N
N

N

HAL

open science

Singular solutions of some elliptic equations involving

mixed absorption-reaction

Marie-Francoise Bidaut-Véron, Marta Garcia-Huidobro, Laurent Véron

» To cite this version:

Marie-Francoise Bidaut-Véron, Marta Garcia-Huidobro, Laurent Véron. Singular solutions of some
elliptic equations involving mixed absorption-reaction. 2021. hal-03305263v1

HAL Id: hal-03305263
https://hal.science/hal-03305263v1

Preprint submitted on 28 Jul 2021 (v1), last revised 27 Aug 2021 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.


https://hal.science/hal-03305263v1
https://hal.archives-ouvertes.fr

Singular solutions of some elliptic equations
involving mixed absorption-reaction

Marie-Francoise Bidaut-Véron;
Marta Garcia-Huidobro |
Laurent Véron *

Abstract

We study properties of nonnegative functions satisfying (E) —Au + u? — M|Vu|? = 0 is
a domain of RY when p > 1, M > 0 and 1 < ¢ < p. We concentrate our analysis on the
solutions of (E) with an isolated singularity, or in an exterior domain, or in the whole space.
The existence of such solutions and their behaviours depend strongly on the values of the
exponents p and ¢ and in particular according to the sign of g — %, and when ¢ = %’
also on the value of the parameter M which becomes a key element. The description of the
different behaviours is made possible by a sharp analysis of the radial solutions of (E).
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1 Introduction

The aim of this article is to study existence and properties of nonnegative singular
solutions of the following equation

M, . —
L= —Au+uP — M|Vul? =0 (1.1)

in a domain Q of RY or in RY (N > 2), where M is a real number and p > ¢ > 1.

In the case M < 0 many results dealing with isolated singularities have been
obtained in [17]. Therefore we will mainly concentrate on the case M > 0 where the
two nonlinear terms act in a opposite direction: one is an absorption and the other
is a source. Furthermore they are not of the same type, one involves the function
and the other its gradient.

First we consider the case q = 1%' Then (1.1) becomes
2p_
LM, wi=—Au+uP — M|Vu|r+ =0, (1.2)
Popt1

and this equation is invariant under the scaling transformation Ty, £ > 0, defined by
Tolu](x) = (u(lx). (1.3)

In that case there may exist self-similar solutions, necessarily under the form u(z) =
u(r,s) = r~%(s), where (r,s) € Ry x S¥~1 are the spherical coordinates in RY.
The function w is a solution of the following equation on S™V~1

—Aw+ Uy pw + wP — M (aPw? + |V'w|2)# =0, (1.4)

where A’ and V’ denote respectively the Laplace-Beltrami operator and the tangen-
tial gradient on SN~1, identified with the covariant gradient on SN=1 for the metric
induced by the standard one in RY, and where

o= p— and Iy, = oK (1.5)
with (N —9) N
J— p J—
K=N-2—-a=-——F—F""— 1.6
a N3 (1.6)
The nonzero constant solutions of (1.4) are the positive zeros of the function
! 2 p-1
P, (z) =27 — MarTzril + Uy ). (1.7)
The following value of the parameter M, which exists only if N > 3 and p > %,
plays an important role in the study of (1.4):
(N —2)p— N\ w1
— — P
ot m ) (A== ) e
p

The separable solutions obtained in the next theorem are at the core of the process
of describing the behaviour of positive solutions of (1.1) near an isolated singularity
or in an exterior domain of RY.



Theorem 1.1 Let p > 1, then

1- If M < 0 equation (1.4) admits a positive solution if and only if N =2 or N >3
and p < % Furthermore this solution is constant, unique and denoted by x,,.
2-If M >0 and p < % if N >3, orany p>1if N =2, equation (1.4) admits a
unique positive solution. It is constant and denoted by x,, .

S-If N >3, p> % and M = m* there exists one positive solution to (1.4). It is
constant and denoted by T.,».

4-If N >3, p> % and 0 < M < m™* there exists no positive solution to (1.4).
5-If N > 3, p > % and M > m* there exist two constant positive solutions

Ty, <T,,, to(1.4) and any positive solution w satisfies

0< éIﬁ]]rlvi_nlw <z < max w <y, (1.9)

Furthermore, if

m* < M < i = (p+1)2<(N_2)p2_(N+2)>pil, (1.10)
2 4p?
then z, \, and x, ,, are the only positive solutions, and
~ _p_ _N
WZ > <p;p1) a p—gl > x:; <NA_, 1>2<N1) > 1. (1.11)

All the singular positive solutions of (1.2) are not self-similar since there exists
solutions with a weak singularity, which means

(7) lim |z|N " 2u(z) = k it N >3,

r=0 B (1.12)
(i) lir% |In \azH u(x) =k it N =2.

T

Thanks to the existence of positive radial sigular solutions in R\ {0} we are able
to prove the existence of non-radial positive solution in a punctured bounded domain
with prescribed boundary value. This is a very general tool which is developed in
Section 4 for obtaining singular solutions, and as an example we prove the following
result.

Theorem 1.2 Let Q2 be a bounded smooth domain of RN (N > 3) containing 0 and
¢ eEWL®00Q). If1 <p< % then for any real M > 0 and k > 0 there exists a
minimal positive solution uy of (1.2) in Q\{0} satisfying (1.12) and such that u = ¢
on 02. Furthermore, k — uy is increasing and ug T Uso where U is the minimal
solution of (1.2) in Q\ {0} satisfying (1.12), such that w = ¢ on I and satisfying

2
ig% |z|PTus(z) =z, (1.13)



If p > {5 it is proved in [7] that there exists no positive solution of (1.2) with
weak smgularlty at 0 and that any positive solution in €\ {0} can be extended as a
weak solution in whole €). However weak solutions may be unbounded. The different
kinds of singular solutions play a key role for describing the behaviour near 0 of any
positive solution of (1.2) in ©\ {0}. If Q is replaced by R¥ there holds:

Theorem 1.3 Let N >3 and 1 <p < % Then for any real M > 0 and k > 0
there exists a unique positive solution uy of (1.2) in RN \ {0} satisfying (1.12) and

lim |x\P Tug(z) = z,,. (1.14)

|z|—o00
Furthermore uy, is radial and ug T ug, as k — oo, where ug (x) =z, |x|7*.
When p > 2 new phenomena appear.

Theorem 1.4 Let N > 3, p= NL—z and M > 0. Then the function

N—1\ N2
tay, (@) = 2 227N = (V= 2)M %) o2

is the unique radial positive solution of (1.2) in RN\{0} satisfying llilm 2|V 2u(x) =
z|—0

- Moreover there ezists a positive solution ug of (1.2) in RN \ {0} satisfying

7 lim |z 72| In|z||N u.(z 1

(9) tim, ol In ol Y tus (2) = e -
N 2 :

Gyl el () = ((v—2)m " ) .

Furthermore u, is the unique positive solution (not only radial) satisfying (1.15).

The proof of existence is based upon a dynamical system formulation of the
equation, see (2.16). Such a formulation, as well as similar ones, will be much used
in the sequel.

Theorem 1.5 Let N > 3 and p > %
1- If M > m*, besides the two self-similar solutions Uz, (7 = 1,2), there exists a

radial positive solution us of (1.2) in RN \ {0}, unique among the radial ones up to
the scaling transformation Ty, satisfying

lim |z|%us(z) =2,,, and lim |z|%s(z) =2,,,. (1.16)
|z|—0 ’ |z| =00 ’

For any k > 0 there exists also a radial positive solution u of (1.2) in RN \ {0}
satisfying

lim |z|%u(z) =

|| —0 LM

and lim |z|N2u(z) =k > 0. (1.17)

|z| =00



It is unique among the radial positive solutions satisfying (1.17). Furthermore
Tg[uc] = Ugpa+2—N .
2- If M = m*, the self-similar solution Uy () = Ty« |x|~% is the unique among the
radial positive solutions of (1.2) in RN \ {0} satisfying

lim |z|uw(z) = zp+  and  lim |z|%u(z) =z .. (1.18)
Furthermore, for any k > 0 there exists also a radial positive solution uy of (1.2) in
RN\ {0} satisfying (1.17) with x, ,, replaced by Ty It is unique among the positive
radial solutions satisfying (1.17) and it satisfies the same scaling invariance as (i).

The previous results allow to describe the behaviour at infinity of radial positive
solutions of (1.2) in the complement of a ball. The next result will be partially
extended to non-radial solutions in Section 5.

Proposition 1.6 Let N > 1, p > 1, M > 0 and u be a positive radial solution of
(1.2) in RNV \ B for some R > 0.

1-IfN=2,0or N>3and1<p< 5, then lim |z|u(z)=2z,,.
|z|—o0
2-If N > 3 and p = 5, then |$1|iinoo |x|N_2(ln|x|)¥u(x) = <%)N72 or
lirn|gc|%oo |‘T|N_2u(x) =Ty
3-If N >3 and p > %5,
3-a- if 0 < M < m*, then lim |z|N"2u(x) =k for some k > 0.

|z| =00

3-b- if M = m*, then either lim |z|%u(z) = T, or lim ¥ "2u(r) = k for some

|| =00 T—00
k> 0.
2-c- if M > m*, then either lim |z|%u(z) = x,,,, or lim |z|%u(z) = z,,, or
|z| =00 ’ x| =00 ’
lim |z|N"2u(z) = k for some k > 0.
|| —00

Neaxt, we consider equation (1.1) when q # 1%. In that case, the asymptotics of
the solutions are governed either by the Emden-Fowler operator

u— Ly = —Au+uP, (1.19)

or by the Riccati operator
u»—>R(]]\4u = —Au— M|Vu|?, (1.20)

or by the eikonal operator
u nglu =uP — M|Vu|?. (1.21)



When 1 < g < }% the governing equation is the Emden-Fowler equation £,u = 0

near a singularity and the Riccati equation Ré\/l u = 0 at infinity. When 1% < q<p,
the situation is reversed. The following exponents play a crucial role

2 2 —
a=——, = 2 and v = 4 if q # p, (1.22)
p—1 q-— P—q
and

o= (p+1)q—2p. (1.23)

We also define N1 N
K= (_)ql_ if ¢>1, (1.24)

q_

and
(N-1)g—(N-2)p

p—q

0:

=v+2—-Nif ¢#p. (1.25)

Theorem 1.7 Let N > 1, M > 0 and z% < q < p. If there exists a radial positive
solution w of (1.1) in Bg \ {0} which is unbounded near 0, then

1- either )
hH(l) |z|"u(z) = X,, where X,, = (M~7)r=a, (1.26)
T—
2- or (1.26) does not hold. In that case ¢ < 2, N > 2 and the following situation
0CCuTs:

2-a- if % < q <2, then
. 8 1 /k 1
hH[l) ’.’B‘ u(:r) = ‘EM where €JVI ) <7> (Mpyq)‘Flv (1'27)
T—

2-b- if ¢ = 2, then

N -2 1
lim | In |z|| " u(z) = if N>3, or lim(In|ln|z||)u(z) = — if N=2,
z—0 z—0 M

M
(1.28)

2-c- if ¢ < %, then there exists k > 0 such that

lim |z|Y"2u(z) =k if N >3 and lil%(—ln|x|)_1u(x) =k if N=2, (1.29)
d

z—0

2-d- if g = %, then

1 N -1\
- : N-1 T e TRV
(1) iln(1)||x]1n|a:|\ u(z) = N_1 < > if N >3

(1.30)
(14) lin% |In ||| u(z) =k >0 if N =2
T—

In the case 1 < g < % the description of isolated singularities is simpler and is
similar to the one of the positive solutions of (1.19).



'Theoren1]_8 Let M >0,1<p< {5 i N>3, anyp>1if N =12, and
l1<g< +1 Assume that there exists a radial positive solution u of (1.1) in Br\{0}
which s unbounded near 0. Then the following alternative holds:

1- either

_1
timn [2|*u(z) = 2, := (o] K|)7T, (1.31)
2-or N > 2 and
() hmmWQ(m=k>0 if N >3
T | (1.32)
(14) hII(l) |In|z|| " u(x) =k >0 if N =
T—

It is noticeable that all the behaviours described in the previous two theorems
occur. The behaviour at infinity of positive solutlons of (1.1) in B§% inherits this

complexity due to the value of ¢ with respect to +1’ and the situation is less

intricated in the case o3 < q<p than in the case 1 < ¢ < p+1

Theorem 1.9 Let N > 1, M > 0 and Z% < q < p. Assume that there exists a
radial positive solution u of (1.1) in B§. Then
I-Ifl<p< % (any p > 1if N =1,2), there holds

lim |z|%(z) = z,. (1.33)

|z| =00
2-If N >3 and p > %, there holds

lim |2V 2u(z) =k > 0. (1.34)

|z|—o00

S-If N >3 andp= there holds

N 27
5 |z|N2u(z) = N-2
i (1) 7 ol 2uo) ( ﬁ) | (1.35)

Theorem 1.10 Let N > 2, M > 0 and 1 < q < 1%' If u is a radial positive
solution of (1.1) in B, there holds.
1- If ¢ > %, one of the three following situations occurs:

1-a- either
lim |z[Tu(x) = X,,, (1.36)
|z]—o00
1-b- or
lim[z|%u(z) = €, (1.37)
|z|—o00
1-c- or
‘ lllm 2|V 2u(z) = k > 0. (1.38)
r|—0o0

2-IfN=1orl<q< %, then only (1.36) can occur.

8



The existence of local or global singular solutions or asymptotic solutions with
behaviour like |z|~7 (eikonal type) or like |#|~” (Riccati type) near 0 or co will be
proved in Section 3.6. For example we prove the following result by the method of
sub and super solutions.

Theorem 1.11 Let N >1,p>1 and M > 0.

1- If 1 < q < p, then there exists a unique global positive solution u of (1.1)
such that hm |z|Tu(x) = X,,, and its behaviour at infinity is given by Theorem 1.9.

Moreover thzs solution s radial, and it is explicit if N > 3 and q = %. Further-

more, for any bounded smooth domain 2 containing 0 there exists a positive solution
in Q\ {0} satisfying (1.1) and vanishing on OS.

Ifmax{l = 2)p} <g<
u in Bf satzsfymg (1.36).

p+1, then for any R > 0 there exists a positive solution

Introducing a new powerful autonomous system of order 3, we can construct
local solutions with behaviour similar ||~ near 0.

Theorem 1.12 Let N >2,p>1 and M > 0.
1- If max {%, %} < ¢ < min{2,p}. Then there exists at least one radial positive
solutions u of (1.1) in a neighborhood of 0 such that hH(lJ |zPu(z) = €,,.

T—>

2- If N 1 <¢q< 1% there exists a unique positive radial solution defined in a

neighborhood of infinity satisfying such that | l‘im lz[Pu(z) = &, - There exists no
T|—00
radial positive solution in RN \ {0} with such a behaviour at infinity.

By a delicate method of super and sub solutions, we also prove the existence
of radial positive singular solutions u of (1.1) in R \ {0} satisfying (1.37) under a
more restrictive assumptions on the exponents p and q.

When p < 25 we show the existence of the solutions of (1.1) in RV \ {0},
or in a neighborhood of 0, or at infinity which are described in Theorem 1.8 and
Theorem 1.9. Such solutions are associated to the Emden-Fowler operator.

Theorem113 Let M >0, N>3and 1 <p< NNQ, or N=1,2 andp > 1.
1-If1 < q < ;5 there exists a unique positive solution of (1.1) in RN\ {0} satisfying

(7) 1im |z|%u(x) = xg
(i) | 1‘1m [ u(z) = X,,. (1.39)

Furthermore this solution is radial and |z|“u(z) > xg in RN\ {0}. IfQ is a bounded
domain containing 0 there exists a positive solution u of (1.1) in Q\ {0} satisfying



(1.39)-(i) and vanishing on 0SQ.

2- If % < q < p there exists a positive radial solution of (1.1) in RN\ {0} satisfying
(i lim [ Tu(z) = X,
(i) Jim el u(z) = o, (1.40)
Tr|—0o0

Moreover this solution is unique among all the positive solutions satisfying (1.40).

We also give conditions on p and q for the existence of a positive radial solution
of (1.1) in RV \ {0}, necessarily singular at 0, with a behaviour at 0 given by (1.26),
(1.31) or (1.27), and an asymptotic behaviour at infinity given by (1.38).

The last section of the article is devoted to non radial results. We first give
a general existence statement which allows to construct positive singular solutions
of (1.1) in a punctured bounded domain with prescribed boundary value, provided
thete exists a radial singular solution in R™ \ {0}. This singular solution has been
obtained by the phase plane analysis of Section 2 in the case ¢ = ]%, and by the
radial analysis of section 3 in the other cases.

Theorem 1.14 Let Q C Br C RY be a bounded smooth domain containing 0, M
a real number, p > 1 and 1 < g < 2. If there exists a radial positive and decreasing
function v defined in Br \ {0} and satisfying L)% v =0 in @\ {0} and

lim v(x) = oo,
z—0

then for any nonnegative function ¢ € Wh°(2), there exists a solution u of [I%]u =
0 in Q\ {0} satisfying u = ¢ on O and

lim u(x) = oo.
z—0

Furthermore there holds

() ~max ()4 < (@) < v(@)+max(6(x)—v(z)) s for allw € Q\{0}. (141)

A second key result deals with the uniqueness of positive solutions in R \ {0}
or in a punctured bounded domain  \ {0} starshaped with respect to 0. Using a
general scaling method we prove the following

Theorem 1.15 Assume N >2, p>1,1<q<2 and M > 0. Let a such that

(2) 0<a<pB ifg< p}pl (1.4
(11) B <a ifq>

There exists at most one positive solution of (1.1) in RN \ {0} satisfying

ilil’(l) |z|*(— In|z|)%u(z) = A (1.43)

10



where A is some positive constant and a is any real number. If Q is a bounded domain
containing 0 and starshaped with respect to 0 and ¢ € C(0N2) is nonnegative, there
is at most one positive solution u of (1.1) in Q\ {0} satisfying (1.43) with value ¢
on 0.

This result admits various extensions valid the exponent a above is equal to 5.
With the help of these results we characterize all the local positive solutions of (1.1),
not necessarily radial, either near 0 or near co. An important tool is the intensive
use of the tangency property of graphs of global solutions which has been introduced
in [15] for the studying of isolated singularities of p-harmonic functions.

Acknowledgements. This article has been prepared with the support of the
FONDECYT grants 1210241 and 1190102 for the three authors.
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2 The case ¢ = s

2.1 The equation on the sphere

The existence of particular solutions of (1.4), and eventually their uniqueness, plays a
key role in the description of the behaviour of all the solutions. Due to the invariance
of the equation under the transformations Ty these natural particular solutions are
the ones which are self-similar, i.e. invariant by these transformations. In spherical
coordinates (r,s) € Ry x SV~1 they endow the form (r,s) — u(r,s) = r~%w(s),
and w is a solution of (1.4). Since we are dealing with nonnegative solutions, by
the strong maximum principle they are either positive or identically zero. This fact
does not depend on the sign of M.

2.1.1 Proof of Theorem 1.1: constant positive solutions
Assume M < 0 and w is a nonnegative solution of (1.4). Multiplying the equation
by w and integrating over SN yields

/ <\V'w\2 + Iy pw? + WPt — M (a?w? + \V’w]Q)ﬁ w) ds = 0.
GN-1

N
N=2’

For any M, constant positive solutions are the positive roots of P, (x) = 0. If

Since £, > 0 if and only if p > we infer the non-existence statement 1.

—1 ~
we set z = x 71, P, (z) = 0 is equivalent to P, (z) = 0 where

2
P, (2) = 2PT — Motz + INp-

~ 2 ~
Since P (2) = (p+1)2P — Ma#+T the minimum of P,, on R, is achieved at z =0
1

i, N
it M <0, or at 29 = (z%)p art1 if M > 0. In the first case the function P,

is increasing on (0,00). It vanishes therein if and only if P,,(0) = x, < 0, or

11



equivalently 1 < p < % In the second case, 75M is decreasing on (0, zp9) and

increasing on (zp, 00). Its minimal value is

TR A N A\ B
~ B _ Mo\ _ D m p (M O\ #
Fuulzo) = Eup p<p+ 1) RERNCESIE ((p+ 1) <p+1> ) 2

If p < &5, then P, (z0) < P

> (0) = €, <0, hence P,, admits a unique positive
zero and so does P,,. This gives the existence of x,, in case 2.

Ifp> %, then 75M (0) = £np > 0. We obtain the existence of constant solutions
in 3, 4 and 5 according M > m*, M =m* and 0 < M < m*. O

2.1.2 Proof of Theorem 1.1: positive solutions

Let w be a nonnegative solution of (1.4). By regularity it is C? and either positive or
identically 0. If it is not the case, we denote by W and w respectively the maximum
and the minimum of w on S™¥~!. There holds P,, (@) < 0 and P,, (w) > 0, and if we

—1 -1 ~ ~
set wrH = Z and gzﬁ = z, we have that P, (%) <0 and P,,(z) > 0.

1- First we consider the case where M < 0and 1 <p < % Since P,, is increasing

on Ry we deduce w =w =w =z,,.

2- Next we assume M > 0 and p < %, then 75M is increasing on (yp,00). Hence
p—1 p—1

it is negative on [0, z%") and positive on (z

finally w =z,,.

3-Ifp > % and M = m*, Pp,« is positive on R\ {z;,+ }. This implies @ < xy» < w

and finally w = x,».

4- If p > % and M < m*, Py~ is positive on R*, hence there exists no positive

solution.

5- Finally, if p > 5 and M > m*, P,, is positive on (0,2, ,,) U (z,,,,00) and

negative on (x, ,,,,,,). This implies (1.9). The proof of the second assertion is

more involved. Set z = |V'w|? and y = a?w? + 22. Then

,00). This implies W < z,, < w and

Aw=aKw+ wP — My#

By Weitzenbock’s formula

1
iA/Z = |Hess(w) > + (V' A'w, V'w) + Riccy(V'w, V'w), (2.2)
where Hess(w) is the Hessian and Riceg is the curvature 2-tensor on SV ~1. In that
case we have that Riccy = (N — 2)g. By Schwarz inequality

1

|Hess(w)|? > N1

(A'w)?,
therefore, replacing A’w by its value, we obtain the inequality

1 1 Mp _ 1
fQA’z + (N —-2)z+ N1 (Aw)? + (oK + pwP1)z — }Tply e (V'y,V'w) <0.
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Since V'z = V'y — 202wV'w we infer
1 2Mp _ 1 1
—EA/Z + <N -2 + aK —i—pwp*l — 1?];:1/ P+1w> z+ ﬁ(A/W)2
M

— IT])ly_P%<V’z,V’w> <0.

Let s € SV~! where z is maximal. Then V’z(sg) = 0 and A’z(sg) < 0. Hence at
s = sq there holds

2Mpa?
aK + N — 2+ pwP~t — i — | 2
(p+1)(aPw? + z)vH1

1 2 N\2
—&—m(aKw—&—wp—MyPil) SO

Therefore

2 —1
<QK+JV_2+pM?1_2Mwwﬁw@1)

ptl (2.3)
1 p \2
iy (oK o e ) <0
Set
2M a%
F(t) = ptPt — SEPYT LN~ 24 aK
p+1
p—1

1 p—1
and tg = wﬁ(so). If w is non-constant, z(sg) > 0, hence F(tg) <0.. If t; = 2}/,
for i = 1,2, there holds

2
tfﬂ — 2Mparf1ti + aK =0,

hence
NPt 2 p+1 _ _plp—1) pia L, 2K
F(t;) = pt; pﬂ(aKHi )+N 2+aK = p— LN -2 T
Since
2Mpaiit
F'(t)=plp+ 1)t - ———,
(t)=p(p+1) ]
1
Fisminimalfortzh:(%)pap% and
oM 7
P
Ft)=N-2+aK —p? | —— a? < F(ty) <0. (2.4)
) #(Gre) s s
This implies
_Db
Bt > (N2ak ) 2.5
(p+1) P

13



and equivalently M > 7 where m is defined in (1.10). Therefore, if M < m there
cannot exist non-constant positive solution. In order to prove (1.11) we first notice
that if p > %, then

(N = 2)p* — (N +2)

1.
N-2p-nN P
Therefore .
m P +1 (p+1\rtt
m* 2 2p ’

_p_
By taking the logarithm it is easy to check that the function p — & +1 <IL1> s

2 2p
increasing, hence the right-hand side of the previous inequality is minorized by
N—1/N-1\7
Oy = —— (—— | 2.6
= ) (2.6

which is the desired estimate. Notice that 3 ~ 1.47 and 6y decreases to 1 when
N — 0. O

Remark. The following monotonicity properties of the points P,, are straightfor-
ward: in cases (i) and (ii) z,, is increasing with M. In case (iii) M — =z, ,, is

decreasing while M + x, ,, is increasing. Furthermore, if M’ > M > m*,

Ty < Ty < T < Ty, <X (2.7)

1,M’ 2,M'"

The value of z,,+ is explicit

We end this section by a result dealing with bifurcation from constant solutions.

Theorem 2.1 When M > m* the solution x,,,, j = 1,2, is never a bifurcation
point in the sense that the linearized equation at this point is singular.

Proof. If we look for solutions of (1.4) under the form w =z, |, +€¢1 where ¢}, is an
eigenfunction of —A’ in H'(S™V~!) associated to the eigenvalue \y = k(N — 2 + k),
we obtain that

1
A+ aK +prP 1 — 2P i ng“ =0 (2.9)
JM p+ 1 7»M .

We recall that P,, is defined in (1.7). If Q,, () = 2P,,(z), then (2.9) is equivalent
to
Ao+, P (x,,,) =0 (2.10)

We know that P! (z,,,) > 0, then for any k € N* identity (2.9) is impossible with
J = 2. Concerning the case j = 1, (2.9) combined with P, (z, ,,) = 0 and the value
of A\; yields

p—1

—1 2p p—1
A — 2K + p(pl)al’fl Mz?h =0, (2.11)

D+
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which never occurs when k > 2 because of the value of A\;,. When k = 1, since
Py (7, ) = 0 there holds

2p %
Mar+izly > aK

thus (2.11) yields
2
N-1-—K<0<=pN-1)+1+a<0,
p+1

contradiction. O

2.2 Radial solutions

In this section we study in detail the nonnegative solutions of the ordinary differential

equation
, N-—1

2
W+ |ufP = M |41 = 0, (2.12)

when p > 1. Because of the scaling invariance (1.3) the equation can be transformed
into an autonomous equation

u(r) =r"%(t), t=Inr. (2.13)
Then z(t) satisfies

1 27p
xy + Ly — aKx — |z|P™x + M |ax — x4|p+1 =0, (2.14)

(N—2)p—N —N_9

o1 — «a and where we set

where we recall that K =

_(N=-2)p—(N+2)
L= o =K —o. (2.15)

If we set /(1) = —r—(@+tDy(¢), then (2.12) is equivalent to

Ty =T —Y

L 2p (2.16)
ye = —Ky — |[z[P7 2z + M|y[»+1.

Since we are interested in positive u we restrict to solutions of (2.16) in the half-space
R2 = {(z,y) € R? : 2 > 0} = Q1 U Q4 where

Q1= {(z,y) eR% :y >0}
is the first quadrant and

Qi ={(z,y) eRL 1y <0}

is the fourth quadrant. The regular solutions of (2.12) (with u(0) = ug > 0 and
u/(0) = 0) are increasing near r = 0, so their trajectory 77 := {(z(¢),y(t))} lies in
Q4 as t — —oo. The solutions defined in a neighborhood of » = 0 and unbounded
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near 0 are decreasing, so their trajectory lie in Q1 as ¢ — —oo. The solutions defined
near r = oo are decreasing, so their trajectory remain in Q1 as t — oo.

Theorem 1.1 can be reformulated in the following way:

1-If M <0and 1l <p< %, the only non-trivial equilibrium in @i, s P, =

(x,,,ax,,). Ifp> % there exists no non-trivial equilibrium in this region.

2-If1 <p < % and M > 0, the only non-trivial equilibrium in Ri is P, =
(:'Ulb17ax]VI)'

3-Ifp > NL and M > m*, there exist two non-trivial equilibria in Ri, P . =
M

1,M
= (z,,,,0r

2,M > 2,M)'

4- If p > NA_TZ and M = m*, there exists one non-trivial equilibria in Ri, Py =

5-Ifp > % and 0 < M < m* there exists no non-trivial equilibrium in @i.

We also recall the classical result concerning regular solutions, not only in the

case ¢ = z%'

Proposition 2.2 Let N > 1,1 < q<pand M > 0. Then for any a > 0 there exists
a unique radial mazimal positive solution u of (1.1) satisfying u(0) = a, u'(0) = 0.
This solution denoted by uy,) is defined in Br, where R = R, > 0, and it satisfies
lim U[a] = Q.

|zt R

Proof. In the case M = 0 the result is a standard combination of Cauchy-Lipschitz
theorem with the Keller-Osserman estimate. In the case M > 0 the proof can be
obtained in a slightly similar way using also Proposition A.1. See also [2], [24] and
[1] for many extensions concerning these regular (or large) solutions. |

2.2.1 Linearisation at (0,0)

The linearization at (0,0) is given by the system

Ty =axr —Y

2.17
y=—Ky (217)

with eigenvalues \y = —K, Ay = « and corresponding eigenvectors & = (1, N — 2)
and & = (1,0) if K # —a or equivalently N # 2. If N =2, \; = Ay = «, the only
eigenspace is span(&2). In any cases Aa — A} = N — 2. There exists one trajectory
located in Q4 of the linearized system converging to 0 when ¢ — —oo. To this trajec-
tory is associated a trajectory 7, of (2.16) such that (z(t), y(t)) = c (e, —+eleT D)
when ¢t — —oo. These solutions are associated to the one parameter family of regular
solutions mentioned above with u(0) = uy and u/(0) = 0.

(i) Assume first that N > 3.
If p < &5 then K < 0 and (0,0) is a source. Then all trajectories of (2.17) defined
in a neighborhood of (0,0) converge to this point when ¢ — —oco. Besides the
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trajectory 7, all the other trajectories converging to zero when t — —oo start in Q1
with initial slope N — 2. They satisfy 2(t) ~ ae™%* for some a > 0 by Lemma A.4.
This means that ¥ ~2u(r) — a when r — 0.

If p > %, then K > 0 and (0,0) is a saddle point. The trajectory 7, converges to
(0,0) at —oo. There is also the unique trajectory T which converges to (0,0) when
t — oo. Their slope at (0,0) is N —2 and they correspond to solutions u(r) ~ cr?=V
when r — oc.

If p= %, then K = 0. Besides the regular trajectory which always exists, there
exists an invariant trajectory passing through (0,0), with slope N —2, by the theorem
of the central manifold. We will see later on that it converges to (0,0) as t — —oc.

(ii) Assume now that N = 1 or 2 there still exists the regular trajectory 7,.

If N =1, then \; = % > Ag. There exist infinitely many trajectories different
from 7, converging to (0,0) at —oo, in @1 or @4, corresponding to solutions such
that u(0) = up > 0 and «/(0) = a € R\ {0}. There exists one trajectory converging
to (0,0) at —oo with slope —1 and located in Q4. It corresponds to solutions such
that u(0) = 0 and «/(0) > 0.

If N = 2, then A\ = Ay = a. The point (0,0) is a degenerate node. All the
trajectories in a neighborhood of (0,0) tend to (0,0) when ¢ — —oo and are tangent
to £&1. However they behave like ¢(—t)~! for any ¢ > 0. They correspond to solutions
u such that }i_I)I(I)(— In7) " tu(r) = a > 0.

2.2.2 Linearisation at the non-trivial equilibrium points

Lemma 2.3 Z—If1<p§% and M > 0, 0r1<p<% and M =0, P,, is a
saddle point.

2-If p > % and M >m*, P, ,, is a node point and a source and P, ,, is a saddle

1,M M
point.

3-Ifp > % and M = m*, P_. is not hyperbolic. One eigenvalue is N — 2 and
the other is 0.

Proof. Set y,, = ax,,. In view of (1.7), y,, satisfies

p—1

a~PyPt - MysT + K = 0. (2.18)
Setting x = z,, + T, y = y,, + U, the linearized equation at (z,,,y,,) is

T =ar —yY

_ 1 o _ 2.19
Yy, = —prt 1T + <ij\ﬁ)yﬂ+l - K) 7. (2.19)
The characteristic polynomial of the corresponding matrix is
2Mp 2 2Mp p—1
T, (X)=X%—|—yi"' =L)X +2K - ——yi". 2.20
yM( ) <p+1yM > + p+1yzv1 ( )
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1-Ifp < 2 and M > 0,orp < N 5 and M = 0, P,, is unique. Since either K <0
and M > 0 or K <0 and M = 0, the product of the roots is negative. Hence P,, is

a saddle point.

2-3- Next we assume N > 3 and M > m*. The sum of the roots of T}, (X) is equal
to

2Mp i 2p p—1
—_— —L="(a PP 1+ K)-L>"—K+a>0.
P ly]V[ p+1 (a Yu ) p+1 @

Concerning the product II(y,,) of the roots, we deduce from (2.3) that T;, . (0) =0
hence II(y,+) = 0. Since by (2.18)

2Mp ¥ 2K 2p

I 99K — —~ p+1_ —p, p—1
(Yar) o L2 U il LIRS
we infer that for M > m*,
H(y2,M) < H(ym*) =0< H(y1,M)’ (2'21)

Hence P, ,, is a saddle point and P, , is a source. In order to characterize the nature

of this source we denote by D(Ty M) the discriminant of 7;, . Then

2Mp ot ? 2Mp et
DT, )= 2yl L) +4( =Ly} —2K
' p+1 p+1

OMp 2= OMp =t
= (=L yrl L2+ 2YN P _L42-2/N—1).
p+1 pr1?
p—1
y (2.18), My!i; > K, hence
OMp =L P
Jﬁ y' —L+2-2JN > K—l— _1+2—2\/N—1
_N—2\/N—1< N -2 )2
-1 Pm NN =1/)

Hence D(T, ) > 0 which implies that the roots are real and P, ,, is a node.l

M = m* the product of the roots is 0, hence one root is 0. Since their sum is equal

p—1
to pzfl m*yf,’lf[l L = N — 2, the nonzero root is equal to N — 2.

O
2.2.3 The vanishing curves of the vector field
The vector field associated to (2.16) is defined by
2p
(2.9) = H(w,y) = (Hi(@,y), Ho(w,y) = (aw —y, —Ky — ¥ + M]y|7*7 ).
(2.22)
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We call vanishing curves of H in Ri the set of points where Hy or Hs vanishes.

[,:{(:v,y)eRfL:y:ax},

and
C={(zy) € R2 : Hy(z,y) = 0} =C1UCy,
where o
&1 = {(z.) € Qu: ¥ = MyrT — Ky = o(y) },
and

C1={(,y) € Qu s a? = Myt — Ky = ¥(y)}.

Those vanishing curves are the boundary of some semi-invariant regions in Ra_.
There configuration depends on the intersection of these curves.

FIf K <0 and M >0 we denote by

(A) is the set of points (z,y) € Q1 such that y > max {az, ®(z)}.

(B) is the set of points (z,y) € Q1 such that x > z,, and ax <y < &~ 1(z).

(C) is the union of the set of points (z,y) € Q1 such that y < min {az, ®~*(z)} and
the set of points (z,y) € Q4 such that = > ¥(y).

D) is the set of points (x,y) € Q1 such that ®~1(z) < y < ax.

(E) is the set of points (z,y) € Q4 such that z < U(y).

II- If K > 0 and M > m™* we denote by

(A) is the set of points (x,%) € Q1 such that y > max{az, ®1(z)}.

(B) is the set of points (z,y) € Q1 such that x >z, ,, and ax <y < & !(z).

(C) is the union of the set of points (z,y) € Q1 such that z > ®(y) and the set of
points (z,y) € Q4 such that z > ¥(y).

(D) is the set of points (x,y) € Q1 such that ®~1(z) < y < az.

(E) is the set of points (z,y) € Q4 such that z < U(y).

(F) is the set of points (z,y) € Q1 such that # <z ,, and ax <y < &~ !(z).

III- If K > 0 and M = m*, (D) is empty.

IV-If K >0 and 0 < M < m*, (D) is empty and (B) and (F) are replaced by the
set (B) = {(z,y) € @1 such that az <y < ®~!(z)} (note that B is connected).

We present below some graphics of the vector field H associated to system (2.16).
We show the vanishing curves of the vector field H as well as the direction of the
vector field along these curves.
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x <0
v <0

Figure 5: 0 < M <m*, K > 0 <= p > 5.

2.3 Description of the radial solutions defined near 0

In this section we use the dynamical system (2.19) to describe all the positive solu-
tions of (2.12) defined on a maximal interval (0, R), R < co. The case M = 0 which
is well-known will be used as a comparison model.

2.3.1 Thecasel<p< % and M >0

In this range of exponents the fixed point p,, is unique, the problem is more rigid
and some of our existence and uniqueness results hold without the assumption of
radiality as shown in Theorem 4.6.

Theorem 2.4 Let N=1,2andp>1o0or N >3 andp < %, and M > 0.
1- The function uy  is the unique positive solution of (1.2) in RN\ {0} satisfying

. a _

ig% |z|%u(x) = x,,. (2.23)
2- For any k > 0 there exists a unique positive solution u = uy of (1.2) in RN \ {0}
satisfying (1.12). Furthermore uy, is radial and

lim |z|%ug(z) = x,,. (2.24)

|z|—o00

To this set of solutions uy is associated a unique heteroclinic orbit T, of the system
(2.16) connecting 0 when t — —oo to P,, when t — co.
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3- For any R > 0 there exists a unique positive solution of (1.2) in RN\ By satisfying
(2.24) and ‘ l|imRu(x) = 00. This solution is radial.
T|—

4- For any R > 0 there exists a unique positive solution of (1.2) in Br\{0} satisfying

iil)% |z|“u(z) = x,, and |zl|1§Ru(x) = 00, (2.25)

and a unique positive solution satisfying

li @ = li =0. 2.2
Ili)r(l)‘l" u(z) =z, and ‘xﬂLnRu(x) 0 (2.26)

Moreover these solutions are radial.
5- Assume N > 2. For any k > 0 there exists Ry > 0 and a unique radial positive

solution of (1.2) in Br, \ {0} satisfying (1.12) and vanishing on 0Bp, or such that
lim u(x) = oco. (2.27)

x| =Ry
Furthermore the mapping k — Ry, is decreasing from (0,00) onto (0, 00).

Proof. 1-Uniqueness is proved in Theorem 4.6.

2- In the phase plane (z,y), recall that (0,0) is a source equilibrium and there exist
infinitely many trajectories different from the regular one 7,, converging to (0,0)
when t — —oo, with the initial slope N — 2 < « since p < %, so they start from
(0,0) in Region (D) of Figure 1. The point P,, is a saddle point with eigenvalues
A < 0 < X and associated eigenvectors

&=, a+A) and & = (1,a —A).

We denote by 77 the trajectory such that z(¢) increases and converges to z,, when
t — o0, and by Tz the trajectory such that z(¢) decreases and converges to x,, when
t — oo. Their common slope is larger than «, then 77 lies in the region (D) and
T2 lies in the region (B) when t — oco. Because (D) is negatively invariant and
bounded, 7; is contained in (D), a region in which (z(¢) and y(t) are monotone.
Hence 77 converges to a fixed point in (D) which is necessarily (0,0). Therefore 7;
is an heteroclinic orbit joining (0,0) to P,,, and it is necessarily unique since P,,
is a saddle point. Its slope at (0,0) is N — 2. It corresponds to a solution wuy of
(2.12) satisfying (1.12)-(i). This solution wuy is unique by Theorem 4.6. Furthermore
if k < k' then uy < up. We also notice that for any £ > 0 and x € RV \ {0},

Tg[uk] (’I“) = Eo‘uk(&") = nga+2—N(’l").
If we denote by u, the limit of the increasing sequence {uy}, then
Ti[uoo)(r) = uoo(r)

This implies that uq is a self-similar solution of (2.12), hence uo = uz,, and (2.23)
holds.
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3- The trajectory Tz converges to P,, when ¢ — oo and remains in the region (B)
which is negetively invariant. If 75 were defined on whole R, it would imply that
it remains bounded because of the a priori estimate Proposition A.1. But in the
region (B) the two functions z(t) and y(t) are decreasing. Hence the trajectory
would converge to an equilibrium in the closure of (B) different from P,,, which is
impossible. Therefore the two functions z(t) and y(¢) with image 72 are defined on
some maximal interval (T, c0) and if we set R = e, the corresponding solution u

of (2.12) satisfies li% u(r) = oo. Uniqueness of a solution defined on (R,o0) and
T

blowing-up at » = R follows from Theorem 4.5. By the scaling Ty, the function
u is transformed in a solution of (2.12) which blows-up at 7 = /~!R and which is
associated with the same trajectory 72. Hence R can be any positive real number.

4- There exist two unstable trajectories 73 and 74 converging to P,, when t = —oo.
They are associated to the eigenvalue A, and their slope at P, isa— A. We denote
by 71 the trajectory which enters in the region (C'). Since this region is positively
invariant, 74 remains in it. Then either its components are defined on some maximal
interval (—oo,T) and the corresponding solution u of (2.12) tends to co when r 1
R := el or they are defined on wole R. In that case u would coincide with u,,
by 1- which is contradictory. Hence wu is defined on the maximal interval (0, R).
Notice also that w is decreasing on some interval (0,rp) and increasing on (rg, R)
by the phase plane analysis. Thanks to the scaling Ty, R can be taken arbitrarily.
Since this solution is uniquely determined by 7y, it is unique. This corresponds to
a uniqueness result for solutions of (1.1) in the class of radial solutions. This proves
(2.25)

Consider now the trajectory 73. It belongs to region (A) when ¢ — —oo, and in this
region ¢y < 0 and y; > 0. Since P,, is the only equilibrium in the quadrant @)1 the
trajectory intersects the straight line z = 0,y > 0 at some yo > y,, for some t =T
Hence the corresponding solution u vanishes for » = R = . Furthermore R can be
taken arbitrarily. This proves (2.26).

5- Since (0, 0) is a source, there exists € > 0 such that any backward trajectory issued
from (zo,y0) € B(0) converges to (0,0) when ¢ — —oo. All these trajectories in
the first quadrant @ have initial slope N — 2. If (29, y0) € B¢(0) N (D) is above the
heteroclinic orbit 77, it cannot converge to P,,, then it crosses £, enters in (A) and
crosses the axis {x = 0,y > 0} for some T. By Appendix A2 the associated solution
u of (2.12) satisfies (1.12) for some k > 0 and u(e?) = 0. If (z0,y0) € B(0) N (D)
is below 71, it enters the region (C) which is positively invariant and for the same
reasons as in Step 3 it blows-up for some ¢t = T. The corresponding solution u
satisfies (1.12) for some k > 0 and blows up for 7 = e := R. Uniqueness of this
type of solutions in Br follows either from the general result Theorem 4.6 or from
the uniqueness of the trajectories of the system (WW8). The correspondance k — R
is decreasing and onto from (0,00) to (0,00) by uniqueness and using the scaling
transformation Tp. O

Remark. It follows from the analysis of the phase plane that all the positive radial
solutions of (1.2) defined in a neighborhood of z = 0 or in the complement of a ball
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have their behaviour described by 1 or 2.

Proof of Theorem 1.8. It is a direct consequence of Theorem 2.4 and Theorem 4.6.

2.3.2 Thecasep:%,qzl%:%andM>O

When p = % and M = 0 the isolated singularities of solutions of (1.1) are re-

movable and the behaviour at infinity of these solutions is described in [21]. When
M > 0 it is no longer the case and the interaction of the two reaction terms yields
new phenomena. The next result covers Theorem 1.4, up to uniqueness which will
follow from Theorem 4.6.

Theorem 2.5 Let N > 3, p= % and M > 0.

1- If M = 0 any isolated singularity of a solution, not necessarily radial neither
nonnegative, of —Au+|uP~tu = 0 is removable. If u is any solution of this equation
in B, there exists X such that

lim |z[V2(njz)) 2 ulz) = A, (2.28)

|z|—00

N—-2 N—-2
and A can only take the three values (%) , — <%) and 0.

N-2
2- If M > 0, the function us(z) = ((N - 2)M%) |z|2~N is the unique positive

separable solution of (1.1) in RN \ {0}. There exists a positive radial solution u,
unique up to the scaling transformations Ty, satisfying

, o N-2p.  N—1 _ (N =1pM)N
(1) }% r [ln 7| u(r) = ~ 7\[22 (2.20)
(i7) rlggo rN"2u(r) = ((N - 2)M%) )

Furthermore, for any R > 0 there exists a positive and radial solution u := u, of
(1.1) in Br \ {0} satisfying

N-2
lim NV~ 2u(r) = ((N - 2)M%) : (2.30)
r—0
and
lim wu(z) = occ. (2.31)
|| =R

Furthermore, there exists also a unique positive solution u := i, of (1.1) in Br\ {0}
satisfying (2.29)-(i) and (2.31) or (2.29)-(i) and u = 0 on OBg. In both cases the
solution is radial.

Proof. The results of assertion 1 is proved in [21], [2].
Assertion 2- Since p = %, K = 0. As a consequence, the vanishing curve Cy4

goes through (0,0). Lemma 2.3 is still valid. The point P,, = (z,,,v,,) is a saddle
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N(N-2) N(N-2)

point and with x,, = (N —2)N"2M "~ and y,, = (N —2)V "M ~5-T . The
stable curve 77 is an heteroclinic orbit staying in the region (D) and connecting
(0,0) to Pps. The point (0,0) is no longer hyperbolic since the charcteristic values
are A1 = 0 and Ao = N — 2, and the behaviour of the solutions in its neighbourhood
is more delicate. The vector £ = (1,0) is the eigenvector associated to the nonzero
eigenvalue N — 2 and the unstable curve corresponds to the regular solutions ug.
By the central manifold theorem, the curve 7 is the central manifold of (0,0) and is

tangent at this point to the eigenvector £ = (1, N —2). Therefore . lim % =N-2
——00

on 71. As a consequence

N
< c(y(t)) ®-D=-2  for r < €.

Consequently u¥-2 = o
€ > 0 there exists r. > 0 such that

in a neighborhood of r = 0. Therefore, for any

-

=
g\
e

N—

(1 — OMr¥ 1|71 < — (M) < MrN W/ | T on (0, 7. (2.32)
Putting W = rV~!«/| these inequalities become completely integrable and we derive
(N — 1) (W(r)) 5 = M|Inr|"'(1 +o(1)) asr — 0. (2.33)

Integrating (2.33) implies (2.29)-(i). Uniqueness among the radial solutions follows
from the uniqueness of the stable heteroclinic orbit. As in Theorem 2.4 the unstable
trajectory of P,, entering (C) intersect the axis y = 0 at some Py = (z0,0) and
any corresponding solution u is defined in some Bg, R;0, and it blows-up when
|z| T R. Using the transformation Ty, Ty[u] is a solution defined in the ball B R
which blows-up for |z| = % and still satisfies (2.30). The backward trajectory TU;}
of any point P = (P,0) on the seqment (0, FPy) converges to (0,0) when ¢ — —oo.
For the same reason as for 77 the corresponding solution u satisfies (2.29)-(i) and
it blows-up ifor » = R for some R > 0. Since the scaling transformation 7 leaves
(2.29)-(i) unchanged, % can take any value, this ends the proof. O

Remark.

2.3.3 The case p > % and M >0

In the range of exponent p > %, the positive parameter m* defined by (1.8) plays
a fundamental role. The following result covers Theorem 1.5 and describes all the
positive solutions of (2.12) either defined near oo or near 0.

Theorem 2.6 Let N > 2 and p > %

1- If M > m*, then Uz, ) and Uz, are the two self-similar solutions. Moreover
(1) there exists a unique, up to the transformation Ty, positive radial solution v = u 2
defined in RN \ {0} satisfying

lim r®u(r) =z, ,, and lim r®u(r) =z (2.34)
r—0 ’

r—00 M
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(ii) For any k > 0 there exists a unique positive radial u = uy j defined in RN \ {0}
satisfying
. «a _ : N-2 _
}gr(l)r u(r) =, and Tlggor u(r) = k. (2.35)
(1it) For any R > 0 there exists a positive radial solution v = u; g in Br\ {0} with
j=1,2, satisfying
lim r =z, d li = 0. 2.
lim w(r) =zm an linn u(r) = oo (2.36)
This solution is unique if j = 2. There exists also a unique radial positive solution
i = dig,g in RN \ Bg satisfying

rlggo reu(r) =z,, and Liin}%ﬂ(r) = 00. (2.37)
or
Tli_)noao ru(r) =z,, and gr]l% u(R) =0, (2.38)

2- If M = m*, uy, . is the unique self-similar solution, and statements 1-(ii) still
holds with x, ,, replaced by x,+ in (2.35). There exist infinitely many radial positive
solutions in Br \ {0} satisfying (2.36) with x,,, replaced by Ty, and at least one
in RN\ Bg satisfying (2.37) or (2.38) with x, ,, replaced by x,x.
8- If 0 < M < m?*, there exists no singular solution. For any R > 0 there exist
k>0 and a unique positive radial solution in RN \ Bg satisfying

2,M

(1) lim 7V 2u(r) = k
. e (2.39)
(17) }}\Lrlr% u(r) = oo.

Any positive radial solution defined in RN \ Br has the same asymptotic behaviour
as in (2.39)-(i).

Proof. Case 1: M > m*. (i) From Lemma 2.3-2, P,,, is a saddle point with
stable trajectories 71, 72, and unstable ones 73 and 7 defined as in the proof of
Theorem 2.4. The trajectory 77 lies in (D) as t — oo and remains in (D) for all
t because (D) is negatively invariant. Hence it converges to P, ,, when ¢t — —oo.
Therefore 71 is an heteroclinic orbit connecting P, ,, to P, ,,. It is unique and it
corresponds to a solution u satisfying (2.34), thus w is unique up to the scaling

transformations Ty for £ > 0.

(ii) The point (0, 0) is a saddle point with unstable trajectory 7, and stable trajectory
Ts which converges to (0,0) as ¢t — oo with initial slope N — 2. To Ty are associated
the solutions u of (2.12) satisfying rlggo rN=2u(r) = k, this solution is unique for
fixed k and denoted by uy. Since N —2 > «, this stable trajectory lies in the region
(F) at infinity. Since (F') is negatively invariant, the two functions x(t) and y(¢) are
decreasing and thus 7T, converges to P, ,, when t — —oo. Hence 7y is and heteroclinic

1L,M

orbit connecting P, ,, to (0,0) and it is unique. To this trajectory is associated a

solution u of (2.12) satisfying (2.35) and unique up to the transformations 7.
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(iii) The unstable trajectory 7y of P, , enters the region (C), crosses the axis Ox
and blows-up in finite time as in Theorem 2.4. Since P, ,, is a source and a node,
there exist trajectories different from 7y converging to P, ,, when t — —oc and with
a slope at this point smaller than «. Consider one of them below 7; near Pj ps;
either it enters the region (C), then intersects the axis Oz and finally blows-up, or it
enters the region (D), but since it cannot converge to P, ,,, it leaves (D) and finally
blows up as in the first case. In any case such a trajectory corresponds to a solution
which satisfies (2.36) with j = 1. Because of the scaling invariance of the condition,
R can take any positive value. Notice that since there may exist several trajectories
converging to P; ) at —oo with the same slope at this point, the corresponding
solution u1 g is not unique for R fixed.

As in the proof of Theorem 2.4 T3 corresponds to a solution satisfying (2.38). The
stable trajectory Ty of P, lies in the region (B) near oco. Since this region is
negatively invariant the trajectory remains in it, hence x(¢) and y(t) are decreasing.
If they were defined on R, they would remain bounded by Proposition A.1 and the
trajectory would converge to a fixed point in (B), different from P, ,,. Since such a
point does not exist the functions z(t) and y(t) are defined on a maximal interval
(T, 00) and they blow-up when ¢ | T. To this traectory is associated a solution @
of (2.12) satisfying (2.37) with R = e’. The trajectory 73 is unique thus R can be

fixed arbitrarily by using the scaling transformation 7.

Case 2: M = m*. There exists a unique nontrivial equilibrium P_,. To the eigen-
value 0 is associated the eigenvector (1, ), while to the other eigenvalue N — 2 is
associted the eigenvector is (1, —K'). There exist two trajectories T3 and 73 converg-
ing to P_. when t — —oco. The trajectory 74 with slope v +2 — N at P_, enters
the region (C), crosses the axis 0z and blows-up in finite time. It corresponds to a

solution u with liII(l] r“u(r) =z, when r — 0 and which blows-up at » = R.
r—

The point (0,0) is a saddle point. The stable manifold 7; has initial slope N — 2. It
corresponds to a trajectory which converges to (0,0) when ¢ — co. Since the region
(F) is negatively invariant this trajectory converges to P _, when ¢t — —oo, and its
slope at this point is &. Hence 7; is the central manifold at P_.. As in case (1) this
trajectory corresponds to a positive solution u in RV \ {0} which satisfies
limr®u(r) =« , and lim rV"2u(r) =k, (2.40)
r—0 r—00
for some k > 0.
Moreover, any trajectory which has one point in the bounded negatively invariant
region delimited by 7, 74 and the axis Oz, converges to P,,» when t — —oo, tan-
gentially to the line £. Since it cannot converge to (0,0), it crosses the axis 0z in
finite time and it blows up for t = T' = In R. This corresponds to a positive solution
w of (2.12) in Bgr \ {0} which satisfies (2.36) with x; ys replaced by @,=.
We claim that there exists at least one trajectory belonging to the central manifold
at Py which converges to Pp» when t — oo and blows up in finite time: the back-
ward trajectory Tp of any P € C1 N {(x,y) : © > x>+ }, belongs locally to (B) for
t < 0 since this region is negatively invariant. Furthermore its coordinates sat-
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isfy x(t) > zp+ and y(t) > ym» for t < 0. Next, the backward trajectory Tp of
any P € LN {(z,y) : * > xp+} belongs to (B) and its coordinates satisfy also
x(t) > X+ and y(t) > ym= for t < 0 and x(t) > xy,+ for t > 0. Let U be the set of
points P € (B) such that Tp crosses C; N {(x,y) : © > xp+} for some ¢ > 0 and V
the set of points P € (B) such that 7p crosses LN{(x,y) : * > x>~} for some ¢ > 0.
By standard transversality arguments U and V are open and disjoint. Since (B) is
connected, it cannot be the union of the two sets ¢/ and V. Hence there exists Py
in (B) \ {{/ UV}. By monotonicity, Tp, converges to py,« when t — co. Clearly this
trajectory cannot be defined on whole R by Proposition A.1, hence it blows-up for
t =T = e''. This proves the existence of a solution u which satisfies

lim r®u(r) = oy and limu(R) = 0. (2.41)

r—00 r{R

Case 3: 0 < M < m*. There exists no equilibrium besides (0,0) which is a saddle
point with unstable trajectory 7, and stable trajectory 7, with initial slope N —2 >
. The region (B) between £; and £ is negatively invariant, hence 7; remains
in it and its two coordinate functions are decreasing and necessarily unbounded.
The corresponding solution u of (2.12) cannot be defined for all » > 0 because of
Proposition A.1, hence it blows-up for r | R. This proves (2.39). O

Remark. It is noticeable that in the case m = m*, the equilibrium P~ is not
hyperbolic and the central manifold there consist in curves with the same slope at
P,,+ but one is converging to this point when ¢ — —oo while the other (may be they
are many) converges when ¢ — oo.

3 The radial case for ¢ # z%

In this section we study the nonnegative solutions of

_ ,,_N—l

u' + |ulP - M/|7 =0, (3.1)

2p

when g # DT

3.1 Non-autonomous systems associated to the equation

Since q # ]% there exists no autonomous 2-dimensional system in which equation
(2.12) can be transformed. The systems that we introduce below are suitable for
specific range of singular phenomena characteristic of one of the following equations
Lyu =0, Rf]”u =0 and E%U =0.

3.1.1 System describing the behaviour of Emden-Fowler equation

We set

2 p+1

u(r) =r r1z(t) = r %z(t), o' (r) = —r = iy(t) = —r " ly(t), t=Inr. (3.2)
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If u is a positive solution of (2.12) there holds

Ty =QT —Y

_ ot (3.3)
yr = —Ky —aP + Me vy,
where o is defined in (1.23). Equivalently
:L‘tt—i—LZL‘t—OéK:L’—ZL‘p—|—M€_;%1|Oél‘—ZL't|q:0, (3.4)

where K = N —2 —«a and L = K — a. If M = 0 this is the system which describes
the radial solutions of L£,u = 0.

3.1.2 System describing the behaviour of the Riccati equation
We set

_2—-q 713 / __1 7571
u(r) =r a=18(t) = r77E(t), w(r) = —r ain(t) = —r~"" (), t =Inr. (3.5)
If u is a positive solution of (2.12), (£, n) satisfies the system

& =BE—n

ot (3.6)
ne = —kn — ea—1&P + M|n|?,

where kK = N — 3 is defined at (1.24). The system admits a unique nontrivial
equilibrium with £ > 0 if and only if % <g <2 itis

1 B+1
(€)= (6 86) with & = 5 (37) (37)

The system (3.6) is equivalent to
ot
€+ (N = 2= 28)8 — Brg — en1€7 + M|BE — &|7=0. (3.8)
According to the sign of ¢ this system is a perturbation at —oo or at oo of

§&=pB5—n
ni = —rn + M|nl?, (39)

which describes the radial positive solutions of Ré‘/f u = 0.

3.1.3 System describing the behaviour of the eikonal equation

Assuming p # ¢, we set

u(r) =r A X () =r X (1), W/(r) = —r Ay () = —r 7Y (), t=Tr
(3.10)
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Then if u is a positive solution of (2.12), there holds

X, =vX - Y
ot (3.11)
Y, = 0Y + e pa(M|Y]7 — XP),
where 0 = v+ 2 — N is defined at (1.24). Equivalently
Xpp+ (N =2 = 29) X, + 07X + e 70 (M X — X|9 — XP) = 0. (3.12)

According to the sign of ¢ this equation is a perturbation at —oo or at oo of
MyX — Xy|9— XP =0

which corresponds to the eikonal equation S%U = 0. We note that in the case
q= %p, then v = N — 2, there exists an explicit radial solution of (1.1) which is

N-1

N2
uy, (r) = C;T'2_N with C) = <M(N — 2)(N—1)P) P (3.13)
The function u?, is harmonic and satisfies é’%uxm — 0. This solution which has

already been noticed in [20] will be useful in the sequel.

Remark. The following relations between the solutions of the systems (3.3), (3.6)
and (3.11) hold,

(i) u(r) = ra(t) = rPE(t) = r X (1)
(i7) W (r) = —riiy(t) = —rig(t) = 1Y (1), .
which implies
(i) §(t) = e TIED X (t) = e @0 a(t) 5.15)
(if) 0(t) = e @IEDY (1) = e TIE Dy (1), |
This yields the following relations
g~ = XP~1¢s1 and yPml = YP 0t (3.16)

3.1.4 Lyapounov and slope functions

There are several functions the variation of which along trajectories will be analyzed
in the sequel. They are specific to the change of variable we use. The most surprising
one is the function E described below.

Lemma 3.1 Let N > 1, p,q>1, p#q. We define E on Ry x R xR by

E(X,Y,t) =

(3.17)

+1 +1 . v\2 2
XP X (X -Y)* 10X
p+1 q+1 2 2
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If u is a positive solution of (2.12) and X and Y are defined from (3.10), set
E(t) = E(X(t),Y(t),t).
Then
&(t) = —MHX =Y) (X = Y]

ot (s« 9 o0 9
—er- — 0)(vX-Y X
6”<(2”+ )X -1+ 5 )

where (X,Y) = (X (¢),Y(¢)).
Proof. There holds Y = ~vX — X; and
Xip = 07X — (N —2—29)X; — e v (M|Y]9 — XP).

Multiplying by ep%l X we get

X? X? d [ XPtt gt o
7 gy ) — 2 ) = MNer—1 X7 — M|Y|1X,.
e dt<2 +72> dt(p—i—l (v + 0)e t Y]7Xy

Putting

Xp+1 ot Xt2 X2
=1 " <2+972>’
we obtain
ot X2 X2
ft(t) = —er—4 <piq (Qt +9')’2> + ('Y‘FH) X?) +M|Y|th
Since o
E(t) = F(t) — MA* :
(t)=F() "
and X; = vX — Y, we obtain
ot o 070
Et) = —MHX-Y)(IXI—|Y|!)—er-a <<+7—|—9>X2+
t( ) (7 )(7 | | ) 2(p_q) t 2(]9—(])

and (3.19) follows.

The slope of a trajectory has shown its importance in the previous section

(3.18)

(3.19)

X2> )
O

when

studying solutions of (2.12) near an equilibrium. We introduce it as a Lyapounov
type function the variations of which will be of particular interest for studying so-

lutions of eikonal type.

Definition 3.2 The slope of a solution u is

_ord(r) _y(t) @) _ Y(t)
SO=""U) ~ 2 " en X0

imce St — Nt &
Since o = T e there holds

Sy =S(S+2—N)+ & M|S|T — 2Pt
=S(S+2—N)+ & (M|S|? = XP~9) if g # p.

Note that S > 0 if Y > 0.
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3.2 Asymptotic estimates for the Riccati equation

The next lemma deals with estimates near 0 (resp. co) of radial subsolutions (resp.
radial supersolutions) of the equation quw u = 0, which reduces to

N -1

' — M|u|7=0 (3.22)

in the radial case.

Lemma 3.3 Assume N >1,q¢>1 and M > 0.

1-) Let u be any C? radial decreasing function satisfying Rf]\/lu < 0 near 0.
(i) If g > %, then

1
.. 1, K\ g—1
- > (— . 3.23
11£n_>1(r]1frq ' (r)| > <M) (3.23)
Therefore
1/ k\B+L
hgl_)lélf?“ u(r) > 3 (M) if ¢ <2, (3.24)
liminf | In 7|~ u(r) > N2 if =2 and N > 2 (3.25)
r—0 - M ’
(i1) If ¢ = %, then
limiéler*1|lnr\N*1|u'(r)| > ((N - 1)M)1*N. (3.26)
r—
Therefore
. _ _ N —-1)M)"N
N-2 N—-1 > (( > 3.27
hlrri:(l)lfr [ Inr | u(r) > N3 if N >3, (3.27)
1
im i -1 > — g =2 2
h]gl:élf(lnﬂnr\) u(r) > i if N=2 (3.28)
N

(iii) If N = 1, or if N > 2 and 1 < q¢ < w3,
belonging to (0,00]. Therefore if N > 3, rN"2u(r) admits a limit belonging to
(0,00]. If N =2, ¥N=2u(r) has to be replaced by |Inr|~tu(r) and if N = 1 by u(r)
in the previous expression.

then vV =Yu'(r)| admits a limit

=

2- Let u be any C? radial decreasing function satisfying Rf]\/lu >0 near 0. Then all
the previous statements (3.23)—(3.28) are valid, provided > is replaced by <, liminf
by limsup and, in case (iii), the limit ¢ belongs to [0,00). Furthermore if ¢ > 2 the
function u is bounded.

3- Let u be any C? radial decreasing function satisfying Rf]\/[u < 0 in Bf and tending

to 0 at infinity, and assume q > % Then
(iv) either ¢ < 2 and

qu11|u'(r)| > (—)qj and rPu(r) >

> (47 (i> T (3.29)



for r large enough,

(v) or N > 2 and

lim V' (r)| =¢>0 and lim ¥ 2u(r) = C > 0. (3.30)

T—00 T—00

4- Let u be any C? radial decreasing function satisfying Ré”u > 0 in Bf and tending
to 0 at infinity. Then ¢ > 25, and either N >3 and lim N (r) = ¢ >0, or
r—00

1 ,8+1
il il ) . (331)

4 . 1
P (57)7 5 endifg <2 thenrutr) < 5 (5

for r large enough.
Proof. If u is a radial decreasing subsolution (resp. supersolution), there holds
(rN LY + MG |9 > 0 (resp. <0).
Set W (r) = —rN=1/(r) = rN=1u/(r)|, then
My~ W=Dl _y=apy’ > ¢ (resp. <0).
Hence the function

g -1 (3.32)

wi=a(r) + M

rlnr ifHZO,

Wi=a(r) — M, N-(N-1)q if g = W=Lg=N #0
1

is nondecreasing (resp. nonincreasing). Notice in particular that if u is a decreasing
radial solution, there holds

ri=N (C + %TN_(N_UQ)_CI%1 ifk#0
' (r)| = 1 (3.33)
rl=N (C — % In 7“) ot if k=0,
and the estimate on u follows by integration since g = %.
1- If u is a decreasing subsolution, ¢ is nondecreasing.
(i)- If kK > 0, then

M
W) < —pN=W=14 L ¢y for 0 <7 < rg,

K

where cg = W1=4(rq) — %rév_(N_l)q. Since N — (N —1)g < 0, (3.23) follows.
(ii)- If kK = 0, then for any € > 0, there exists . > 0 such that

M
gy < [ — <
w (r)_<N1+e>]lnr| for 0 <r <,
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and (3.26) follows.
(iii)- If k < 0, then PN=(N=D4 5 0 as + — 0. Therefore W(r) admits a limit
belonging to (0, 00] when r — 0. We derive the estimates on u by integration.

2- If u is a decreasing supersolution the results follow in the same way. If ¢ > 2, the

estimate )

limsuprq%l|u/(r)\ < <M) ql )
r—0

implies that u is bounded near 0.

3- If u is a decreasing subsolution in an exterior domain, the function ¢ defined in

(3.32) is nondecreasing, hence it admits a limit v in (—oo, 00].

(iv)- If & > 0, then ¥N=V=14 — 0 as r — oo, hence W=9(r) — v € [0,00],

therefore r¥ ~1|u/(r)| — ¢ € [0,00]. If v € (0, 0], then ¢ € [0,00). Since u tends to

0 at infinity, we obtain 7V ~2u(r) — %5 when r — oo.

If v =0, then W!=9(r) < %T‘N_(N_l)q. This yields the estimate from below (3.29)

of [u/(r)], and therefore for u(r) if? < 2.

1

If ¢ > 2, we obtain |u/(r)] > er” 3T, and we derive a contradiction since r~ T is
not integrable at infinity.

4- If u is a decreasing supersolution in an exterior domain, then r™~!u'(r)| is
nondecreasing. Hence there exists ¢ > a such that rV~!u/(r)| > a, which im-
plies u(r) > cr> N for some ¢ > 0. Since the function ¢ is nonincreasing, it
admits a limit v belonging to [—oo0,00). If £ > 0 and because rN-(N-1a _
it follows that v € [0,00). If v > 0, then 7N~1|/(r)| has a limit in (0,00), and
this implies that 7V ~2u(r) admits a limit in (0,00) at infinity. If v = 0, then
Wi=d(r) — LpN=(N=1)a > 0 and we obtain (3.31). If x < 0, then ¢(r) — oo as
r — 00, contradiction. O

3.3 Estimates near 0

In this paragraph we prove Theorem 1.7 and Theorem 1.8.

2
3.3.1 The case Z?pl <q<np.

Here we prove Theorem 1.7. If u is a positive solution of (2.12) unbounded near 0,

then u' < 0, hence the variable X and Y defined in (3.10) satisfy
X=X -Y
e (3.34)
Y, = 0Y + e ra (MY? — XP),
where, we recall it, 0 = (p+1)g—2p > 0 and 0 = w. Since ¢ < p, X (t)
remains bounded when ¢ — —oo. The difficulty comes from the fact that the term

at

e r—a tends to infinity when ¢ — —oo.

Lemma 3.4 Assume z% < q <p. Ifu is a positive solution of (2.12) in Br \ {0}
such that u' < 0, then ru(r) admits a limit when r — 0 which can take only the
values X,, or 0.

35



Proof. We use the function £ introduced in (3.18). Because of Proposition A.1 and
Proposition A.3, X and Y are bounded. By assumption o is nonnegative, hence
E(t) is bounded when ¢ — —oo. Using (3.19) we have that

E(t) + M(HX — Y)(41X7 — Y) = —eva ((;‘ +y 4 9) (vX —Y)2 + ”279)(2) :

which implies that

CQU _ot_
er—4q

— 2% % S E(1) + M(YX — Y)(11XT — YY) <
p—q p—q

: (3.35)

for some Cy > 0. Because (yX —Y)(79X?— YY) > 0, we deduce that the function

ot
t — E(t) — Cyer—a is decreasing, therefore it admits a finite limit A when t — —o0,
and A is also the limit of £(t). Hence

XPFL(t) Xati(t)
im (2 et Wy .
tir_réo< P+l T+ ) (3.36)

Therefore X (t) converges to some A satisfying )‘]%1 — M~1 /\q++11 = A. The omega-
limit set at —oo of the trajectory {(X(¢),Y (¢))}+cr_ is the set I' of couples (X, Yp)
such that there exists a sequence {t, } decreasing to —oo such that (X (¢,),Y (t,)) —

(Xo,Yp). It is non-empty since the trajectory is bounded, connected and compact.

By La Salle’s theorem, the function £(t) — C’geﬁ which is monotone decreasing
is constant on I'. This implies M (vXo — Yp)(v2X{ — Yy) = 0, hence Yy = vXo.
Because X (t) — A then Xy = A, hence Yy = v\ and Y (¢) — v\ when t — —o0. If
M~IXT £ NP it implies that

Yi(t) = 09\ + e_ﬁ(M’yq/\q — N +€(t)) where e(t) — 0 as t - —o0.

Hence Y;(t) = cefﬁ(l +0(1))) where ¢ # 0. Clearly this implies that Y (¢) cannot
be bounded, contradiction. Therefore M~y9\9 — AP, This implies that

A€ {o,Mplqu}, (3.37)
which ends the proof. O

Lemma 3.5 Assume N > 2, and let u be a positive solution of (2.12) in Br un-
bounded near 0.

_ q
1- If ¢ > % and u(r) = o (r P(LI*U) near v = 0, then necessarily q < 2 and

1
im =T |l () = = ()T
lim et ()] = n,, = (M> : (3.38)
Therefore
1 /K \eT
1 B = = — e 71 )
71412(1)7“ u(r) =¢&,, : 5 ( ) if ¢ <2, (3.39)



N -2
lim |Inr|~Lu(r) = 7 if q=2. (3.40)

2- ]f 2P < q = g and rPreu(r) = rN 72 u(r) s bounded for any € > 0, then

1 N-—-1
. N=2 N-1, (3 _ NS 3 '
}gr(l)r [ Inr|™  u(r) N3 < 7 ) if N>3 (3.41)
- / . I
lim r|Inr|ju'(r)| = im In(|Inr))u(r) = — if =N = 2. (3.42)
r—0 r—0 M

S If 22 < g < % and N "2u(r) is bounded if N > 3 or réu(r) is bounded for

p+1
any € >0 if N =2, then there exists k > 0 such that
(1) lim 7V~ 2u(r) = k if N >3
r—0 (343)
(14) lin% |Inr|tu(r) =k if N=2.
r—

Proof. We first notice that if u is unbounded near 0, then v’ < 0 in a neighborhood
of 0 and we can apply the results of Lemma 3.3 concerning subsolutions. Moreover,
if uP(r) = o(|u/(r)|?) when r — 0, then for any ¢ > 0 there exists r5 > 0 such that

M(1— 8|9 < —Au < M|W/|? in By, \ {0}, (3.44)

and we can also use the results of Lemma 3.3 dealing with supersolutions.

1- Since u is a decreasing subsolution of Ré\‘[ uw =0, [/(r)] > er™B~1 near 0, hence
[/ (r)]4 > or T, By assumption u?(r) = o (r_ﬁ) Then w?(r) = o(|u/(r)]?) near
0, hence (3.44) applies. It follows by Lemma 3.3-(1)-(2) that

K\ AL 1y, 1y, K o
(M) < li£r1_>i(1)nf PP (r)|9 < hl:ljup’l"ﬁ—i_ |u'(r)]? < (M) . (3.45)
Since ¢ > 0 is arbitrary, this implies (3.38). The other estimates (3.39) and (3.40)
are obtained by integration.
2- By (3.26), |u/(r)]9 > cra(i= |ln r|90=N) = ¢r=N|Inr|~N. From the assumptions,
for any € > 0, uP(r) < carP2~N=9) then

uP(T) <e¢ N (N—2+¢) p|1HT“N
[u/ ()]
Next =& < N 7 implies that N > p(N — 2). Therefore, we can take ¢ > 0 small

enough such that N — (N —2+¢€)p > 0. This implies that (3.44) holds in B, \ {0}.
Hence we get (3.41) and (3.42) by integration.
3- Suppose ¢ < - then p < 2 if N > 3. By Lemma 3.3-(1), vV /()| > ¢ > 0
near 0, hence

uP(r) g, (N-1)g—(N-2p.

' (r)|e
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Since (N —1)q — (N =2)p > (N = 1) — (N = 2)p = 21 (N — (N = 2)p) > 0, we
deduce that for any § > 0, (3.44) holds in B, \ {0}. Then we use Lemma 3.3 and
obtain (3.43) and (??) by integration. In the case N = 2 there holds

i <
u

for any e > 0. Choosing e < %, we find again (3.45). O

For obtaining the next result, the key is the introduction of the slope function S
which allows to make precise the behaviour of solutions such that rYu(r) — 0.

Lemma 3.6 Assume N > 2, % <qg<pand M > 0. If u is a positive solution of
(2.12) unbounded near 0 and such that r'u(r) — 0 when r — 0, then ¢ < 2 and the
following trichotomy holds.

1- If ¢ > 2, then (3.39) or (3.40) is satisfied.

2- If ¢ = 25, then (3.41) or (3.42) is satisfied.

3-Ifqg < %, then (3.43) or (??) is satisfied.

Proof. By assumption X (t) — 0 as ¢ — —oo. We recall that S(t) = Y satisfies

®)
(3.21) hence

3.46
Sy = S(S+2— N)+ e (MSI— XP~). (3.46)
1- We first assume that S(t) — 0 as t — —oo. Then for any € > 0, there exists

re > 0 such that 0 < —TSES) < eon (0,r]. Hence r — rfu(r) is increasing. This

implies that r€u(r) is bounded near 0 and thus ¢ < 2 by Lemma 3.5. If % <g<2
it would follow from Lemma 3.5 that (3.39) holds, which is not possible. Hence

N >3, ¢ =2 and (3.40) holds. If ¢ = NL and N > 3, (3.41) cannot hold; hence

-1
N = ¢ =2 and (3.42) holds. If ¢ < ", (3.43) cannot be satisfied, hence N = 2
and (?7?) holds.

2- Then we assume that ltirn inf S(t) = m > 0. Then there exist ¢z > —oo and
——00

mo € (0,00) such that S(t) > mg for ¢t < tg. Hence Y4(t) > moX9(t) therefore
XP(t) = XP~1(t)X9(t) = o(Y9(t)) as t — —oo. This implies uP(r) = o(|u/(r)]? as
r — 0. Then (3.44) holds. Using Lemma 3.3-(1)-(2), we have (3.39) or (3.40) if
q > 25, (3.41) or (3.42) if ¢ = {25 and (3.43) or (?7) if ¢ < .

3- Next we assume that 0 = lggggof S(t) < 1113 sup S(t) = X € (0,00]. Then there

exists a decreasing sequence {t¢,} converging to —oo such that S;(¢,) = 0 and S, :=
S(tn), which is a local maximum of S(t), tends to ¥. Put X,, = X (¢,,) and &, = £(t1),
then

-1 SN —-2-5,) S(N-2-8,) N-2-5,
" MSE — xh1 MSi(1—€,)  MSIH1—e)

, (3.47)
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with €, — 0. This implies in particular N > 2 and S, < N — 2. Since it holds for
all local maximum of S,, we deduce S < N — 2, which implies u(r) < Cr2=N. If
q< % (resp. ¢ = %) we obtain (3.43) from Lemma 3.5-(3) (resp. (3.41) from
Lemma 3.5-(2)). If ¢ > % we write (3.47) under the form

EIMSIT N1 —€,) =01 'M(1 —¢,) =N —-2-5,. (3.48)
From (3.23), nd ' > 17 (1 —€,) for n large enough and €/, — 0 when n — oo, hence
N-2-8,>0-e)1-€)k= S5, <N-2—k+e =B+e€.. (3.49)

This implies that for any € > 0 there exists n. such that S(t) < S, < g+ § for
t <t,,.. Hence r®*eu(r) — 0 as r — 0. Since oo =B+ %

u(r) = o(r_P(qq—U) as r — 0. Therefore (3.39) and (3.40) hold. O

, it implies that

Proof of Theorem 1.7. It follows from Lemma 3.4, Lemma 3.5 and Lemma 3.6.
O

3.3.2 Thecase 1 < ¢q< z%'

Proof of Theorem 1.8. If 1 < g < % and p > % it is proved in [7] that positive
solutions of (1.1) in Bg \ {0} can be extended as a C? solution in Bgr. Next we
suppose that p < %, or N =1,2, hence q < % We use the change of variable
(3.2) and (z,y) satisfies (3.3). It is important to notice that o = (p + 1)qg — 2p is
negative, therefore the system satisfied by (z,y) is a perturbation at —oo of the
system

Ty =ar—vy

e Kyo P (3.50)

where K = N — 2 — «, associated to the Emden-Fowler equation £,u = 0 by the
same change of variable. Since (z(t),y(t)) is bounded, the omega-limit set at —oo
of the trajectory {(z(t),z(t)) }+er_ is a non-empty compact connected subset of the
set of stationary solutions of (3.4). Therefore

lim (z(t),y(t)) = ({,al) where £ € {0,z0}. (3.51)

t——o0

If £ = xg the result is proved, thus let us assume that ¢ = 0. By Lemma 3.3-1-
(iii) 7NV ~1u/(r) admits a limit ¢ € (0,00] when 7 — 0. If ¢ < oo, (1.32) follows by
integration. Thus we are left with the case ¢ = co. Hence liH(l) rN72u(r) = oo if
r—
N > 3, or 1irr(1)|1nr|_1u(r) = o0 if N = 2. Therefore, for any & > 0, u is bounded
r—
from below in Bp \ {0} by the function v, which satisfies L,vp = 0 in Bg \ {0},
v = 0 on OBR and hH(l)?“N_ka(T’) =kif N >3, or hrr(l)]lnr|_1vk(r) =kif N=2.
r— r—
Letting & — 00, v; 1 Vs, and lin% Va0 (r) = xo by [22]. This is a contradiction.
r—
O
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3.4 Estimates at infinity
3.4.1 The case ¢ > z%

Proof of Theorem 1.9. We recall that by Proposition A.1 and Proposition A.3 all
the positive solutions of (1.1) in BY, satisfy

u(r) +rju'(r) <er™® in B (3.52)

where ¢ = ¢(N,p,q) > 0, and by the maximum principle they are decreasing. Since
w is continuous in By, v = min{u(r) : r = R} is well defined and positive. By the
maximum principle, for any n > R, w is bounded from below in B,, \ Br by the
solution v,, of

L,0, =0 in B,\Bgr, o =v ondBg, 0, =0 on dB,. (3.53)

When n — 00, U, T U which satisfies £, = 0 in Bf and 9o, = v on 0Bg. Then
U > Voo and by [21], U satisfies

(1) lim %00 (r) = o if 1 <p<+5

r—00

7—00 -

B N —2 N-2
(i) lim V"2 (Inr) T deo(r) = <\/§> if N>3andp=~, (3.54)

(43) lim 7V 205 (r) = ¢ >0 if N >3 and p > 5.

r—00

We make the change of variable (3.2) and obtain the system (3.3) satisfied by the
functions ¢t — (z(t),y(t)). Since ¢ > p+ 7, 0 is positive. Hence the omega-limit set
of the trajectory of {(x(t),y(t))}+>0 as t — oo is a non-empty compact connected
set of the set of solutions of stationary solutions of (3.50), therefore

tlim (z(t),y(t)) = (4,al) where £ € {0,z0}. (3.55)
—00

Therefore if 1 < p < % we obtain (1.33), and if p > 2 we have that ¢ = 0.

Ifp > %, then g > % From Lemma 3.3-(3), we have that either ¢ < 2 and (3.29)

holds, or N > 2 and (3.30) holds. However, since ¢ > p+ -, one has =% = o(r=)
when r — 0o, hence (3.29) does not hold and we deduce that (3.30) is verified.
Finally we consider the case p = 5. Then ¢ = 0 and x satisfies

xtt—(N—Q)xt—x% +Mem((N=Da=Nt (N — 2z — 2,)9=0 on (InR,o0), (3.56)

and ¢ > p+1 = N% Since u is bounded from below by v, we have that z(¢) >

ct_y, with ¢ > 0, for ¢ large enough. Hence for any ¢ > 0 there exists t. > In R
such that

N N

xp— (N =2z —aV2 <0<xy—(N—2)ay— (1 —€)z¥2 on (InR,00). (3.57)
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Therefore 65 ((t) < z(t) < 61 (t) where

d? d IRV =
Talie = (N =2) 20 = (1+ (=107 =0 on (tc, 0) (3.58)

0j.c(te) = x(te).

The asymptotic expansion of ;. is obtained in [21, Lemme 3.2 ] using an old result
due to Hardy. We give below a simpler proof.

N-2 N—2
N —2 1\ 2z
0;(t) = (1“_1)%> (ﬁ) (14 0(1)). (3.59)

This implies that for any € > 0 there holds

N-2 N—2
N-2 < lim inftyx(t) < lim sup t¥x(t) < N2 , (3.60)
2(1+¢) t——00 t——00 2(1—¢)

which implies (1.35). O

Remark. The proof of Hardy’s theorem quoted in [3] is not easy to find. An alterna-
tive proof is to consider the following equation, to which (3.58) reduces by a suitable
scaling transformation,

0" —6¢ —6"=0 on[0,00), (3.61)
where n > 1 and # > 0. Since 0(t) — 0 as ¢t — oo, it is easy to see that for any
1
t>1,0(t) < Ct »1 by considering supersolutions under the form
1 __2_
Y(t) =at " T 4 bt AT,

1

Since ¢(t) = (m)E is a subsolution for some to > 0, it is smaller than

1
0(t). Furthermore, for any € > 0, there exists t. > 0 such that ¢ — <((nljf))t) "Tisa

supersolution on [t., 00) and is larger than #. From that we infer

t—00 n—1

lim ¢770(t) = ( ! )nll. (3.62)

An alternative proof of the convergence is to set z(t) = t% 2 (t). We get

Zy — (N —2) <1+1> ZH—% <<(N;2)2 N N(Az;f_ 2)

)z_zﬂz%@:()

where ®(t) = O (t%e(N*(Nfl)q)t) Applying [10, Corollary 4.2] we deduce that

Z(t) converges to a limit ¢ which satisfies ¢ (% - €ﬁ> = 0. From the lower

bound u > 7, and (3.54) we infer that ¢ = 0 is impossible.
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3.4.2 Thecasel<g< p+1

Proof of Theorem 1.10. If 1 < ¢ < =% p , then ¢ < p. Therefore v < a < 3. Hence
if u a nonnegative solution of (2. 12) on [R,00), T7u(r) is bounded for r > R > 0.
Therefore the natural system for describing the solution is the system (3.11) with
bounded X (t) and Y (¢) and we use an argument similar to the poof of Lemma 3.4.

Lemma 3.7 Assumep > 1,1 < ¢ < ]% and M > 0. If u is a positive radial
solution of (1.1) in B, there holds

lim ru(r) =0 € {0,X,,}. (3.63)

r—00
Proof. By Proposition A.3 Y is bounded, hence (3.35) still on [T o0). We consider
now the function £ defined in (3.18), then ¢ — E(t) — %'Z'e? 1 is decreasing and
bounded at infinity since 0 < 0. Therefore £(t) converges to some real number
A when t — oo. This implies that identity (3.36) is still valid provided hm is

—0o0
replaced by tlim . Mutatis mutandis, the remaining of the proof of Lemma 3 4 still
— 00
holds and we get (3.63). O

Lemma 3.8 Let the structural assumptions of Lemma 3.7 be satisfied. If u is a
positive radial solution of (1.1) in B, such that r7u(r) — 0 when r — oo, then
necessarily q > % and the following alternative holds:

1- either ¢ < 2 and

rli)rgo rPu(r) =¢,,, (3.64)

where we recall that £, is defined in (1.27),
2- or N > 2 and

. N-2 _
rli)rglor u(r) =k > 0. (3.65)
Proof. Since ’R;wu < 0, we can apply Lemma 3.3-(3) provided ¢ > = . If this holds

the following estimate from below of u holds:
cither ¢ < 2 and liminf rPu(r) > ¢,,,

r—00
or N >2and lim vV 2u(r) = k > 0.

T—00

1- We first prove that 7?u(r) is bounded and we recall that S(t) = % denotes the
slope function.
1-(i) If S(t) — 0 as t — oo, then for any € > 0, 7 — ru(r) is nondecreasing. Hence
u(r) > cer~€ for r > R, for some ¢, > 0. This contradicts Proposition A.1
1-(ii) If ligg}fS(t) = m > 0. Then there exists t{x > In R and mg > 0 such that
S(t) > mg on [tg,00). Hence YI(t) > m{X9(t) for t > ty and u? = o(|u/|?) as
r — 00. Using Lemma 3.3-(3)-(4) we infer that ¢ > % and (3.64) or (3.65) holds,
and in both cases r?u(r) is bounded.

1-(iii) If S satisfies 0 = hm mf S(t) < hmsup S(t) = ¥ € (0,00]. There exists an

increasing sequence {t,} tendlng to 1nﬁn1ty of local maximum of S(¢). As in the
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proof of Lemma 3.6-(3) we obtain that N > 2 and u(r) < Cr2~V.

If ¢ > %, equivalently 8 < N — 2, then u(r) < Cr2=N < Cr=# for r > 1.

If ¢ < %, we have from (3.6) and n = ¢S that & =¢(8—S5) >&(B—-N+2) > 0.
Hence £(t) is increasing with limit £, < co. Since at the points ¢,, of local maximum
of S(t), we also have (3.47), we obtain the implication

N-2-5
¢-lgg—1 _ 2~ = *n
& Sn M(1—¢€)

n

N-2-3%

= N =

(3.66)
Hence ¢4 is bounded, which implies again that r’u(r) is bounded.

2- Convergence. Since r%u(r) is bounded, the trajectory {(£(t),n(t))i>mr} endows
this property, and since o < 0, its omega-limit set at infinity is non-empty, compact,
connected and it is a subset of the nonnegative stationary solutions of (3.6).

If ¢ < & the set is reduced to (0,0). Since k& < 0, we deduce from (3.8) that &(t)
is monotone decreasing. It follows from (3.6) that S(¢) > 8, hence u? = o(|u'|?) as
in 1-(ii) and by Lemma 3.3-(3)-(4) necessarily ¢ > 2+, contradiction.

If ¢ > 25, then either (£(t),n(t)) converges to (£,,,7,,) or it converges to (0,0), in
which case rlggo N =2u(r) = k > 0 by Lemma 3.3. The function u is bounded from

below in Bf% by the solution v of

—Av 4P =0 in Bf
v = min u(x) on 0Bpg
|z|=R
Since lim ¥ 2u(r) =k > 0 and k > Kk’ > 0, this ends the proof. O

r—00
Proof of Theorem 1.10. In all the cases, the basic convergence (1.36) holds true from
Lemma 3.7. If the limit of 77u(r) is zero, then necessarily 15 < ¢ < 2 and we have
(1.37) or (1.38). 0

3.5 Solutions of eikonal type

In order to study the properties of solutions of eikonal type we first give some
asymptotic expansion results.

Lemma 3.9 Let M > 0, 1% <qg<p(resp. 1 <q< 1%) and 0 # 0 (see (1.25) for
the definition of 0). If (X,Y) is a solution of (3.11) which converges to (X,,,Y,,)
when t — —oo (resp. t — 00), then t — X (t) — X,, has a constant sign for |t| large
enough. Furthermore

X(t)=X,, + ARRCSTR +0 ( L) t ( t ). (3.67)
= ———_—€P74 eprP—a ast — —oo (resp. — 0Q). .
M p(q _ ].)M

9
Equivalently, with u(r) =r r=a X (t),
q 9’)’1_qu/1_(1 _pr2-q)

( ) X n —|—O< (2p+1)q—2p> 0 ( )

ulr) = r P44 —+—1-——17r P4 r r—q as r — resp. r — Q).
M plg—1)M

(3.68)
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Proof. (i) Ezpansion of MY? — XP. Set
U(t) =Y, — 0V = 7a(MY9 — XP).

Then

xpt:e—p”q< T (MY = X?) + MqY "~ (0Y + W) — pX" " (3X — Y)
p—q

If ¥ is not monotone, one has at the local extremum ¢, of ¥, denoting ¥,, = ¥(t,),
Xn=X(t,) and Y,, = Y (tn),

MY~ 0, = —MaBY;{ + pXE™ (v X, = V) 4+ (MY~ X7).
But lim (X(£),Y () = (X,,Y,,), then pXE ' (X, = Vo) + T (MYI-X2) >0
=00 p—q
when ¢, — —o00. Therefore ¥, — —0v.X,,. Since the limit is valid for local minima
or maxima it follows that tlim U(t) = —0vX,,.
——00
If ¥ is monotone, then Y;(t) —0Y (t) admits a limit when ¢ — —oo. Since Y (t) — Y,

M
it follows that Y;(¢) has a also a limit at —oo and the only possible one is 0. Hence

U(t) - —0vX,,. In both case it yields, since 6 # 0,
MY ()T — X(H)P = 07X, er-i(1+0(1)) ast— —oc. (3.69)

(ii) We claim that X — X,, has a constant sign. If X is nondecreasing (resp. non-
increasing) then X (t) > X, (resp. X(t) < X,,) for ¢t < 0. Actually the inequality
is strict, otherwhile, if there is some tp such that X(tp) = X,,, we would have
Xi(t) =0 for t <tpand X(t) = X,, for t < ty. If 6 # 0 this contradicts the fact
that M~?X? — XP = 0. If 6 > 0 we deduce from (3.12) that if X (¢,) is a local
minimum we have

Thma (MAIX(t,) — XP(t,)) = —0X (tn) — Xu(tn) < 0 = X(t,) > X,
This implies that X (¢) > X,,. Similarly, if # < 0 we get X (¢) < X,
(iii) Asymptotic expansion. We write X = X, (1 +w) and Y =~X,,(1+ z). Then

Wy :'y(w—z)

=0(1+z)+ My X0 e” ea (I1+2)7—-(1+w)P). (3.70)

There holds

(1+2)? = (1 +w) =qz —pw+ ¢(z) — P(w),
where ¢(2) = (1+2)?—1—qz and ¥(w) = (14+w)? —1—pw, therefore 0 < ¢(2) < 2>
and 0 < 9 (w) < cw? for t < t*. Next, from (?7),

0z + B(2) = pw + b(w) + a, €771 (2 — O(1 + 2)),
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where a,, = M~1(vX,,)}"%, and 2(t) — 0 and 2(t) — 0 when t — —oco. Therefore
the previous identity becomes

gz + (2) = pw + Y(w) — Oa, er5 (1 + h(t)), (3.71)
where h(t) — 0 when ¢t — —oo. Next

gz(1+¢€) ifz>0
gz(1—¢€) if2<0

pw < pw + Y(w) < pw(l + ey),

gz < qz+ ¢(z) < { =qz(1+¢,)

where €, = esign (z) and €, = wsign (w). It follows from (3.71) that

ot
qz — pw(l + €y) + ba,,er—a(1 + h(t)) <0 (3.72)
at .
qz(1 4+ ¢€;) — pw + Oa,, er—2(1 4+ h(t)) > 0.
This leads to the following two inequalities verified by w;
1 1 ot
we=nw=2) = (qw—gz) 2 <qw —pw(l+ew) +bayer=a (1 + h))

0 ot
> —w (1 R ew> 4 ep—tQ(l + h),
p pb—q
and
q 1

ot
<« U (e i fa. era(1h
Y=y <w Q(1+€z)( pw + Ba ere( )>

_ P Oa,, ot
Sw( 1+p—qez) T pure) A

and we know from (i) that w(t) keeps a constant sign when t — —oo. We deduce
from the above inequalities that if § < 0 the function ¢ — e(1=9w(t) is decreasing
for some € > 0 and tends to 0, hence it is negative, while, if > 0, t — e(1F)ty(t)
is increasing for another ¢ > 0 and tends to 0, hence it is positive. Then, we can
summarize as follows, with a new ¢ > 0

ot

(I—e) (0_1w ~ Pu 6”") < — (07 w)e < (1+¢€) <6’_1w - aM@ﬁq) :
p—q
(3.73)
a ot
As we have 1 £e+ -2 = PUU 1 o the function ¢ s e(1+)t (0‘1w - ——M__ eP*q)
p=a p(g—1)+e

p—q
is increasing and tend to 0 as ¢ — —oo. Hence it is positive. In the same way,

ot

the function t —» e(1=9)? (0*111) — #eﬂ) is decreasing, tends to 0 hence it is

negative. Therefore we infer that

Oa,, ot
1)617 Q(1+0(1)). (3.74)

wit) = p(q —
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20t ot 20t
This implies ¢(w) = O (eP—Q>. From (3.71), z = O (ep—q)7 then ¢(z) = O (ep—q)
and €, = O (ePL—tq). Since X — X,, = X,,w =~Y,,w, we deduce (3.67). Notice also
that from (3.71) there holds

(2 - Q)GCLM ot ( ol ) :

z2=———"—"¢er—a+o|era
(g —1)

hence

wp = A(w(t) — 2(8) = —0B 35 (1 4 o(1) (3.75)

' plp—a)(g—1) ' '
In particular X; has the sign of 8, and therefore X is monotone. O
Remark. If ¢ = 2 we obtain
1 2(N—-1)—(N—-2)p 2t 4t
X(t) = (M~y?*)r2 + ( ;p]\/; )pe;f? +0 <6P4*2> as t — —o0,

(3.76)
so we recover the result of [20].

3.6 Local or global existence results
3.6.1 The systems of order 3

Since q # 1%’ we can perform the transformation 7, and assume that M = 1. For
proving the existence of solutions to (1.1) there are essentially three methods: the
methods of sub and super solutions which has already been developed in Section 2.3,
the method of fixed points, and the use of a specific autonomous system of order 3.
This last method appears to be entirely new and we explain it below. This system

uses the variables (X,¢,5) € Ry x Ry x Ry,

Xi=X(y—-09)

&=¢&B-295) (3.77)
Sy =S(S+2—N)+ 1 (MS1— XP~9),

Lemma 3.10 Let 1 < q < p with q # % and M > 0. If u is a decreasing positive
solution of (2.12), then

(X (t),&(t),S(t)) = <r7u(7’), rPu(r),r |:i/((:))> with t =In, (3.78)

satisfies (3.77). Conversely, to each trajectory of (3.77) in Ry xR xRy corresponds

a unique solution of (2.12).

Proof. Let u be a decreasing solution of (2.12). We recall that (X,Y") are solutions

of (3.11), S = ¥ and £(t) = 7Pu(r) with t = Inr. Then (X, S) satisfies the following

system which is equivalent to (3.11),
Xi=X(y-9)

o 3.79
St:S(S+2—N)+e‘ﬁXq—1(MSq—Xp—q). (3.79)
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Using (3.14) we have that £971 = e 73 X9-1. Since by computation & = £(8 — 5),
we deduce that (X, ¢, S) satisfies (3.77).
Conversely, let (X,&,5) € Ry x Ry x Ry be a solution of (3.77), then

(P—q)(qg—1)

Hence £(t) = be CEDICEY X (t) for some b > 0. If we set a = —%‘(q_l) Inb, we see

that
o(t+a)

g(t) = ¢ @—a)(g—1) X(t)

Hence
X;=X(H-S
e=X0r=5) ' ita) (3.80)
S;=85(S4+2—-N)+e v qul(MSq—Xp*q).

Setting 7 =t + a, X ¥ (1), @ (1) = (X(t),S(t)) = (X (1 — a),S(T — a)), then

X = X@(y - §@)

ot 3.81
S;a) = S(a)(S(a) +2—-N)+ efﬁ(X(a))q—l(M(S(a))q _ (X(a))p—q). ( )

Then the function p — u@(p) = p~ 7X@ (Inp) satisfies (2.12). Let (X,¢,S) and
(X,&,5) be two solutions of (3.77). Then there exist a, a such that

o(t+a) o(t+a)

§() = TOTTX() and £(1) = ¢ T X (1),

and
ul®(p) = p77X@(Inp) = p~Y X (Inp — a)
u@(p) = p77 X (Inp - a).

correspond to the same trajectory, there exists h € R such

If (X,¢,8) and (X,£,5)
= (X,¢&,5)(t+ h) for all ¢, thus

that (X,&,59)(t)

o(t+a o(t+a+h)

__o@+a) _ _o(t+a+th)
§(t + h) = e @—a)(g—1) X(t + h) —e (p—q)(q—l)X(t + h)_
Therefore a = a + h. Hence
ul®(p) = p ' X(Inp—a)=p " X(Inp—a—h)=p X(np—a) =u(p).

In conclusion, there is a one to one correspondence between the trajectories of (3.77)
and the solutions of (2.12). O

Remark. Using the relation (3.16) one can see that (3.77) is equivalent to the fol-
lowing system in the variables (x,&, S),

e =z(a—9)
&=¢(B-09) (3.82)
S =8(S+2—N)+&1MST — xP7 1,

This system is particularly suitable for construction local solutions in 7~ or 2=,

2p

in particular when r — oo, in the case ¢ > DT
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3.6.2 Singular solutions of eikonal type

Proof of Theorem 1.11. We recall that these solutions of eikonal type are the
solutions which behaves like = near 0 or co. For ¢ > 0 and A > 0 we set
u,,(r) = ™7+ Aand u, = u Then there exist a,b > 0 depending on p
such that

c,0°

Pr? 4 a AP + apcPt Ar P < ul (r) < cPrm7P 4+ AP + bpcP L Ap P,

(1) Subsolutions. If u_(r) = c¢r™7, then

1
SLMu, = (v 2= N2 P Myt (e
et (3.83)

rq

— P9 e
=7r r4 (cp_l — cq_lXﬁ_q — 797"1?—11) .

Set ®(c) = #~! — 471 XP~%. Then ®(X,,;) = 0 and ® achieves its minimum at
1 p—1
Cm = <%X}1’CI_‘1> """ with minimal value ®(cp) = —2={ (g 1 XP- q)p . Notice
(N 2)p

that if # = 0 ie. ¢ =
(3.13).

(ira) T N =1or N =2 orif N> 3andq > % %p,then0>0anduc is a
subsolution in RY \ {0} provided ¢ < X,.

(i-b) If ¢ > ]% and ¢ < 0 there exists r1 > 0 such that u_ is a subsolution in
B, \ {0} Hence @, = cp(r™ —r; ") is a subsolution in RY \ {0}.

(ii) Supersolutions. We have

then we find the explicit solution u}, deﬁned in

,ﬁM

_ pa_ o AP
pgllea =T p-a (<I>(c) - 70r?*4> + a? + apcP=2 Ar—1(P=1) (3.84)
(ii-a) If # < 0, then for ¢ > X, and any A >0, u_, is a supersolution in R \ {0}.

(ii-b) If ¢ > z% and 6 > 0, then for any R > 0 we take ¢ > X, such that

O(c) > ~ORv7, hence £, >0in Bg\ {0}. Since ——q + 55 = ZD 2;’ <0, we
take A > 0 such that aAP > v9cR~7~2, hence E%uq > 0in BC Consequently

u, , is a supersolution in R \ {0}.

c,A
(ii-c) If ¢ < 1% and 6 > 0, then we can take ¢ such that ®(¢) > vdRr—¢ and obtain
that u_ , is a supersolution in Bf.

(iii) Proof of statements (1) and (2).

If ¢ > m and whatever is the sign of # there exist ¢, <c¢ < X,, < and A >0
such that u, ,
Theorem 1.4.5] there exists a radial solution u in RY \ {0} satisfying u, <u <wu,
Its behaviour at infinity is given by Theorem 1.9. This solution is decreasing by the
maximum principle and it is unique by Theorem 4.6-(3).

The existence of a solution in a bounded domain €2 containing 0 and vanishing on

00 satisfying (1.26) follows by Theorem 1.14 which is proved in Section 4. So we

is a supersolution in R™ \ {0} larger than the subsolution u,. By [25,
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deduce statement (1).

Ifl<gc< % and 6 > 0, one has a supersolution u in B and a subsolution

A
u, in RV \ {0}. Up to increasing the value of A one has again a supersolution u , ,
larger than the subsolution u,. Hence there exists a solution u in between satisfying

(1.36) which proves statement (2). O

3.6.3 Riccati type singular solutions

Proof of Theorem 1.12. We recall that the Riccati equation (1.20) admits the radial
solution §M|a:|_5 if and only if % < g < 2. This function is a supersolution of

(1.1) in RV \ {0}.

1- Local existence in a neighborhood of 0. Since q > % the system (3.77) in

variables (X,¢,S) admits the equilibria (0,0,0), (0,0, N —2) and (0,§,,,3). Our

aim is to construct local radial solutions of (2.12) satisfying lir% rPu(r) = ¢,, and
r—

lim P (1) =y, = BE,,, equivalently
r—

lim (X(£),£(1), S()) = (0,,,. 8). (3.85)

t——o0

Conversely, any solution (X, ¢&,.S) satisfying (3.85) corresponds to a solution u sat-
isfying liné(rﬁu(r),rﬁﬂml(r)\) = (&,,,5¢,,)- The system (3.77) may be singular at
r—>

&, =0 or at X = 0; hence we desingularize it by setting X = XP~4 and f = ¢a-1,
Then (X, ¢, S) satisfies
Xi=(p-g9)X(v-9)
= DiB-5) A (3.86)
Se=854+2—-N+&MS?T-X).

So we are led to study solutions in a neighborhood of the equilibrium (O,é i B)
where ¢,, = 51‘{;1 = = Weset £ =¢, +& X =X and S = 3+ S in order to

MpBaT b6 =6
reduce the study at (0,0,0), and (£, X, S) satisfies the following linearized system
N=gm%
& =—(¢—1)§,S (3.87)

S’t = _éj\/IX + Mﬁqg"i' (B + ’f(q - 1))5

If we denote by A the matrix of this system, then its charecteristic values are the
roots of the polynomial

det(A —pl) = (p—p1) (p— p2) (0 — p1), (3.88)
Withm:qiil, pe = B and pg = (¢ — 1)k = (N — 1)¢ — N. Since ¢ >
max {1%’ %} all the eigenvalues are positive. We find that

up = <0,1,—K(];4’8q1)) and ug = (0,1,—-MpT ).
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are eigenvectors corresponding to pue and us respectively. If 1 # po and p # us,
we can take for eigenvector corresponding to pp the vector uy = (1,b,¢) for some
real numbers b and c. Actually

b= __ M where ¢ = — alad .

- -1 -1
Mp3™ Mp3~ (p1 — po)(p1 — p3)

Then there exists one trajectory of (3.86) with X (¢) > 0 when ¢t — —oo such

that £(t) =¢,, + O(eq%tl) when ¢ — —oo. Hence there exists at least one solution u
of (2.12) such that u(r) = r=8¢,, + Cr=A+(N=Da=N(1 4 5(1)) when r — 0.

2- Local existence at infinity. Here we assume % <q< 1%. Then pu; < 0,
o = B > 0 and pug = k(g — 1) > 0. Then there exists a unique local trajectory
which converges to (O,f ,3) when t — oo, it corresponds to the stable manifold of
this point. If there exists a positive solution in R\ {0}, the solution can be extended
as a solution in RY by [7, Theorem 1.1] since in this range of values of ¢ one has

p > % By Proposition A.1 such a solution is identically 0. U

Remark. Note that we have many types of solutions converging to (0,0) and their
geometry depends in their sign and their relative order. In this respect we denote

N — (N —2)q

flgg =(N-1)¢g— N+ P (3.89)
and we have
(1) M325(9—1>>M2=5<:>q>1+ﬁ
(44) p1 > 2 <:>p<2(2q__1)<:>q>2(£r+21) (3.90)
(ii7) > pg <= p < f(q).

We have that p; = ps = ps only if p = \/Niil—l and ¢ = 1+ \/ﬁ, a condition
which is compatible with p > 1 only if 2 < N < 9.
Global (necessarily singular) solutions in r—# are difficult to construct. We give

below a range of exponents in which there exists at least one.

Theorem 3.11 Let M >0, p>1land1<qg<2,q#1+ \/ﬁ If there holds,

p < max {2(2(1__(]1),f(q)} , (3.91)

in particular if p < % and q > %, then there exists a positive radial solution of
(1.1) defined in RN \ {0} satisfying

ilg%) |z|Pu(z) =¢,,. (3.92)
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Proof. The function U(x) = €,,|z|~" is a supersolution of (1.1) in RN\ {0}. We
look for a subsolution under the form £(t) = €,,(1 — Ae®), for some d, A > 0. Set

H[E|(t) = &4 + D& — kBE — 1P + M|BE — &4,
where
 Ng-N-2
== -

Then on the interval I4 := (—oco, —24) one has

D Kk — .

BE—& =€, (5 —A(B — ,ul)edt> .

In order H[¢] > 0, and since M¢,, 89 = kf§,,, one needs

—A (d? + Dd+ k) e + Mga-1pa (1 _ Aﬂgdedt)q .y

— gp-lemt (1 — Aed)? > 0.

Since Mﬁj‘{{lﬂq = kf3, if we set Z = Ae?, then 0 < Z < 1 on I4 and the previous
inequality to be verified becomes

STy P 2 B—d_ \*
Te‘“ Z(1-2) §—(d +Dd—/€6)Z+/€ﬁ<1—ﬁZ> — K.

elpp—d)t

We first impose d < pp, then “—— < A='F on I4. We set

Q%) = wp (1 - ’8;dZ>q - (d2 + Dd — kB + gpM—lA*%l) Z—kB.  (3.93)

Then

-1
Q(Z) = —qr(B - d) <1 _b-d g dz>q - (d2 +Dd— KB+ é”ﬁ’;lA—%) :

and

-2
"z _H(,B—d)Qq(q—l)< _5_dZ)q .
Since k > 0, Q is convex on [0,1]. Furthermore Q(0) = 0. Hence H(£) > 0 if
Q'(0) = 0.
Q'(0) = —qr(8 — d) — <d2 4 Dd— rf+ gg;lA—‘%) (3.94)

Replacing D by its value, (3.94) will be achieved, provided A is large enough, if
~d* + ((¢ = Dr+ B)d — (¢ = 1)k = —(d — p2)(d — p3) > 0. (3.95)

The condition is that u; > d with d satisfying (3.95). It necessitates us # s,
equivalently ¢ # 1 + ﬁ, and

o1



(i) either pg < inf{uq, us}, then we can choose any d € (uz, inf{u1, us),

(ii) or ps < inf{p1, ue}, then we can choose any d € (ug,inf{u1, p2).

These conditions are satisfied in p1 > inf{uo, us} which is equivalent to (3.91). If
one of the above conditions is satisfied, it follows by [25, Corollary 1.4.5] that there
exists a radial positive solution u of (1.1) in RY \ {0} which satisfies

& (1— A\x|d)Jr lz|# <wu(z) <&, |z|™? forall x € RV \ {0}. (3.96)
U

Remark. The condition p < f(q) yields to a highly irrationnal bounds on ¢ since
the resulting equation is

K(q) :== (N —1)¢> — (2N +p)g + (N +2p) < 0. (3.97)

Note that the sum of the roots (or their real part) is positive as well as their product.
In order the relation (3.97) be satisfied for some value of ¢, a necessary condition is
that the discriminant of this polynomial K(q)

In(p) = p° —4(N = 2)p + 4N
be positive. When N = 2,3,4, 6(p) > 0 for any p, but for N > 5 this holds only if
p¢[2<N—2— N—2)2—N>,2<N—2+\/N—2)2—N>}. (3.98)

Since K (1) = p—1, 1 does not belong to the interval of the roots of K(gq) which are

_N4p+ /NG 2N 4+p— o)

T 2(N — 1) - 2(N — 1)

Clearly ¢4+ > 1, hence ¢_ > 1, thus (3.97) is verified if o5 (p) > 0 and
g— < q < q+. (3.99)

Note also that the condition g < f(q) is always satisfied when ¢ < 2.

3.6.4 Emden-Fowler type singular solutions

Proof of Theorem 1.15-(1). Since 1 < p < 25 the function x — Uy, (z) = xo|z|~®
is a subsolution of (1.1) in RY \ {0}. In order z — U.(z) := C|z|~® to be a
supersolution, one needs

Cp—l 2 xg_l + ach_lM‘x|_ﬁ' (3100)

The function C' +— CP~9 — atg_lC 174 is increasing and onto from [z¢, 00) to [zg, 00).
Hence there exists C' > x( such that a?C? M = CP~! — $8_1. For such a value we
have that

el 2
E%IUC = Mal(l — r_ﬁ)r_pfpl.
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Since o < 0 the function U, is a supersolution of (1.1) in By \ {0}. For A > 0 we
set Uy, , = U, + A. Then

__9o_ _2p
LyUe s =LyUs +UE | —UE > AP + Mad(1 — |z| 7T )[x| 7T (3.101)

Clearly £)2 U , > 0in By \ {0}, and for |z| > 1, one has

M _ (p+1l)q
LoUca = AP — Moz »=1 > AP — Maf.

Therefore, if A = M a%, the function U, , is a supersolution in RN\ {0}. Since
Uzy < U, it follows by [25, Theorem 1.4.5] that there exists a solution u of (1.1)
in RN\ {0} such that Uy, <u < U, ,. Then by Theorem 1.8-(1), u satisfies (1.39)-
(i), and by Theorem 1.10-(2), (1.39)-(ii) holds. Furthermore r“u(r) > xz¢ for any
r > 0. Uniqueness (not only for radial solutions) is a consequence of Theorem 4.6-
(2). Obviously |z| — wu(z) is decreasing. Existence of a positive solution in a

bounded domain ) containing 0 is a consequence of Theorem 1.14, see Section 4.
O

Proof of Theorem 1.13-(2). 1t is a consequence of Theorem 1.11 and Theorem 1.9.
O

3.6.5 Solutions behaving like the Newtonian potential

There exist also solutions which behave like the Newtonian kernel at 0. They are
described in the next result.

Theorem 3.12 Let 1 < p < % and 1 < q < % Then for any M > 0 and

k > 0 there exists a minimal positive solution uy, of (1.1) in RN\ {0} such that (1.12)
holds. Furthermore it is radial and nonincreasing. If we assume 1 < q < 1%’ this
solution is unique among all the positive solutions.

Proof. Proof of existence. If M = 0 the result is classical and for £ > 0 we denote by
v, the solution of £,v = 0 in RV \ {0} satisfying (1.15). This is a natural subsolution
of (1.1).
The construction of the supersolution is more involved.
(i) We first assume that N > 3 and prove that for any k& > 0 there exists My > 0
such that for any 0 < M < M}, there exists a supersolution of (1.1) satisfying (1.15).
Let a > 0 set

wy(z) = klz>N 4+ kzP~N-Na 4 g

Then there exist c5,cg > 0 depending on N and ¢ such that.
L3 = KN =1)g =2)(N = (N = 1))l =N 4 (kfaf>~N 4 ke[ -V )y
— M ((N=2)k|z['*"N+((N —1)g—2)k9|z| =~ (N-Da)?
> esk?|x|0N 4 P — cgM (k)| Na 4 kq2|x‘qf(N*1)q2)
> k4 (05 —cgM(1+ qufq)> |2|(=N)a 4 qP — k4 (cGM + k‘quq) .
(3.102)
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Note that we have only used inequalities 2 < (N —1)g< N. Set My = m
6

Then, for M < M, we take a? = k4 (CGM + k:q2_q> and we derive that E%wk > 0.

The supersolution wy, satisfies vy, < k|z|>~ < wy,.
(ii) If N = 2 and for b > 0 we denote by 1y, the solution of

— A 4 P = |z| 71 + 21k, (3.103)

and we set wy = ¢ +b. Since 1 < ¢ < 2, wp, = —kln|z|(1 + o(1)) and Vwy =
—k|x|~Y(1 + o(1)) as z — 0. Hence

0 < Yp(z) < ecr(—klnl|z| + 1) and |Vp(z)| < cr(k+1)]z|~t for 0 < |z| < 1.
(3.104)
Furthermore, by Keller-Osserman technique combined with scaling method, there
holds in R? \ By,

() V()] < csmax {Jal 5T, |75}

B

(i) 0 < tp(w) < esmax {Jal =, |z|~
(3.105)

In the above inequalities, ¢; and cg are positive constants depending on p and gq.
Hence

Lywy, = ||~ 4 (P + )P — 4y — M|V |9 (3.106)
We infer
L wy > |79+ 0P — MKz if 0 <|z| <1, (3.107)
and
Lo wp > 0P — Mclkt if x| > 1. (3.108)

If k is fixed, M < My, := k™%, % and b > Mclk? we conclude that wy, is a superso-
lution in R? \ {0} larger than vy.

We deduce from (i) and (ii) that for any & > 0 there exists M}, > 0 such that for
any 0 < M < Mj, there exists a positive radial solution uy of (1.1) satisfying (1.12).
Furthermore uy, satisfies (A.1). Therefore uy is necessarily decreasing.

End of the proof of existence. Let ¢ < % and ¢; such that ¢ < q1 < % For
k > 0 let € > 0 such that for any 0 < M’ < € there exists a positive radial solution
wy, to Lg, prw = 0 satisfying (1.12). If M > M’ there holds

M|X|9 < M'|X|"+C  forall X € RV,

_q
where C = (q‘f]]‘\{[,) - (M — qllM’) > 0. Then

Lytwr = Ly arwg + (M = M)|Vuf| > -C

1 1
which implies that wy + C? is s supersolution of (1.1) and v < wp + Cr. We
conclude as in the first step.
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Uniqueness. It is proved in Theorem 4.6, this ends the proof.

When we do not assume g < 1% we have only the existence of a minimal positive
solution. This is due to the fact that for two solutions u and u’ as above, min{w, v’}
is a supersolution larger that v;. The conclusion follows easily. |

In the next statements we prove the existenc of radial solutions defined in the
complement of a ball of RV, N > 3 which behaves like the Newtonian potential at
infinity. We start with the following lemma dealing with the positive radial solutions
of £,v = 0 in the complement of a ball.

Lemma 3.13 Assume N > 3 and p > % Then for any ¢ > 0 there exists k. > 0
such that the unique solution v, of L,v =0 in Bf verifying v|sp,= ¢ satisfies
lim 2]V 2ve(z) = k. (3.109)
|z|—o00

Furthermore the mapping ¢ — k¢ is continuous and increasing from (0,00) onto
(0, koo) for some koo < 00.

Proof. The existence and uniqueness of a solution v, in an exterior domain and the
fact that (3.109) holds is classical (see e.g. [21]). However the fact that k. > 0 and
the continuity of ¢ — k. is not proved there. By the maximum principle ¢ — k. is

nondecreasing. Next we set s = 7],31:22 and v.(r) = 727N p(s). Then p, := p satisfies

sgpss = CNWS%*”,OP on ((N — 2)_1,00) and p((N — 2)_1) =c, (3.110)

4—N
where ¢y, = (N —2)¥-2"P. By the maximum principle v.(r) < cr?~ (v, is the
positive harmonic function in Bf with value ¢ on 0B;), hence p(s) is bounded. Since
p is convex and bounded, it is decreasing and p’s) — 0 as s — oo. Hence

—7(s) = eny / TN (1)dr < cy s T2 P P (s). (3.111)

Hence by integration the function p — ®(p) = p'=? — ¢’ p%_p is increasing and
bounded. Then it has a finite limit £ when p — co and ®17P(p) has the same limit
¢. Thus ¢ # 0 and consequently k. > 0. Let {c,} be a decreasing sequence in
R4 converging to ¢* > 0. Then the sequence of corresponding solutions {v, } is
decreasing to v+ the sequence {k.,} is nonincreasing with limit k* > k.. From
(3.111) one get

en — ke, = CNp / / TR P20 (7)drds, (3.112)
(N=2)—"1Js

and the same identity holds in ¢, is replaced by c¢*. By the dominated convergence
theorem, one has that

=k =cnp / / TV P20 (1) drds, (3.113)
(N=2)"1Js
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which implies that £* = ke+. A similar result holds if {¢,} is an increasing sequence
in Ry converging to c, > 0. Hence ¢ — k. is increasing and continuous. When
¢ T oo v, increases and converges to the unique positive solution v, of £,v = 0 in
Bf such that 711_% v(r) = oco. Hence k. 1 koo and koo < 00. O

Remark. Since the equation L£,v = 0 is invariant by the transformation 7, defined
n (1.3), the ball By can be replaced by Bg for any R > 0. The range of k., that we
call k. r is modified accordingly and lim k. r = koo,g. Then one has

c— 00

koor = RN 72 %00 1. (3.114)

Theorem 3.14 Let N >3, M >0, p > % and% <q<p.
1- For any k > 0 there exist R := Ry, > 0 and a positive radial solution u of (1.1)
in B% satisfying

lim |2V 2u(z) = k. (3.115)

|z|—o00

2- If 1% < q < p there exist k>0 and a positive radial solution, unique among all
the positive solutions, u of (1.1) in RN\ {0} satisfying lir% rTu(r) = X,, and (3.115)
r—

with k = k. In the particular case q = % we have u =, ~ (see (3.13)).

3- If % < q < 2 and the assumption (3.91) of Theorem 3.11 is satisfied, there

exist k > 0 and a radial positive solution u of (1.1) in RN \ {0} satisfying (3.115)

and lin%) |x]5u(x) = ¢,,. Furthermore w is unique among all the positive solutions
z—

satisfying (3.115).

Proof. 1- If w is a positive radial and decreasing function such that Rf]\/l w =0 it
satisfies (see (3.32))

1

1

—w/(r) = =N <C+ MTN—(N—I)q> - ’
K

where, K = (N;l# and C € R. If C > 0, w is defined on (0,00). Hence if

w(r) — 0 as r — 0o, one has

1

) T a—1
wlr) = [T (o o) gy (3.116)
K
,
Then w(r) = —L——r2"N(1+0(1)) as r — oo. Hence, if k > 0 is given, we choose
(N—2)Ca-1

C > 0 such that —L—— = k. In order that k is in the range of the application

(N-2)C7-T1

¢+ k¢ R, one takes R > 0 such that k < RN*Q*O‘kOO,l. For such an R, there exists
¢ > 0 such that the solution v. of L,v = 0 in B, verifying v = ¢ on 0Bp satisfies

~1
(3.109). We then set C' = <ﬁ>q . The function w := w¢ defined by (3.116) is
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a supersolution of (1.1) in B%, larger than the subsolution v. and both v, and wec
satisfy (3.115). Then by [25, Theorem 1.4.5] there exists a radial positive solution
w of (1.1) in B}, such that v. < u < wc, hence (3.115) follows.

2- The existence of a unique positive and radial solution in RY \ {0} satisfying
(1.26) follows from Theorem 1.11. The asymptotic behaviour is a consequence of
Theorem 1.9-(2).

3- Under the condition (3.91) of Theorem 3.11 there exists a unique positive solution
in RV \ {0} satisfying (3.92). From Theorem 1.9, and since p > 5, its behaviour
at infinity is given by (1.34) for some specific k* > 0. Uniqueness follows from
Theorem 4.6. g

4 Isolated singularities of non-radial solutions

4.1 Existence and uniqueness of singular solutions

The results of this paragraph are independent of the description of the radial singular
solutions performed in the previous sections and they provide a general tool for
constructing singular solutions. The existence of singular solutions is based upon
the next variant of [11, Theorem 2.1] proved in [25, Corollary 1.4.5].

Theorem 4.1 Let G be a bounded domain in RY, B € C(G xR xRYN) a real valued
function, T' € C(Ry,Ry) an increasing function such that

|B(z,7,&)| <T(Ir|)(L+ &%) for all (z,7,€) € G x R x RY. (4.1)
Let Q be the operator defined by
Q(u) = —Au + B(x,u, Vu). (4.2)

If there exist a supersolution ¢ € WL°(G) and a subsolution 1 € WH(G) such
that 1 < ¢, then for any x € WH(G) satisfying 1 < x < ¢ there exists a function
u € WY2(QG) verifying ¢ < u < ¢, solution of Q(u) = 0 and such that u — x €
W, 2(G).

One of the main application of this result is Theorem 1.14 which is proved below

Proof of Theorem 1.1j. Let {e,} be a sequence decreasing to 0 and such that
€1 < dist (0,09) and set m = mgév(z)qtm%}é(gé(z) —v(z))4+. Then m > ¢ on 92 and
S z€

the function ¥ = v+m satisfies £327 > 0in Q\{0}. The function v = (v—maaué o(2))+
’ z€

satisfies £)2v < 0. Put x = sup {v,inf {v,¢}}. Then x € Wl})’COO(Q \{0}), v <x<7w
and x = ¢ on J). By Theorem 4.1 for any n € N* there exists a function w, €
Wh2(Q\ Be,) such that (u, — x) Loy, € W01’2(Q \ Be,) satisfying £ u, = 0 in
0\ B,,. Furthermore u,, is unique by the maximum principle. Since u, = ¥ on
0B, , v, and therefore v, is radially decreasing and w, = x on 02 we infer that

Up, < Uy in Q\ Be, if n’ > n. Hence the sequence {u,} is increasing and it satisfies

(v(z) _gé%s}r(l(b(z))_i_ < up(x) <v(z) +£Ié%§(gz§(z) —v(z))4+ forall z € Q\B,. (4.3)
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By standard regularity estimates, u, is relatively compact in CL _(Q\ {0}). Hence
it converges to a solution u of £)2u =0 in Q\ {0} which coincides with ¢ on 9
and satisfies (1.41). O

As a first application we have the following;:

Corollary 4.2 Let ) be any bounded smooth domain containing 0 and ¢ € W1>(Q)
be nonnegative. There erists a positive solution u of LM ,, u = 0 in Q\ {0} with

’p+1
value ¢ on O such that u(z) — alz|~* remains bounded in Q0 where a is equal to

T, orx,,, (j=1,2) or Ty according to we are in the cases (1)-(2) or (3) or (4) of
Theorem 1.1.

The existence of singular solutions is not restricted to the case ¢ = ]% where
they are explicit. The following easy to prove corollary shows that existence, and

sometimes uniqueness, holds when 1 < ¢ < % This range of exponents is analysed

in [7] in connection with problems with Dirac measure data.
Corollary 4.3 Let Q Cc RN, N > 1, be any bounded smooth domain containing 0.
Assume 1 < p < % ifN>3oranyp>1if N=121<¢q< min{p,%}

if N>2oranyq>1if N=1, M >0 and k > 0. Then for any ¢ € WH>(Q),
¢ > 0, there exists a positive solution u of LY u =0 in Q\ {0} with value ¢ on 09
satisfying (1.12).

Proof of Theorem 1.2 and Theorem 1.3. It is a direct consequence of the above
results. g

More general uniqueness results valid for any positive solution, not necessarily
radial, are obtained below. Furthermore the problems involved are either considered
in R\ {0} or in a punctured bounded domain. If b is a positive parameter we define
a continuous group of transformations acting on functions u defined in an open set

G, ur— ugb), for £ > 0 by the formula
u§b) (z) = PPu(lz) forall £>0and z € (71G. (4.4)
If u satisfies (1.1) in G, then uéb) satisfies
—Augb) + €2fb(p*1)(u§b))p — M€2*q*b(q*1)wuéb)lq =0 in (7'G. (4.5)
Ife>1, u@b) is a supersolution of (1.1) if and only if
i 2—b(p—1) <0 —a<h
Eiz) 2- q(— b(q)— 1)>0 <= p>0 0

This conditions are compatible if and only if 1 < ¢ < 1%' Similarly, if £ < 1, ugb) is
a supersolution of (1.1) if and only if

(7) 2—-b(p—1)>0 = a>b

(1) 2—q—0blg—1)<0 <= B<bh. (4.7)
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This conditions are compatible if and only if 1% <qg<2

Proof of Theorem 1.15 First we note that two terms on the right hand-side of (1.42)

in the statement of the theorem coincide only if ¢ = 1%' We first study the problem
in RV \ {0}. We have to consider two cases:
1- Suppose o < 3. We choose b such that

b€ (a,00)N]a, f]. (4.8)

(b)

Let v and @ be two positive solutions satisfying (1.43). For £ > 1, u, "’ is a superso-
lution. Since

uéb)(az) = Az (=1In|z|)%(1 +0(1)) asz—0

and u(z) — 0 as |z| — oo, for any € > 0 the function z — uéb) (z) + € which is a

supersolution is larger than % near 0 and at infinity. Then uéb) +e> 1 in RV \ {0}.
Letting € | 0 and £ | 1, yields w > @. Similarly o > .
2- Suppose a > 3. We choose b such that

be (0,a)N[B,q]. (4.9)

Then for ¢ < 1, uéb) + € is a supersolution in RY \ {0} which is larger than @ at 0

and at co. Hence u < ugb) + € and we conclude as in the first case.

Next we consider the problem in . Since the solutions are continuous in Q\ {0},

for € > 0 we have that for ¢ > 1 uéb) + € > @ near 9(£~1Q) provided ¢ — 1 is small

enough. Hence uéb)(x) +e >4 in £71Q\ {0}. This implies that u > @ by letting
¢1 1 and then € — 0. If £ < 1 then  C £~1€, and we compare uéb) + e and @ in .
The proof follows. O

The previous result necessitates to find some satisfying either (4.8) or (4.9) which
is not always possible. We give below a variant of the result which necessitates a
slightly better blow-up estimate.

Theorem 4.4 Assume N >1,p>1,1<¢q< % and M > 0. Let a such that
0<a<§B (4.10)
There exists at most one positive solution of (1.1) in RN \ {0} satisfying
w(z) = Az| ™% + N|z| " (1 +0(1)) asz — 0, (4.11)

w(z) = Alz| (= In|z|)~" (1 + o(1)) asz — 0, (4.12)

where A, A" are some positive constants and a > a' and a” > 0.
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Proof. The principle of the proof is to replace (4.8) by
b€ [a,00)N o, f]. (4.13)

when a < 8. Then, for £ > 1, ugb) is a supersolution. If u satisfies (4.11) then, as
z — 0,
(b) _ b—a|,.|—a rpb—a' |, .|—a|..|—a
uy () = A x|7C + AT x| 2|7 (14 0(1))

Since b > a > d’, uéb) is larger than another solution @ near 0. Thus u§b) +¢e > u for
any € > 0, which implies the claim.

If u satisfies (4.12), then

ul? (z) = AO=|z|= (= In|z| — In£)~" (1 + o(1))
In/¢

—In |z|

= ALz~ (=1n |z|) " <1+a" )(1+o(1)).

(b)

Again u, ’ is larger than another solution @ in a neighborhood of 0 and we end the
proof as in the first case. O

Remark. The method developed above allows to give uniqueness result for large
solutions under some starshapedness assumption. Let G C RY be a domain with
compact boundary and pg(x) = dist (x, dG), we consider the problem

—Au+uP —M|Vul?=0 inG

lim wu(z) = 0.
pa (2)=0

(4.14)

Such a solution, if it exists is called a large solution.

Theorem 4.5 Assume N > 1, M > 0 and p,q > 1 and Q is a bounded domain
starshaped with respect to 0. There exists at most one positive function satisfying
(4.14) in one of the following case:

1- 2 <q<2and G=9Q.

2 —c
2—1<q§1¢plcde:Q.

Proof. Let u and @ be two positive solutions of (4.14). In the first case with G = Q.
Then for a < b < 8 and £ > 1, u} is a supersolution of (4.14) in Q := £71Q. Since
Q, C Q, ulj > 4, it follows that u > 4.

In the second case with G = Q°, then for 0 < £ < 1 and 8 < b < o. Then ull? is a
supersolution in £71Q° ¢ Q°. Then for ¢ > 0, ulj +e€>ain 071Q°. Letting ¢ — 0
and £ 1 1 yields v > @. Which ends the proof. O

If we combine the results of existence of radial singular solutions in RV \ {0} with
the uniqueness results of Theorem 1.15 and Theorem 4.4 we have the following:
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Theorem 4.6 Assume N >3, p,qg > 1 and M > 0. There exists one and only one
positive solution u of (1 1) in RN\ {0}, if one of the following conditions holds:

1- 1<p< =, q—p_H, M >0 and u satisfies (1.12)-(i) for some k > 0.

2- p+1<q<p and hm|x\7u() X,

3’—1<p<N 5, 1 <q<
(1.12)-(1) for some k > 0.
fp=5, 0= 1%’ M >0 and u satisfies (1.15)-(i).

Furthermore, ezistence and uniquenss of a solution holds if the equation (1.1) is

considered in 2\ {0} where Q is a bounded smooth domain starshaped with respect
to 0 and is the function u is equal to some ¢ on OQ where ¢ € C*(ON) is nonnegative.

p+1, M > 0 and either hm |z|“u(z) = xo, or u satisfies

Proof. By applying Theorem 1.14 and Theorem 1.15 the proof is reduced to use
results of existence of radial positive singular solutions in R™ \ {0} and to check that
the parameters fulﬁll the conditions of Theorem 1.15.

Case 1- If ¢ = +1, a = f and N — 2 < B. Existence of radial positive solutions
satisfying (1.12) (i) is proved in Theorem 1.3.

Case 2- Then v > (. Existence of a radial positive solution satisfying il_r}r%) |z|Tu(x) =
X,, is proved in Theorem 1.11-1.

Case -If 1 < ¢g< +1’ then o < 8, and since p < N 5, IV — 2 < a. Existence of a
a radial positive solution satisfying il_}n% |z|*u(x) = xo is proved in Theorem 1.13-1.

Furthermore the assumptions on p and ¢ imply that ¢ < % The existence of a
positive solution satisfying (1.12)-(i) for any k& > 0 is proved in Theorem 3.12.

Case 4- When p = %, q= z% there exists a radial global solution satisfying (1.15)-
(i) by Theorem 1.4. We apply estimate (4.12) in Theorem 4.4 witha = N—2 =a = (3
and a”” = N — 1. The result follows. O

Remark. In the case p = %, q= % we conjecture that the function u,,, is the

only positive solution of (1.1) defined in R \ {0} satisfying lirr%) 2|V 2u(z) = z,,
z—

4.2 Characterization of singular solutions

In this section we give some results showing how the characterization of singularities
of radial solutions can be extended to nonradial solutions. An important tool for
studying positive isolated singularities is Harnack inequality.

Proposition 4.7 Assume M > 0, p > 1 and 1 < ¢ < %. If w is a positive

solution of (1.1) in Bg, \ {0}, there exists cg = co(N,p,q, Ro, M) > 0 such that for
any R € (0, %] there holds

< i .
gﬁy(a«’) < ¢ lgﬂg}%uw) (4.15)

Proof. We write (1.1) under the form

—Au+ C(z)u+ V(z)|Vu| =0, (4.16)
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where C(z) = |u(z)[P~! and V(z) = M|Vu(z)|?!. By Proposition A.1,
p— (p—1)
C(w) < ¢ max {5l a2

and

g—1 g=1  _ p(g=1) _(@=1)(p+1)
V(z) <c¢j max{ Mr—a|z| »=a |z| @D

Under the assumptions 1 < g < 1%’ the terms |x|?C(x) and |z|V () are uniformly
bounded in Bg, \ {0}. The result follows by [13, Chapter 8§]. O

N N
4.3 Thecase l<p< 5 and 1 <q¢< 5
In this section, the results are obtained by a combination of Theorem 3.12 for exis-
tence of solutions and Theorem 4.6 for their uniqueness.

Theorem 4.8 Let N >3, M >0,1<p< %, l<g< % and € be a bounded
domain containing 0. For any k > 0 there exists a unique positive function u := uy
solution of (1.1) in Q\ {0}, vanishing on 0Q and satisfying

lim |z|N 2u(z) = k. (4.17)

z—0

Furthermore k +— wug s increasing by the mazximum principle and converges to a
solution us of (1.1) in Q\ {0}, vanishing on 0Q and satisfying

. 2p
. ~ _
il_r)% |z|Tu(x) = X if | <4<y (4.18)
where X, is defined at (1.26), or
T if 1<q< 22
lim |z|%u(z) = 0 f q2p pHl (4.19)
x—0 Zar Zf q = m,

where xg, x,, are the unique positive root of equation (1.4) with M =0 and M > 0
respectively.

Proof. Let 0 < Ry < Rs be such that Br, C Q C Q C Bg,. By Theorem 1.13-1
and Theorem 4.6, for k£ > 0 there exists a unique solution u; j (resp. ugy) of (1.1)
in Br, \ {0} (resp. Bg, \ {0}) satisfying (1.12)-(i) and vanishing on 0Bp, (resp.
O0BR,). If we extend u; by 0 in B, we have,

urk(|2]) < up(x) <ugp(lz])  in @\ {0}.

All the above functions are locally bounded in Q \ {0} and Bpg, \ {0} by Propo-
sition A.1. Since the mappings k — uj and k — u;; are increasing, we have, by
letting £ — oo,

1,00 (|7]) < too () < uz,c0(fz]) in 2\ {0}
Then we obtain (4.18) by Theorem 1.7-(1) and (4.19) by Theorem 1.8-(1) and The-
orem 1.3. O

The main characterization of isolated singularities is the next result.
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Theorem 4.9 Let N > 3, Q be an open subset containing 0, M >0, 1 <p < %
and 1 < ¢ < 1%' If w is a positive solution of (1.1) in Q\ {0}, then either its
behaviour at x = 0 is given by (4.18) or (4.19), or there exists k > 0 such that (4.17)

holds. If k = 0 the singularity at O is removable.
The proof needs a few intermediate steps.

Lemma 4.10 Let N > 3, 2 be an open subset containing 0, M >0, 1 <p < %
and 1 < q < . Ifu is a positive solution of (1.1) in Q\ {0} vanishing on 9Q and
such that

lim sup |z|Y ?u(z) < oo.
z—0

Then there exists k > 0 such that (4.17) holds. If k = 0, then u coincides in 2\ {0}
with a C%(Q) solution of (1.1) in Q.

Proof. By assumption u(z) < c[z|>~" and by [4, Lemma 3.10] we have the following:
if u is a solution of (1.1) in ©\ {0} (not necessarily positive) such that |z|™|u(z)| is

bounded near x = 0 for some m < inf{«, (21_;‘{}, then |z|™*|Vu(z)| is also bounded
near x = 0. Actually, in the reference the result is proved for a more general operator,

without the absorption «?, but the adaptation is straightforward. The result applies
there with m = N — 2 and in particular |Vu(z)| < |z['~. We write (1.1) under
the form (4.16). Since p < % and ¢ < % we have

C(@)] < el CNED < el 24 and [V (2)] < efe0VED < cfa] 1,

for some €1,€e5 > 0. It follows by Serrin’s result that either the singularity at 0 is
removable, or there exist ¢; > ¢y > 0 such that

colz|>™N <u(z) < ez forall 0 < |z| < 1.
In order to make the convergence precise, we denote by us the solution of

—Aug = M|Vu|? — uP in By
ug =0 on 0Bj.

Then —vy < ug < vl where

—Avh = Mp(1=N)g in By
vh =0 on 0By,

and

—Avg = Pr(2=Np in By
vg =0 on 0B,

Because (N —1)g < N and (N — 2)p < N, vy and v} satisfy

0 <wy(r) < cior?> N0 and 0 < vh(r) < 0107"2*N+5/,
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for some ¢19 > 0and 6 = N— (N —=2)p >), 8 = N— (N —1)g > 0. Then uy satisfies

lim ||V 2 = 0.
CCILI(I)’(IJ‘ ug(x) =0

The function u; = w — ug is harmonic in B; \ {0} and is bounded from below by
—vh, which satisfies lir% ||V =20} (2) = 0. Hence by standard result on singularities
T—

of harmonic functions, |#|Y~2u;(z) admits a limit & > 0 when z — 0. Combined
with Serrin’s estimates it follows that either £ = 0 and the singularity is removable,
or k > 0. Note that if £ = 0, then u is a C? solution in .

Another proof based on a perturbation is the following: let u(x) = u(r,s) =
|z|2~N¢(t,s) with r = |z| and ¢ = Inr. Then

G + (N —2)y — eN-PIN=2)tp 4 N/
+ MeWTIN=DI (N = 2)¢ — ¢0)? + [V'9])

q
2

=0
Since u = O(|z|>~"), we can write
Gt + (N = 2)¢y + A'p = —e™y),

where a = min{(N — p(N —2),(N —¢(N — 1)} > 0 and % is bounded. Then the

result follows by [10, Proposition 4.1]. O
We give below another application of the perturbation method and specific to
the case ¢ < }%.

Proposition 4.11 Assume § is an open subset containig 0, M >0, 1 <p < %
and 1 < q < %. If u is a solution of

—Au+ |uPru — M|Vul? =0 (4.20)

not necessarily nonnegative in Q\{0}, then r®u(r, s) converges uniformly with respect
tos € SN~ when r — 0 to a non-empty compact and connected subset of the set of
solutions w of

~ANw+aN-2-a)w+|wPlu=0 on SN7L, (4.21)
If u >0, w is either xg or 0.

Proof. We can assume that By C Q and set ¢(t,s) = r%u(r, s) with ¢ = Inr. Then
w satisfies

ot q
Gt + Loy + aKdp+ Ao — 9P ¢+ Mer—T ((agp — ¢1)* +[V'¢])2 =0.  (4.22)
in R_ x SV~ where K = N —2 —«a and L = K — o. By assumption ¢ < 0, hence

(4.22) is an exponentially small perturbation of the autonomous equation associated
to the Emden-Fowler equation by the same change of variables. The result follows
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from [10, Theorem 4.1] but for the sake of comprehension, we recall its proof. By
Proposition A.2 the function ¢ is uniformly bounded, and by (A.6) ¢; and V¢ are
also uniformly bounded. By standard local regularity theory for elliptic equations,
there holds

H@ﬂD'J <cyp forall (4,j) e NxNyji+5<3 and T < —2.

‘JSHC[TA,TH}stfl

Then the omega-limit at —oo of the trajectory {é(t,.)}er_ in C2(SN~1) is a non-
empty compact connected denoted by I'y C C?(SV~1). From (4.22) we have that

%E:L ¢yﬂ@+M&ﬂ/ (m¢—@ﬁ+ww%%wa@,
SN—l SN—I

where . )
— o2 o 2 |, p+l 42
J(t) 2/SN_1 (v wl? + —ful qﬁt) 45(s).

Because L # 0 and J is uniformly bounded, there holds

1
/ $2dS(s)dt < oo.
—ooJgN-1

Multiplying (4.22) by wy and using the previous estimate, we obtain
1
/ $%dS(s)dt < oo.
—ooJ SN-1

As ¢; and ¢y are uniformly continuous in (—oo, 1] x S™¥~1, this implies that

: 2 2
m v (97 (t, ) + ¢(t,.)) dS(s) = 0.
Therefore 'y, C {w e C2(SN1) 1 aKw + A'w — [wP~lw=0in SN} If uw > 0,
then w > 0 for any w € I'y and the result follows by the maximum principle. O

Lemma 4.12 Let Q C RN, N > 3, be a bounded open subset containing 0, M > 0,
l<p< 5 andl<qg< 1%' If u is a nonnegative solution of (1.1) in Q\ {0}
such that

limsup |z|Y ~2u(z) = oo, (4.23)
z—0
then
li @ = 20. 4.24
lim z|*u(z) = o (4.24)

Proof. Without loss of generality we can assume that B C €. It follows from Propo-
sition 4.7 that lim i(r)lf 2|V ~2u(z) = oo, Hence there exists a decreasing sequence {r,,}
T—

converging to 0 such that

ap = inf |2V 2u(z) T oo asn — oo.
|z|=rn
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Let v,, be the solution of

—Av + 0P = eyaydo in D'(By)

v=0 on 0By, (4.25)

where cy is the explicit constant such that Glendo](z) = |z|>~%, where G is the
Newtonian potential in RV ; note that v, is radial because of uniqueness. Then the
sequence {v,} is increasing and converges to the function vy, which satisfies (see
22))
—Av+vP =0 in By \ {0}
v=0 ondB (4.26)
lim |z|%v(x) = xo.
z—0

Moreover, v,(z) < ay|z[>~Y and since v, is a subsolution of (1.1), we have that
vy, < win By N BE . Letting n — oo implies that ve(z) < wu(z) in By \ {0}.
Therefore

lim inf |z|%u(z) > xq.

z—0
Combined with Proposition 4.11, this inequality implies (4.22). O
This result admits an extension to the case ¢ = 1%'

Lemma 4.13 Let Q C RN, N > 3, be a bounded open subset containing 0, M > 0,

1<p< % and q = z%' If w is a nonnegative solution of (1.1) in Q\ {0} such
that
limsup |z|Y 2u(z) = oo, (4.27)
z—0
then
. a B
ili% |z|“u(z) = x,,. (4.28)

Proof. Assuming for simplicity that B; C € and using Proposition 4.7 that we
obtain that for some decreasing sequence {r,} converging to 0 we have

ap = inf |2V 2u(z) T oo asn — oo.
|z]=rn

Therefore, u is bounded from below in B; \ By, by the (radial) solution u,, of

—Au~+uP — M|Vul? =0 in By \ B,,
v=20 on 0B (4.29)
u = apr2~N on 0B,,.

The sequence {u,} may not be monotone, but u,, > v, where v,, has been defined in
(4.25). Since {u,} is eventually locally bounded in B \ {0} by Proposition A.1 and
standard regularity results (see e.g. [13]), up to a subsquence, it converges locally
uniformly in Bj \ {0} to a radial function u,, which satisfies

—Au+uP — M[Vul?=0 in B;\ {0}

v=_0 on 0By, (4.30)
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and
lim inf |2|%us () > liminf |2|%ve (z) = . (4.31)
z—0 z—0

By Theorem 2.4-(4) we have that
. o . o _
hgglélf |z|“u(x) > ili% |z|“uso () = x,,. (4.32)

The upper estimate is obtained as follows. By Proposition 4.7 the function u is
bounded from above in By \ B, by u), + ‘max u(y) where u), is the solution of

yl=1
—Au+uP — M|Vu|? =0 in B\ B,
v=>0 on 0B (4.33)
u = coa,r2 N on 0B, .

For the same reason as above there exists a subsequence, {uy,,} which converges

locally uniformly in Bj \ {0} to a radial solution u’, of (4.30). By Theorem 2.4-(4)

we have that u., = us. Then limsup |z|*u(x) < lim |z|*ul, (z) = z,, which ends
z—0 z—0

the proof. O

Proof of Theorem 4.9 1t is a direct consequence of Lemma 4.10, Lemma 4.12 and

Lemma 4.13. g

When ¢ > % and |z|¥~2u(z) is not bounded, Harnack inequality may not
hold. However we still have a dichotomy for the possible behaviour which extends

Theorem 4.9.

Theorem 4.14 Let Q C RN (N > 3) be an open set containing 0, M >0, 1 < p <
% and 2% <q< % If w is a nonnegative solution of (1.1) in Q\ {0}, then
the following dichotomy holds:
1- either there exists k > 0 such that ¥ ~2u(r,.) converges to k in measure on SN~1
asr — 0,

_ i v =
2- or ili%|$| u(z) =X,,.
Proof. We recall Richard-Véron’s isotropy theorem [20, Theorem 1.1]:
Let g : Ry — Ry be a continuous nondecreasing function satisfying

1
/ g(r>=N)yrN-ldr < cc. (4.34)
0

If u € CY(Q\ {0}) is a nonnegative function satisfying
Au<g(u)+ f in Q\ {0}, (4.35)

where f € L}, .(2\{0}) is a nonnegative radial function, then we have the following:
(i) either vN=2u(r,.) converges in measure on SN~ to some k >0 asr — 0,
(ii) or

li N—-2 — )

lim |z]Y "*u(z) = oo (4.36)
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Since p < %, assumption (4.34) is satisfied with g(r) = rP and equation (4.35)
with f = 0. Then either the statement 1 holds, or (4.36) holds. If it is the case,
then for any k£ > 0, u is bounded from below in B; \ {0} by the solution us of (1.1)
in B; \ {0} vanishing on 0B; and satisfying (4.17). Such a solution exists and is
unique by Theorem 4.8. Letting k — oo, this implies

1113}1_3(1]11C |z|Tu(x) > X,,. (4.37)

Next, we denote by v the solution of (1.1) on (0,00) (hence v is 1-dimensional)
satisfying

1 ’y = 1 «a =
7!1_1)1%7“ v(r) =X,, and rlggor v(r) = xo.

Its existence is proved in Theorem 1.10, Theorem 1.11. It is decreasing. For ¢ > 0
the function r — ve(x) = v(|z| — €) satisfies Eé‘ffq(ve) > 0 in B and v (z) — oo
when |z| | e. If ¢ = maxu|pp; for some § > € > 0 such that Bs C Q, then v + ¢
is a supersolution of (1.1) in B \ B, which is larger than u for |z| = € and |z| = §.
Hence u < gue + c in Bs \ Be. Letting € — 0 yields u(z) < v(z) + ¢ for 0 < |z| <6
and finally

lim sup |z u(z) < X, (4.38)
z—0
Combining (4.37) and (4.38) we obtain lin% |z[Tu(z) = X, O
T—r

Remark. We conjecture that the convergence in Theorem 4.14-1 holds in the strong
sense.

Remark. Most of the results of this section can be extended to the case N = 2. The
subcritical case corresponds then to p > 1 and 1 < ¢ < 2. The main change is that
|z|2~" has to be replaced by —In|z|.

N — 2

4.4 The case p > 1 and ¢ = o1

The cases that we consider are ¢ = z%’ p = % and M > 0. We recall that

the stationary equation (1.4) admits two positive constant solutions z, ,, < =, ,, if
N

p > % and M > m*, and only one denoted by z,, if p = ;= and M > 0 or if

p > % and M = m*. The following result is an improvement of Proposition A.1

Lemma 4.15 Let Q@ ¢ RN, N > 3, be a bounded domain containing 0 such that
BrCQandp> %
1- If p > {5 and M > mx, then any positive solution u of (1.2) in Q\ {0} satisfies

u(r) <@, 2|7+ sup u(z), (4.39)
|z|=R
2-If p > % and M = mx, orp= % and M > 0, the same inequality holds with

T, replaced by xpm~ and x,, respectively.
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Proof. We assume first that M > m™.
1- Construction of the mawimal solution. We claim that x +— z,,[z|™® is the
maximal solution of (1.2) in RY \ {0}. For a > 0 we set ¢4(s) = as®. Then

~ 2
Ly (s) := —¢ll + ¢ — M\%]Tf}l =as™ (a?~t — a?Ma?! — a(a + 1)) .

Taking a large enough we obtain that ¢, is a supersolution in (0,00). We set
Poc(z) = pa(z1 — €) for 21 > € > 0 and as in the proof of Theorem 4.14 we deduce
that the function ®, . defined by

O, =inf {R[®q] : R € O(N)}

is a positive and radial supersolution of (1.2) in R \ B, which tends to infinity on
OB.. It dominates any positive solution of (1.2) in RY \ B.. Next we set

W (z) = sup {@, |z —2]7% 1 2] < €}

It is a subsolution of (1.2) in RY \~§6 dominated by ®,.. Since the supremum is
achieved for z = eﬁ, the function ¥, is radial and positive. By [25, Theorem 1.4.5]

there exists a solution U, of (1.2) in RY \ B, such that
U, <U. <P, in RV\B.

The function U, is positive and radial. Since any positive solution u in RN\ {0}
is dominated by W, the function U, is larger than u in R™ \ B.. This implies the
relation, valid for any £ > 0,

Ty[Ue)(z) := 02U (bx) = Up—r,. (4.40)

When € | 0 the sequence {U.} decreases and converges to a positive radial solution
Up of (1.2) in RV \ {0} which dominates any other positive solution. Hence Uy is
the maximal solution in RY \ {0}. Letting € | 0 in (4.40) we infer that T,[Up] = Up
for any ¢ > 0. Hence Uy is self-similar. Since it is radial and larger than any other
positive solution, we deduce that

Uo(z) =z, 5, |z|™* for all [z| > 0. (4.41)

2- End of the proof. If u is any positive solution in © \ {0}, then U, + sup u(z) is a
|z|=R

supersolution larger than u in Br \ B.. Letting € | 0 yields the result. The proof in

the other case is similar. O

Theorem 4.16 Let Q@ C RN, N > 3, be a bounded domain containing 0, p > %
and M > m*. If u is a positive solution of (1.2) in Q\ {0}, there holds

1- If
liminf |z|%u(z) = 0, (4.42)
z—0
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then u can be extended as a C? solution of (1.2) in €.

2- If

lim sup [z|"u(z) = Lo s (4.43)
x—0
then
. a B

lim fo[*u(a) = 2, . (1.42)

- If
hl;l_}(r]lf |z[*u(z) = LTy OT hrfjgp |z u(r) = Ly (4.45)

then there exists a sequence {r,} C R} converging to 0 such that

rlniglo Tpu(rn, 8) =T, ,, uniformly on SN-1, (4.46)

4- Any one of the two following situations never occur

(1) 0 < limsup |z[*u(z) <z,
y r20 (4.47)
(17) z, ,, <liminf |z|%u(z) <z, ,,.
’ z—0 ’

Proof. 1- If relation (4.42) holds, it follows by Harnack inequality proved in Propo-
sition 4.7, that there exists a sequence {r,} converging to 0 as n — oo such that

lim r%u(r,,s) =0 uniformly on SV~1, (4.48)
rn—0
For any ¢ > 0 and m = sup{u(z) : |z| = R}, the function z — €|z|* +m is a

supersolution of (1.2) in Bg \ {0} which is larger than u near z = 0 and on JBp.
Hence u(z) < €|z|* + m. Letting € — 0 implies u < m, and the result follows by
standard regularity.

2- If (4.43) holds there exists a sequence {ry} converging to 0 such that

o max {u(rp, s) : s € SNfl} =rpu(rn, sp) = T,,, asr, — 0.

Furthermore, we can assume that s, — s* when n — oco. Using Lemma 4.15 there
exist a nondecreasing sequence {w; ,} converging to x,,, and a bounded sequence
{wa .} such that rQu(ry, s,) = wi p+riws . Weset w(t,s) = r®u(r,s) witht = Inr,
then there holds,

_b
wy + Lwy — aKw + A'w — wP + M ((wt —aw)? + |V’w|2) =, (4.49)

on R_ x SV~1. By standard regularity estimates and Ascoli-Arzela theorem there
exist a subsequence {t,,;} of {t,} = {lnr,} and a nonnegative C* function W such
that w(t, + t,s) converges to W in the C? topology of [—a,a] x SN~1, for any
a >0, and W is a solution of (4.49) in R x S¥~!. Furthermore W(0,s*) = z, ,,. By
Lemma 4.15, z, ,, is the maximal solution of (4.49) in R x SN=1 it then follows from
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the strong maximum principle that W =z, ,, and w(t, +1t,s) — =, ,, uniformly in
[—a,a] x SN~1. Let € > 0, then there exists n. € N such that for any n > n., we
have that u(ry,s) > r,%(x,,, — €) for any s € S¥~1. Since r — r~%(z,,, —€) is a
subsolution of (1.2), it follows that for m > n > n., one has

u(r,s) > 1 %(x,,, —€) forall (r,s) € [rm,ra] x SN-L
Letting r,, — 0 yields
u(z) > |z|7%(z,,, — € for all x € B,,_\ {0}. (4.50)
Since € is arbitrary we infer that
ligl_)i(r)lf |z|%u(z) >z, - (4.51)

By assumption limsup |z|*u(z) > x, ,,; then (4.44) holds.
T—

3- Let us assume that the first condition in (4.45) holds. If the function

T+ w(T,s7) := min w(7,s)} (4.52)
seSN-1

is asymptotically monotone, nonincreasing or nondecreasing, then either w(r, s;) 1
z, ,, in the first case, or w(7,s;) | =, ,, in the second case. Using again the uniform
C?** estimate and Ascoli-Arzela theorem we have that there exists a sequence {7,}
converging to —oo such that w(t + 7,,s) converges in the C?-topology of [—a,a] x
SN=1 for any a > 0, to a positive solution W of (4.49) in R x SV~! such that
Wi(t,s) > =z, ,, and sergljivril W(0,s) = W(0,s*) =z, ,, for some s* € SN~ in the

first case. By the strong maximum principle to w and to x
solutions of (4.49) in R x S¥~! we infer that W = =z ,,, hence w(t,s) converges
to x, ,, uniformly on SN=1 when t — —oo. In the second case we obtain that the
limit function W satisfies W (t,s) > =, ,, and Serg1}ivr£1 W(0,s) = W(0,s") = z, ,,.

o Which are ordered

This implies again W = x, ,, by the strong maximum principle. Finally we do not
suppose that the function w(7, s;) defined in (4.52) is monotone. By the definition
of the liminf, there exist sequences {t,} tending to —oo and {s,} C SV~! such that

w(ty,s,) = inf{w(t,s) : t <t,,se SV 1} 1 Ty, as n— o0.

Using again Ascoli-Arzela theorem we deduce that, up to a subsequence {t,, }, w(t+
tn,,8) converges in the C2-topology of [—a,a] x SV~1, for any a > 0, to a positive
solution W of (4.49) in R X SN=1 and W > r,,, and W(0,s*) =z Hence
W = Ty -

The proof of (4.46) under the second condition of (4.45) is similar.

4- Let (4.47)-(i) be satisfied and w be defined as in the previous steps. Then as
in Step 3, w(tn,s) converges locally uniformly to a positive solution W of (4.49)
defined on R_ x SN=1 w(t,,s,) — W(0,s*), W(0,s*) is a local maximum of W

1,M*
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and it is smaller than z, ,,. Hence W3(0,s*) = |[V'W(0,5)| = 0 and Wy(0,5*) <0
and A'W(0,s*) < 0. Then

WPr(0,s") — MQQW%(O, s*)+ aKW(0,s") <0.

This contradicts the fact that P, defined in (1.7) is positive on the interval (0, x, ,, ).
Similarly, if (4.47)-(ii), we obtain that the limit function W and the limit point s*
where W (0, s*) is a local minimum of W' satisfies z, ,, < W(0,s*) <z, ,, and

2
WP(0,s*) — MatWa1(0,s%) + aKW(0,s*) > 0.
which is not compatible with the fact that P,, is negative on (z, ,,,, ,,)- g
Remark. We conjecture that the following stronger form of Theorem 4.16 holds:
1- Either u can be extended as a C? solution of (1.2) in Q,
. o _
2- or ilg%) |z|u(z) =z, ,,
3- or ili% lz|%u(z) =z, ;-
In the case M = m*, we prove the following.

Theorem 4.17 Let Q C RN, N > 3, be a bounded domain containing 0, p > %
and M = m*. If u is a positive solution of (1.2) in Q\ {0}, there we have the
following:

1- either u can be extended as a C? solution in Q,

2- or there exists a sequence {r,} converging to 0 such that r%u(ry,s) converges to
T uniformly on SN7L.

Proof. If u satisfies (4.42), then the singularity of u at zero is removable since the
function P,, is positive on (0, m*) and on (m*,c0), see the argument in the proof of
Theorem 4.16-(1). Thus we are left with the case

liminf |z|%u(x) > 0. (4.53)
z—0
It _
limsup |z|%u(x) = Ty, (4.54)
z—0

then, as in the proof of Theorem 4.16-(3) we deduce that there exists a sequence
{r,} converging to 0 such that r&u(r,, s) converges to @, uniformly on SN—1. If
there exists m #% m* such that

lim sup |z|“u(x) = m. (4.55)

x—0

Then there exists a sequence {t,} converging to —oco and {s,} € S™¥~! such that

w(t + t,,.) converges in the C? topology of [—a,a] x S¥~! for any a > to a so-

lution W of (4.49). Furthermore wy(t,,s,) — 0 and tliminf Wit (tn, sn) < 0. Since
n—>—00

V'w(ty, sn) =0 and A'w(ty,, sp) < 0, one has that

2p

~ -1
—aKm—mP+M(am)r+T = —mP,- (miﬁ) = —A'W(0,s")—wy(0,s") > 0. (4.56)
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Since P+ > 0 and vanishes only at m*, it implies m = m*, contradiction. The
proof of the uniform convergence of w(ty,.) to m* follows from the strong maximum
principle since W is a positive solution (4.49) as inTheorem 4.16. U

Remark. We conjecture that assertion (2) holds under the form

o
tin [ (2) = e

Finally we have the following result dealing with the case p = % and M >0

where there exists a unique and explicit positive constant solution x,, to (1.4).

Theorem 4.18 Let Q@ c RN, N > 3, be a bounded domain containing 0, p = %
and M > 0. If u is a positive solution of (1.2) in Q\ {0} which satisfies

limsup |z|%u(x) = z,,, (4.57)
z—0
then
il_I}% |z|*u(z) = z,,, (4.58)

Proof. Since the function P,, is negative on (0, z,,) and positive on (x,,, 00), for any
€ > 0 the function z — (z,, — €)|z|™® is a subsolution of (1.2). The proof follows as
in the proof of Theorem 4.16-(2). O

Remark. We conjecture that the following dichotomy occurs: if u is a positive solu-
tion of (1.2) in Q\ {0} unbounded near 0, then,

1- either (4.58) holds,

2- or (1.15)-(i) holds.

5 Behaviour at infinity of non-radial solutions

In this section we present some results dealing with the asymptotic behaviour of
solutions which extend to the non-radial case what has already been proved in the
radial one. The results are more complete if there exists only one possible behaviour
for radial positive solutions; they have to be compared with what was obtained in
[21] when M = 0.

5.1 The case q = 1%

Theorem 5.1 Let p > 1, M > 0 and u be a positive solution of (1.2) in RN \ Br
with N > 1.

1-IfN=1,2 and p > 1, 07“N23and1<p<%, then

li @ = .
|m\1i>noo |x‘ U(JU) Ly (5.1)
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2-If N >3, p= L, then

N—3’
N2 N 92\ N-2
lim |z|¥ 72 (In|z]) 2 w(z —(> . 5.2
Jim (o (nfel) 5 ufa) = (=2 (52)
3-If N>3,p> % and M < m*, then there exists k > 0 such that
lim |z)V " 2u(z) = k. (5.3)

Proof. The method of the proof is firstly to construct two positive radial solutions
uj, 7 = 1,2 of (1.2) in Bf, such that u; < u < wug, and to use Proposition 1.6.
The solution v of L,v = 0 in Bf, with value minu|gp, for [z| = R is a subsolution
smaller than u. For cases 1 and 2, we can take for supersolution the function
uyx, + max u|gp,. Therefore there exist two positive radial solutions u; and us of
(1.2) in B§ with respective value minu|pp, and maxu|pp, on dBg and such that

v(z) <ur(r) <u(z) <wug(r) <ux,, (z) +maxulpp, for |z] > R. (5.4)

Since w1 and ug satisfy either (5.1) or (5.2) in cases 1 and 2 respectively, u shares
this behaviour.

In case 3 with p > % the function v satisfies the same behaviour (5.3) up to the
constant ¢ > 0 which is not fixed. By Theorem 2.6-(3), u; and ug satisfy (5.3) with
two different constants 0 < ¢; < c¢2. In order to prove that (5.3) holds for some
¢ € [c1, c2] we use the method introduced in [21]. We set u(r,s) = r~"w(t, s) with
v=N—2andt=Inr, then w satisfies

wyy — vwg + Alw 4+ eV —PIN=2))t (VqM ((wy — vw)? + ]V’wP)% - wp) =0 (5.5)

q
in [0,00) x SN¥~1. Since w and (VqM (w — vw)? + [V'w]?)? — wp) are bounded,
it follows from [10, Proposition 4.1] that there exists ¢ > 0 such that w(t,.) — ¢
uniformly on SN~! when ¢t — co. This ends the proof. U

Theorem 5.2 Let N > 3, p > % and M = m*. If u is a positive solution of
(1.2) in RN \ Bgr, we have the following alternative,

1- either there exists a sequence {r,} converging to infinity such that

7aii_r)]rloo rou(ry, §) = T, (5.6)

uniformly on SN7L.

2- or there exists k > 0 such that

lim 2|V 2u(z) = k. (5.7)

|z|—o00
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Proof. We can assume that w is continuous in Bf. By Theorem 2.6-(2), v is bounded
from above by the function ur where upg is a radial soluion of (1.2) in By which
tends to oo when r | R and satisfies *ug(r) | zpy+ when r — co. Hence

m = limsup |z|%(x) < sup |z|%u(z) < Ty (5.8)
|z| =00 |z|>R

We claim that either m = 0 or m = x,,+ As in the proof of Theorem 4.17, there
exists a sequence {t,} tending to oo and {s,} C S™V~! converging to s* such that
wp(t,.) := w(t +t,,.) converges in the C2-topology of [—a,a] x S¥~1 for any a > 0
to a solution W of (4.49) in R x SV~1. Furthermore W achieves its maximal value m
at (0,s*), hence W;(0,s*) =0, V'W(0,s*) = 0, AW (0, s*) < 0 and W;(0,s*) < 0.
Therefore . - o

—mPpx(mr+1) = —aKm — mP + M(am)?»+T > 0.

Since (4.56) holds this implies that either m = 0 or m = xp+. If m = zp~ it
follows by the strong maximum principle, as in the proof of Theorem 4.16, that
w(tn, ) — Tm+ as n — oo, uniformly on SNV,
If m =0, then

lim |z|%u(z) = 0.

|z| =00

For any a < xp,+ and p > R such that u|pp,< a, we consider the problem

1 2
—Vpp — UT+vp—M\vr|Pf1 =0 in (p,o0)

v(p) = p~“a
Since the solution of

N -1

v+ 0P =0 in (p,00)

v(p) =p“a

—VUpy —

(5.10)

is a subsolution and - |x|™® a supersolution, the solution v exists and it is unique.
By the phase plane analysis of Figure 4, the function ©(t) = e®4(r) which initial
value belongs to the region (F) converges to 0 when ¢t — co. Since (0, 0) is a saddle
point for the system (2.16) it follows that the corresponding trajectory is is the
unstable one of this point. The initial slope of this curve is N — 2. By Lemma A .4
it follows that there exists £ > 0 such that
. N=2 _

rlg]gor v(r) =L (5.11)
Consequently |z|Y~2u(z) is bounded, the proof of Theorem 5.1-3 applies and deduce
from (5.8) there exists ¢ > 0 such that |z|¥~2u(x) — ¢ when |z| — occ. O

In the case M > m* the situation is even more complicated and the results are
still incomplete.
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Theorem 5.3 Let N > 3, p > % and M > m* If u is a positive solution of (1.2)
in RN\ Bg, we have the following,
1-

limsup [z|*u(r) =z, ,, = lim [z[*u(x) ==, ,,, (5.12)

|z|—00 || —o00

2- If l‘iI|I1 inf |z|*u(z) =z, ,,, there exists a sequence {ry,} tending to co such that
T|—00 ’

Jm ru(rn, 8) = 24, (5.13)
uniformly on SN—1.
3- If liminf |z|%u(z) = 0, there ezists k > 0 such that

|x|—o00

lim |2V 2u(z) = k. (5.14)
Proof. By Theorem 2.6-(1) u is bounded from above by the solution ug of (1.2) in
RN \ Br which tends to infinity as |z| | R and satisfies

lim |z|%ugp(x) ==

2,M "
|z| =00

Hence
m = liminf |z|%u(z) < m = limsup |z|u(z) <z

2,M

If m = x, ,, there exists a sequence {t,} tending to co and {s,} C SV~! converging
to s* such that wy,(t,.) := w(t+t,,.) converges in the C?-topology of [—a,a] x SN~1
for any a > 0 to a solution W of (4.49) in R x S™¥~!. Furthermore W achieves its
maximal value m at (0,s*), hence W;(0,s*) = 0, V'W(0,s*) = 0, A’/W(0,s*) < 0
and Wy (0,s*) < 0. Therefore

2p

- p-1
—mP,,(mr+1) = —aKm — mP + M(am)r+1 > 0.

This implies that either z, ,, <m <z, or m = 0. For the liminf the same analysis

yields that

2,M

P, () = —aKm — P + M(am)#T <0,

hence either 0 <m <z, ».ar- Note that in that case (5.12) holds.

If m =z, ,,, then using the function W as in the proof of Theorem 5.2, we infer by
the strong maximum principle that there exists a sequence {r,} tending to infinity
such that ryu(ry, s) converges to z, ,,. For any € > 0 there exists n. > 0 such that
for n > ne we have rfu(rn,s) > x,,, — ¢ for all s € S~ Since P, (x,,, —€) <0
the function = + (z,,, — €)|z[~® is a subsolution of (1.2). Then, for any 7, > r,,,
u(x) > (z,,, —€)|z[~* in {2 : ry, <|z[ <7y} This implies

orm?>=x

liminf |z|%u(z) > =
|z|—o00

oM — €

76



Since € is arbitrary, this yields (5.12).

If m = x1 s then we proceed as in the case above and deduce that there exist a
function W > 0 satisfying (4.49) in R x SV ~! and a sequence {¢,,} tending to infinity
such that w(t, +t, s) converges in the C2-topology of [—a,a] x S¥~1 to W for any
a > 0. The function W is larger or equal to z, ,, and coincides with =, at (0,s")
for some s* € SN~1. By the strong maximum principle we have that W = Ty -

This implies assertion 2.

If 1‘i1|11 inf |z|*u(z) = 0, then we deduce by Harnack inequality that there exists a
T|—00

sequence {ry} tending to oo such that

lim 7%u(ry,s) =0 uniformly on SN71.
Ty —$00

Then for any € > 0 the function there exists n. € N such that for any n > n.,
w(ry, s) < €|ry| ™ for all s € SV~1. The function x + €|x|~® is a supersolution of
(1.2). Since there exists a sequence {r, } tending to infinity such that u(ry,s) < er,;®
for all s € SN~ for n > n, it follows by the comparison principle applied to the
sequence of annuli {z : r,, < |z| < r,}, that z(x) < €z|~®. Since the function
x +— €|lx|™ is a supersolution of (1.2), it follows by the comparison principle that
u(x) < €|z|™® in the annuli {z : r,, < |z| < r,}. Letting n — oo yields

u(x) < elz|™* Vr € B, = limsup |z|"u(z) <e.
|z| =00
Since € is arbitrary we infer that |z|%u(x) converges to 0 when |z| — oco. By the
phase plane analysis of section 2.4 (seeTheorem 2.6), as in the proof of Theorem 5.2-
2, we have that |z|™ ~2u(z) is bounded. Hence (5.14) follows as in the previous proof.

g

Remark. We conjecture that the results of Theorem 5.2 and Theorem 5.3 hold under
the following forms:

For Theorem 5.2
1- either lim |z|%u(z) = Tpx,
T—00

2- or there exists k > 0 such that lim |z|N2u(z) =k
|z| =00

For Theorem 5.3
. . a _
1- either xlglgo 2| u(r) =z,
2- or lim |z|%u(x) =z, ,,,
T—00 ’

3- or there exists k > 0 such that lim |z|N"%u(z) = k.
|| —o00

2p_
5.2 The case q # ]
The next results extend the asymptotic behaviour described in Theorem 1.9 and
Theorem 1.10 to non radial solutions. The following statement shows that equation

(1.1) inherits the properties of the Emden-Fowler equation £,u = 0 if :r% < q<p.
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Theorem 5.4 Let N > 1, M >0, ]% < q < p and u be a positive solution of (1.1)
in By. Then

1-If N =1,2 and p > 1, 07‘N23and1<p<%, then

li @ = xg.
|a:\1i>noo |2|*u(z) = zo (5.15)
2-If N >3 and p > %, then
lim |2V 2u(z) =k > 0. (5.16)
|x|—o00
S-If N >3 andp= %, then
N_2 N —9 N—-2
lim (In|z) 2 |2V 2u(z) = <) . (5.17)
i ()7 o) = (2

Proof. In the first case, the solution v of L,v = 0 in Bf, with value minu|sp, on
O0Bp is a subsolution smaller than w (it is obtained by minimization), and it has
the behaviour expressed by (5.15). By Theorem 1.13 there exists a global positive
solution @ of (1.1) in R \ {0} satisfying (5.15). The difficulty is that this solution
may not be larger than u for || = R. In such a case, for a > maxu|gp,, the
function 4, := @+ a is a supersolution of (1.1) in Bf,. The solution © which satisfies
L,0 = 0 in Bf with value a for |x| = R is a subsolution smaller than @,. Hence
there exists a radial solution u, of (1.1) in B such that u,(R) = a + @(R) and it
dominates u in Bf. By Theorem 1.9-(1), the function u,, and therefore u, satisfies
(5.15).

In the second case, We proceed as in the proof of Theorem 5.1-(2), with the help of
Theorem 1.9-(2). The function u satisfies u; < u < ug where u; and ug are radial
solutions of (1.1) in B%, hence u(z) < Clz|>™N. If we set w(t,s) = r”u(r,s) with
t=1Inr and v = N — 2, then w satisfies

q
2

wyy — vwy + Aw 4+ vIMeN—a(N=1)t ((wy — vw)? + [V'w|?)

(5.18)
— eWN=p(N=2))t,,p — ) in [0, 00) x SN,

Since w, wy and |V'w| are bounded, it follows by the same argument [10, Proposition
4.1] that w(t,.) — ¢ > 0 when t — oo and ¢ > 0 since u is bounded from below by
the solution of LPv = 0 in Bf which satisfies the same type of asymptotic behaviour
with a positive limit of »V~2v(r) when r — oc.

In the third case, it is proved in [21, Théoreme 3.1] that the solution v of £,v = 0 in
B§, which coincide with minu|sp, for |x| = R verifies the relation (5.17). In order
to have the estimate from above, for a > 0 the function h,(z) = a|z|>~V satisfies

E%Jha(:c) = aP|z| PV =2 _ Ma¥(N—2)4)z| 9N =D = gP|z|~N - Ma?(N —2)1|z|"7-D),
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% = 5—7, We obtain for [z| > R

N
LY he(x) = a?|z|(1=Ma (qp=e|z|(N-Da=N _ A (N - 2)9)
> a4|z|(1=Na (apfaR(Nfl)qu — M(N —2)1),

Since ¢ >

Therefore, for a > 0 large enough L'%qha > 0in BY%. Since the solution v, of Lyv =0
in BS with value aR?~Y for || = R is a subsolution of (1.1) smaller than h, it follows
from [25, Theorem 1.4.5] that there exists a radial solution u, of (1.1) in Bf, such
that v < uq < hy. If we choose a large enough so that aR%> N > maxu{aBR, then
g is larger than u in B%. Finally, by Theorem 1.9-(3) the function u, satisfies also
(5.17), which ends the proof. O

In the following result we extend Theorem 1.10-(2) to the non-radial case.

Theorem 5.5 Let N >3, M >0,p>1and1<q< I% with q < % Ifu is a
positive solution of (1.1) in By then there holds
im |z u(z) = X, (5.19)

|z|—o00
Proof. We can assume that u is continuous in By for any p > R.
For constructing a supersolution we proceed as in Theorem 4.14 using the solution
v of (1.1) on (0,00). The function z — v(|z| — p) + ¢ is a supersolution 1.1 in B}

which is larger than u for |z| = p and at infinity. Hence it is larger than u in EZ.
Letting § — 0 yields u(z) < v(|z| — p) for all x > p.

Next, we construct a subsolution: we set ¢ = minu|pp,. For n > p we denote
by w,, the solution of

—Aw+wP =0 in 'y, := B, \Ep

wp, =c ondB,, w,=0 ondB,.
The function w, which is unique is a subsolution of 1.1 in I',,, where it satisfies
wy, < v(|z| — p). By Theorem 4.1 there exists a solution u, of (1.1) in I',,, which
coincides with wy, on 9T, , and is radial as wy, and v(|.| — p) are (or by uniqueness),

and u, <wuinI,,. When n — 00, u, T us. The function us is a radial positive
solution of (1.1) in B; and it satisfies

Uoo(2) < u(z) <v(|z| —p) forall |z| > p.

It follows from Theorem 1.10-(2) that u, satisfies (5.19), as v does it too. This ends
the proof. O

A Appendix

A.1 The a priori estimates

The following a priori estimates proved in [7], [8] are fundamental throughout the
paper. They do not depend on the sign of g — 1%'
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Proposition A.1 Let Q@ C RN be a domain containing 0, 1 < g < p and M € R.
If u e CHQ\ {0}) is a nonnegative solution of (1.1) in Q\ {0}, then there holds for
any 0 < R < 1dist (z, 00):

1- If M > 0,

u(z) < ¢; max {Mﬁ\va, \x|70‘} for all x € Bg \ {0}, (A1)

where ¢y = ¢1(N,p,q) > 0.
2-If M <0 and q<2if M <0,

u(x) < min {02|m|_°‘, C3|M|_q%1|x|_’8 + |ma)}<%u(y)} for all z € B\ {0}, (A.2)
y:

where ca = c2(N,p) > 0 and c3 = c3(N,q) > 0.
When u is a signed solution the following estimate holds [8, Corollary 2.2].

Proposition A.2 Under the assumptions on ), p and q of Proposition A.1 and
assuming that M > 0, any signed solution u of (4.20) in Q\ {0} satisfies for any
0 < R < idist (z,09),

— min {C4qull|m|_ﬁ,02|x]_o‘} < —u_(x) <0
1 _a (A-3)
< uy(z) < ¢pmax {Mpfq |z Ppa, ]w\*a} ,

for all x € By \ {0}, where ¢; = ¢1(N,p,q) > 0, ca = c2(N,p) > 0 and ¢4 =
CQ(Napaq) > 0.

Using scaling method when 1 < ¢ < 2 and the Bernstein method when 1 < g < p,
it is proved in [7, Proposition 2.3, Corollary 2.5] a gradient estimate that we recall.

Proposition A.3 Let Q C RN be a domain containing 0, 1 < ¢ < p and M > 0.
Ifu e CH(Q\ {0}) is a nonnegative solution of (1.1) in 0\ {0}, there holds for any
0<R<Ry:= %dist (z,09) and some constants ¢y = c4(N,p,q, Ro) > 0:
2
1- When 1< q< 177’1
P _ptl
Vu(z)| < C4maX{MP*Q\:U| v, || p*l}, (A.4)

for allz € BR\ {0}. If q = %, cq 1s independent of Ry.
2- When 1 < q<p

__1 _pr __ _ D —_2p__
V()| < es (|al 71 + max { M@0 2| 77, |2 7T L), (A5)

for all z € Bg \ {0}.
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Remark. When z% < ¢ < 2 any nonnegative solution of (1.1) in RV \ Br satisfies
2

(A4) in RN\ Bp.

Remark. If u is a signed solution, the Bernstein method that we developed in [7],

[8] cannot be applied, however the scaling method can be used if 1 < ¢ < p. In the

particular case 1 < g < 1% there holds in a neighborhood of z = 0,

IVu(z)| < c5 max{Mﬁm—v—l, |xy—a—1}. (A.6)

A.2 Equilibrium with a simple eigenvalue

Consider the system in R?

xy =azx + by + f(z,y)

A7
yr = cx +dy + g(,y) (A7)

where a, b, ¢, d are real numbers and f and g two C' real functions satisfying
[f(@,y) + g(z,y)l < c(jz]* +[y*)  forall (z,y) € By. (A.8)

. b . .
Suppose that the matrix A = (Z d) of the system admits two eigenvalues p1 # o

and ps > 0. By reduction to the diagonal form <Zj> =P (g) the system becomes

o=+ f(2,9) (A.9)
Gt = 12 + §(Z,§)-

Lemma A.4 There exist at least two trajectories T = (Z1,71) and Ty = (Z2,72)
tangent to the azis 0j converging to (0,0) when t — —oo, one with §1(t) > 0, the
other with ya(t) < 0 fort < —=T. Any trajectory T = {(Z,§) }i<1 converging to (0,0)
when t — —oo and tangent at (0,0) to the axis 0y satisfies for some £ # 0
. — ot ~ _

Jim eTg(t) = . (A.10)
Proof. The existence of the solutions tangent to the axis 0f is classical. Consider
a (Z,y) converging to (0,0) tangentialy to 0y and such that g(t) > 0 for t < —T.
Then

19(2(t), §(t)] < c(1Z@O +1(0)°) < (1)

a(t

(t

[on(t)] = 13(2 (1), §(1)|e™"" < cem ettt (1),

Ul—s
s—1/,

—

with ¢ > ¢, since — 0 when ¢ — —oo. Put v(t) = e #2'g(¢). Then

~—

<

Therefore

< cet? (T = (v17%), € LY (=00, T) (A.11)
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Then v!'~%(t) admits a nonnegative limit ¢ when ¢t — —oo. If £ = 0, it would follow
from (A.11) that

vl () < L ppals=1)t v(t) > Ce H2t,
2
which tends to oo as t — —oco. Thus gy(t) > C > 0 which contradict the fact that
J(t) — 0. 0

Remark. This result is easily extendable to higher dimension, where A is a N x N
matrix with a simple eigenvalue p > 0 and such that RY = ker(A — ul) @ E, where
E is A-invariant. Consider the system

X' = AX + F(X) (A.12)

where |F(X)| < ¢|X|® in By for some s > 1. If X = X1+ X’ where X; € ker(A—pul)
and X’ € E, then there exist two tajectories X;(t) of (A.12) admitting a limit
direction 7 € ker(A — pI) \ {0} and , j=1,2, and they satisfy for some a # 0,

lim e ™X(t) = ar. (A.13)

t——o0
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