) = ξ M , (1.37) 1-c-or lim |x|→∞ |x| N -2 u(x) = k > 0. (1.38) 2-If N = 1 or 1 < q ≤ N N -1 , then only (1.36) can occur.
The existence of local or global singular solutions or asymptotic solutions with behaviour like |x| -γ (eikonal type) or like |x| -β (Riccati type) near 0 or ∞ will be proved in Section 3.6. For example we prove the following result by the method of sub and super solutions.

Theorem 1.11 Let N ≥ 1, p > 1 and M > 0.

1-If 2p

p+1 < q < p, then there exists a unique global positive solution u of (1.1) such that lim x→0 |x| γ u(x) = X M , and its behaviour at infinity is given by Theorem 1.9.

Moreover this solution is radial, and it is explicit if N ≥ 3 and q = (N -2)p N -1 . Furthermore, for any bounded smooth domain Ω containing 0 there exists a positive solution of (1.1) in Ω \ {0} vanishing on ∂Ω.

2-If max 1, (N -2)p N -1 < q < 2p
p+1 , then for any R > 0 there exists a positive solution

u in B c R satisfying (1.36).
Introducing a new powerful autonomous system of order 3, we can construct local solutions behaving like |x| -β near 0.

Theorem 1.12 Let N ≥ 2, p > 1 and M > 0.

1-If max 2p p+1 , N N -1 < q < min{2, p}.
Then there exists at least one radial positive solution u of (1.1) in a neighborhood of 0 such that lim

x→0 |x| β u(x) = ξ M . 2-If N N -1 < q < 2p
p+1 there exists a unique positive radial solution defined in a neighborhood of infinity satisfying such that lim |x|→∞ |x| β u(x) = ξ M . There exists no radial positive solution in R N \ {0} with such a behaviour at infinity. By a delicate method of super and sub solutions, we also prove the existence of radial positive singular solutions u of (1.1) in R N \ {0} satisfying (1.37) under more restrictive assumptions on the exponents p and q.

When p < N N -2 we show the existence of the solutions of (1.1) in R N \ {0}, or in a neighborhood of 0, or at infinity having the behaviour described in Theorem 1.8 and Theorem 1.9. Such solutions are associated to the Emden-Fowler operator.

Theorem 1.13 Let M > 0, N ≥ 3 and 1 < p < N N -2 , or N = 1, 2 and p > 1. 1-If 1 < q < 2p
p+1 there exists a unique positive solution of (1.1) in R N \{0} satisfying

(i) lim x→0 |x| α u(x) = x 0 (ii) lim |x|→∞ |x| γ u(x) = X M . (1.39)
Furthermore this solution is radial and

|x| α u(x) ≥ x 0 in R N \ {0}.
If Ω is a bounded domain containing 0 there exists a positive solution u of (1.1) in Ω \ {0} satisfying (1.39)-(i) and vanishing on ∂Ω.

2-If 2p p+1 < q < p there exists a positive radial solution of (1.1) in R N \{0} satisfying

(i) lim x→0 |x| γ u(x) = X M (ii) lim |x|→∞ |x| α u(x) = x 0 . (1.40)
Moreover this solution is unique among all the positive solutions satisfying (1.40).

We also give conditions on p and q for the existence of a positive radial solution of (1.1) in R N \ {0}, necessarily singular at 0, with a behaviour at 0 given by (1.26), (1.31) or (1.27), and an asymptotic behaviour at infinity given by (1.38).

The last section of the article is devoted to non radial results. We first give a general existence statement which allows to construct positive singular solutions of (1.1) in a punctured bounded domain with prescribed boundary value, provided there exists a radial singular solution in R N \ {0}. This singular solution has been obtained by the phase plane analysis of Section 2 in the case q = 2p p+1 , and by the radial analysis of section 3 in the other cases.

Theorem 1.14 Let Ω ⊂ B R ⊂ R N be a bounded smooth domain containing 0, M a real number, p > 1 and 1 ≤ q ≤ 2. If there exists a radial positive and decreasing function v defined in B R \ {0} and satisfying L M p,q v = 0 in Ω \ {0} and

lim x→0 v(x) = ∞,
then for any nonnegative function φ ∈ W 1,∞ (Ω), there exists a solution u of L M p,q u = 0 in Ω \ {0} satisfying u = φ on ∂Ω and

lim x→0 u(x) = ∞.
Furthermore there holds

(v(x) -max z∈∂Ω φ(z)) + ≤ u(x) ≤ v(x) + max z∈∂Ω (φ(z) -v(z)) + for all x ∈ Ω \ {0}. (1.41)
A second key result deals with the uniqueness of positive solutions in R N \ {0} or in a punctured bounded domain Ω \ {0} starshaped with respect to 0. Using a general scaling method we prove the following Theorem 1.15 Assume N ≥ 2, p > 1, 1 < q < 2 and M > 0. Let a such that

(i) 0 ≤ a < β if q ≤ 2p p+1 (ii) β < a if q > 2p p+1 .
(

1.42)

There exists at most one positive solution of

(1.1) in R N \ {0} satisfying lim x→0 |x| a | ln |x|| ãu(x) = Λ (1.43)
where Λ is some positive constant and ã is a real number. If Ω is a bounded domain containing 0 and starshaped with respect to 0 and φ ∈ C(∂Ω) is nonnegative, there is at most one positive solution u of (1.1) in Ω \ {0} satisfying (1.43) with value φ on ∂Ω.

This result admits various extensions valid when the exponent a above is equal to β. With the help of these results we characterize all the local positive solutions of (1.1), not necessarily radial, either near 0 or near ∞. An important tool is the intensive use of the tangency property of graphs of global solutions which has been introduced in [START_REF] Kichenassamy | Singular solutions of the p-Laplace equation[END_REF] for the studying of isolated singularities of p-harmonic functions.
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2 The case q = 2p p+1

The equation on the sphere

The existence of particular solutions of (1.4), and eventually their uniqueness, plays a key role in the description of the behaviour of all the solutions. Due to the invariance of the equation under the transformations T these natural particular solutions are the ones which are self-similar, i.e. invariant by these transformations. In spherical coordinates (r, s) ∈ R + × S N -1 , they endow the form (r, s) → u(r, s) = r -α ω(s), and ω is a solution of (1.4). Since we are dealing with nonnegative solutions, by the strong maximum principle they are either positive or identically zero. This fact does not depend on the sign of M .

2.1.1

Proof of Theorem 1.1: constant positive solutions Assume M ≤ 0 and ω is a nonnegative solution of (1.4). Multiplying the equation by ω and integrating over S N -1 yields

S N -1 |∇ ω| 2 + N,p ω 2 + ω p+1 -M α 2 ω 2 + |∇ ω| 2 p p+1 ω dS = 0.
Since N,p ≥ 0 if and only if p ≥ N N -2 , we infer the non-existence statement 1. For any M , constant positive solutions are the positive roots of

P M (x) = 0. If we set z = x p-1 p+1 , P M (x) = 0 is equivalent to PM (z) = 0 where PM (z) = z p+1 -M α 2p p+1 z + N,p . Since P M (z) = (p + 1)z p -M α 2p p+1 the minimum of PM on R + is achieved at z = 0 if M ≤ 0, or at z 0 = M p+1 1 p α 2 p+1 if M > 0.
In the first case the function PM is increasing on (0, ∞). It vanishes therein if and only if PM (0) = N,p < 0, or equivalently 1 < p < N N -2 . In the second case, PM is decreasing on (0, z 0 ) and increasing on (z 0 , ∞). Its minimal value is

PM (z 0 ) = N,p -p M p + 1 p+1 p α 2 = 4p (p -1) 2 m * p + 1 p+1 p - M p + 1 p+1 p . (2.1)
If p ≤ N N -2 , then PM (z 0 ) < PM (0) = N,p ≤ 0, hence PM admits a unique positive zero and so does P M . This gives the existence of x M in case 2. If p > N N -2 , then PM (0) = N,p > 0. We obtain the existence of constant solutions in 3, 4 and 5 according M > m * , M = m * and 0 < M < m * .

2.1.2

Proof of Theorem 1.1: positive solutions

Let ω be a nonnegative solution of (1.4). By regularity it is C 2 and either positive or identically 0. If it is not constant, we denote by ω and ω respectively the maximum and the minimum of ω on S N -1 . There holds P M (ω) ≤ 0 and P M (ω) ≥ 0, and if we set ω p-1 p+1 = z and ω p-1 p+1 = z, we have that PM (z) ≤ 0 and PM (z) ≥ 0. 1-First we consider the case where M < 0 and 1

< p < N N -2 . Since PM is increasing on R + we deduce ω = ω = ω = x M . 2-Next we assume M > 0 and p ≤ N N -2 , then PM is increasing on (z 0 , ∞). Hence it is negative on [0, x p-1 p+1 M
) and positive on (x

p-1 p+1 M , ∞). This implies ω ≤ x M ≤ ω and finally ω = x M . 3-If p > N N -2 and M = m * , P m * is positive on R + \{x m * }. This implies ω ≤ x m * ≤ ω and finally ω = x m * . 4-If p > N
N -2 and M < m * , P m * is positive on R + , hence there exists no positive solution. 5-Finally, if p > N N -2 and M > m * , P M is positive on (0, x 1,M ) ∪ (x 2,M , ∞) and negative on (x 1,M , x 2,M ). This implies (1.9). The proof of the second assertion is more involved. Set z = |∇ ω| 2 and y = α 2 ω 2 + z 2 . Then

∆ ω = αKω + ω p -M y p p+1 . By Weitzenböck's formula 1 2 ∆ z = |Hess(ω)| 2 + ∇ ∆ ω, ∇ ω + Ricc g (∇ ω, ∇ ω), (2.2) 
where Hess(ω) is the Hessian and Ricc g is the curvature 2-tensor on S N -1 . In that case we have that Ricc g = (N -2)g. By Schwarz inequality

|Hess(ω)| 2 ≥ 1 N -1 (∆ ω) 2 ,
therefore, replacing ∆ ω by its value, we obtain the inequality

- 1 2 ∆ z + (N -2)z + 1 N -1 (∆ ω) 2 + (αK + pω p-1 )z - M p p + 1 y -1 p+1 ∇ y, ∇ ω ≤ 0. Since ∇ z = ∇ y -2α 2 ω∇ ω we infer - 1 2 ∆ z + N -2 + αK + pω p-1 - 2M p p + 1 y -1 p+1 ω z + 1 N -1 (∆ ω) 2 - M p p + 1 y -1 p+1 ∇ z, ∇ ω ≤ 0.
Let s 0 ∈ S N -1 where z is maximal. Then ∇ z(s 0 ) = 0 and ∆ z(s 0 ) ≤ 0. Hence at s = s 0 there holds

αK + N -2 + pω p-1 - 2M pα 2 ω (p + 1)(α 2 ω 2 + z) 1 p+1 z + 1 N -1 αKω + ω p -M y p p+1 2 ≤ 0. Therefore αK + N -2 + pω p-1 - 2M pα 2p p+1 ω p-1 p+1 p + 1 z + 1 N -1 αKω + ω p -M (α 2 ω 2 + z) p p+1 2 ≤ 0. (2.3) Set F (t) = pt p+1 - 2M pα 2p p+1 p + 1 t + N -2 + αK and t 0 = ω p-1 p+1 (s 0 ). If ω is non-constant, z(s 0 ) > 0, hence F (t 0 ) ≤ 0. . If t i = x p-1 p+1 i,M , for i = 1, 2, there holds t p+1 i -M α 2p p+1 t i + αK = 0, hence F (t i ) = pt p+1 i -2p p+1 αK + t p+1 i + N -2 + αK = p(p -1) p + 1 t p+1 i + N -2 - 2K p + 1 .
Since

F (t) = p(p + 1)t p - 2M pα 2p p+1 p + 1 , F is minimal for t = t * = 2M (p+1) 2 1 p α 2 p+1 and F (t * ) = N -2 + αK -p 2 2M (p + 1) 2 p+1 p α 2 ≤ F (t 0 ) ≤ 0. (2.4) This implies 2M (p + 1) 2 α 2p p+1 ≥ N -2 + αK p 2 p p+1 , (2.5) 
and equivalently M ≥ m where m is defined in (1.10). Therefore, if M < m there cannot exist non-constant positive solution. In order to prove (1.11) we first notice

that if p > N N -2 , then (N -2)p 2 -(N + 2) (N -2)p -N > p + 1. Therefore m m * > p + 1 2 p + 1 2p p p+1
.

By taking the logarithm it is easy to check that the function p → p+1 2 p+1 2p p p+1 is increasing, hence the right-hand side of the previous inequality is minorized by

θ N := N -1 N -2 N -1 N N 2(N -1) , (2.6) 
which is the desired estimate. Notice that θ 3 ∼ 1.47 and θ N decreases to 1 when N → ∞.

Remark. The following monotonicity properties of the points P M are straightforward: in cases (i) and (ii) x M is increasing with M . In case (iii

) M → x 1,M is decreasing while M → x 2,M is increasing. Furthermore, if M > M > m * , x 1,M < x 1,M < x m * < x 2,M < x 2,M . (2.7) 
The value of x m * is explicit

x m * = 2K p(p -1) 1 p-1 = αK p 1 p-1 .
(2.8)

We end this section by proving a result dealing with bifurcation from constant solutions.

Theorem 2.1 When M > m * the solution x j,M , j = 1, 2, is never a bifurcation point in the sense that the linearized equation at this point is singular.

Proof. If we look for solutions of (1.4) under the form ω = x j,M + φ k where φ k is an eigenfunction of -∆ in H 1 (S N -1 ) associated to the eigenvalue λ k = k(N -2 + k), we obtain that

λ k + αK + px p-1 j,M - 2p p + 1 α 2p p+1 M x p-1 p+1 j,M = 0 (2.9)
We recall that P M is defined in (1.7). If Q M (x) = xP M (x), then (2.9) is equivalent to λ k + x j,M P M (x j,M ) = 0.

(2.10)

We know that P M (x 2,M ) > 0, then for any k ∈ N * identity (2.9) is impossible with j = 2. Concerning the case j = 1, (2.9) combined with P M (x 1,M ) = 0 and the value of α yields

λ k -2K + p(p -1) p + 1 α 2p p+1 M x p-1 p+1 
1,M = 0, (2.11) which never occurs when k ≥ 2 because of the values of λ k and K. When k = 1, since P M (x 1,M ) = 0 there holds

M α 2p p+1 x p-1 p+1 
1,M > αK thus (2.11) yields

λ 1 -2K + p(p -1) p + 1 αK < 0.
Because λ 1 = N -1 and α(p -1) = 2 we obtain N -1 -2K + 2p p+1 K < 0, which is equivalent to (p -1)(N -1) + 2 + 2α < 0, a contradiction.

Radial solutions

In this section we study in detail the nonnegative solutions of the ordinary differential equation

-u - N -1 r u + |u| p-1 u -M |u | 2p p+1 = 0, (2.12) 
when p > 1. Because of the scaling invariance (1.3) the equation can be transformed into an autonomous equation by setting

u(r) = r -α x(t), t = ln r. (2.13) 
Then x(t) satisfies

x tt + Lx t -αKx -|x| p-1 x + M |αx -x t | 2p p+1 = 0, (2.14) 
where we recall that K = (N -2)p-N p-1

= N -2 -α and where we set

L = (N -2)p -(N + 2) p -1 = K -α. (2.15) 
If we set u (r) = -r -(α+1) y(t), then (2.12) is equivalent to

x t = αx -y y t = -Ky -|x| p-1 x + M |y| 2p p+1 . (2.16)
Since we are interested in positive u we restrict to solutions of (2.16) in the half-space

R 2 + = {(x, y) ∈ R 2 : x > 0} = Q 1 ∪ Q 4 where Q 1 = {(x, y) ∈ R 2 + : y > 0}
is the first quadrant and

Q 4 = {(x, y) ∈ R 2 + : y < 0}
is the fourth quadrant. The regular solutions of (2.12) (with u(0) = u 0 > 0 and u (0) = 0) are increasing near r = 0, so their trajectory T 1 := {(x(t), y(t))} lies in Q 4 as t → -∞. The solutions defined in a neighborhood of r = 0 and unbounded near 0 are decreasing, so their trajectory lie in Q 1 as t → -∞. The solutions defined near r = ∞ are decreasing, so their trajectory remain in Q 1 as t → ∞.

Theorem 1.1 can be reformulated in the following way: 

1-If M ≤ 0 and 1 < p < N N -2 , the only non-trivial equilibrium in R 2 + , is P M = (x M , αx M ). If p ≥ N N -2 there exists no non-trivial equilibrium in this region. 2-If 1 < p ≤ N N -2 and M > 0, the only non-trivial equilibrium in R 2 + is P M = (x M , αx M ).

5-If p ≥ N

N -2 and 0 < M < m * there exists no non-trivial equilibrium in R 2 + . We also recall the classical result concerning regular solutions, not only in the case q = 2p p+1 .

Proposition 2.2 Let N ≥ 1, 1 < q < p and M ≥ 0. Then for any a > 0 there exists a unique radial maximal positive solution u of (1.1) satisfying u(0) = a, u (0) = 0. This solution denoted by u [a] is defined in B R , where R = R a > 0, and it satisfies lim

|x|↑R u [a] = ∞.
Proof. In the case M = 0 the result is a standard combination of Cauchy-Lipschitz theorem with the Keller-Osserman estimate. In the case M > 0 the proof can be obtained in a slightly similar way using also Proposition A.1. See also [START_REF] Bandle | Sur les solutions maximales de problèmes elliptiques non linéaires: bornes isopérimétriques et comportement asymptotique[END_REF], [START_REF] Véron | Semilinear elliptic equations with uniform blow-up on the boundary[END_REF] and [START_REF] Bandle | Boundary blow-up for semilinear elliptic equation with nonlinear gradient term[END_REF] for many extensions concerning these regular (or large) solutions.

2.2.1 Linearisation at (0, 0)

The linearization at (0, 0) is given by the system

x t = αx -y y t = -Ky (2.17)
with eigenvalues λ 1 = -K, λ 2 = α and corresponding eigenvectors

ξ 1 = (1, N -2) and ξ 2 = (1, 0) if K = -α or equivalently N = 2. If N = 2, λ 1 = λ 2 = α, the only eigenspace is span(ξ 2 ).
In any cases λ 2 -λ 1 = N -2. There exists one trajectory located in Q 4 of the linearized system converging to 0 when t → -∞. To this trajectory is associated a trajectory T r of (2.16) such that (x(t), y(t)) ≈ c e αt , -1 N e (α+1)t when t → -∞. These solutions are associated to the one parameter family of regular solutions mentioned above with u(0) = u 0 and u (0) = 0.

(i) Assume first that N ≥ 3. If p < N N -2 then K < 0 and (0, 0) is a source. Then all trajectories of (2.17) defined in a neighborhood of (0, 0) converge to this point when t → -∞. Besides the trajectory T r , all the other trajectories converging to zero when t → -∞ start in Q 1 with initial slope N -2. They satisfy x(t) ∼ ae -Kt for some a > 0 by Lemma A. [START_REF] Bidaut-Véron | Local and global properties of solutions of quasilinear HamiltonJacobi equations[END_REF]. This means that r N -2 u(r) → a when r → 0. If p > N N -2 , then K > 0 and (0, 0) is a saddle point. The trajectory T r converges to (0, 0) at -∞. There is also the unique trajectory T s which converges to (0, 0) when t → ∞. Their slope at (0, 0) is N -2 and they correspond to solutions u(r) ∼ cr 2-N when r → ∞. If p = N N -2 , then K = 0. Besides the regular trajectory which always exists, there exists an invariant trajectory passing through (0, 0), with slope N -2, by the theorem of the central manifold. We will see later on that it converges to (0, 0) as t → -∞.

(ii) Assume now that N = 1 or 2 there still exists the regular trajectory T r . If N = 1, then λ 1 = p+1 p-1 > λ 2 . There exist infinitely many trajectories different from T r , converging to (0, 0) at -∞, in Q 1 or Q 4 , corresponding to solutions such that u(0) = u 0 > 0 and u (0) = a ∈ R \ {0}. There exists one trajectory converging to (0, 0) at -∞ with slope -1 and located in Q 4 . It corresponds to solutions such that u(0) = 0 and u (0) > 0. If N = 2, then λ 1 = λ 2 = α. The point (0, 0) is a degenerate node. All the trajectories in a neighborhood of (0, 0) tend to (0, 0) when t → -∞ and are tangent to ξ 1 . However they behave like c(-t) -1 for any c > 0. They correspond to solutions u such that lim r→0 (-ln r) -1 u(r) = a > 0.

Linearisation at the non-trivial equilibrium points

Lemma 2.3 1-If 1 < p ≤ N N -2 and M > 0, or 1 < p < N N -2 and M = 0, P M is a saddle point.

2-If p > N

N -2 and M > m * , P 1,M is a node point and a source and P 2,M is a saddle point.

3-If p > N

N -2 and M = m * , P m * is not hyperbolic. One eigenvalue is N -2 and the other is 0.

Proof. Set y M = αx M . In view of (1.7), y M satisfies α -p y p-1 M -M y p-1 p+1 M + K = 0.
(2.18)

Setting x = x M + x, y = y M + y, the linearized equation at (x M , y M ) is

x t = αx -y y t = -px p-1 M x + 2M p p+1 y p-1 p+1 M -K y. (2.19)
The characteristic polynomial of the corresponding matrix is

T y M (X) = X 2 - 2M p p + 1 y p-1 p+1 M -L X + 2K - 2M p p + 1 y p-1 p+1 M . (2.20) 1-If p ≤ N N -2
and M > 0, or p < N N -2 and M = 0, P M is unique. Since either K ≤ 0 and M > 0 or K < 0 and M = 0, the product of the roots is negative. Hence P M is a saddle point. 2-3-Next we assume N ≥ 3 and M ≥ m * . The sum of the roots of

T y M (X) is equal to 2M p p + 1 y p-1 p+1 M -L = 2p p + 1 α -p y p-1 M + K -L > p -1 p + 1 K + α > 0.
Concerning the product Π(y M ) of the roots, we deduce from (2.3) that T y m * (0) = 0 hence Π(y m * ) = 0. Since by (2.18)

Π(y M ) = 2K - 2M p p + 1 y p-1 p+1 M = 2K p + 1 - 2p p + 1 α -p y p-1 M , we infer that for M > m * , Π(y 2,M ) < Π(y m * ) = 0 < Π(y 1,M ).
(2.21)

Hence P 2,M is a saddle point and P 1,M is a source. In order to characterize the nature of this source we denote by D(T y M ) the discriminant of T y M . Then

D(T y 1,M ) = 2M p p + 1 y p-1 p+1 1,M -L 2 + 4 2M p p + 1 y p-1 p+1 1,M -2K = 2M p p + 1 y p-1 p+1 
1,M -L + 2 + 2 √ N -1 2M p p + 1 y p-1 p+1 
1,M -L + 2 -2 √ N -1 .

By (2.18), M y

p-1 p+1

1,M > K, hence 2M p p + 1 y p-1 p+1 
1,M -L + 2 -2 √ N -1 > p -1 p + 1 K + 2 p -1 + 2 -2 √ N -1 = N -2 √ N -1 p 2 -1 p - N -2 N -2 √ N -1 2 .
Hence D(T y 1,M ) > 0 which implies that the roots are real and P 1,M is a node. If M = m * the product of the roots is 0, hence one root is 0. Since their sum is

equal to 2p p+1 m * y p-1 p+1 m * -L = N -2, the nonzero root is equal to N -2.

The vanishing curves of the vector field

The vector field associated to (2.16) Those vanishing curves are the boundary of some semi-invariant regions in R 2 + . Their configuration depends on the intersection of these curves. I-If K ≤ 0 and M > 0 we denote by (A) is the set of points (x, y) ∈ Q 1 such that y > max αx, Φ -1 (x) . (B) is the set of points (x, y) ∈ Q 1 such that x ≥ x M and αx < y < Φ -1 (x). (C) is the union of the set of points (x, y) ∈ Q 1 such that y < min αx, Φ -1 (x) and the set of points (x, y)

C = (x, y) ∈ R 2 + : H 2 (x, y) = 0 = C 1 ∪ C 4 , where C 1 = (x, y) ∈ Q 1 : x p = M y
∈ Q 4 such that x > Ψ(y). D) is the set of points (x, y) ∈ Q 1 such that Φ -1 (x) < y < αx. (E) is the set of points (x, y) ∈ Q 4 such that x < Ψ(y). II-If K > 0 and M > m * we denote by (A) is the set of points (x, y) ∈ Q 1 such that y > max{αx, Φ -1 (x)}. (B) is the set of points (x, y) ∈ Q 1 such that x ≥ x 2,M and αx < y < Φ -1 (x).
(C) is the union of the set of points (x, y) ∈ Q 1 such that x > Φ(y) and the set of points (x, y) ∈ Q 4 such that x > Ψ(y). (D) is the set of points (x, y) ∈ Q 1 such that Φ -1 (x) < y < αx. (E) is the set of points (x, y) ∈ Q 4 such that x < Ψ(y). (F) is the set of points (x, y) ∈ Q 1 such that x ≤ x 1,M and αx < y < Φ -1 (x). III-If K > 0 and M = m * , (D) is empty.

IV-If K > 0 and 0 < M < m * , (D) is empty and (B) and (F) are replaced by the set ( B) = {(x, y) ∈ Q 1 such that αx < y < Φ -1 (x)} (note that B is connected).

We present below some graphics of the vector field H associated to system (2.16). We show the vanishing curves of the vector field H as well as the direction of the vector field along these curves. 

1: M > 0, K < 0 ⇐⇒ p < N N -2 .
Figure 2: M > 0, K = 0 ⇐⇒ p = N N -2 .

Figure 3:

M > m * , K > 0 ⇐⇒ p > N N -2 .
Figure 4:

M = m * , K > 0 ⇐⇒ p > N N -2 . Figure 5: 0 < M < m * , K > 0 ⇐⇒ p > N N -2 .

Description of the radial solutions defined near 0

In this section we use the dynamical system (2.19) to describe all the positive solutions of (2.12) defined on a maximal interval (0, R), R ≤ ∞. The case M = 0 which is well-known will be used as a comparison model.

2.3.1

The case 1 < p < N N -2 and M ≥ 0 In this range of exponents the fixed point P M is unique, the problem is more rigid and some of our existence and uniqueness results hold without the assumption of radiality as shown in Theorem 4.6.

Theorem 2.4 Let N = 1, 2 and p > 1 or N ≥ 3 and p < N N -2 , and M > 0. 1-The function u x M is the unique positive solution of (1.2) in R N \ {0} satisfying lim x→0 |x| α u(x) = x M .
(2.23)

2-For any k > 0 there exists a unique positive solution u = u k of (1.2) in R N \ {0} satisfying (1.12). Furthermore u k is radial and

lim |x|→∞ |x| α u k (x) = x M . (2.24)
To this set of solutions u k is associated a unique heteroclinic orbit T 1 of the system (2.16) connecting the origin when t → -∞ to P M when t → ∞.

3-For any R > 0 there exists a unique positive solution of (1.2) in R N \B R satisfying (2.24) and lim |x|→R u(x) = ∞. This solution is radial.

4-For any R > 0 there exists a unique positive solution of (1.2) in B R \{0} satisfying

lim x→0 |x| α u(x) = x M and lim |x|→R u(x) = ∞, (2.25) 
and a unique positive solution satisfying

lim x→0 |x| α u(x) = x M and lim |x|→R u(x) = 0. (2.26)
Moreover these solutions are radial.

5-Assume N > 2. For any k > 0 there exists R k > 0 and a unique radial positive solution of (1.2) in B R k \ {0} satisfying (1.12) and vanishing on ∂B B R k or such that

lim |x|→R k u(x) = ∞. (2.27) Furthermore the mapping k → R k is decreasing from (0, ∞) onto (0, ∞).
Proof. 1-All the uniqueness results, which are valid not only for radial solutions, are proved in Section 4, in particular in Theorem 4.6.

2-In the phase plane (x, y), recall that (0, 0) is a source equilibrium and there exist infinitely many trajectories different from the regular one T r , converging to (0, 0) when t → -∞, with the initial slope N -2 < α since p < N N -2 , so they start from (0, 0) in Region (D) of Figure 1. The point P M is a saddle point with eigenvalues λ < 0 < λ and associated eigenvectors

ξ 1 = (1, α + |λ|) and ξ 2 = (1, α -λ).
We denote by T 1 the trajectory such that x(t) increases and converges to x M when t → ∞, and by T 2 the trajectory such that x(t) decreases and converges to x M when t → ∞. Their common slope is larger than α, then T 1 lies in the region (D) and T 2 lies in the region (B) when t → ∞. Because (D) is negatively invariant and bounded, T 1 is contained in (D), a region in which x(t) and y(t) are monotone. Hence T 1 converges to a fixed point in (D) which is necessarily (0, 0y) as t → -∞. Therefore T 1 is an heteroclinic orbit joining (0, 0) to P M , and it is necessarily unique since P M is a saddle point. Its slope at (0, 0) is N -2. It corresponds to a solution u k of (2.12) satisfying (1.12)-(i). This solution u k is unique by Theorem 4.6. Furthermore if k < k then u k ≤ u k . We also notice that for any > 0 and x ∈ R N \ {0},

T [u k ](r) := α u k ( r) = u k α+2-N (r).
If we denote by u ∞ the limit of the increasing sequence {u k }, then

T [u ∞ ](r) = u ∞ (r)
This implies that u ∞ is a self-similar solution of (2.12), hence u ∞ = u x M and (2.24) holds.

3-The trajectory T 2 converges to P M when t → ∞ and remains in the region (B) which is negatively invariant. If T 2 were defined on whole R, it would imply that it remains bounded because of the a priori estimate Proposition A.1. But in the region (B) the two functions x(t) and y(t) are decreasing. Hence the trajectory would converge to an equilibrium in the closure of (B) different from P M , which is impossible. Therefore the two functions x(t) and y(t) with image T 2 are defined on some maximal interval (T, ∞) and if we set R = e T , the corresponding solution u of (2.12) satisfies lim r↓R u(r) = ∞. Uniqueness of a solution defined on (R, ∞) and blowing-up at r = R follows from Theorem 4.5. By the scaling T , the function u is transformed in a solution of (2.12) which blows-up at r = -1 R and which is associated with the same trajectory T 2 . Hence R can be any positive real number.

4-There exist two unstable trajectories T 3 and T 4 converging to P M when t → -∞. They are associated to the eigenvalue λ, and their slope at P M is α -λ. We denote by T 4 the trajectory which enters in the region (C). Since this region is positively invariant, T 4 remains in it. Then either its components are defined on some maximal interval (-∞, T ) and the corresponding solution u of (2.12) tends to ∞ when r ↑ R := e T , or they are defined on wole R. In that case u would coincide with u x M by 1-which is contradictory. Hence u is defined on the maximal interval (0, R). Notice also that u is decreasing on some interval (0, r 0 ) and increasing on (r 0 , R) by the phase plane analysis. Thanks to the scaling T , R can be taken arbitrarily. Since this solution is uniquely determined by T 4 , it is unique. This corresponds to a uniqueness result for solutions of (1.1) in the class of radial solutions. This proves (2.25) Consider now the trajectory T 3 . It belongs to region (A) when t → -∞, and in this region x t < 0 and y t > 0. Since P M is the only equilibrium in the quadrant Q 1 the trajectory intersects the straight line x = 0, y > 0 at some y 0 > y M for some t = T . Hence the corresponding solution u vanishes for r = R = e T . Furthermore R can be taken arbitrarily. This proves (2.26).

5-Since (0, 0) is a source, there exists > 0 such that any backward trajectory issued from (x 0 , y 0 ) ∈ B (0) converges to (0, 0) when t → -∞. All these trajectories in the first quadrant

Q 1 have initial slope N -2. If (x 0 , y 0 ) ∈ B (0) ∩ (D)
is above the heteroclinic orbit T 1 , it cannot converge to P M , then it crosses L, enters in (A) and crosses the axis {x = 0, y > 0} for some T . By Appendix A2 the associated solution u of (2.12) satisfies (1.12) for some k > 0 and u(e T ) = 0. If (x 0 , y 0 ) ∈ B (0) ∩ (D) is below T 1 , it enters the region (C) which is positively invariant and for the same reasons as in Step 3 it blows-up for some t = T . The corresponding solution u satisfies (1.12) for some k > 0 and blows up for r = e T := R. Uniqueness of this type of solutions in B R follows either from the general result Theorem 4.6 or from the uniqueness of the trajectories of the system (W 8). The correspondance k → R is decreasing and onto from (0, ∞) to (0, ∞) by uniqueness and using the scaling transformation T .

Remark. It follows from the analysis of the phase plane that all the positive radial solutions of (1.2) defined in a neighborhood of x = 0 or in the complement of a ball have their behaviour described by 1 or 2.

Proof of Theorem 1.3. It is a direct consequence of Theorem 2.4 and Theorem 4.6.

The case

p = N N -2 , q = 2p p+1 = N N -1 and M > 0
When p = N N -2 and M = 0 the isolated singularities of solutions of (1.1) are removable and the behaviour at infinity of these solutions is described in [START_REF] Véron | Comportement asymptotique des solutions d'équations elliptiques semi-linéaires dans R N[END_REF]. When M > 0 it is no longer the case and the interaction of the two reaction terms yields new phenomena. The next result covers Theorem 1.4, up to uniqueness which will follow from Theorem 4.6.

Theorem 2.5 Let N ≥ 3, p = N N -2 and M > 0. 1-If M = 0 any isolated singularity of a solution, not necessarily radial neither nonnegative, of -∆u+|u| p-1 u = 0 is removable. If u is any solution of this equation in B c R , there exists λ such that lim |x|→∞ |x| N -2 (ln |x|) N -2 2 u(x) = λ, (2.28) 
and λ can only take the three values

N -2 √ 2 N -2 , -N -2 √ 2 N -2
and 0.

2-If M > 0, the function u s (x) = (N -2)M N N -1 N -2
|x| 2-N is the unique positive separable solution of (1.1) in R N \ {0}. There exists a positive radial solution u, unique up to the scaling transformations T , satisfying

(i) lim r→0 r N -2 |ln r| N -1 u(r) = ((N -1)M ) 1-N N -2 (ii) lim r→∞ r N -2 u(r) = (N -2)M N N -1 N -2
.

(2.29)

Furthermore, for any R > 0 there exists a positive and radial solution u Proof. The results of assertion 1 is proved in [START_REF] Véron | Comportement asymptotique des solutions d'équations elliptiques semi-linéaires dans R N[END_REF], [START_REF] Bandle | Sur les solutions maximales de problèmes elliptiques non linéaires: bornes isopérimétriques et comportement asymptotique[END_REF]. Assertion 2-Since p = N N -2 , K = 0. As a consequence, the vanishing curve C 4 goes through (0, 0). Lemma 2.3 is still valid. The point

:= u R of (1.1) in B R \ {0} satisfying lim r→0 r N -2 u(r) = (N -2)M N N -1 N -2 , ( 2 
P M = (x M , y M ) is a saddle point and with x M = (N -2) N -2 M N (N -2) N -1 and y M = (N -2) N -1 M N (N -2)
N -1 . The stable curve T 1 is an heteroclinic orbit staying in the region (D) and connecting (0, 0) to P M . The point (0, 0) is no longer hyperbolic since the charcteristic values are λ 1 = 0 and λ 2 = N -2, and the behaviour of the solutions in its neighbourhood is more delicate. The vector ξ 2 = (1, 0) is the eigenvector associated to the nonzero eigenvalue N -2 and the unstable curve corresponds to the regular solutions u [a] . By the central manifold theorem, the curve T 1 is the central manifold of (0, 0) and is tangent at this point to the eigenvector

ξ 1 = (1, N -2). Therefore lim t→-∞ y(t) x(t) = N -2 on T 1 . As a consequence (u(r)) N N -2 |u (r)| N N -1 = (x(t)) N N -2 (y(t)) N N -1 ≤ c(y(t)) N (N -1)(N -2) for r ≤ 0 . Consequently u N N -2 = o |u | N N -1
in a neighborhood of r = 0. Therefore, for any > 0 there exists r > 0 such that

(1 -)M r N -1 |u | N N -1 ≤ -(r N -1 u ) ≤ M r N -1 |u | N N -1 on (0, r ].
(2.32)

Putting W = r N -1 |u | these inequalities become completely integrable and we derive of any point P = (P, 0) on the seqment (0, P 0 ) converges to (0, 0) when t → -∞.

(N -1)(W (r)) -1 N -1 = M | ln r| -1 (1 + o(1)) as r → 0. ( 2 
For the same reason as for T 1 the corresponding solution u satisfies (2.29)-(i) and it blows-up ifor r = R for some R > 0. Since the scaling transformation T leaves (2.29)-(i) unchanged, R can take any value, this ends the proof.

Remark.

2.3.3

The case p > N N -2 and M > 0

In the range of exponent p > N N -2 , the positive parameter m * defined by (1.8) plays a fundamental role. The following result covers Theorem 1.5 and describes all the positive solutions of (2.12) either defined near ∞ or near 0. (2.34)

(ii) For any k > 0 there exists a unique positive radial u = u 1,k defined in R N \ {0} satisfying lim r→0 r α u(r) = x 1,M and lim r→∞ r N -2 u(r) = k. (2.35) (iii) For any R > 0 there exists a positive radial solution u = u j,R in B R \ {0} with j=1,2, satisfying lim r→0 r α u(r) = x j,M and lim r↑R u(r) = ∞. (2.36)
This solution is unique if j = 2. There exists also a unique radial positive solution

ũ = ũ2,R in R N \ B R satisfying lim r→∞ r α ũ(r) = x 2,M and lim r↓R ũ(r) = ∞.
(2.37) 3-If 0 ≤ M < m * , there exists no singular solution. For any R > 0 there exist k > 0 and a unique positive radial solution in R N \ B R satisfying

or lim r→∞ r α ũ(r) = x 2,M and lim r↓R ũ(R) = 0, (2.38) 2-If M = m * , u x m * is the unique self-
(i) lim r→∞ r N -2 u(r) = k (ii) lim r↓R u(r) = ∞. (2.

39)

Any positive radial solution defined in R N \ B R has the same asymptotic behaviour as in (2.39)-(i).

Proof. Case 1: M > m * . (i) From Lemma 2.3-2, P 2,M is a saddle point with stable trajectories T 1 , T 2 , and unstable ones T 3 and T 4 defined as in the proof of Theorem 2.4. The trajectory T 1 lies in (D) as t → ∞ and remains in (D) for all t because (D) is negatively invariant. Hence it converges to P 1,M when t → -∞. Therefore T 1 is an heteroclinic orbit connecting P 1,M to P 2,M . It is unique and it corresponds to a solution u satisfying (2.34), thus u is unique up to the scaling transformations T for > 0.

(ii) The point (0, 0) is a saddle point with unstable trajectory T r and stable trajectory T s which converges to (0, 0) as t → ∞ with initial slope N -2. To T s are associated the solutions u of (2.12) satisfying lim r→∞ r N -2 u(r) = k, this solution is unique for fixed k and denoted by u k . Since N -2 > α, this stable trajectory lies in the region (F ) at infinity. Since (F ) is negatively invariant, the two functions x(t) and y(t) are decreasing and thus T s converges to P 1,M when t → -∞. Hence T s is a heteroclinic orbit connecting P 1,M to (0, 0) and it is unique. To this trajectory is associated a solution u of (2.12) satisfying (2.35) and unique up to the transformations T .

(iii) The unstable trajectory T 4 of P 2,M enters the region (C), crosses the axis 0x and blows-up in finite time as in Theorem 2.4. Since P 1,M is a source and a node, there exist trajectories different from T 1 converging to P 1,M when t → -∞ and with a slope at this point smaller than α. Consider one of them below T 1 near P 1,M ; either it enters the region (C), then intersects the axis 0x and finally blows-up, or it enters the region (D), but since it cannot converge to P 2,M , it leaves (D) and finally blows up as in the first case. In any case such a trajectory corresponds to a solution which satisfies (2.36) with j = 1. Because of the scaling invariance of the condition, R can take any positive value. Notice that since there may exist several trajectories converging to P 1,M at -∞ with the same slope at this point, the corresponding solution u 1,R is not unique for R fixed. As in the proof of Theorem 2.4 T 3 corresponds to a solution satisfying (2.38). The stable trajectory T 2 of P 2,M lies in the region (B) near ∞. Since this region is negatively invariant the trajectory remains in it, hence x(t) and y(t) are decreasing. If they were defined on R, they would remain bounded by Proposition A.1 and the trajectory would converge to a fixed point in (B), different from P 2,M . Since such a point does not exist the functions x(t) and y(t) are defined on a maximal interval (T, ∞) and they blow-up when t ↓ T . To this traectory is associated a solution ũ of (2.12) satisfying (2.37) with R = e T . The trajectory T 2 is unique thus R can be fixed arbitrarily by using the scaling transformation T .

Case 2: M = m * . There exists a unique nontrivial equilibrium P m * . To the eigenvalue 0 is associated the eigenvector (1, α), while to the eigenvalue N -2 is associated the eigenvector is (1, -K). There exist two trajectories T 3 and T 4 converging to P m * when t → -∞. The trajectory T 4 with slope α + 2 -N at P m * enters the region (C), crosses the axis 0x and blows-up in finite time. It corresponds to a solution u with lim r→0 r α u(r) = x m * when r → 0 and which blows-up at r = R.

The point (0, 0) is a saddle point. The stable manifold T 1 has initial slope N -2. It corresponds to a trajectory which converges to (0, 0) when t → ∞. Since the region (F) is negatively invariant this trajectory converges to P m * when t → -∞, and its slope at this point is α. Hence T 1 is the central manifold at P m * . As in case [START_REF] Bandle | Boundary blow-up for semilinear elliptic equation with nonlinear gradient term[END_REF] this trajectory corresponds to a positive solution u in R N \ {0} which satisfies

lim r→0 r α u(r) = x m * and lim r→∞ r N -2 u(r) = k, (2.40) 
for some k > 0. Moreover, any trajectory which has one point in the bounded negatively invariant region delimited by T s , T 4 and the axis 0x, converges to P m * when t → -∞, tangentially to the line L. Since it cannot converge to (0, 0), it crosses the axis 0x in finite time and it blows up for t = T = ln R. This corresponds to a positive solution u of (2.12) in B R \ {0} which satisfies (2.36) with x j,M replaced by x m * . We claim that there exists at least one trajectory belonging to the central manifold at P m * which converges to P m * when t → ∞ and blows up in finite time: the backward trajectory T P of any P ∈ C 1 ∩ {(x, y) : x > x m * }, belongs locally to (B) for t < 0 since this region is negatively invariant. Furthermore its coordinates sat-isfy x(t) > x m * and y(t) > y m * for t < 0. Next, the backward trajectory T P of any P ∈ L ∩ {(x, y) : x > x m * } belongs to (B) and its coordinates satisfy also x(t) > x m * and y(t) > y m * for t < 0 and x(t) > x m * for t > 0. Let U be the set of points P ∈ (B) such that T P crosses C 1 ∩ {(x, y) : x > x m * } for some t > 0 and V the set of points P ∈ (B) such that T P crosses L ∩ {(x, y) : x > x m * } for some t > 0. By standard transversality arguments U and V are open and disjoint. Since (B) is connected, it cannot be the union of the two sets U and V. Hence there exists P 0 in (B) \ {U ∪ V}. By monotonicity, T P 0 converges to p m * when t → ∞. Clearly this trajectory cannot be defined on whole R by Proposition A.1, hence it blows-up for t = T = e R . This proves the existence of a solution u which satisfies

lim r→∞ r α u(r) = x m * and lim r↓R u(R) = 0. (2.41)
Case 3: 0 < M < m * . There exists no equilibrium besides (0, 0) which is a saddle point with unstable trajectory T r and stable trajectory T s with initial slope N -2 > α. The region ( B) between C 1 and L is negatively invariant, hence T s remains in it and its two coordinate functions are decreasing and necessarily unbounded.

The corresponding solution u of (2.12) cannot be defined for all r > 0 because of Proposition A.1, hence it blows-up for r ↓ R. This proves (2.39).

Remark. It is noticeable that in the case m = m * , the equilibrium P m * is not hyperbolic and the central manifold there consist in curves with the same slope at P m * but one is converging to this point when t → -∞ while the other (may be there are many) converges when t → ∞.

3 The radial case for q = 2p p+1

In this section we study the nonnegative solutions of

-u - N -1 r u + |u| p-1 u -M |u | q = 0, (3.1) 
when q = 2p p+1 .

Non-autonomous systems associated to the equation

Since q = 2p p+1 there exists no autonomous 2-dimensional system in which equation (2.12) can be transformed. The systems that we introduce below are suitable for specific range of singular phenomena characteristic of one of the following equations L p u = 0, R M q u = 0 and E M p,q u = 0.

System describing the behaviour of Emden-Fowler equation

We set

u(r) = r -2 p-1 x(t) = r -α x(t) , u (r) = -r -p+1 p-1 y(t) = -r -α-1 y(t) , t = ln r. (3.2)
If u is a positive solution of (2.12) there holds

x t = αx -y y t = -Ky -x p + M e -σt p-1 |y| q , (3.3) 
where, we recall it, σ is defined in (1.23). Equivalently

x tt + Lx t -αKx -x p + M e -σt p-1 |αx -x t | q = 0, (3.4) 
where K = N -2 -α and L = K -α. If M = 0 this is the system which describes the radial solutions of L p u = 0.

System describing the behaviour of the Riccati equation

We set

u(r) = r -2-q q-1 ξ(t) = r -β ξ(t) , u (r) = -r -1 q-1 η(t) = -r -β-1 η(t) , t = ln r. (3.5)
If u is a positive solution of (2.12), (ξ, η) satisfies the system

ξ t = βξ -η η t = -κη -e σt q-1 ξ p + M |η| q , (3.6) 
where κ = N -β is defined at (1.24). The system admits a unique nontrivial equilibrium with ξ ≥ 0 if and only if N N -1 < q < 2: it is

(ξ M , η M ) = (ξ M , βξ M ) with ξ M = 1 β κ M β+1 .
(3.7)

The system (3.6) is equivalent to

ξ tt + (N -2 -2β)ξ t -βκξ -e σt q-1 ξ p + M |βξ -ξ t | q = 0. (3.8)
According to the sign of σ this system is a perturbation at -∞ or at ∞ of

ξ t = βξ -η η t = -κη + M |η| q , (3.9) 
which describes the radial positive solutions of R M q u = 0.

System describing the behaviour of the eikonal equation

Assuming p = q, we set

u(r) = r -q p-q X(t) = r -γ X(t) , u (r) = -r -p p-q Y (t) = -r -γ-1 Y (t) , t = ln r. (3.10)
Then if u is a positive solution of (2.12), there holds

X t = γX -Y Y t = θY + e -σt p-q (M |Y | q -X p ), (3.11) 
where θ = γ + 2 -N is defined at (1.24). Equivalently

X tt + (N -2 -2γ)X t + θγX + e -σt p-q (M |γX -X t | q -X p ) = 0. (3.12)
According to the sign of σ this equation is a perturbation at -∞ or at ∞ of

M |γX -X t | q -X p = 0
which corresponds to the eikonal equation E M p,q u = 0. We note that in the case q = N -2 N -1 p, then γ = N -2, there exists an explicit radial solution of (1.1) which is

u * M,p (r) = C * p r 2-N with C * p = M (N -2) N -2 (N -1)p N -1 p . (3.13) 
The function u * M,p is harmonic and satisfies E M p,q u * M,p = 0. This solution which has already been noticed in [START_REF] Richard | Isotropic singularities of solutions of nonlinear inequalities[END_REF] will be useful in the sequel.

Remark. The following relations between the solutions of the systems (3.3), (3.6) and (3.11) hold,

(i) u(r) = r -α x(t) = r -β ξ(t) = r -γ X(t) (ii) u (r) = -r p+1 p-1 y(t) = -r 1 q-1 η(t) = -r p p-q Y (t), (3.14) 
which implies

(i) ξ(t) = e - σ (q-1)(p-q) t X(t) = e - σ (q-1)(p-1) t x(t) (ii) η(t) = e - σ (q-1)(p-q) t Y (t) = e - σ (q-1)(p-1) t y(t). (3.15) 
This yields the following relations

x p-1 = X p-q ξ q-1 and y p-1 = Y p-q η q-1 .

(3.16)

Lyapounov and slope functions

There are several functions the variation of which along trajectories will be analyzed in the sequel. They are specific to the change of variable we use. The most surprising one is the function E described below.

Lemma 3.1 Let N ≥ 1, p, q > 1, p = q. We define E on R + × R × R by E(X, Y, t) = X p+1 p + 1 -M γ q X q+1 q + 1 -e σt p-q (γX -Y ) 2 2 + γθX 2 2 . (3.17)
If u is a positive solution of (2.12) and X and Y are defined from (3.10), set

E(t) = E(X(t), Y (t), t). (3.18 
)

Then E t (t) = -M (γX -Y ) (γ q X q -|Y | q ) -e σt p-q α 2 + γ + θ (γX -Y ) 2 + σγθ 2(p -q) X 2 , (3.19) 
where (X, Y ) = (X(t), Y (t)).

Proof. There holds Y = γX -X t and

X tt = -θγX -(N -2 -2γ)X t -e -σt p-q (M |Y | q -X p ).
Multiplying by e σt p-q X t we get

e σt p-q d dt X 2 t 2 + θγ X 2 2 - d dt X p+1 p + 1 . = (γ + θ)e σt p-q X 2 t -M |Y | q X t .
Putting

F(t) = X p+1 p + 1 -e σt p-q X 2 t 2 + θγ X 2 2 ,
we obtain

F t (t) = -e σt p-q σ p -q X 2 t 2 + θγ X 2 2 + (γ + θ) X 2 t + M |Y | q X t .
Since

E(t) = F(t) -M γ q X q+1 q + 1 ,
and X t = γX -Y , we obtain

E t (t) = -M (γX -Y )(γ q X q -|Y | q )-e σt p-q σ 2(p -q) + γ + θ X 2 t + σγθ 2(p -q) X 2 .

and (3.19) follows.

The slope of a trajectory has shown its importance in the previous section when studying solutions of (2.12) near an equilibrium. We introduce it as a Lyapounov type function the variations of which will be of particular interest for studying solutions of eikonal type.

Definition 3.2

The slope of a solution u is

S(t) = - ru (r) u(r) = y(t) x(t) = η(t) ξ(t) = Y (t) X(t) . ( 3 

.20)

Since St S = ηt η -ξt ξ , there holds

S t = S(S + 2 -N ) + ξ q-1 M |S| q -x p-1 = S(S + 2 -N ) + ξ q-1 (M |S| q -X p-q ) if q = p. (3.21) 
Note that S > 0 if Y > 0.

Asymptotic estimates for the Riccati equation

The next lemma deals with estimates near 0 (resp. ∞) of radial subsolutions (resp. radial supersolutions) of the equation R M q u = 0, which reduces to

R M q u = -u - N -1 r u -M |u | q = 0 (3.22)
in the radial case.

Lemma 3.3 Assume N ≥ 1, q > 1 and M > 0.

1-Let u be any C 2 radial decreasing function satisfying R M q u ≤ 0 near 0.

(i) If q > N N -1 , then lim inf r→0 r 1 q-1 |u (r)| ≥ κ M 1 q-1 . (3.23) Therefore lim inf r→0 r β u(r) ≥ 1 β κ M β+1 if q < 2, (3.24) 
lim inf r→0 | ln r| -1 u(r) ≥ N -2 M if q = 2 and N > 2. (3.25) (ii) If q = N N -1 , then lim inf r→0 r N -1 | ln r| N -1 |u (r)| ≥ ((N -1)M ) 1-N . (3.26) Therefore lim inf r→0 r N -2 | ln r| N -1 u(r) ≥ ((N -1)M ) 1-N N -2 if N ≥ 3, (3.27) lim inf r→0 (ln | ln r|) -1 u(r) ≥ 1 M if N = 2. (3.28) (iii) If N = 1, or if N ≥ 2 and 1 < q < N N -1 , then r N -1 |u (r)| admits a limit belonging to (0, ∞]. Therefore if N ≥ 3, r N -2 u(r) admits a limit c belonging to (0, ∞]. If N = 2, r N -2 u(r)
has to be replaced by | ln r| -1 u(r) and if N = 1 by u(r) in the previous expression.

2-Let u be any C 2 radial decreasing function satisfying R M q u ≥ 0 near 0. Then all the previous statements (3.23)-(3.28) are valid, provided ≥ is replaced by ≤, lim inf by lim sup and, in case (iii), the limit c belongs to [0, ∞). Furthermore if q > 2 the function u is bounded.

3-Let u be any C 2 radial decreasing function satisfying R M q u ≤ 0 in B c R and tending to 0 at infinity, and assume q > N N -1 . Then (iv) either q < 2 and 4-Let u be any C 2 radial decreasing function satisfying R M q u ≥ 0 in B c R and tending to 0 at infinity. Then q > N N -1 , and either N ≥ 3 and

r 1 q-1 |u (r)| ≥ κ M 1 q-1 and r β u(r) ≥ 1 β κ M 1 q-1 , (3.29 
lim r→∞ r N -1 |u (r)| = c > 0, or r 1 q-1 |u (r)| ≤ κ M 1 q-1 ; and if q < 2, then r β u(r) ≤ 1 β κ M β+1 , (3.31) 
for r large enough.

Proof. If u is a radial decreasing subsolution (resp. supersolution), there holds

(r N -1 u ) + M r N -1 |u | q ≥ 0 (resp. ≤ 0). Set W (r) = -r N -1 u (r) = r N -1 |u (r)|, then M r -(N -1)(q-1) -W -q W ≥ 0 (resp. ≤ 0).
Hence the function

r → φ(r) = W 1-q (r) -M κ r N -(N -1)q if κ = (N -1)q-N q-1 = 0 W 1-q (r) + M N -1 ln r if κ = 0, (3.32) 
is nondecreasing (resp. nonincreasing). Notice in particular that if u is a decreasing radial solution, there holds

|u (r)| =      r 1-N C + M κ r N -(N -1)q -1 q-1 if κ = 0 r 1-N C -M N -1 ln r -1 q-1 if κ = 0, (3.33) 
and the estimate on u follows by integration since β

= 2-q q-1 . 1-If u is a decreasing subsolution, φ is nondecreasing. (i)-If κ > 0, then W 1-q (r) ≤ M κ r N -(N -1)q + c 0 for 0 < r ≤ r 0 ,
where c 0 = W 1-q (r 0 ) -M κ r

N -(N -1)q 0

. Since N -(N -1)q < 0, (3.23) follows. (ii)-If κ = 0, then for any > 0, there exists r > 0 such that

W 1-q (r) ≤ M N -1 + | ln r| for 0 < r ≤ r ,
and (3.26) follows.

(iii)-If κ < 0, then r N -(N -1)q → 0 as r → 0. Therefore W (r) admits a limit belonging to (0, ∞] when r → 0. We derive the estimates on u by integration. 2-If u is a decreasing supersolution the results follow in the same way. If q > 2, the estimate

lim sup r→0 r 1 q-1 |u (r)| ≤ M κ 1 q-1
, implies that u is bounded near 0. 3-If u is a decreasing subsolution in an exterior domain, the function φ defined in (3.32) is nondecreasing, hence it admits a limit ν in (-∞, ∞]. 1)q . This yields the estimate from below (3.29) of |u (r)|, and therefore for u(r) if q < 2. If q ≥ 2, we obtain |u (r)| ≥ cr -1 q-1 , and we derive a contradiction since r -1 q-1 is not integrable at infinity. 4-If u is a decreasing supersolution in an exterior domain, then r N -1 |u (r)| is nondecreasing. Hence there exists c > a such that r N -1 |u (r)| ≥ a, which implies u(r) ≥ cr 2-N for some c > 0. Since the function φ is nonincreasing, it admits a limit ν belonging to [-∞, ∞). If κ > 0 and because r N -(N -1)q → 0, it follows that ν ∈ [0, ∞). If ν > 0, then r N -1 |u (r)| has a limit in (0, ∞), and this implies that r N -2 u(r) admits a limit in (0, ∞) at infinity. If ν = 0, then W 1-q (r) -M κ r N -(N -1)q ≥ 0 and we obtain (3.31). If κ ≤ 0, then φ(r) → ∞ as r → ∞, contradiction.

(iv)-If κ > 0, then r N -(N -1)q → 0 as r → ∞, hence W 1-q (r) → ν ∈ [0, ∞], therefore r N -1 |u (r)| → c ∈ [0, ∞]. If ν ∈ (0, ∞], then c ∈ [0, ∞). Since u tends to 0 at infinity, we obtain r N -2 u(r) → c N -2 when r → ∞. If ν = 0, then W 1-q (r) ≤ M κ r N -(N -

Estimates near 0

In this paragraph we prove Theorem 1.7 and Theorem 1.8.

The case 2p

p+1 < q < p. Here we prove Theorem 1.7. If u is a positive solution of (2.12) unbounded near 0, then u < 0, hence the variable X and Y defined in (3.10) satisfy

X t = γX -Y Y t = θY + e -σt p-q (M Y q -X p ), (3.34) 
where, we recall it, σ = (p + 1)q -2p > 0 and θ = (N -1)q-(N -2)p p-q . Since q < p, X(t) remains bounded when t → -∞. The difficulty comes from the fact that the term e -σt p-q tends to infinity when t → -∞.

Lemma 3.4 Assume 2p

p+1 < q < p. If u is a positive solution of (2.12) in B R \ {0} such that u < 0, then r γ u(r) admits a limit when r → 0 which can take only the values X M or 0.

Proof. We use the function E introduced in (3.18). Because of Proposition A.1 and Proposition A.3, X and Y are bounded. By assumption σ is nonnegative, hence E(t) is bounded when t → -∞. Using (3. [START_REF] Serrin | Isolated singularities of solutions of quasilinear equations[END_REF] we have that

E t (t) + M (γX -Y )(γ q X q -Y q ) = -e σt p-q α 2 + γ + θ (γX -Y ) 2 + σγθ 2 X 2 ,
which implies that

- C 2 σ p -q e σt p-q ≤ E t (t) + M (γX -Y )(γ q X q -Y q ) ≤ C 2 σ p -q e σt p-q , (3.35) 
for some C 2 > 0. Because (γX -Y )(γ q X q -Y q ) ≥ 0, we deduce that the function t → E(t) -C 2 e σt p-q is decreasing, therefore it admits a finite limit Λ when t → -∞, and Λ is also the limit of E(t). Hence

lim t→-∞ X p+1 (t) p + 1 -M γ q X q+1 (t) q + 1 = Λ. (3.36)
Therefore X(t) converges to some λ satisfying λ p+1 p+1 -M γ q λ q+1 q+1 = Λ. The omegalimit set at -∞ of the trajectory {(X(t), Y (t))} t∈R -is the set Γ of couples (X 0 , Y 0 ) such that there exists a sequence {t n } decreasing to -∞ such that (X(t n ), Y (t n )) → (X 0 , Y 0 ). It is non-empty since the trajectory is bounded, connected and compact. By La Salle's theorem, the function E(t) -C 2 e σt p-q which is monotone decreasing is constant on Γ. This implies M (γX 0 -Y 0 )(γ q X q 0 -Y q 0 ) = 0, hence Y 0 = γX 0 . Because X(t) → λ then X 0 = λ, hence Y 0 = γλ and Y (t) → γλ when t → -∞. If M γ q λ q = λ p , it implies that Y t (t) = θγλ + e -σt p-q (M γ q λ q -λ p + (t)) where (t) → 0 as t → -∞.

Hence Y t (t) = ce -σt p-q (1 + o(1)
)) where c = 0. Clearly this implies that Y (t) cannot be bounded, contradiction. Therefore M γ q λ q -λ p . This implies that

λ ∈ 0, M 1 p-q γ γ , (3.37) 
which ends the proof.

Lemma 3.5 Assume N ≥ 2, and let u be a positive solution of (2.12) in B R unbounded near 0.

1-If q > N N -1 and u(r) = o r -q p(q-1)
near r = 0, then necessarily q ≤ 2 and

lim r→0 r 1 q-1 |u (r)| = η M := κ M 1 q-1 . (3.38) Therefore lim r→0 r β u(r) = ξ M := 1 β κ M 1 q-1 if q < 2, (3.39) lim r→0 | ln r| -1 u(r) = N -2 M if q = 2. (3.40) 2-If 2p p+1 < q = N N -1 and r β+ u(r) = r N -2+ u(r) is bounded for any > 0, then lim r→0 r N -2 | ln r| N -1 u(r) = 1 N -2 N -1 M N -1 if N ≥ 3. (3.41) lim r→0 r| ln r||u (r)| = lim r→0 ln(| ln r|)u(r) = 1 M if q = N = 2. (3.42) 3-If 2p p+1 ≤ q < N N -1 and r N -2 u(r) is bounded if N ≥ 3 or r u(r) is bounded for any > 0 if N = 2, then there exists k > 0 such that lim r→0 r N -2 u(r) = k if N ≥ 3, (3.43) 
and

lim r→0 | ln r| -1 u(r) = k if N = 2. (3.44)
Proof. We first notice that if u is unbounded near 0, then u < 0 in a neighborhood of 0 and we can apply the results of Lemma 3.3 concerning subsolutions. Moreover, if u p (r) = o(|u (r)| q ) when r → 0, then for any δ > 0 there exists r δ > 0 such that

M (1 -δ)|u | q ≤ -∆u ≤ M |u | q in B r δ \ {0}, (3.45) 
and we can also use the results of Lemma 3.3 dealing with supersolutions. 1-Since u is a decreasing subsolution of R M q u = 0, |u (r)| ≥ cr -β-1 near 0, hence |u (r)| q ≥ cr -q q-1 . By assumption u p (r) = o r -q q-1 . Then u p (r) = o(|u (r)| q ) near 0, hence (3.45) applies. It follows by Lemma 

3.3-(1)-(2) that κ M β+1 ≤ lim inf r→0 r β+1 |u (r)| q ≤ lim sup r→0 r β+1 |u (r)| q ≤ κ M (1 -δ) β+1 . (3.46)
Since δ > 0 is arbitrary, this implies (3.38). The other estimates (3.39) and (3.40) are obtained by integration. 2-By (3.26), |u (r)| q ≥ cr q(1-N ) | ln r| q(1-N ) = cr -N | ln r| -N . From the assumptions, for any > 0, u p (r) ≤ c r p(2-N -) , then

u p (r) |u (r)| q ≤ c r N -(N -2+ )p | ln r| N . Next 2p p+1 < N N -1 implies that N > p(N -2)
. Therefore, we can take > 0 small enough such that N -(N -2 + )p > 0. This implies that (3.45) holds in B r δ \ {0}. Hence we get (3.41) and (3.42) by integration.

3-Suppose

q < N N -1 then p < N N -2 if N ≥ 3. By Lemma 3.3-(1), r N -1 |u (r)| ≥ c > 0 near 0, hence u p (r) |u (r)| q ≤ c-q r (N -1)q-(N -2)p . Since (N -1)q -(N -2)p ≥ (N -1) 2p p+1 -(N -2)p = p p+1 (N -(N -2)p
) > 0, we deduce that for any δ > 0, (3.45) holds in B r δ \ {0}. Then we use Lemma 3.3 and obtain (3.43) and (3.44) by integration. In the case N = 2 there holds u p |u | q ≤ cr q-p for any > 0. Choosing < q p , we find again (3.46). For obtaining the next result, the key is the introduction of the slope function S which allows to make precise the behaviour of solutions such that r γ u(r) → 0.

Lemma 3.6 Assume N ≥ 2, 2p
p+1 < q < p and M > 0. If u is a positive solution of (2.12) unbounded near 0 and such that r γ u(r) → 0 when r → 0, then q ≤ 2 and the following trichotomy holds.

1-If q > N N -1 , then (3.39) or (3.40) is satisfied. 2-If q = N N -1 , then (3.41) or (3.42) is satisfied. 3-If q < N N -1 , then (3.43) or (3.44) is satisfied. Proof. By assumption X(t) → 0 as t → -∞. We recall that S(t) = Y (t) X(t) satisfies (3.21) hence X t = X(γ -S)
S t = S(S + 2 -N ) + ξ q-1 (M S q -X p-q ). (3.47)

1-We first assume that S(t) → 0 as t → -∞. Then for any > 0, there exists r > 0 such that 0 < -ru (r) u(r) ≤ on (0, r ]. Hence r → r u(r) is increasing. This implies that r u(r) is bounded near 0 and thus q ≤ 2 by Lemma 3.5. If N N -1 < q < 2 it would follow from Lemma 3.5 that (3.39) holds, which is not possible. Hence N ≥ 3, q = 2 and (3.40) holds. If q = N N -1 and N ≥ 3, (3.41) cannot hold; hence N = q = 2 and (3.42) holds. If q < N N -1 , (3.43) cannot be satisfied, hence N = 2 and (3.44) holds. 

2-Now we assume that lim inf

m 0 ∈ (0, ∞) such that S(t) ≥ m 0 for t ≤ t 0 . Hence Y q (t) ≥ m 0 X q (t) therefore X p (t) = X p-q (t)X q (t) = o(Y q (t)) as t → -∞. This implies u p (r) = o(|u (r)| q as r → 0. Then (3.45) holds. Using Lemma 3.3-(1)-(2), we have (3.39) or (3.40) if q > N N -1 , (3.41) or (3.42) if q = N N -1 and (3.43) or (3.44) if q < N N -1 . 3-Next we assume that 0 = lim inf t→-∞ S(t) < lim sup t→-∞ S(t) = Σ ∈ (0, ∞].
Then there exists a decreasing sequence {t n } converging to -∞ such that S t (t n ) = 0 and S n := S(t n ), which is a local maximum of S(t), tends to Σ. Put X n = X(t n ) and ξ n = ξ(t t ), then

ξ q-1 n = S n (N -2 -S n ) M S q n -X p-q n = S n (N -2 -S n ) M S q n (1 -n ) = N -2 -S n M S q-1 n (1 -n ) , (3.48) 
with n → 0. This implies in particular N > 2 and S n < N -2. Since it holds for all local maximum of S n we deduce S < N -2, which implies u(r) ≤ Cr 2-N . If q < N N -1 (resp. q = N N -1 ) we obtain (3.43) from Lemma 3.5-(3) (resp. (3.41) from Lemma 3.5-( 2)). If q > N N -1 we write (3.48) under the form

ξ q-1 n M S q-1 n (1 -n ) = η q-1 n M (1 -n ) = N -2 -S n . (3.49) From (3.23), η q-1 n ≥ κ M (1 -n ) for n large enough and n → 0 when n → ∞, hence N -2 -S n ≥ (1 -n )(1 -n )κ =⇒ S n ≤ N -2 -κ + n = β + n . (3.50)
This implies that for any > 0 there exists n such that S(t) ≤ S n ≤ β + 2 for t ≤ t n . Hence r β+ u(r) → 0 as r → 0. Since q p(q-1) = β + q(p+1)-2p p(q-1) , it implies that u(r) = o(r -q p(q-1) ) as r → 0. Therefore (3.39) and (3.40) hold.

Proof of Theorem 1.7. It follows from Lemma 3.4, Lemma 3.5 and Lemma 3.6.

3.3.2

The case 1 < q < 2p p+1 .

Proof of Theorem 1.8. If 1 < q < 2p p+1 and p ≥ N N -2 it is proved in [START_REF] Bidaut-Véron | Measure data problems for a class of elliptic equations with mixed absorption-reaction[END_REF] that positive solutions of (1.1) in B R \ {0} can be extended as a C 2 solution in B R . Next we suppose that p < N N -2 , or N = 1, 2, hence q < N N -1 . We use the change of variable (3.2) and (x, y) satisfies (3.3). It is important to notice that σ = (p + 1)q -2p is negative, therefore the system satisfied by (x, y) is a perturbation at -∞ of the system x t = αx -y y t = -Ky -x p (3.51)

where K = N -2 -α, associated to the Emden-Fowler equation L p u = 0 by the same change of variable. Since (x(t), y(t)) is bounded, the omega-limit set at -∞ of the trajectory {(x(t), x(t))} t∈R -is a non-empty compact connected subset of the set of stationary solutions of (3.4). Therefore 

N -2 u(r) = ∞ if N ≥ 3, or lim r→0 | ln r| -1 u(r) = ∞ if N = 2. Therefore, for any k > 0, u is bounded from below in B R \ {0} by the function v k which satisfies L p v k = 0 in B R \ {0}, v k = 0 on ∂B R and lim r→0 r N -2 v k (r) = k if N ≥ 3, or lim r→0 | ln r| -1 v k (r) = k if N = 2.
Letting k → ∞, v k ↑ v ∞ , and lim r→0 r α v ∞ (r) = x 0 by [START_REF] Véron | Singular solutions of some nonlinear elliptic equations[END_REF]. This is a contradiction.

Therefore θ 2, (t) ≤ x(t) ≤ θ 1, (t) where

d 2 dt 2 θ j, -(N -2) d dt θ j, -(1 + (-1) j )θ N N -2 j,
= 0 on (t , ∞) θ j, (t ) = x(t ).

(3.59)

The asymptotic expansion of θ j, is obtained in [21, Lemme 3.2 ] using an old result due to Hardy. We give below a simpler proof.

θ j, (t) = N -2 1 + (-1) j N -2 1 2t N -2 2 
(1 + o(1)).

(3.60)

This implies that for any > 0 there holds

N -2 2(1 + ) N -2 ≤ lim inf t→-∞ t N -2 2 x(t) ≤ lim sup t→-∞ t N -2 2 x(t) ≤ N -2 2(1 -) N -2 , (3.61) 
which implies (1.35).

Remark. The proof of Hardy's theorem quoted in [START_REF] Bellman | Stability theory of differential equations[END_REF] is not easy to find. An alternative proof is to consider the following equation, to which (3.59) reduces by a suitable scaling transformation,

θ -θ -θ n = 0 on [0, ∞), (3.62) 
where n > 1 and θ > 0. Since θ(t) → 0 as t → ∞, it is easy to see that for any t > 1, θ(t) ≤ Ct -1 n-1 by considering supersolutions under the form

ψ(t) = at -1 n-1 + bt -2 n-1 .
Since φ(t) = 1 (n-1)(t+t 0 ) 1 n-1 is a subsolution for some t 0 > 0, it is smaller than θ(t). Furthermore, for any > 0, there exists t > 0 such that t → (1+ ) (n-1)t 1 n-1 is a supersolution on [t , ∞) and is larger than θ. From that we infer

lim t→∞ t 1 n-1 θ(t) = 1 n -1 1 n-1 .
(3.63)

An alternative proof of the convergence is to set x(t) = t 2-N 2 Z(t). We get

Z tt -(N -2) 1 + 1 t Z t + 1 t (N -2) 2 2 + N (N -2) 4t Z -Z N N -2 + Φ = 0
where Φ(t) = O t N N -2 e (N -(N -1)q)t . Applying [10, Corollary 4.2] we deduce that Z(t) converges to a limit which satisfies

(N -2) 2 2 - 2 N -2
= 0. From the lower bound u ≥ ṽ∞ and (3.55) we infer that = 0 is impossible.

3.4.2

The case 1 < q < 2p p+1 .

Proof of Theorem 1.10. If 1 < q < 2p p+1 , then q < p. Therefore γ < α < β. Hence if u a nonnegative solution of (2.12) on [R, ∞), r γ u(r) is bounded for r ≥ R > 0. Therefore the natural system for describing the solution is the system (3.11) with bounded X(t) and Y (t) and we use an argument similar to the poof of Lemma 3.4. Lemma 3.7 Assume p > 1, 1 < q < 2p p+1 and M > 0. If u is a positive radial solution of (1.1) in B c R , there holds Lemma 3.8 Let the structural assumptions of Lemma 3.7 be satisfied. If u is a positive radial solution of (1.1) in B c R , such that r γ u(r) → 0 when r → ∞, then necessarily q > N N -1 and the following alternative holds: 1-either q < 2 and lim Proof. Since R M q u ≤ 0, we can apply Lemma 3.3-(3) provided q > N N -1 . If this holds the following estimate from below of u holds: either q < 2 and lim inf r→∞

lim r→∞ r γ u(r) = ∈ {0, X M }. ( 3 
r β u(r) ≥ ξ M , or N > 2 and lim r→∞ r N -2 u(r) = k ≥ 0.
1-We first prove that r β u(r) is bounded and we recall that S(t) = Y (t) X(t) denotes the slope function. 1-(i) If S(t) → 0 as t → ∞, then for any > 0, r → r u(r) is nondecreasing. Hence u(r) ≥ c r -for r ≥ R, for some c > 0. This contradicts Proposition A.1 1-(ii) If lim inf t→∞ S(t) = m > 0. Then there exists t 0 > ln R and m 0 > 0 such that S(t) ≥ m 0 on [t 0 , ∞). Hence Y q (t) ≥ m q 0 X q (t) for t ≥ t 0 and u p = o(|u | q ) as r → ∞. Using Lemma 3.3-( 3)-( 4) we infer that q > N N -1 and (3.65) or (3.66) holds, and in both cases r β u(r) is bounded. 

(r) ≤ Cr 2-N . If q ≥ N N -1 , equivalently β ≤ N -2, then u(r) ≤ Cr 2-N ≤ Cr -β for r ≥ 1. If q < N N -1
, we have from (3.6) and η = ξS that ξ t = ξ(β -S) > ξ(β -N + 2) ≥ 0. Hence ξ(t) is increasing with limit ξ ∞ ≤ ∞. Since at the points t n of local maximum of S(t), we also have (3.48), we obtain the implication

ξ q-1 n S q-1 n = N -2 -S n M (1 -n ) =⇒ ξ q-1 ∞ Σ q-1 = N -2 -Σ M . (3.67)
Hence ξ ∞ is finite, which implies again that r β u(r) is bounded. 2-Convergence. Since r β u(r) is bounded, the trajectory {(ξ(t), η(t)) t≥ln R } endows this property, and since σ < 0, its omega-limit set at infinity is non-empty, compact, connected and it is a subset of the nonnegative stationary solutions of (3.6).

If q ≤ N N -1 the set is reduced to (0, 0). Since κ ≤ 0, we deduce from (3.8) that ξ(t) is monotone decreasing. It follows from (3.6) that S(t) > β, hence u p = o(|u | q ) as in 1-(ii) and by Lemma 3.3-( 3)-( 4) necessarily q > N N -1 , contradiction. If q > N N -1 , then either (ξ(t), η(t)) converges to (ξ M , η M ) or it converges to (0, 0), in which case lim Proof of Theorem 1.10. In all the cases, the basic convergence (1.36) holds true from Lemma 3.7. If the limit of r γ u(r) is zero, then necessarily N N -1 < q < 2 and we have (1.37) or (1.38).

Solutions of eikonal type

In order to study the properties of solutions of eikonal type we first give some asymptotic expansion results. Lemma 3.9 Let M > 0, 2p p+1 < q < p (resp. 1 < q < 2p p+1 ) and θ = 0 (see

(1.25) for the definition of θ). If (X, Y ) is a solution of (3.11) which converges to (X M , Y M ) when t → -∞ (resp. t → ∞), then t → X(t) -X M has a constant sign for |t| large enough. Furthermore X(t) = X M + θγ 1-q X 2-q M p(q -1)M e σt p-q + O e 2σt p-q as t → -∞ (resp. t → ∞). (3.68) Equivalently, with u(r) = r -q p-q X(t), u(r) = X M r -q p-q + θγ 1-q X 2-q M p(q -1)M r - p(2-q) p-q +O r - (2p+1)q-2p p-q
as r → 0 (resp. r → ∞).

(3.69)

Proof. (i) Expansion of M Y q -X p . Set Ψ(t) = Y t -θY = e -σt p-q (M Y q -X p ).
Then

Ψ t = e -σt p-q - σ p -q (M Y q -X p ) + M qY q-1 (θY + Ψ) -pX p-1 (γX -Y ) .
If Ψ is not monotone, one has at the local extremum t n of Ψ, denoting

Ψ n = Ψ(t n ), X n = X(t n ) and Y n = Y (t n ), M qY q-1 n Ψ n = -M qθY q n + pX p-1 n (γX n -Y n ) + σ p -q (M Y q n -X p n ). But lim t→-∞ (X(t), Y (t)) = (X M , Y M ), then pX p-1 n (γX n -Y n ) + σ p -q (M Y q n -X p n ) → 0 when t n → -∞. Therefore Ψ n → -θγX M . Since the limit is valid for local minima or maxima it follows that lim t→-∞ Ψ(t) = -θγX M .
If Ψ is monotone, then Y t (t)-θY (t) admits a limit when t → -∞. Since Y (t) → Y M , it follows that Y t (t) has a also a limit at -∞ and the only possible one is 0. Hence Ψ(t) → -θγX M . In both case it yields, since θ = 0, M Y (t) q -X(t) p = -θγX M e σt p-q (1 + o(1)) as t → -∞.

(3.70) (ii) We claim that X -X M has a constant sign. If X is nondecreasing (resp. nonincreasing) then X(t) ≥ X M (resp. X(t) ≤ X M ) for t ≤ 0. Actually the inequality is strict, otherwise, if there is some t 0 such that X(t 0 ) = X M , we would have X t (t) = 0 for t ≤ t 0 and X(t) = X M for t ≤ t 0 . If θ = 0 this contradicts the fact that M γ q X q M -X p M = 0. If θ > 0 we deduce from (3.12) that if X(t n ) is a local minimum we have e

-σtn p-q (M γ q X q (t n ) -X p (t n )) = -θX(t n ) -X tt (t n ) < 0 =⇒ X(t n ) > X M .
This implies that X(t) > X M . Similarly, if θ < 0 we get X(t) < X M .

(iii) Asymptotic expansion. We write X = X M (1 + w) and Y = γX M (1 + z). Then

w t = γ(w -z) z t = θ(1 + z) + M γ q-1 X q-1 M e -σt p-q ((1 + z) q -(1 + w) p ) .
(

3.71)

There holds

(1 + z) q -(1 + w) p = qz -pw + φ(z) -ψ(w),
where φ(z) = (1+z) q -1-qz and ψ(w) = (1+w) p -1-pw, therefore 0 ≤ φ(z) ≤ cz 2 and 0 ≤ ψ(w) ≤ cw 2 for t ≤ t * . Next, from (3.71),

qz + φ(z) = pw + ψ(w) + a M e σt p-q (z t -θ(1 + z)),
where a M = M -1 (γX M ) 1-q , and z(t) → 0 and z t (t) → 0 when t → -∞. Therefore the previous identity becomes

qz + φ(z) = pw + ψ(w) -θa M e σt p-q (1 + h(t)), (3.72) 
where h(t) → 0 when t → -∞. Next

qz ≤ qz + φ(z) ≤ qz(1 + ) if z > 0 qz(1 -) if z ≤ 0 := qz(1 + z ) pw ≤ pw + ψ(w) ≤ pw(1 + w ),
where z = sign (z) and w = wsign (w). It follows from (3.72) that

qz -pw(1 + w ) + θa M e σt p-q (1 + h(t)) ≤ 0 qz(1 + z ) -pw + θa M e σt p-q (1 + h(t)) ≥ 0. (3.73)
This leads to the following two inequalities verified by w t

w t = γ(w -z) = 1 p -q (qw -qz) ≥ 1 p -q qw -pw(1 + w ) + θa M e σt p-q (1 + h) ≥ -w 1 + p p -q w + θa M p -q e σt p-q (1 + h), and 
w t ≤ q p -q w + 1 q(1 + z ) (-pw + θa M e σt p-q (1 + h) ≤ w -1 + p p -q z + θa M (p -q)(1 + z ) e σt p-q (1 + h),
and we know from (i) that w(t) keeps a constant sign when t → -∞. We deduce from the above inequalities that if θ < 0 the function t → e (1-)t w(t) is decreasing for some > 0 and tends to 0, hence it is negative, while, if θ > 0, t → e (1+ )t w(t) is increasing for another > 0 and tends to 0, hence it is positive. Then, we can summarize as follows, with a new > 0

(1 -) θ -1 w - a M p -q e σt p-q ≤ -(θ -1 w) t ≤ (1 + ) θ -1 w - a M p -q e σt p-q .
(3.74) As we have 1 ± + σ p-q = p(q-1) p-q ± , the function t → e (1+ )t θ -1 w -a M p(q-1)+ e σt p-q is increasing and tend to 0 as t → -∞. Hence it is positive. In the same way, the function t → e (1-)t θ -1 w -a M p(q-1)-e σt p-q is decreasing, tends to 0 hence it is negative. Therefore we infer that w(t) = θa M p(q -1) e σt p-q (1 + o(1)). and z = O e σt p-q . Since X -X M = X M w = γY M w, we deduce (3.68). Notice also that from (3.72) there holds z =

(2 -q)θa M q(q -1)

e σt p-q + o e σt p-q , hence w t = γ(w(t) -z(t)) = σθa M p(p -q)(q -1) e σt p-q (1 + o(1)). (3.76)
In particular X t has the sign of θ, and therefore X is monotone.

Remark. If q = 2 we obtain

X(t) = M γ 2 1 p-2 + 2(N -1) -(N -2)p 2pM e 2t p-2 + O e 4t p-2
as t → -∞, (3.77) so we recover the result of [START_REF] Richard | Isotropic singularities of solutions of nonlinear inequalities[END_REF].

Local or global existence results

The systems of order 3

Since q = 2p p+1 , we can perform the transformation T and assume that M = 1. For proving the existence of solutions to (1.1) there are essentially three methods: the methods of sub and super solutions which has already been developed in Section 2.3, the method of fixed points, and the use of a specific autonomous system of order 3. This last method appears to be entirely new and we explain it below. This system uses the variables (X, ξ, S)

∈ R + × R + × R + , X t = X(γ -S) ξ t = ξ(β -S) S t = S(S + 2 -N ) + ξ q-1 (M S q -X p-q ).
(3.78) Lemma 3.10 Let 1 < q < p with q = 2p p+1 and M > 0. If u is a decreasing positive solution of (2.12), then

(X(t), ξ(t), S(t)) = r γ u(r), r β u(r), r |u (r)| u(r) with t = ln r, (3.79) 
satisfies (3.78). Conversely, to each trajectory of (3.78) in R + ×R + ×R + corresponds a unique solution of (2.12).

Proof. Let u be a decreasing solution of (2.12). We recall that (X, Y ) are solutions of (3.11), S = Y X and ξ(t) = r β u(r) with t = ln r. Then (X, S) satisfies the following system which is equivalent to (3.11),

X t = X(γ -S) S t = S(S + 2 -N ) + e -σt
p-q X q-1 (M S q -X p-q ).

(3.80)

Using (3.14) we have that ξ q-1 = e -σt p-q X q-1 . Since by computation ξ t = ξ(β -S), we deduce that (X, ξ, S) satisfies (3.78). Conversely, let (X, ξ, S) ∈ R + × R + × R + be a solution of (3.78), then

ξ t ξ - X t X = β -γ = - σ (p -q)(q -1)
.

Hence ξ(t) = be -σt (p-q)(q-1) X(t) for some b > 0. If we set a = -(p-q)(q-1) σ ln b, we see that

ξ(t) = e - σ (t+a) 
(p-q)(q-1) X(t).

Hence X t = X(γ -S) S t = S(S + 2 -N ) + e - σ(t+a)
p-q X q-1 (M S q -X p-q ).

(3.81)

Setting τ = t + a, X (a) (τ ), S (a) (τ ) = (X(t), S(t)) = (X(τ -a), S(τ -a)), then X (a) τ = X (a) (γ -S (a) ) S (a) τ = S (a) (S (a) + 2 -N ) + e -στ p-q (X (a) ) q-1 (M (S (a) ) q -(X (a) ) p-q ). (3.82)
Then the function ρ → u (a) (ρ) = ρ -γ X (a) (ln ρ) satisfies (2.12). Let (X, ξ, S) and ( X, ξ, S) be two solutions of (3.78). Then there exist a, ã such that ξ(t) = e -σ(t+a) (p-q)(q-1) X(t) and ξ(t) = e -σ(t+ã) (p-q)(q-1) X(t), and

u (a) (ρ) = ρ -γ X (a) (ln ρ) = ρ -γ X(ln ρ -a) u (ã) (ρ) = ρ -γ X(ln ρ -ã).
If (X, ξ, S) and ( X, ξ, S) correspond to the same trajectory, there exists h ∈ R such that ( X, ξ, S)(t) = (X, ξ, S)(t + h) for all t, thus

ξ(t + h) = e - σ(t+ã) (p-q)(q-1) X(t + h) = e - σ (t+a+h) 
(p-q)(q-1) X(t + h).

Therefore ã = a + h. Hence

u (ã) (ρ) = ρ -γ X(ln ρ -ã) = ρ -γ X(ln ρ -a -h) = ρ -γ X(ln ρ -a) = u (a) (ρ).
In conclusion, there is a one to one correspondence between the trajectories of (3.78) and the solutions of (2.12).

Remark. Using the relation (3.16) one can see that (3.78) is equivalent to the following system in the variables (x, ξ, S),

x t = x(α -S) ξ t = ξ(β -S) S t = S(S + 2 -N ) + ξ q-1 M S q -x p-1 .
(3.83)

This system is particularly suitable for constructing local solutions in r -α or r 2-N , in particular when r → ∞, in the case q > 2p p+1 .

deduce statement 1. If 1 < q < 2p p+1 and θ > 0, one has a supersolution u c ,A in B c R and a subsolution u c in R N \ {0}. Up to increasing the value of A one has again a supersolution u c ,A larger than the subsolution u c . Hence there exists a solution u in between satisfying (1.36) which proves statement 2.

Riccati type singular solutions

Proof of Theorem 1.12. We recall that the Riccati equation (1.20) admits the radial solution ξ M |x| -β if and only if N N -1 < q < 2. This function is a supersolution of (1.1) in R N \ {0}.

1-Local existence in a neighborhood of 0. Since q > N N -1 the system (3.78) in variables (X, ξ, S) admits the equilibria (0, 0, 0), (0, 0, N -2) and (0, ξ M , β). Our aim is to construct local radial solutions of (2.12) satisfying lim r→0

r β u(r) = ξ M and lim r→0 r β+1 |u (r)| = η M = βξ M , equivalently lim t→-∞ (X(t), ξ(t), S(t)) = (0, ξ M , β).
(3.86)

Conversely, any solution (X, ξ, S) satisfying (3.86) corresponds to a solution u satisfying lim r→0 (r β u(r), r β+1 |u (r)|) = (ξ M , βξ M ). The system (3.78) may be singular at ξ M = 0 or at X = 0; hence we desingularize it by setting X = X p-q and ξ = ξ q-1 . Then ( X, ξ, S) satisfies Xt = (p -q) X(γ -S) ξt = (q -1) ξ(β -S) S t = S(S + 2 -N ) + ξ(M S q -X).

(3.87)

So we are led to study solutions in a neighborhood of the equilibrium (0, ξM , β) where ξM = ξ q-1 M = κ M β q-1 . We set ξ = ξM + ξ, X = X and S = β + S in order to reduce the study at (0, 0, 0), and ( ξ, X, S) satisfies the following linearized system

Xt = σ q-1 X ξt = -(q -1) ξM S St = -ξM X + M β q ξ + (β + κ(q -1)) S. (3.88)
If we denote by A the matrix of this system, then its charecteristic values are the roots of the polynomial

det(A -µI) = (µ -µ 1 ) (µ -µ 2 ) (µ -µ 1 ) , (3.89) with µ 1 = σ q -1 , µ 2 = β and µ 3 = (q -1)κ = (N -1)q -N . Since q > max 2p p+1 , N N -1
all the eigenvalues are positive. We find that

u 2 = 0, 1, - M β q κ(q -1)
and

u 3 = 0, 1, -M β q-1
are eigenvectors corresponding to µ 2 and µ 3 respectively. If µ 1 = µ 2 and µ 1 = µ 3 , we can take for eigenvector corresponding to µ 1 the vector u 1 = (1, b, c) for some real numbers b and c. Actually

b = - µ 3 M µ q-1 2 µ 1 where c = - κµ 1 M µ q-1 2 (µ 1 -µ 2 )(µ 1 -µ 3 )
.

Then there exists one trajectory of (3.87) with X(t) > 0 when t → -∞ such that ξ(t) = ξ M + O(e σt q-1 ) when t → -∞. Hence there exists at least one solution u of (2.12) such that u(r) = r -β ξ M + Cr -β+(N -1)q-N (1 + o( 1)) when r → 0.

2-Local existence at infinity. Here we assume N N -1 < q < 2p p+1 . Then µ 1 < 0, µ 2 = β > 0 and µ 3 = κ(q -1) > 0. Then there exists a unique local trajectory which converges to (0, ξ, β) when t → ∞, it corresponds to the stable manifold of this point. If there exists a positive solution in R N \{0}, the solution can be extended as a solution in R N by [START_REF] Bidaut-Véron | Measure data problems for a class of elliptic equations with mixed absorption-reaction[END_REF]Theorem 1.1] since in this range of values of q one has p > N N -2 . By Proposition A.1 such a solution is identically 0. Remark. Note that we have many types of trajectoriess converging to the origin and their geometry depends in their sign and their relative order. In this respect we denote

f (q) := (N -1)q -N + N -(N -2)q 2 -q , (3.90) 
and we have (i)

µ 3 = κ(q -1) > µ 2 = β ⇐⇒ q > 1 + 1 √ N -1 (ii) µ 1 > µ 2 ⇐⇒ p < 2(q -1) 2 -q ⇐⇒ q > 2(p+1) p+2 (iii) µ 1 > µ 3 ⇐⇒ p < f (q).
(3.91)

We have that

µ 1 = µ 2 = µ 3 only if p = 2 √ N -1-1 and q = 1 + 1 √ N -1 , a condition which is compatible with p > 1 only if 2 ≤ N ≤ 9.
Global (necessarily singular) solutions in r -β are difficult to construct. We give below a range of exponents in which there exists at least one.

Theorem 3.11 Let M > 0, p > 1 and 1 < q < 2, q = 1 + 1 √ N -1 . If there holds p < max 2(q -1) 2 -q , f (q) , (3.92)
in particular if p < N N -2 and q > N N -1 , then there exists a positive radial solution of (1.1) defined in R N \ {0} satisfying

lim x→0 |x| β u(x) = ξ M . (3.93) Proof. The function U (x) = ξ M |x| -β is a supersolution of (1.1) in R N \ {0}.
We look for a subsolution under the form ξ(t) = ξ M (1 -Ae dt ) + for some d, A > 0. Set

H[ ξ](t) = ξtt + D ξt -κβ ξ -e µ 1 t ξp + M |β ξ -ξt | q , where D = N q -N -2 q -1 = κ -β.
Then on the interval

I A := (-∞, -ln A d ) one has β ξ -ξt = ξ M β -A(β -d)e dt .
In order H[ ξ] ≥ 0, one needs

-A d 2 + Dd -κβ e dt + M ξ q-1 M β q 1 -A β -d β e dt q -κβ -ξ p-1 M e µ 1 t 1 -Ae dt p ≥ 0.
Since M ξ q-1 M β q = κβ, if we set Z = Ae dt , then 0 < Z ≤ 1 on I A and the previous inequality to be verified becomes

ξ p-1 M A e (µ 1 -d)t Z (1 -Z) p ≤ -d 2 + Dd -κβ Z + κβ 1 - β -d β Z q -κβ.
We first impose d ≤ µ 1 , then e (µ 1 -d)t

A ≤ A -µ 1 d on I A . We set

Q(Z) = κβ 1 - β -d β Z q -d 2 + Dd -κβ + ξ p-1 M A -µ 1 d Z -κβ. (3.94) Then Q (Z) = -qκ(β -d) 1 - β -d β Z q-1 -d 2 + Dd -κβ + ξ p-1 M A -µ 1 d , and 
Q (Z) = κ(β -d) 2 q(q -1) β 1 - β -d β Z q-2 . Since κ > 0, Q is convex on [0, 1]. Furthermore Q(0) = 0. Hence H( ξ) ≥ 0 if Q (0) ≥ 0. Q (0) = -qκ(β -d) -d 2 + Dd -κβ + ξ p-1 M A -µ 1 d (3.95)
Replacing D by its value, (3.95) will be achieved, provided A is large enough, if

-d 2 + ((q -1)κ + β)d -(q -1)κβ = -(d -µ 2 )(d -µ 3 ) > 0. (3.96)
The condition is that µ 1 ≥ d with d satisfying (3.96). It necessitates µ 2 = µ 3 , equivalently q = 1 + 

ξ M 1 -A|x| d + |x| -β ≤ u(x) ≤ ξ M |x| -β for all x ∈ R N \ {0}. (3.97) Remark. Condition (3.92) is equivalent to (i) 1 < p < f (q) if 1 < q < 1 + 1 √ N -1 (ii) 1 < p < 2(q -1) 2 -q if 1 + 1 √ N -1 < q < 2. (3.98) Condition (ii) is equivalent to 2(p + 1) p + 2 < q < 2. (3.99)
Note that the nature of the variations of the function p = f (q) differs according to the value of N .

If N = 3 or 4, f is increasing and onto from ( 3 2 , 2) to (3, ∞) when N = 3 and from ( 43 , 2) to (2, ∞) when N = 4. If N ≥ 5, f achieves a maximal value p for q = q with q = 2 -N -4 N -1 and p = 2 N -2 -(N -4)(N -1) .

(3.100)

In particular one has

f N N -1 = f N N -2 = N N -2 .

Emden-Fowler type singular solutions

Proof of Theorem 1.13-(1). Since 1

< p < N N -2 the function x → U x 0 (x) = x 0 |x| -α is a subsolution of (1.1) in R N \ {0}. In order x → U C (x) := C|x| -α to be a supersolution, one needs C p-1 ≥ x p-1 0 + α q C q-1 M |x| -σ p-1 .
(3.101)

The function C → C p-q -x p-1 0 C 1-q is increasing and onto from [x 0 , ∞) to [x 0 , ∞). Hence there exists C > x 0 such that α q C q-1 M = C p-1 -x p-1 0 . For such a value we have that

L M p,q U C = M α q (1 -r -σ p-1 )r -2p p-1 . Since σ < 0 the function U C is a supersolution of (1.1) in B 1 \ {0}. For A > 0 we set U C,A = U C + A. Then L M p,q U C,A = L M p,q U C + U p C,A -U p C ≥ A p + M α q (1 -|x| -σ p-1 )|x| -2p p-1 . (3.102) 
Clearly L M p,q U C,A ≥ 0 in B 1 \ {0}, and for |x| > 1, one has [START_REF] Véron | Local and Global Aspects of Quasilinear Degenerate Elliptic Equations[END_REF]Theorem 1.4.5] that there exists a solution u of (1.1) in R N \ {0} such that U x 0 ≤ u ≤ U C,A . Then by Theorem 1.8-(1), u satisfies (1.39)-(i), and by Theorem 1.10-( 2), (1.39)-(ii) holds. Furthermore r α u(r) ≥ x 0 for any r > 0. Uniqueness (not only for radial solutions) is a consequence of Theorem 4.6-(2). Obviously |x| → u(x) is decreasing. Existence of a positive solution in a bounded domain Ω containing 0 is a consequence of Theorem 1.14, see Section 4.

L M p,q U C,A ≥ A p -M α q |x| - (p+1)q p-1 ≥ A p -M α q . Therefore, if A = M α q p , the function U C,A is a supersolution in R N \ {0}. Since U x 0 ≤ U C,A , it follows by
Proof of Theorem 1.13-(2). It is a consequence of Theorem 1.11 and Theorem 1.9.

Solutions behaving like the Newtonian potential

There exist also solutions which behave like the Newtonian kernel at 0. They are described in the next result. Theorem 3.12 Let 1 < p < N N -2 and 1 < q < N N -1 . Then for any M ≥ 0 and k > 0 there exists a minimal positive solution u k of (1.1) in R N \{0} such that (1.12) holds. Furthermore it is radial and nonincreasing. If we assume 1 < q ≤ 2p p+1 , this solution is unique among all the positive solutions.

Proof. Proof of existence. If M = 0 the result is classical and for k > 0 we denote by v k the solution of L p v = 0 in R N \{0} satisfying (1.15). This is a natural subsolution of (1.1). The construction of the supersolution is more involved. (i) We first assume that N ≥ 3 and prove that for any k > 0 there exists M k > 0 such that for any 0 < M ≤ M k there exists a supersolution of (1.1) satisfying (1.12). Let a > 0 set

w k (x) = k|x| 2-N + k q |x| 2-(N -1)q + a
Then there exist c 5 , c 6 > 0 depending on N and q such that.

L M p,q w k = k q ((N -1)q -2)(N -(N -1)q))|x| (1-N )q + (k|x| 2-N + k q |x| 2-(N -1)q + a) p -M (N -2)k|x| 1-N +((N -1)q-2)k q |x| 1-(N -1)q q ≥ c 5 k q |x| (1-N )q + a p -c 6 M k q |x| (1-N )q + k q 2 |x| q-(N -1)q 2 ≥ k q c 5 -c 6 M (1 + k q 2 -q ) |x| (1-N )q + a p -k q c 6 M + k q 2 -q . ( 3.103) 
Note that we have only used inequalities 2

≤ (N -1)q ≤ N . Set M k = c 5 c 6 M (1+k q 2 -q ) .
Then, for M ≤ M k we take a p = k q c 6 M + k q 2 -q and we derive that L M p,q w k ≥ 0. The supersolution w k satisfies v k ≤ k|x| 2-N ≤ w k . (ii) If N = 2 and for b > 0 we denote by ψ k the solution of

-∆ψ + ψ p = |x| -q + 2πkδ 0 , (3.104) 
and we set

w k = ψ k + b. Since 1 < q < 2, w k = -k ln |x|(1 + o(1)) and ∇w k = -k|x| -1 (1 + o(1)) as x → 0. Hence 0 ≤ ψ k (x) ≤ c 7 (-k ln |x| + 1) and |∇ψ k (x)| ≤ c 7 (k + 1)|x| -1 for 0 < |x| ≤ 1.
(3.105) Furthermore, by Keller-Osserman technique combined with scaling method, there holds in

R 2 \ B 1 , (i) 0 ≤ ψ k (x) ≤ c 8 max |x| -α , |x| -q p , (ii) |∇ψ k (x)| ≤ c 8 max |x| -p+1 p- 1 , |x| -p+q p . (3.106) 
In the above inequalities, c 7 and c 8 are positive constants depending on p and q. Hence

L M p,q w k = |x| -q + (ψ k + b) p -ψ p k -M |∇ψ k | q . (3.107)
We infer

L M p,q w k ≥ |x| -q + b p -M c q 7 k q |x| -q if 0 < |x| ≤ 1, (3.108) 
and

L M p,q w k ≥ b p -M c q 8 k q if x| ≥ 1. (3.109) If k is fixed, M ≤ M k := k -q c -q
7 and b ≥ M c q 8 k q we conclude that w k is a supersolution in R 2 \ {0} larger than v k . We deduce from (i) and (ii) that for any k > 0 there exists M k > 0 such that for any 0 < M ≤ M k there exists a positive radial solution u k of (1.1) satisfying (1.12). Furthermore u k satisfies (A.1). Therefore u k is necessarily decreasing. End of the proof of existence. Let q < N N -1 and q 1 such that q < q 1 < N N -1 . For k > 0 let > 0 such that for any 0 < M ≤ there exists a positive radial solution w k to L q 1 ,M w = 0 satisfying (1.12). If M > M there holds

M |X| q ≤ M |X| q 1 + C for all X ∈ R N , where C = qM q 1 M q q 1 -q M -q q 1 M > 0. Then L M p,q w k = L q 1 ,M w k + (M -M )|∇w q k | ≥ -C which implies that w k + C 1 p is s supersolution of (1.1) and v k ≤ w k + C 1 p
. We conclude as in the first step.

Uniqueness. It is proved in Theorem 4.6, this ends the proof. When we do not assume q ≤ 2p p+1 we have only the existence of a minimal positive solution. This is due to the fact that for two solutions u and u as above, min{u, u } is a supersolution larger that v k . The conclusion follows easily.

In the next statements we prove the existenc of radial solutions defined in the complement of a ball of R N , N ≥ 3 which behaves like the Newtonian potential at infinity. We start with the following lemma dealing with the positive radial solutions of L p v = 0 in the complement of a ball. Lemma 3.13 Assume N ≥ 3 and p > N N -2 . Then for any c > 0 there exists

k c > 0 such that the unique solution v c of L p v = 0 in B c 1 verifying v ∂B 1 = c satisfies lim |x|→∞ |x| N -2 v c (x) = k c . (3.110) Furthermore the mapping c → k c is continuous and increasing from (0, ∞) onto (0, k ∞ ) for some k ∞ < ∞.
Proof. The existence and uniqueness of a solution v c in an exterior domain and the fact that (3.110) holds is classical (see e.g. [START_REF] Véron | Comportement asymptotique des solutions d'équations elliptiques semi-linéaires dans R N[END_REF]). However the fact that k c > 0 and the continuity of c → k c is not proved there. By the maximum principle c → k c is nondecreasing. Next we set s = r N -2 N -2 and v c (r) = r 2-N ρ(s). Then ρ c := ρ satisfies

s 2 ρ ss = c N,p s N N -2 -p ρ p on ((N -2) -1 , ∞) and ρ((N -2) -1 ) = c, (3.111) 
where c N,p = (N -2)

4-N

N -2 -p . By the maximum principle v c (r) ≤ cr 2-N (v c is the positive harmonic function in B c 1 with value c on ∂B 1 ), hence ρ(s) is bounded. Since ρ is convex and bounded, it is decreasing and ρ s) → 0 as s → ∞. Hence

-ρ (s) = c N,p ∞ s τ N N -2 -p-2 ρ p (τ )dτ ≤ c N,p s N N -2 -p-1 ρ p (s). (3.112) 
Hence by integration the function ρ → Φ(ρ) = ρ 1-p -c ρ N N -2 -p is increasing and bounded. Then it has a finite limit when ρ → ∞ and Φ 1-p (ρ) has the same limit . Thus = 0 and consequently k c > 0. Let {c n } be a decreasing sequence in R + converging to c * > 0. Then the sequence of corresponding solutions {v cn } is decreasing to v c * the sequence {k cn } is nonincreasing with limit k * ≥ k c * . From (3.112) one get

c n -k cn = c N,p ∞ (N -2) -1 ∞ s τ N N -2 -p-2 ρ p cn (τ )dτ ds, (3.113) 
and the same identity holds in c n is replaced by c * . By the dominated convergence theorem, one has that

c * -k * = c N,p ∞ (N -2) -1 ∞ s τ N N -2 -p-2 ρ p c * (τ )dτ ds, (3.114) 
which implies that k * = k c * . A similar result holds if {c n } is an increasing sequence in R + converging to c * > 0. Hence c → k c is increasing and continuous. When c ↑ ∞ v c increases and converges to the unique positive solution v ∞ of

L p v = 0 in B c 1 such that lim r→1 v(r) = ∞. Hence k c ↑ k ∞ and k ∞ < ∞.
Remark. Since the equation L p v = 0 is invariant by the transformation T defined in (1.3), the ball B 1 can be replaced by B R for any R > 0. The range of k c , that we call k c,R is modified accordingly and lim

c→∞ k c,R = k ∞,R . Then one has k ∞,R = R N -2-α k ∞,1 . (3.115) Theorem 3.14 Let N ≥ 3, M > 0, p > N N -2 and N N -1 < q < p. 1-For any k > 0 there exist R := R k > 0 and a positive radial solution u of (1.1) in B c R satisfying lim |x|→∞ |x| N -2 u(x) = k. (3.116)
2-If 2p p+1 < q < p there exist k > 0 and a positive radial solution, unique among all the positive solutions, u of

(1.1) in R N \ {0} satisfying lim r→0 r γ u(r) = X M and (3.116) with k = k. In the particular case q = (N -2)p N -1 we have u = u * M,p (see (3.13) 
).

3-If 2p

p+1 < q < 2 and the assumption (3.92) of Theorem 3.11 is satisfied, there exist k > 0 and a radial positive solution u of (1.1) in R N \ {0} satisfying (3.116) and lim Proof. 1-If w is a positive radial and decreasing function such that R M q w = 0 it satisfies (see (3.33))

-w (r) = r 1-N C + M κ r N -(N -1)q -1 q-1 , where, κ = (N -1)q-N q-1 and C ∈ R. If C > 0, w is defined on (0, ∞). Hence if w(r) → 0 as r → ∞, one has w(r) = ∞ r s 1-N C + M κ s N -(N -1)q -1 q-1 ds. (3.117) Then w(r) = 1 (N -2)C 1 q-1 r 2-N (1+o(1)) as r → ∞. Hence, if k > 0 is given, we choose C > 0 such that 1 (N -2)C 1 q-1 = k. In order that k is in the range of the application c → k c,R , one takes R > 0 such that k < R N -2-α k ∞,1 . For such an R, there exists c > 0 such that the solution v c of L p v = 0 in B c R verifying v = c on ∂B R satisfies (3.110). We then set C = 1 (N -2)k q-1
. The function w := w C defined by (3.117) is a supersolution of (1.1) in B c R , larger than the subsolution v c and both v c and w C satisfy (3.116). Then by [START_REF] Véron | Local and Global Aspects of Quasilinear Degenerate Elliptic Equations[END_REF]Theorem 1.4.5] there exists a radial positive solution u of (1.1) in B c R such that v c ≤ u ≤ w C , hence (3.116) follows. 2-The existence of a unique positive and radial solution in R N \ {0} satisfying (1.26) follows from Theorem 1.11. The asymptotic behaviour is a consequence of Theorem 1.9-(2). 3-Under the condition (3.92) of Theorem 3.11 there exists a unique positive solution in R N \ {0} satisfying (3.93). From Theorem 1.9, and since p > N N -2 , its behaviour at infinity is given by (1.34) for some specific k * > 0. Uniqueness follows from T heorem 4.6.

4 Isolated singularities of non-radial solutions

Existence and uniqueness of singular solutions

The results of this paragraph are independent of the description of the radial singular solutions performed in the previous sections and they provide a general tool for constructing singular solutions. The existence of singular solutions is based upon the next variant of [START_REF] Boccardo | Résultats d'existence pour certains problèmes quasilinéaires[END_REF]Theorem 2.1] proved in [START_REF] Véron | Local and Global Aspects of Quasilinear Degenerate Elliptic Equations[END_REF]Corollary 1.4.5].

Theorem 4.1 Let G be a bounded domain in R N , B ∈ C(G × R × R N ) a real valued function, Γ ∈ C(R + , R + ) an increasing function such that |B(x, r, ξ)| ≤ Γ(|r|)(1 + |ξ| 2 ) for all (x, r, ξ) ∈ G × R × R N . (4.1) 
Let Q be the operator defined by

Q(u) = -∆u + B(x, u, ∇u). (4.2) 
If there exist a supersolution φ ∈ W 1,∞ (G) and a subsolution

ψ ∈ W 1,∞ (G) such that ψ ≤ φ, then for any χ ∈ W 1,∞ (G) satisfying ψ ≤ χ ≤ φ there exists a function u ∈ W 1,2 (G) verifying ψ ≤ u ≤ φ, solution of Q(u) = 0 and such that u -χ ∈ W 1,2 0 (G).
One of the main application of this result is Theorem 1.14 which is proved below Proof of Theorem 1.14. Let { n } be a sequence decreasing to 0 and such that

1 < dist (0, ∂Ω) and set m = max z∈∂Ω v(z)+ max z∈∂Ω (φ(z)-v(z)) + . Then m ≥ φ on ∂Ω and the function v = v+m satisfies L M p,q v ≥ 0 in Ω\{0}. The function v = (v-max z∈∂Ω φ(z)) + satisfies L M p,q v ≤ 0. Put χ = sup {v, inf {v, φ}}. Then χ ∈ W 1,∞ loc (Ω \ {0}), v ≤ χ ≤ v and χ = φ on ∂Ω. By Theorem 4.1 for any n ∈ N * there exists a function u n ∈ W 1,2 (Ω \ B n ) such that (u n -χ) Ω\B n ∈ W 1,2 0 (Ω \ B n ) satisfying L M p,q u n = 0 in Ω \ B n .
Furthermore u n is unique by the maximum principle. Since u n = v on ∂B n , v, and therefore v, is radially decreasing and u n = χ on ∂Ω we infer that u n ≤ u n in Ω \ B n if n ≥ n. Hence the sequence {u n } is increasing and it satisfies

(v(x) -max z∈∂Ω φ(z)) + ≤ u n (x) ≤ v(x) + max z∈∂Ω (φ(z) -v(z)) + for all x ∈ Ω \ B n . (4.3)
By standard regularity estimates, u n is relatively compact in C 1 loc (Ω \ {0}). Hence it converges to a solution u of L M p,q u = 0 in Ω \ {0} which coincides with φ on ∂Ω and satisfies (1.41).

As a first application we have the following: The existence of singular solutions is not restricted to the case q = 2p p+1 where they are explicit. The following easy to prove corollary shows that existence, and sometimes uniqueness, holds when 1 < q < N N -1 . This range of exponents is analysed in [START_REF] Bidaut-Véron | Measure data problems for a class of elliptic equations with mixed absorption-reaction[END_REF] in connection with problems with Dirac measure data.

Corollary 4.3 Let Ω ⊂ R N , N ≥ 1, be any bounded smooth domain containing 0. Assume 1 < p < N N -2 if N ≥ 3 or any p > 1 if N = 1, 2, 1 < q < min p, N N -1 if N ≥ 2 or any q > 1 if N = 1, M > 0 and k > 0.
Then for any φ ∈ W 1,∞ (Ω), φ ≥ 0, there exists a positive solution u of L M p,q u = 0 in Ω \ {0} with value φ on ∂Ω satisfying (1.12).

Proof of Theorem 1. 

-∆u (b) + 2-b(p-1) (u (b) ) p -M 2-q-b(q-1) |∇u (b) | q = 0 in -1 G. (4.5) If > 1, u (b) is a supersolution of (1.1) if and only if (i) 2 -b(p -1) ≤ 0 ⇐⇒ α ≤ b (ii) 2 -q -b(q -1) ≥ 0 ⇐⇒ β ≥ b. (4.6) 
This conditions are compatible if and only if 1 < q ≤ 2p p+1 . Similarly, if < 1, u (b) is a supersolution of (1.1) if and only if

(i) 2 -b(p -1) ≥ 0 ⇐⇒ α ≥ b (ii) 2 -q -b(q -1) ≤ 0 ⇐⇒ β ≤ b. (4.7) 
This conditions are compatible if and only if 2p p+1 ≤ q < 2. Proof of Theorem 1.15 First we note that two terms on the right hand-side of (1.42) in the statement of the theorem coincide only if q = 2p p+1 since α ≤ β is equivalent to q ≤ 2p p+1 . We first study the problem in R N \ {0}. We have to consider two cases:

1-Suppose α ≤ β. We choose b such that b ∈ (a, ∞) ∩ [α, β] . (4.8) 
Let u and ũ be two positive solutions satisfying (1.43). For > 1, u (b) is a supersolution. Since The proof follows.

The previous result necessitates to find some b satisfying either (4.8) or (4.9) which is not always possible in practice. We give below a variant of the result which necessitates a slightly sharper blow-up estimate. where Λ, Λ are some positive constants and a > a and a > 0.

Theorem 4.6 Assume N ≥ 3, p, q > 1 and M > 0. There exists one and only one positive solution u of (1.1) in R N \ {0}, if one of the following conditions holds: 1-1 < p < N N -2 , q = 2p p+1 , M > 0 and u satisfies (1.12)-(i) for some k > 0.

2-2p

p+1 < q < p and lim Furthermore the assumptions on p and q imply that q < N N -1 . The existence of a positive solution satisfying (1.12)-(i) for any k > 0 is proved in Theorem 3.12. Case 4-When p = N N -2 , q = 2p p+1 there exists a radial global solution satisfying (1.15)-(i) by Theorem 1.4. We apply estimate (4.12) in Theorem 4.4 with a = N -2 = α = β and a = N -1. The result follows.

x→0 |x| γ u(x) = X M . 3-1 < p < N N -2 , 1 < q < 2p p+1 ,
Remark. In the case p = N N -2 , q = N N -1 we conjecture that the function u x M is the only positive solution of (1.1) defined in R N \ {0} satisfying lim

x→0 |x| N -2 u(x) = x M .

Characterization of singular solutions

In this section we give some results showing how the characterization of singularities of radial solutions can be extended to nonradial solutions. An important tool for studying positive isolated singularities is Harnack inequality. Proposition 4.7 Assume M > 0, p > 1 and 1 < q ≤ 2p p+1 . If u is a positive solution of (1.1) in B R 0 \ {0}, there exists c 9 = c 9 (N, p, q, R 0 , M ) > 0 such that for any R ∈ (0, R Proof. We write (1.1) under the form

-∆u + C(x)u + V (x)|∇u| = 0, (4.16) 
Theorem 4.9 Let N ≥ 3, Ω be an open subset containing 0, M > 0, 1 < p < N N -2 and 1 < q ≤ 2p p+1 . If u is a positive solution of (1.1) in Ω \ {0}, then either its behaviour at x = 0 is given by (4.18) or (4. [START_REF] Serrin | Isolated singularities of solutions of quasilinear equations[END_REF], or there exists k ≥ 0 such that (4.17) holds. If k = 0 the singularity at 0 is removable.

The proof needs a few intermediate steps. Then there exists k ≥ 0 such that (4.17) holds. If k = 0, then u coincides in Ω \ {0} with a C 2 (Ω) solution of (1.1) in Ω.

Proof. By assumption u(x) ≤ c|x| 2-N and by [START_REF] Bidaut-Véron | Local and global properties of solutions of quasilinear HamiltonJacobi equations[END_REF]Lemma 3.10] we have the following: if u is a solution of (1.1) in Ω \ {0} (not necessarily positive) such that |x| m |u(x)| is bounded near x = 0 for some m < inf{α, 2-q q-1 }, then |x| m+1 |∇u(x)| is also bounded near x = 0. Actually, in the reference the result is proved for a more general operator, without the absorption u p , but the adaptation is straightforward. The result applies there with m = N -2 and in particular |∇u(x)| ≤ c |x| 1-N . We write (1.1) under the form (4.16). Since p < N N -2 and q < N N -1 we have

|C(x)| ≤ c|x| (2-N )(p-1) ≤ c|x| -2+ 1 and |V (x)| ≤ c|x| (1-N )(q-1) ≤ c|x| -1+ 2 ,
for some 1 , 2 > 0. It follows by Serrin's result that either the singularity at 0 is removable, or there exist c 1 > c 2 > 0 such that

c 2 |x| 2-N ≤ u(x) ≤ c 1 |x| 2-N for all 0 < |x| ≤ 1.
In order to make the convergence precise, we denote by u 2 the solution of

-∆u 2 = M |∇u| q -u p in B 1 u 2 = 0 on ∂B 1 . Then -v 2 ≤ u 2 ≤ v 2 where -∆v 2 = M c q |x| (1-N )q in B 1 v 2 = 0 on ∂B 1 , and 
-∆v 2 = c p |x| (2-N )p in B 1 v 2 = 0 on ∂B 1 ,
Because (N -1)q < N and (N -2)p < N , v 2 and v 2 satisfy 0 ≤ v 2 (r) ≤ c 10 r 2-N +δ and 0 ≤ v 2 (r) ≤ c 10 r 2-N +δ , for some c 10 > 0 and δ = N -(N -2)p > 0, δ = N -(N -1)q > 0. Then u 2 satisfies lim

x→0 |x| N -2 u 2 (x) = 0.
The function u 1 = u -u 2 is harmonic in B 1 \ {0} and is bounded from below by -v 2 which satisfies lim

x→0 |x| N -2 v 2 (x) = 0.
Hence by standard result on singularities of harmonic functions, |x| N -2 u 1 (x) admits a limit k ≥ 0 when x → 0. Combined with Serrin's estimates it follows that either k = 0 and the singularity is removable, or k > 0. Note that if k = 0, then u is a C 2 solution in Ω.

Another proof based on a perturbation is the following: let u(x) = u(r, s) = |x| 2-N φ(t, s) with r = |x| and t = ln r. Then

φ tt + (N -2)φ t -e (N -p(N -2))t φ p + ∆ φ + M e (N -q(N -1))t ((N -2)φ -φ t ) 2 + |∇ φ| 2 q 2 = 0 Since u = O(|x| 2-N
), we can write We give below another application of the perturbation method and specific to the case q < 2p p+1 .

φ tt + (N -2)φ t + ∆ φ = -e at ψ,
Proposition 4.11 Assume Ω is an open subset containig 0, M > 0, 1 < p < N N -2 and 1 < q < 2p p+1 . If u is a solution of

-∆u + |u| p-1 u -M |∇u| q = 0 (4.20)
not necessarily nonnegative in Ω\{0}, then r α u(r, s) converges uniformly with respect to s ∈ S N -1 when r → 0 to a non-empty compact and connected subset of the set of solutions ω of

-∆ ω + α(N -2 -α)ω + |ω| p-1 ω = 0 on S N -1 . (4.21)
If u ≥ 0, ω is either x 0 or 0.

Proof. We can assume that B 1 ⊂ Ω and set φ(t, s) = r α u(r, s) with t = ln r. Then φ satisfies

φ tt + Lφ t + αKφ + ∆ φ -|φ| p-1 φ + M e σt p-1 (αφ -φ t ) 2 + |∇ φ| 2 q 2 = 0. (4.22)
in R -× S N -1 where K = N -2 -α and L = K -α. By assumption σ < 0, hence (4.22) is an exponentially small perturbation of the autonomous equation associated to the Emden-Fowler equation by the same change of variables. The result follows from [10, Theorem 4.1] but for the sake of comprehension, we recall its proof. By Proposition A.2 the function φ is uniformly bounded, and by (A.6) φ t and ∇ φ are also uniformly bounded. By standard local regularity theory for elliptic equations, there holds

∂ t i ∇ j φ C[T -1,T +1]×S N -1 ≤ c 11 for all (i, j) ∈ N × N, i + j ≤ 3 and T ≤ -2,
where ∇ j is the covariant derivative of order j on S N -1 . Then the omega-limit at -∞ of the trajectory {φ(t, .)} t∈R -in C 2 (S N -1 ) is a non-empty compact connected denoted by Γ φ ⊂ C 2 (S N -1 ). From (4.22) we have that

d dt E = L S N -1 φ 2 t dS(s) + M e σt p-1 S N -1 (αφ -φ t ) 2 + |∇ φ| 2 q 2 φ t dS(s),
where

J(t) = 1 2 S N -1 |∇ φ| 2 + 2 p + 1 |φ| p+1 -φ 2 t dS(s).
Because L = 0 and J is uniformly bounded, there holds

1 -∞ S N -1 φ 2 t dS(s)dt < ∞.
Multiplying (4.22) by w tt and using the previous estimate, we obtain

1 -∞ S N -1 φ 2 tt dS(s)dt < ∞.
As φ t and φ tt are uniformly continuous in (-∞, 1] × S N -1 , this implies that

lim t→-∞ S N -1 φ 2 t (t, .) + φ 2 tt (t, .) dS(s) = 0. Therefore Γ φ ⊂ ω ∈ C 2 (S N -1 ) : αKω + ∆ ω -|ω| p-1 ω = 0 in S N -1 . If u ≥ 0,
then ω ≥ 0 for any ω ∈ Γ φ and the result follows by the maximum principle. 

Lemma 4.12 Let Ω ⊂ R N , N ≥ 3, be a bounded open subset containing 0, M > 0, 1 < p < N N -2 and 1 < q < 2p p+1 . If u is a nonnegative solution of (1.1) in Ω \ {0} such that lim sup x→0 |x| N -2 u(x) = ∞, (4.23 
α n := inf |x|=rn |x| N -2 u(x) ↑ ∞ as n → ∞.
Let v n be the solution of

-∆v + v p = c N α n δ 0 in D (B 1 ) v = 0 on ∂B 1 , (4.25) 
where c N is the explicit constant such that G[c N δ 0 ](x) = |x| 2-N , where G is the Newtonian potential in R N ; note that v n is radial because of uniqueness. Then the sequence {v n } is increasing and converges to the function v ∞ which satisfies (see [START_REF] Véron | Singular solutions of some nonlinear elliptic equations[END_REF])

-∆v + v p = 0 in B 1 \ {0} v = 0 on ∂B 1 lim x→0 |x| α v(x) = x 0 . (4.26) Moreover, v n (x) ≤ α n |x| 2-N and since v n is a subsolution of (1.1), we have that v n ≤ u in B 1 ∩ B c rn . Letting n → ∞ implies that v ∞ (x) ≤ u(x) in B 1 \ {0}. Therefore lim inf x→0 |x| α u(x) ≥ x 0 .
Combined with Proposition 4.11, this inequality implies (4.22).

This result admits an extension to the case q = 2p p+1 . Proof. Assuming for simplicity that B 1 ⊂ Ω and using Proposition 4.7 we obtain that for some decreasing sequence {r n } converging to 0 we have

α n := inf |x|=rn |x| N -2 u(x) ↑ ∞ as n → ∞.
Therefore, u is bounded from below in B 1 \ B rn by the (radial) solution u n of

-∆u + u p -M |∇u| q = 0 in B 1 \ B rn v = 0 on ∂B 1 u = α n r 2-N n on ∂B rn . (4.29)
The sequence {u n } may not be monotone, but u n ≥ v n where v n has been defined in (4.25). Since {u n } is eventually locally bounded in B 1 \ {0} by Proposition A.1 and standard regularity results (see e.g. [START_REF] Gilbarg | Elliptic Partial Differential Equations of Second Order[END_REF]), up to a subsquence, it converges locally uniformly in B 1 \ {0} to a radial function u ∞ which satisfies

-∆u + u p -M |∇u| q = 0 in B 1 \ {0} v = 0 on ∂B 1 , (4.30) 
and 

lim inf x→0 |x| α u ∞ (x) ≥ lim inf x→0 |x| α v ∞ (x) = x 0 . ( 4 
-∆u + u p -M |∇u| q = 0 in B 1 \ B rn v = 0 on ∂B 1 u = c 9 α n r 2-N n on ∂B rn . (4.33)
For the same reason as above there exists a subsequence, {u n } which converges locally uniformly in B 1 \ {0} to a radial solution u ∞ of (4.30). By Theorem 2.4-( 4) we have that u

∞ = u ∞ . Then lim sup x→0 |x| α u(x) ≤ lim x→0 |x| α u ∞ (x) = x M , which ends the proof.
Proof of Theorem 4.9 It is a direct consequence of Lemma 4.10, Lemma 4.12 and Lemma 4.13.

When q > 2p p+1 and |x| N -2 u(x) is not bounded, Harnack inequality may not hold. However we still have a dichotomy for the possible behaviour which extends Theorem 4.9.

Theorem 4.14 Let Ω ⊂ R N (N ≥ 3) be an open set containing 0, M > 0, 1 < p < N N -2 and 2p p+1 < q < N N -1 . If u is a nonnegative solution of (1.1) in Ω \ {0}, then the following dichotomy holds: 1-either there exists k ≥ 0 such that r N -2 u(r, .) converges to k in measure on S N -1 as r → 0, 2-or lim

x→0 |x| γ u(x) = X M .
Proof. We recall Richard-Véron's isotropy theorem [20, Theorem 1.1]: Let g : R + → R + be a continuous nondecreasing function satisfying

1 0 g(r 2-N )r N -1 dr < ∞. (4.34) If u ∈ C 1 (Ω \ {0}) is a nonnegative function satisfying ∆u ≤ g(u) + f in Ω \ {0}, (4.35) 
where f ∈ L 1 loc (Ω \ {0}) is a nonnegative radial function, then we have the following: (i) either r N -2 u(r, .) converges in measure on S N -1 to some k ≥ 0 as r → 0, (ii) or lim

x→0 |x| N -2 u(x) = ∞. (4.36) Since p < N N -2
, assumption (4.34) is satisfied with g(r) = r p and equation (4.35) with f = 0. Then either the statement 1 holds, or (4.36) holds. If it is the case, then for any k > 0, u is bounded from below in B 1 \ {0} by the solution u k of (1.1) in B 1 \ {0} vanishing on ∂B 1 and satisfying (4.17 Remark. We conjecture that the convergence in Theorem 4.14-1 holds in the strong sense.

Remark. Most of the results of this section can be extended to the case N = 2. The subcritical case corresponds then to p > 1 and 1 < q < 2. The main change is that |x| 2-N has to be replaced by -ln |x|.

4.4

The case p ≥ N N -2 and q = 2p p+1

The cases that we consider are q = 2p p+1 , p ≥ N N -2 and M > 0. We recall that the stationary equation ( 1 Proof. We assume first that M > m * . 1-Construction of the maximal solution. We claim that x → x 2,M |x| -α is the maximal solution of (1.2) in R N \ {0}. For a > 0 we set φ a (s) = as α . Then Lφ a (s) := -φ a + φ p a -M |φ a | 2p p+1 = as -αp a p-1 -α q M a q-1 -α(α + 1) .

Taking a large enough we obtain that φ a is a supersolution in (0, ∞). We set Φ a, (x) = φ a (x 1 -) for x 1 > > 0 and as in the proof of Theorem 4. 

U of (1.2) in R N \ B such that Ψ ≤ U ≤ Φa, in R N \ B .
The function U is positive and radial. Since any positive solution u in R N \ {0} is dominated by Ψ , the function U is larger than u in R N \ B . This implies the relation, valid for any > 0, 4-Any one of the two following situations never occur 

T [U ](x) := α U ( x) = U -1 . ( 4 
(i) 0 < lim sup x→0 |x| α u(x) < x 1,M (ii) x 1,M < lim inf x→0 |x| α u(x) < x 2,M . (4 
r α n max u(r n , s) : s ∈ S N -1 = r α n u(r n , s n ) → x 2,M as r n → 0.
Furthermore, we can assume that s n → s * when n → ∞. Using Lemma 4.15 there exist a nondecreasing sequence {w 1,n } converging to x 2,M and a bounded sequence {w 2,n } such that r α n u(r n , s n ) = w 1,n +r α n w 2,n . We set w(t, s) = r α u(r, s) with t = ln r, then there holds,

w tt + Lw t -αKw + ∆ w -w p + M (w t -αw) 2 + |∇ w| 2 p p+1 = 0, (4.49) on R -× S N -1
. By standard regularity estimates and Ascoli-Arzela theorem there exist a subsequence {t n j } of {t n } = {ln r n } and a nonnegative C 2 function W such that w(t n + t, s) converges to W in the C 2 topology of [-a, a] × S N -1 , for any a > 0, and W is a solution of (4.49) in R × S N -1 . Furthermore W (0, s * ) = x 2,M . By Lemma 4.15, x 2,M is the maximal solution of (4.49) in R×S N -1 , it then follows from the strong maximum principle that W = x 2,M and w(t n + t, s) → x 2,M uniformly in [-a, a] × S N -1 . Let > 0, then there exists n ∈ N such that for any n ≥ n , we have that u(r n , s) ≥ r -α n (x 2,M -) for any s ∈ S N -1 . Since r → r -α (x 2,M -) is a subsolution of (1.2), it follows that for m > n ≥ n , one has W (0, s) = W (0, s * ) = x 1,M for some s * ∈ S N -1 in the first case. By the strong maximum principle to w and to x 1,M which are ordered solutions of (4.49) in R × S N -1 we infer that W ≡ x 1,M , hence w(t, s) converges to x 1,M uniformly on S N -1 when t → -∞. In the second case we obtain that the limit function W satisfies W (t, s) ≥ x 1,M and min s∈S N -1 W (0, s) = W (0, s * ) = x 1,M .

u(r, s) ≥ r -α (x 2,M -) for all (r, s) ∈ [r m , r n ] × S N -1 . Letting r m → 0 yields u(x) ≥ |x| -α (x 2,M -) for all x ∈ B rn \ {0}. ( 4 
This implies again W ≡ x 1,M by the strong maximum principle. Finally we do not suppose that the function w(τ, s τ ) defined in (4.52) is monotone. By the definition of the liminf, there exist sequences {t n } tending to -∞ and {s n } ⊂ S N -1 such that w(t n , s n ) = inf{w(t, s) : t ≤ t n , s ∈ S N -1 } ↑ x 1,M as n → ∞.

Using again Ascoli-Arzela theorem we deduce that, up to a subsequence {t n k }, w(t+ t n k , s) converges in the C 2 -topology of [-a, a] × S N -1 , for any a > 0, to a positive solution W of (4.49) in R × S N -1 and W ≥ x 1,M and W (0, s * ) = x 1,M . Hence W ≡ x 1,M . The proof of (4.46) under the second condition of (4.45) is similar.

4-Let (4.47)-(i) be satisfied and w be defined as in the previous steps. Then as in Step 3, w(t n , s) converges locally uniformly to a positive solution W of (4.49) defined on R -× S N -1 , w(t n , s n ) → W (0, s * ), W (0, s * ) is a local maximum of W and it is smaller than x 1,M . Hence W t (0, s * ) = |∇ W (0, s * )| = 0 and W tt (0, s * ) ≤ 0 and ∆ W (0, s * ) ≤ 0. Then W p (0, s * ) -M α q W 2p p+1 (0, s * ) + αKW (0, s * ) ≤ 0.

This contradicts the fact that P M defined in (1.7) is positive on the interval (0, x 1,M ). Similarly, if (4.47)-(ii), we obtain that the limit function W and the limit point s * where W (0, s * ) is a local minimum of W satisfies x 1,M < W (0, s * ) < x 2,M and W p (0, s * ) -M α q W 2p p+1 (0, s * ) + αKW (0, s * ) ≥ 0.

which is not compatible with the fact that P M is negative on (x 1,M , x 2,M ).

Remark. We conjecture that the following stronger form of Theorem 4.16 holds:

1-Either u can be extended as a C 2 solution of (1.2) in Ω, In the case M = m * , we prove the following. Finally we have the following result dealing with the case p = N N -2 and M > 0 where there exists a unique and explicit positive constant solution x M to (1.4). Remark. We conjecture that the following dichotomy occurs: if u is a positive solution of (1.2) in Ω \ {0} unbounded near 0, then, 1-either (4.58) holds, 2-or (1.15)-(i) holds.

2-or lim

Behaviour at infinity of non-radial solutions

In this section we present some results dealing with the asymptotic behaviour of solutions which extend to the non-radial case what has already been proved in the radial one. The results are more complete if there exists only one possible behaviour for radial positive solutions; they have to be compared with what was obtained in [START_REF] Véron | Comportement asymptotique des solutions d'équations elliptiques semi-linéaires dans R N[END_REF] when M = 0.

uniformly on S N -1 .

2-or there exists k > 0 such that lim |x|→∞ |x| N -2 u(x) = k.

(5.7)

Proof. We can assume that u is continuous in B c R . By Theorem 2.6-(2), u is bounded from above by the function u R where u R is a radial soluion of (1.2) in B (5.8)

We claim that either m = 0 or m = x m * As in the proof of Theorem 4.17, there exists a sequence {t n } tending to ∞ and {s n } ⊂ S N -1 converging to s * such that w n (t, .) := w(t + t n , .) converges in the C 2 -topology of [-a, a] × S N -1 for any a > 0 to a solution W of (4.49) in R×S N -1 . Furthermore W achieves its maximal value m at (0, s * ), hence W t (0, s * ) = 0, ∇ W (0, s * ) = 0, ∆ W (0, s * ) ≤ 0 and W tt (0, s * ) ≤ 0. Therefore -m Pm * (m is a subsolution and x m * |x| -α a supersolution, the solution v exists and it is unique. By the phase plane analysis of Figure 4, the function υ(t) = e αt ũ(r) which initial value belongs to the region (F) converges to 0 when t → ∞. Since (0, 0) is a saddle point for the system (2.16) it follows that the corresponding trajectory is is the unstable one of this point. The initial slope of this curve is N -2. By Lemma A.4 it follows that there exists > 0 such that lim r→∞ r N -2 v(r) = .

(5.11)

Consequently |x| N -2 u(x) is bounded, the proof of Theorem 5.1-3 applies and deduce from (5.8) there exists c > 0 such that |x| N -2 u(x) → c when |x| → ∞.

In the case M > m * the situation is even more complicated and the results are still incomplete. hence either 0 ≤ m ≤ x 1,M or m ≥ x 2,M . Note that in the latter case (5.12) holds. 2-If m = x 2,M , then using the function W as in the proof of Theorem 5.2, we infer by the strong maximum principle that there exists a sequence {r n } tending to infinity such that r α n u(r n , s) converges to x 2,M . For any > 0 there exists n > 0 such that for n ≥ n we have r α n u(r n , s) ≥ x 2,M -for all s ∈ S N -1 . Since P M (x 2,M -) ≤ 0 the function x → (x 2,M -)|x| -α is a subsolution of (1.2). Then, for any r n > r n , u(x) ≥ (x 2,M -)|x| -α in {x : r n ≤ |x| ≤ r n }. This implies lim inf |x|→∞ |x| α u(x) ≥ x 2,M -.

Since is arbitrary, this yields (5.12). If m = x 1,M then we proceed as in the case above and deduce that there exist a function W ≥ 0 satisfying (4.49) in R×S N -1 and a sequence {t n } tending to infinity such that w(t n + t, s) converges in the C 2 -topology of [-a, a] × S N -1 to W for any a > 0. The function W is larger or equal to x 1,M and coincides with x 1,M at (0, s * ) for some s * ∈ S N -1 . By the strong maximum principle we have that W ≡ x 1,M . This implies assertion 2. Then for any > 0 the function there exists n ∈ N such that for any n ≥ n , u(r n , s) ≤ |r n | -α for all s ∈ S N -1 . The function x → |x| -α is a supersolution of (1.2). Since there exists a sequence {r n } tending to infinity such that u(r n , s) ≤ r -α n for all s ∈ S N -1 for n ≥ n it follows by the comparison principle applied to the sequence of annuli {x : r n ≤ |x| ≤ r n }, that x(x) ≤ |x| -α . Since the function x → |x| -α is a supersolution of (1. Since is arbitrary we infer that |x| α u(x) converges to 0 when |x| → ∞. By the phase plane analysis of section 2.4 (seeTheorem 2.6), as in the proof of Theorem 5.2-2, we have that |x| N -2 u(x) is bounded. Hence (5.14) follows as in the previous proof.

3-If lim inf

Remark. We conjecture that the results of Theorem 5. 
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Theorem 1 . 1

 11 Let p > 1, then 1-If M ≤ 0 equation (1.4) admits a positive solution if and only if N = 2 or N ≥ 3 and p < N N -2 . Furthermore this solution is constant, unique and denoted by x M . 2-If M > 0 and p ≤ N N -2 if N ≥ 3, or any p > 1 if N = 2, equation (1.4) admits a unique positive solution. It is constant and denoted by x M . 3-If N ≥ 3, p > N N -2 and M = m * there exists one positive solution to (1.4). It is constant and denoted by x m * . 4-If N ≥ 3, p > N N -2 and 0 < M < m * there exists no positive solution to (1.4). 5-If N ≥ 3, p > N N -2 and M > m * there exist two constant positive solutions x 1,M < x 2,M to (1.4) and any positive solution ω satisfies 0 < min

|x|→0 |x| N - 2

 2 u(x) = x M . Moreover there exists a positive solution u S of (1.2) in R N \ {0} satisfying (i) lim |x|→0 |x| N -2 | ln |x|| N -1 u S (x) = 1 (N -2) ((N -1)M ) N -1

Theorem 1 . 5

 15 Let N ≥ 3 and p > N N -2 . 1-If M > m * , besides the two self-similar solutions u x j,M (j = 1, 2), there exists a radial positive solution u s of (1.2) in R N \ {0}, unique among the radial ones up to the scaling transformation T , satisfyinglim |x|→0 |x| α u s (x) = x 1,M and lim |x|→∞ |x| α u s (x) = x 2,M .(1.16)For any k > 0 there exists also a radial positive solution u of (1.2) in R N \ {0} satisfyinglim |x|→0 |x| α u(x) = x 1,M and lim |x|→∞ |x| N -2 u(x) = k > 0. (1.17)It is unique among the radial positive solutions satisfying (1.17). FurthermoreT [u c ] = u c α+2-N . 2-If M = m * ,the self-similar solution u m * (x) = x m * |x| -α is the unique among the radial positive solutions of (1.2) in R N \ {0} satisfying lim |x|→0 |x| α u(x) = x m * and lim |x|→∞ |x| α u(x) = x m * . (1.18)

1 - 2 2 2 √ 2 N - 2 or

 12222 If N = 2, or N ≥ 3 and 1 < p < N N -2 , then lim |x|→∞ |x| α u(x) = x M . 2-If N ≥ 3 and p = N N -2 , then lim |x|→∞ |x| N -2 (ln |x|) Nu(x) = N -lim |x|→∞ |x| N -2 u(x) = x M . 3-If N ≥ 3 and p > N N -2 , 3-a-if 0 < M < m * , then lim |x|→∞ |x| N -2 u(x) = k for some k > 0. 3-b-if M = m * , then either lim |x|→∞ |x| α u(x) = x m * , or lim r→∞ r N -2 u(r) = k for some k > 0. 2-c-if M > m * ,then either lim |x|→∞ |x| α u(x) = x 1,M , or lim |x|→∞ |x| α u(x) = x 2,M or lim |x|→∞ |x| N -2 u(x) = k for some k > 0.

  there holds lim |x|→∞ |x| α u(x) = x 0 . (1.33) 2-If N ≥ 3 and p > N N -2 , there holds lim |x|→∞ |x| N -2 u(x) = k > 0. (1.34) 3-If N ≥ 3 and p = N N -2 , there holds lim |x|→∞ (ln |x|) N -2

3 - 2 +

 32 If p ≥ N N -2 and M > m * , there exist two non-trivial equilibria in R , P 1,M = (x 1,M , αx 1,M ) and P 2,M = (x 2,M , αx 2,M ).

4 - 2 +

 42 If p ≥ N N -2 and M = m * , there exists one non-trivial equilibria in R , P m * = (x m * , αx m * ).

2pp+1-

  Ky := Φ(y) , and C 4 = (x, y) ∈ Q 4 : x p = M |y| 2p p+1 -Ky := Ψ(y) .

Figure

  Figure1: M > 0, K < 0 ⇐⇒ p < N N -2 .

  exists also a unique positive solution u := ũR of (1.1) in B R \ {0} satisfying (2.29)-(i) and (2.31) or (2.29)-(i) and u = 0 on ∂B R . In both cases the solution is radial.

  .33) Integrating (2.33) implies (2.29)-(i). Uniqueness among the radial solutions follows from the uniqueness of the stable heteroclinic orbit. As in Theorem 2.4 the unstable trajectory of P M entering (C) intersect the axis y = 0 at some P 0 = (x 0 , 0) and any corresponding solution u is defined in some B R , R¿0, and it blows-up when |x| ↑ R. Using the transformation T , T [u] is a solution defined in the ball B R which blows-up for |x| = R and still satisfies (2.30). The backward trajectory T -[P ]

Theorem 2 . 6

 26 Let N > 2 and p > N N -2 . 1-If M > m * , then u x 1,M and u x 2,M are the two self-similar solutions. Moreover (i) there exists a unique, up to the transformation T , positive radial solution u = u 1,2 defined in R N \ {0} satisfying lim r→0 r α u(r) = x 1,M and lim r→∞ r α u(r) = x 2,M .

)

  for r large enough, (v) or N > 2 and lim r→∞ r N -1 |u (r)| = c ≥ 0 and lim r→∞ r N -2 u(r) = C ≥ 0.(3.30)

  ) = m > 0. Then there exist t 0 > -∞ and

  t), y(t)) = ( , α ) where ∈ {0, x 0 }. (3.52) If = x 0 the result is proved, thus let us assume that = 0. By Lemma 3.3-1-(iii) r N -1 u (r) admits a limit c ∈ (0, ∞] when r → 0. If c < ∞, (1.32) follows by integration. Thus we are left with the case c = ∞. Hence lim r→0 r

t→∞.

  Mutatis mutandis, the remaining of the proof of Lemma 3.4 still holds and we get (3.64).

  r→∞ r β u(r) = ξ M , (3.65) where we recall that ξ M is defined in (1.27), 2-or N > 2 and lim r→∞ r N -2 u(r) = k > 0. (3.66)

  1-(iii) If S satisfies 0 = lim inf t→∞ S(t) < lim sup t→∞ S(t) = Σ ∈ (0, ∞]. There exists an increasing sequence {t n } tending to infinity of local maximum of S(t). As in the proof of Lemma 3.6-(3) we obtain that N > 2 and u

  r→∞ r N -2 u(r) = k ≥ 0 by Lemma 3.3. The function u is bounded from below in B c R by the solution v of -∆v + v p = 0 in B c R v = min |x|=R u(x) on ∂B R Since lim r→∞ r N -2 v(r) = k > 0 and k ≥ k > 0, this ends the proof.

  (3.75) This implies ψ(w) = O e 2σt p-q . From (3.72), z = O e σt p-q , then ψ(z) = O e 2σt p-q

  x→0 |x| β u(x) = ξ M . Furthermore u is unique among all the positive solutions satisfying (3.116).

Corollary 4 . 2

 42 Let Ω be any bounded smooth domain containing 0 and φ ∈ W 1,∞ (Ω) be nonnegative. There exists a positive solution u of L M p, 2p p+1 u = 0 in Ω \ {0} with value φ on ∂Ω such that u(x) -a|x| -α remains bounded in Ω where a is equal to x M or x j,M (j=1,2) or x m * according to we are in the cases (1)-(2) or (3) or (4) of Theorem 1.1.

2 and Theorem 1 . 3 .

 13 It is a direct consequence of the above results. More general uniqueness results valid for any positive solution, not necessarily radial, are obtained below. Furthermore the problems involved are either considered in R N \{0} or in a punctured bounded domain. If b is a positive parameter we define a continuous group of transformations acting on functions u defined in an open set G, u → u (b) , for > 0 by the formula u (b) (x) = b u( x) for all > 0 and x ∈ -1 G. (4.4) If u satisfies (1.1) in G, then u (b) satisfies

u

  (b) (x) = Λ b-a |x| -a (-ln |x|) ã(1 + o(1)) as x → 0 and u(x) → 0 as |x| → ∞, for any > 0 the function x → u (b) (x) + which is a supersolution is larger than ũ near 0 and at infinity. Then u(b) + ≥ ũ in R N \ {0}. Letting ↓ 0 and ↓ 1, yields u ≥ ũ. Similarly ũ ≥ u. 2-Suppose α > β. We choose b such that b ∈ (0, a) ∩ [β, α] .(4.9)Then for < 1, u (b) + is a supersolution in R N \ {0} which is larger than ũ at 0 and at ∞. Hence ũ ≤ u (b) + and we conclude as in the first case.Next we consider the problem in Ω. Since the solutions are continuous in Ω \ {0}, for > 0 we have that for > 1 u (b) + > ũ near ∂( -1 Ω) provided -1 is small enough. Hence u (b) (x) + ≥ ũ in -1 Ω \ {0}. This implies that u ≥ ũ by letting ↑ 1 and then → 0. If < 1 then Ω ⊂ -1 Ω, and we compare u (b) + and ũ in Ω.

Theorem 4 . 4 . 10 )

 4410 Assume N ≥ 1, p > 1, 1 < q ≤ 2p p+1 and M > 0. Let a such that 0 ≤ a ≤ β (4There exists at most one positive solution of(1.1) in R N \ {0} satisfying u(x) = Λ|x| -a + Λ |x| -a (1 + o(1)) as x → 0,(4.11)or u(x) = Λ|x| -a (-ln |x|) -a (1 + o(1)) as x → 0, (4.12)

  M > 0 and either lim x→0 |x| α u(x) = x 0 , or u satisfies (1.12)-(i) for some k > 0. 4-p = N N -2 , q = 2p p+1 , M > 0 and u satisfies (1.15)-(i). Furthermore, existence and uniqueness of a solution holds if the equation (1.1) is considered in Ω \ {0} where Ω is a bounded smooth domain starshaped with respect to 0 and is the function u is equal to some φ on ∂Ω where φ ∈ C 1 (∂Ω) is nonnegative. Proof. By applying Theorem 1.14 and Theorem 1.15 the proof is reduced to use results of existence of radial positive singular solutions in R N \ {0} and to check that the parameters fulfill the conditions of Theorem 1.15. Case 1-If q = 2p p+1 , α = β and N -2 < β. Existence of radial positive solutions satisfying (1.12)-(i) is proved in Theorem 1.3. Case 2-Then γ > β. Existence of a radial positive solution satisfying lim x→0 |x| γ u(x) = X M is proved in Theorem 1.11-1. Case 3-If 1 < q < 2p p+1 , then α < β, and since p < N N -2 , N -2 < α. Existence of a a radial positive solution satisfying lim x→0 |x| α u(x) = x 0 is proved in Theorem 1.13-1.

Lemma 4 . 2 and 1

 421 10 Let N ≥ 3, Ω be an open subset containing 0, M > 0, 1 < p < N N -< q < N N -1 . If u is a positive solution of (1.1) in Ω \ {0} vanishing on ∂Ω and such that lim sup x→0 |x| N -2 u(x) < ∞.

  where a = min{(N -p(N -2), (N -q(N -1)} > 0 and ψ is bounded. Then the result follows by[START_REF] Bidaut-Véron | Asymptotic of solutions of some nonlinear elliptic system[END_REF] Proposition 4.1].

) then lim x→0 |x| α u(x) = x 0 . ( 4 . 24 )

 424 Proof. Without loss of generality we can assume that B 1 ⊂ Ω. It follows from Proposition 4.7 that lim inf x→0 |x| N -2 u(x) = ∞, Hence there exists a decreasing sequence {r n } converging to 0 such that

Lemma 4 .

 4 [START_REF] Gilbarg | Elliptic Partial Differential Equations of Second Order[END_REF] Let Ω ⊂ R N , N ≥ 3, be a bounded open subset containing 0, M > 0, 1 < p < N N -2 and q = 2p p+1 . If u is a nonnegative solution of (1.1) in Ω \ {0} such that lim supx→0 |x| N -2 u(x) = ∞, (4.27) then lim x→0 |x| α u(x) = x M . (4.28)

  ). Such a solution exists and is unique by Theorem 4.8. Letting k → ∞, this implies lim infx→0 |x| γ u(x) ≥ X M . (4.37)Next, we denote by υ the solution of (1.1) on (0, ∞)(hence υ is 1-dimensional) satisfying lim r→0 r γ υ(r) = X M and lim r→∞ r α υ(r) = x 0 .Its existence is proved in Theorem 1.10, Theorem 1.11. It is decreasing.For > 0 the function r → υ (x) = υ(|x| -) satisfies L M p,q (υ ) ≥ 0 in B c and υ (x) → ∞ when |x| ↓ . If c = max u ∂B δ for some δ > > 0 such that B δ ⊂ Ω, then υ + c is a supersolution of (1.1) in B δ \ Bwhich is larger than u for |x| = and |x| = δ. Hence u ≤ gu + c in B δ \ B . Letting → 0 yields u(x) ≤ υ(x) + c for 0 < |x| ≤ δ and finally lim sup x→0 |x| γ u(x) ≤ X M . (4.38) Combining (4.37) and (4.38) we obtain lim x→0 |x| γ u(x) = X M .

. 4 ) 1 Lemma 4 . 15 2 -

 414152 admits two positive constant solutions x 1,M < x 2,M if p > N N -2 and M > m * , and only one denoted by x M if p = N N -2 and M > 0 or if p > N N -2 and M = m * . The following result is an improvement of Proposition A.Let Ω ⊂ R N , N ≥ 3, be a bounded domain containing 0 such that B R ⊂ Ω and p ≥ N N -2 . 1-If p > N N -2 and M > m * , then any positive solution u of (1.2) in Ω \ {0} satisfies u(x) ≤ x 2,M |x| -α + sup |z|=R If p > N N -2 and M = m * , or p = N N -2 and M > 0, the same inequality holds with x 2,M replaced by x m * and x M respectively.

  14 we deduce that the function Φa, defined by Φa, = inf {R[Φ a, ] : R ∈ SO(N )} (SO(N ) is the group of rotations in R N ), is a positive and radial supersolution of (1.2) in R N \ B which tends to infinity on ∂B . It dominates any positive solution of (1.2) in R N \ B . Next we set Ψ (x) = sup x 2,M |x -z| -α : |z| < . It is a subsolution of (1.2) in R N \ B dominated by Φa, . Since the supremum is achieved for z = x |x| , the function Ψ is radial and positive. By [25, Theorem 1.4.5] there exists a solution

2 -

 2 .40) When ↓ 0 the sequence {U } decreases and converges to a positive radial solution U 0 of (1.2) in R N \ {0} which dominates any other positive solution. Hence U 0 is the maximal solution in R N \ {0}. Letting ↓ 0 in (4.40) we infer that T [U 0 ] = U 0 for any > 0. Hence U 0 is self-similar. Since it is radial and larger than any other positive solution, we deduce thatU 0 (x) = x 2,M |x| -α for all |x| > 0. (4.41) End of the proof. If u is any positive solution in Ω \ {0}, then U + sup |z|=R u(z) is a supersolution larger than u in B R \ B . Letting ↓ 0 yields the result. The proof in the other case is similar. Theorem 4.16 Let Ω ⊂ R N , N ≥ 3, be a bounded domain containing 0, p > N N -2 and M > m * . If u is a positive solution of (1.2) in Ω \ {0}, there holds 1-If lim inf x→0 |x| α u(x) = 0, (4.42)then u can be extended as a C 2 solution of (1.2) in Ω.|x| α u(x) = x 1,M or lim sup x→0 |x| α u(x) = x 1,M ,(4.45) then there exists a sequence {r n } ⊂ R + * converging to 0 such that lim rn→0 r α n u(r n , s) = x 1,M uniformly on S N -1 . (4.46)

.47) Proof. 1 -

 1 If relation (4.42) holds, it follows by Harnack inequality proved in Proposition 4.7, that there exists a sequence {r n } converging to 0 as n → ∞ such that lim rn→0 r α n u(r n , s) = 0 uniformly on S N -1 . (4.48) For any > 0 and m = sup{u(z) : |z| = R}, the function x → |x| α + m is a supersolution of (1.2) in B R \ {0} which is larger than u near x = 0 and on ∂B R . Hence u(x) ≤ |x| α + m. Letting → 0 implies u ≤ m, and the result follows by standard regularity. 2-If (4.43) holds there exists a sequence {r n } converging to 0 such that

3 -

 3 .50) Since is arbitrary we infer that lim inf x→0 |x| α u(x) ≥ x 2,M . (4.51) By assumption lim sup x→0 |x| α u(x) ≥ x 2,M ; then (4.44) holds. Let us assume that the first condition in (4.45) holds. If the function τ → w(τ, s τ ) := min s∈S N -1 w(τ, s)} (4.52) is asymptotically monotone, nonincreasing or nondecreasing, then either w(τ, s τ ) ↑ x 1,M in the first case, or w(τ, s τ ) ↓ x 1,M in the second case. Using again the uniform C 2,α estimate and Ascoli-Arzela theorem we have that there exists a sequence {τ n } converging to -∞ such that w(t + τ n , s) converges in the C 2 -topology of [-a, a] × S N -1 , for any a > 0, to a positive solution W of (4.49) in R × S N -1 such that W (t, s) ≥ x 1,M and min s∈S N -1

  x→0 |x| α u(x) = x 2,M , 3-or lim x→0 |x| α u(x) = x 1,M .

Theorem 4 .

 4 [START_REF] Nguyen | Isolated singularities of positive solutions with weighted gradient term[END_REF] Let Ω ⊂ R N , N ≥ 3, be a bounded domain containing 0, p > N N -2 and M = m * . If u is a positive solution of (1.2) in Ω \ {0}, there we have the following:1-either u can be extended as a C 2 solution in Ω, 2-or there exists a sequence {r n } converging to 0 such that r α n u(r n , s) converges to x m * uniformly on S N -1 .Proof. If u satisfies (4.42), then the singularity of u at zero is removable since the function P M is positive on (0, m * ) and on (m * , ∞), see the argument in the proof of Theorem 4.16-(1). Thus we are left with the case lim inf x→0 |x| α u(x) > 0. (4.53) If lim sup x→0 |x| α u(x) = x m * , (4.54) then, as in the proof of Theorem 4.16-(3) we deduce that there exists a sequence {r n } converging to 0 such that r α n u(r n , s) converges to x m * uniformly on S N -1 . If there exists m = m * such that lim sup x→0 |x| α u(x) = m, (4.55)then there exists a sequence {t n } converging to -∞ and {s n } ⊂ S N -1 such that w(t+ t n , .) converges in the C 2 topology of [-a, a] × S N -1 for any a > to a solution W of (4.49). Furthermore w t (t n , s n ) → 0 and lim inftn→-∞ w tt (t n , s n ) ≤ 0. Since ∇ w(t n , s n ) =0 and ∆ w(t n , s n ) ≤ 0, one has that -αKm-m p +M (αm) 2p p+1 = -m Pm * (m p-1 p+1 ) = -∆ W (0, s * )-w tt (0, s * ) ≥ 0. (4.56) Since Pm * ≥ 0 and vanishes only at m * , it implies m = m * , contradiction. The proof of the uniform convergence of w(t n , .) to m * follows from the strong maximum principle since W is a positive solution (4.49) as inTheorem 4.16. Remark. We conjecture that assertion (2) holds under the form lim x→0 |x| α u(x) = x m * .

Theorem 4 .

 4 [START_REF] Osserman | On the inequality ∆u ≥ f (u)[END_REF] Let Ω ⊂ R N , N ≥ 3, be a bounded domain containing0, p = N N -2 and M > 0. If u is a positive solution of (1.2) in Ω \ {0} which satisfies lim sup x→0 |x| α u(x) = x M ,(4.57)then limx→0 |x| α u(x) = x M ,(4.58)Proof. Since the function P M is negative on (0, x M ) and positive on (x M , ∞), for any > 0 the function x → (x M -)|x| -α is a subsolution of (1.2). The proof follows as in the proof of Theorem 4.16-(2).

  to ∞ when r ↓ R and satisfies r α u R (r) ↓ x m * when r → ∞. Hence m := lim sup |x|→∞ |x| α u(x) ≤ sup |x|≥R |x| α u(x) ≤ x m * .

p- 1 p+1

 1 ) = -αKm -m p + M (αm) 2p p+1 ≥ 0. Since (4.56) holds this implies that either m = 0 or m = x m * . If m = x m * it follows by the strong maximum principle, as in the proof of Theorem 4.16, that w(t n , s) → x m * as n → ∞, uniformly on S N -1 . If m = 0, then lim |x|→∞ |x| α u(x) = 0.For any a < x m * and ρ > R such that u ∂Bρ ≤ a, we consider the problem-v rr -N -1 r v r + v p -M |v r | 2p p+1 = 0 in (ρ, ∞) v(ρ) = ρ -α a (5.9)Since the solution of-υ rr -N -1 r υ r + υ p = 0 in (ρ, ∞) υ(ρ) = ρ -α a(5.10)

Theorem 5 . 3 2 - 3 -

 5323 Let N ≥ 3, p > N N -2 and M > m * If u is a positive solution of (1.2) in R N \ B R , we have the following,1lim sup |x|→∞ |x| α u(x) = x 2,M =⇒ lim |x|→∞ |x| α u(x) = x 2,M , (5.12) If lim inf |x|→∞ |x| α u(x) = x 1,M, there exists a sequence {r n } tending to ∞ such thatlim rn→∞ r α n u(r n , s) = x 1,M ,(5.13)uniformly on S N -1 . If lim inf |x|→∞ |x| α u(x) = 0, there exists k > 0 such that lim |x|→∞ |x| N -2 u(x) = k. (5.14) Proof. By Theorem 2.6-(1) u is bounded from above by the solution u R of (1.2) in R N \ B R which tends to infinity as |x| ↓ R and satisfies lim |x|→∞ |x| α u R (x) = x 2,M . Hence m := lim inf |x|→∞ |x| α u(x) ≤ m := lim sup |x|→∞ |x| α u(x) ≤ x 2,M 1-If m = x 2,M there exists a sequence {t n } tending to ∞ and {s n } ⊂ S N -1 converging to s * such that w n (t, .) := w(t + t n , .) converges in the C 2 -topology of [-a, a] × S N -1 for any a > 0 to a solution W of (4.49) in R × S N -1 . Furthermore W achieves its maximal value m at (0, s * ), hence W t (0, s * ) = 0, ∇ W (0, s * ) = 0, ∆ W (0, s * ) ≤ 0 and W tt (0, s * ) ≤ 0. Therefore -m PM (m p-1 p+1 ) = -αKm -m p + M (αm) 2p p+1 ≥ 0. This implies that either x 1,M ≤ m ≤ x 2,M or m = 0. For the liminf the same analysis yields that -m PM ( m p-1 p+1 ) = -αK m -mp + M (α m) 2p p+1 ≤ 0,

  |x|→∞ |x| α u(x) = 0, then we deduce by Harnack inequality that there exists a sequence {r n } tending to ∞ such that lim rn→∞ r α n u(r n , s) = 0 uniformly on S N -1 .

  2), it follows by the comparison principle that u(x) ≤ |x| -α in the annuli {x :r n ≤ |x| ≤ r n }. Letting n → ∞ yields u(x) ≤ |x| -α ∀x ∈ B rn =⇒ lim sup |x|→∞ |x| α u(x) ≤ .

  2 and Theorem 5.3 hold under the following forms: For Theorem 5.2 1-either lim x→∞ |x| α u(x) = x m * , 2-or there exists k > 0 such that lim |x|→∞ |x| N -2 u(x) = k For Theorem 5.3 1-either lim x→∞ |x| α u(x) = x 2,M , 2-or lim x→∞ |x| α u(x) = x 1,M , 3-or there exists k > 0 such that lim |x|→∞ |x| N -2 u(x) = k.

  

  

  

  either µ 2 < inf{µ 1 , µ 3 }, then we can choose any d ∈ (µ 2 , inf{µ 1 , µ 3 }), (ii) or µ 3 < inf{µ 1 , µ 2 }, then we can choose any d ∈ (µ 2 , inf{µ 1 , µ 2 }). These conditions are satisfied if µ 1 > inf{µ 2 , µ 3 } which is equivalent to(3.92). If one of the above conditions is satisfied, it follows by[START_REF] Véron | Local and Global Aspects of Quasilinear Degenerate Elliptic Equations[END_REF] Corollary 1.4.5] that there exists a radial positive solution u of (1.1) in R N \ {0} which satisfies

1 √ N -1 , and (i)

  The upper estimate is obtained as follows. By Proposition 4.7 the function u is bounded from above in B 1 \ B rn by u n + max

				.31)
	By Theorem 2.4-(4) we have that		
	lim inf x→0	|x| α u(x) ≥ lim x→0	|x| α u ∞ (x) = x M .	(4.32)

|y|=1 u(y) where u n is the solution of

Estimates at infinity

3.4.1

The case q > 2p p+1 . Proof of Theorem 1.9. We recall that by Proposition A. where c = c(N, p, q) > 0, and by the maximum principle they are decreasing. Since u is continuous in B c R , υ = min{u(r) : r = R} is well defined and positive. By the maximum principle, for any n > R, u is bounded from below in B n \ B R by the solution ṽn of L p ṽn = 0 in B n \ B R , ṽn = υ on ∂B R , ṽn = 0 on ∂B n .

(3.54)

When n → ∞, ṽn ↑ ṽ∞ which satisfies L p ṽ∞ = 0 in B c R and ṽ∞ = υ on ∂B R . Then u ≥ ṽ∞ and by [START_REF] Véron | Comportement asymptotique des solutions d'équations elliptiques semi-linéaires dans R N[END_REF], ṽ∞ satisfies

(ii) lim r→∞ r N -2 ṽ∞ (r) = c > 0 if N ≥ 3 and p > N N -2 .

(3.55)

We make the change of variable (3.2) and obtain the system (3.3) satisfied by the functions t → (x(t), y(t)). Since q > 2p p+1 , σ is positive. Hence the omega-limit set of the trajectory of {(x(t), y(t))} t≥0 as t → ∞ is a non-empty compact connected set of the set of solutions of stationary solutions of (3.51), therefore lim t→∞ (x(t), y(t)) = ( , α ) where ∈ {0, x 0 }.

(3.56) Therefore if 1 < p < N N -2 we obtain (1.33), and if p ≥ N N -2 we have that = 0. If p > N N -2 , then q > N N -1 . From Lemma 3.3-(3), we have that either q < 2 and (3.29) holds, or N > 2 and (3.30) holds. However, since q > 2p p+1 , one has r -β = o(r -α ) when r → ∞, hence (3.29) does not hold and we deduce that (3.30) is verified. Finally we consider the case p = N N -2 . Then = 0 and x satisfies

2 , with c > 0, for t large enough. Hence for any > 0 there exists t > ln R such that

Singular solutions of eikonal type

Proof of Theorem 1.11. We recall that these solutions of eikonal type are the solutions which behave like r -γ near 0 or ∞. For c > 0 and A ≥ 0 we set u c,A (r) = cr -γ + A and u c = u c,0 . Then there exist a, b > 0 depending on p such that

Then Φ(X M ) = 0 and Φ achieves its minimum at

p+1 and θ < 0 there exists r 1 > 0 such that u cm is a subsolution in B r 1 \ {0} Hence ũcm = c m (r -γ -r -γ 1 ) + is a subsolution in R N \ {0}. (ii) Supersolutions. We have

(ii-a) If θ < 0, then for c ≥ X M and any A ≥ 0, u c,A is a supersolution in R N \ {0}.

(ii-b) If q > 2p p+1 and θ > 0, then for any R > 0 we take c > X M such that Φ(c) ≥ γθR σ p-q , hence L M p,q u c,A ≥ 0 in B R \ {0}. Since -pq p-q + σ p-q = q-2p p-q < 0, we take A > 0 such that

p+1 and θ > 0, then we can take c such that Φ(c) ≥ γθR σ p-q and obtain that u c,A is a supersolution in B c R . (iii) Proof of statements 1 and 2. If q > 2p p+1 and whatever is the sign of θ there exist c m ≤ c < X M < c and A > 0 such that u c ,A is a supersolution in R N \ {0} larger than the subsolution u c . By [START_REF] Véron | Local and Global Aspects of Quasilinear Degenerate Elliptic Equations[END_REF]Theorem 1.4.5] there exists a radial solution u in R N \ {0} satisfying u c ≤ u ≤ u c ,A . Its behaviour at infinity is given by Theorem 1.9. This solution is decreasing by the maximum principle and it is unique by Theorem b) is larger than another solution ũ near 0. Thus u (b) + ≥ ũ for any > 0, which implies the claim. If u satisfies (4.12), then

Again u (b) is larger than another solution ũ in a neighborhood of 0 and we end the proof as in the first case.

Remark. The method developed above allows to give uniqueness result for large solutions under some starshapedness assumption. Let G ⊂ R N be a domain with compact boundary and ρ G (x) = dist (x, ∂G), we consider the problem

Such a solution, if it exists is called a large solution.

Theorem 4.5 Assume N ≥ 1, M > 0 and p, q > 1 and Ω is a bounded domain starshaped with respect to 0. There exists at most one positive function satisfying (4.14) in one of the following case:

Proof. Let u and ũ be two positive solutions of (4.14). In the first case with

In the second case with G = Ω c , then for 0 < < 1 and

and ↑ 1 yields u ≥ ũ. This ends the proof.

If we combine the results of existence of radial singular solutions in R N \{0} with the uniqueness results of Theorem 1.15 and Theorem 4.4 we have the following:

where

Under the assumptions 1 < q ≤ 2p p+1 , the terms |x| 2 C(x) and |x|V (x) are uniformly bounded in B R 0 \ {0}. The result follows by [START_REF] Gilbarg | Elliptic Partial Differential Equations of Second Order[END_REF]Chapter 8].

The case

In this section, the results are obtained by a combination of Theorem 3.12 for existence of solutions and Theorem 4.6 for their uniqueness.

and Ω be a bounded domain containing 0. For any k > 0 there exists a unique positive function u := u k solution of (1.1) in Ω \ {0}, vanishing on ∂Ω and satisfying

Furthermore k → u k is increasing by the maximum principle and converges to a solution u ∞ of (1.1) in Ω \ {0}, vanishing on ∂Ω and satisfying

where X M is defined at (1.26), or

where x 0 , x M are the unique positive root of equation (1.4) with M = 0 and M > 0 respectively.

By Theorem 1.13-1 and Theorem 4.6, for k > 0 there exists a unique solution

All the above functions are locally bounded in Ω \ {0} and B R 2 \ {0} by Proposition A.1. Since the mappings k → u k and k → u j,k are increasing, we have, by

Then we obtain ( The main characterization of isolated singularities is the next result. (5.1)

.

(5.2)

and M < m * , then there exists k > 0 such that

Proof. The method of the proof is firstly to construct two positive radial solutions

R with value min u ∂B R for |x| = R is a subsolution smaller than u. For cases 1 and 2, we can take for supersolution the function u X M + max u ∂B R . Therefore there exist two positive radial solutions u 1 and u 2 of (1.2) in B c R with respective value min u ∂B R and max u ∂B R on ∂B R and such that

by Theorem 2.4 and Theorem 2.5. Since u 1 and u 2 satisfy either (5.1) or (5.2) in cases 1 and 2 respectively, u shares this behaviour. In case 3 with p > N N -2 the function v satisfies the same behaviour (5.3) up to the constant c > 0 which is not fixed. By Theorem 2.6-(3), u 1 and u 2 satisfy (5.3) with two different constants 0 < c 1 ≤ c 2 . In order to prove that (5.3) holds for some c ∈ [c 1 , c 2 ] we use the method introduced in [START_REF] Véron | Comportement asymptotique des solutions d'équations elliptiques semi-linéaires dans R N[END_REF]. We set u(r, s) = r -ν w(t, s) with ν = N -2 and t = ln r, then w satisfies w tt -νw t + ∆ w + e (N -p(N -2))t ν q M (w t -νw) 2 + |∇ w| 2 q 2 -w p = 0 (5.5) in [0, ∞) × S N -1 . Since w and ν q M (w t -νw) 2 + |∇ w| 2 q 2 -w p are bounded, it follows from [10, Proposition 4.1] that there exists c ≥ 0 such that w(t, .) → c uniformly on S N -1 when t → ∞. This ends the proof. The next results extend the asymptotic behaviour described in Theorem 1.9 and Theorem 1.10 to non radial solutions. The following statement shows that equation (1.1) inherits the properties of the Emden-Fowler equation L p u = 0 if 2p p+1 < q < p. 

.

(5.17)

Proof. In the first case, the solution v of L p v = 0 in B c R with value min u ∂B R on ∂B R is a subsolution smaller than u (it is obtained by minimization), and it has the behaviour expressed by (5.15). By Theorem 1.13 there exists a global positive solution ũ of (1.1) in R N \ {0} satisfying (5.15). The difficulty is that this solution may not be larger than u for |x| = R. In such a case, for a > max u ∂B R , the function ũa := ũ + a is a supersolution of (1.1) in B c R . The solution ṽ which satisfies L p ṽ = 0 in B c R with value a for |x| = R is a subsolution smaller than ũa . Hence there exists a radial solution u a of (1.1) in B c R such that u a (R) = a + ũ(R) and it dominates u in B c R . By Theorem 1.9-(1), the function u a , and therefore u, satisfies (5.15).

In the second case, We proceed as in the proof of Theorem 5.1-( 2), with the help of Theorem 1.9-(2). The function u satisfies u 1 ≤ u ≤ u 2 where u 1 and u 2 are radial solutions of (1.1) in B c R , hence u(x) ≤ C|x| 2-N . If we set w(t, s) = r ν u(r, s) with t = ln r and ν = N -2, then w satisfies

(5.18)

Since w, w t and |∇ w| are bounded, it follows by the same argument [10, Proposition 4.1] that w(t, .) → c ≥ 0 when t → ∞ and c > 0 since u is bounded from below by the solution of L p v = 0 in B c R which satisfies the same type of asymptotic behaviour with a positive limit of r N -2 v(r) when r → ∞. In the third case, it is proved in [21, Théorème 3.1] that the solution v of

R which coincide with min u ∂B R for |x| = R verifies the relation (5.17). In order to have the estimate from above, for a > 0 the function h a (x) = a|x| 2-N satisfies

Therefore, for a > 0 large enough

R with value aR 2-N for |x| = R is a subsolution of (1.1) smaller than h a it follows from [25, Theorem 1.4.5] that there exists a radial solution u a of (1.1) in B c R such that v a ≤ u a ≤ h a . If we choose a large enough so that aR 2-N ≥ max u ∂B R , then u a is larger than u in B c R . Finally, by Theorem 1.9-(3) the function u a satisfies also (5.17), which ends the proof.

In the following result we extend Theorem 1.10-(2) to the non-radial case.

Proof. We can assume that u is continuous in B c ρ for any ρ > R. For constructing a supersolution we proceed as in Theorem 4.14 using the solution υ of (1.1) on (0, ∞). The function x → υ(|x| -ρ) + δ is a supersolution 1.1 in B c ρ which is larger than u for |x| = ρ and at infinity. Hence it is larger than u in B c ρ . Letting δ → 0 yields u(x) ≤ υ(|x| -ρ) for all x > ρ.

Next, we construct a subsolution: we set c = min u ∂Bρ . For n > ρ we denote by w n the solution of

The function w n which is unique is a subsolution of 1.1 in Γ ρ,n where it satisfies w n ≤ υ(|x| -ρ). By Theorem 4.1 there exists a solution u n of (1.1) in Γ ρ,n which coincides with w n on ∂Γ ρ,n and is radial as It follows from Theorem 1.10-(2) that u ∞ satisfies (5.19), as υ does it too. This ends the proof.

A Appendix

A.1 The a priori estimates

The following a priori estimates proved in [START_REF] Bidaut-Véron | Measure data problems for a class of elliptic equations with mixed absorption-reaction[END_REF], [START_REF] Bidaut-Véron | Boundary singular solutions of a class of equations with mixed absorption-reaction[END_REF] are fundamental throughout the paper. They do not depend on the sign of q -2p p+1 . Proposition A.1 Let Ω ⊂ R N be a domain containing 0, 1 < q < p and M ∈ R.

) is a nonnegative solution of (1.1) in Ω \ {0}, then there holds for any 0 < R ≤ 1 2 dist (x, ∂Ω):

where

where c 2 = c 2 (N, p) > 0 and c 3 = c 3 (N, q) > 0.

When u is a signed solution the following estimate holds [8, Corollary 2.2].

Proposition A.2 Under the assumptions on Ω, p and q of Proposition A.1 and assuming that M > 0, any signed solution u of (4.20) in Ω \ {0} satisfies for any 0 < R ≤ 1 2 dist (x, ∂Ω),

for all x ∈ B R \ {0}, where c 1 = c 1 (N, p, q) > 0, c 2 = c 2 (N, p) > 0 and c 4 = c 2 (N, p, q) > 0.

Using scaling method when 1 < q ≤ 2 and the Bernstein method when 1 < q < p, it is proved in [7, Proposition 2.3, Corollary 2.5] a gradient estimate that we recall.

Remark. If u is a signed solution, the Bernstein method that we developed in [START_REF] Bidaut-Véron | Measure data problems for a class of elliptic equations with mixed absorption-reaction[END_REF], [START_REF] Bidaut-Véron | Boundary singular solutions of a class of equations with mixed absorption-reaction[END_REF] cannot be applied, however the scaling method can be used if 1 < q < p. In the particular case 1 < q ≤ 2p p+1 there holds in a neighborhood of x = 0,

A.2 Equilibrium with a simple eigenvalue

Consider the system in R 2

x t = ax + by + f (x, y) y t = cx + dy + g(x, y) (A. Lemma A.4 Under the above assumptions there exist at least two trajectories T1 = (x 1 , ỹ1 ) and T2 = (x 2 , ỹ2 ) tangent to the axis 0ỹ converging to (0, 0) when t → -∞, one with ỹ1 (t) > 0, the other with ỹ2 (t) < 0 for t ≤ -T . Any trajectory T = {(x, ỹ)} t≤T converging to (0, 0) when t → -∞ and tangent at (0, 0) to the axis 0ỹ satisfies for some = 0 lim t→-∞ e -µ 2 t ỹ(t) = .

(A.10)

Proof. The existence of the solutions tangent to the axis 0ỹ is classical. Consider a (x, ỹ) converging to (0, 0) tangentialy to 0ỹ and such that ỹ(t) > 0 for t ≤ -T . with c > c, since x(t) ỹ(t) → 0 when t → -∞. Put υ(t) = e -µ 2 t ỹ(t). Then |υ t (t)| = |g(x(t), ỹ(t))|e -µ 2 t ≤ ce -µ 2 t+sµ 2 t υ s (t).

Therefore υ 1-s s -1 t ≤ ce µ 2 (s-1)t =⇒ υ 1-s t ∈ L 1 (-∞, T ) (A.11)

Then υ 1-s (t) admits a nonnegative limit when t → -∞. If = 0, it would follow from (A.11) that e µ 2 t υ(t) s-1 ≥ c =⇒ ỹ(t) ≥ C > 0, which contradict the fact that ỹ(t) → 0.

Remark. This result is easily extendable to higher dimension, where A is a N × N matrix with a simple eigenvalue µ > 0 and such that R N = ker(A -µI) ⊕ E, where E is A-invariant. Consider the system

where |F (X)| ≤ c|X| s in B 1 for some s > 1. If X = X 1 +X where X 1 ∈ ker(A-µI) and X ∈ E, then there exist two tajectories X j (t) of (A.12) admitting a limit direction τ ∈ ker(A -µI) \ {0} and , j=1,2, and they satisfy for some a = 0, lim t→-∞ e -µt X(t) = aτ. (A.13)