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ON A STRUCTURE-PRESERVING NUMERICAL METHOD
FOR FRACTIONAL FOKKER-PLANCK EQUATIONS

NATHALIE AYI, MAXIME HERDA, HÉLÈNE HIVERT, AND ISABELLE TRISTANI

Abstract. In this paper, we introduce and analyse numerical schemes for the homogeneous and the
kinetic Lévy-Fokker-Planck equation. The discretizations are designed to preserve the main features
of the continuous model such as conservation of mass, heavy-tailed equilibrium and (hypo)coercivity
properties. We perform a thorough analysis of the numerical scheme and show exponential stability.
Along the way, we introduce new tools of discrete functional analysis, such as discrete nonlocal Poincaré
and interpolation inequalities adapted to fractional diffusion. Our theoretical findings are illustrated
and complemented with numerical simulations.
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1. Introduction

In this paper, we are interested in the numerical discretization of the kinetic Lévy-Fokker-Planck
equation (or fractional Fokker-Planck equation). The continuous model describes the evolution of
a distribution function f ” fpt, x, vq which depends on time t ě 0, position in a periodic domain
x P Td “ Rd{Zd and velocity v P Rd, and solves

(1.1) Btf ` v ¨∇xf “ ∇v ¨ pvfq ´ p´∆vq
α{2f “: Lαf ,

supplemented with the initial condition fp0, ¨, ¨q “ f0. For α “ 2, the model coincides with the so-
called kinetic Fokker-Planck equation. Here we are interested in the case α P p0, 2q. In this range of
the parameter, the fractional Laplacian ´p´∆vq

α{2 is defined in the following way. For any Schwartz
function g : Rd Ñ R, one has Fpp´∆vq

α{2gqpξq “ |ξ|αFpgqpξq where Fp¨q denotes the Fourier transform
and | ¨ | is the Euclidean norm on Rd. Another equivalent definition [29] is given by the singular integral

(1.2) p´∆vq
α{2gpvq “ Cd,α P.V.

ż

Rd

gpvq ´ gpwq

|v ´ w|d`α
dw ,

where P.V. stands for the principal value, and the multiplicative constant is given by

Cd,α “
2αΓpd`α2 q

pπd{2|Γp´α
2 q|q

,

with Γp¨q is the Gamma function.
When α ă 2, the velocity density which generates the kernel of Lα, called local equilibrium, is heavy

tailed. Indeed, by passing to Fourier variables one has FpLαgqpξq “ ´ξ ¨∇ξFpgqpξq´|ξ|αFpgqpξq. From
this formula, one has that the only probability distribution satisfying Lαµα “ 0 is given by

(1.3) µαpvq “
1

p2πqd

ż

Rd
exp

ˆ

i v ¨ ξ ´
|ξ|α

α

˙

dξ .

The density µα is known as a symmetric stable density and is related to the theory of Levy processes
(see [3]). Away from the origin, the Fourier transform of µα is smooth and rapidly decaying at infinity.
In particular µα is smooth. However, at ξ “ 0 the Fourier transform is as regular as ξ ÞÑ |ξ|α, which
implies that µαpvq decays as |v|´α´d when |v| Ñ 8. This qualitative behavior can be estimated
more precisely through pointwise bounds from above and below on µα and its derivatives (see (A.7),
(A.8) and (A.9) in Appendix A.1). Non-Maxwellian, algebraically decaying velocity densities arise in
the modelling of astrophysical plasmas [37, 34]. More specifically, Vlasov-Lévy-Fokker-Planck models
[11, 1, 10] such as (1.1) as well as other kinetic models with heavy tailed local equilibrium [31, 32, 5, 8]
have attracted attention in the recent years because of their asymptotic properties. Indeed, because
of the slow decay in velocity, the macroscopic diffusion limits of these kinetic equations are fractional
diffusion equations in the space variable. These asymptotics are obtained after an anomalous rescaling
of the kinetic equation. The design of appropriate asymptotic preserving numerical schemes in these
limits has been investigated in [13, 14, 42].

Another natural question concerning asymptotic behaviors in these models is the long-time behavior
of solutions. Using conservation of mass and space pedriodic boundary conditions, one easily infers
that the global equilibrium is given by px, vq ÞÑ

@

f0
D

µαpvq, where
@

f0
D

:“
ş

f0dxdv denotes the initial
mass. The long time behavior can be quantified by the time evolution of well-chosen norms. While the
Fourier transform of the Green kernel of (1.1) can be expressed explicitly, the Fourier inversion is not
explicit when α ‰ 2. Therefore, it is not easy to derive estimates from this representation of solutions.
Instead of explicit representations, energy method allows to quantify the time evolution of appropriate
norms. For dissipative kinetic equations, which are usually degenerate in the sense that diffusion or
relaxation happens only in the velocity variable, hypocoercivity methods [26, 24, 40, 22, 17, 25] are
well-suited energy methods which allows one to recover dissipation properties in the whole phase-space.
They exploit the interaction between transport and collision operators, respectively v ¨ ∇x and Lα in
the present case. Recently, the adaptation of hypocoercivity methods has allowed to derive quantitative
long-time behavior estimates for (1.1) and related models [4, 7]. In [7], the authors generalize the so-
called L2 method (which was introduced in [24] and developed in [22, 17]) to the fractional case. In [4],
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the H1 method of [26, 40] is adapted by the authors of the present contribution. Let us briefly recall
the strategy and the results of [4]. The H1 method relies on the estimation of the functional

(1.4) Hph, hq :“ }h}2
L2
x,vpµ

´1
α q

` a}∇xh}
2
L2
x,vpµ

´1
α q

` b }∇vh}
2
L2
x,vpµ

´1
α q
` 2 c x∇xh,∇vhyL2

x,vpµ
´1
α q

,

where L2
x,vpµ

´1
α q is the Hilbert space of functions which are square integrable against the weight µ´1

α ,
with canonical norm }¨}L2

x,vpµ
´1
α q

and scalar product x¨, ¨yL2
x,vpµ

´1
α q

. The function h denotes the difference
between the transient and steady solutions, that is hpt, x, vq “ fpt, x, vq ´

@

f0
D

µαpvq.
For well-chosen positive constants a, b, c ą 0, (1.4) is equivalent to the weighted Sobolev norm

}h}2
H1
x,vpµ

´1
α q

:“ }h}2
L2
x,vpµ

´1
α q
` }∇xh}

2
L2
x,vpµ

´1
α q
` }∇vh}

2
L2
x,vpµ

´1
α q

and is dissipated along the dynamics.

As a consequence of this dissipation and well-suited non-local Poincaré inequalities [20, 41], one can
prove the following result on the long-time behavior of the solutions.

Theorem 1.1 ([4]). Let f be a solution of the kinetic Lévy-Fokker-Planck equation (1.1) with initial
data f0 P H1

x,vpµ
´1
α q. Then, for all t ě 0 one has

}fptq ´
@

f0
D

µα}H1
x,vpµ

´1
α q

ď C }f0 ´
@

f0
D

µα}H1
x,vpµ

´1
α q

e´λt

for some constants C ě 1 and λ ą 0 depending only on d and α.

While the proof of Theorem 1.1 (see [4]) follows the classical H1 hypocoercivity strategy described
above (see also [40, 25] and references therein), there are challenges which are specific to the fractional
case. The main difficulties can already be seen when estimating the propagation of weighted Sobolev
norms for the space homogeneous version fractional Fokker-Planck equation [20, 38, 33, 30], which is

(1.5) Btf “ Lαf “ ∇v ¨ pvfq ´ p´∆vq
α{2f .

First, the fractional Fokker-Planck equation is not symmetric in its natural Hilbert space. More
precisely for (say) Schwartz functions f, g, the operator ´Lα admits the decomposition

(1.6) ´ xLαf, gyL2
vpµ

´1
α q

“ Svαpf, gq ` Av
αpf, gq

with Svα symmetric and Av
α skew-symmetric. While Av

α “ 0 when α “ 2, it is non-trivial in the fractional
case. It turns out that this decomposition is crucial in the proof of (hypo)coercivity estimates for the
equation (1.1). Indeed, if skew-symmetric contributions are not eliminated, one is lead to loss of velocity
moments in the estimates.

Second, the estimation of Sobolev norms in terms of dissipation due to the fractional Fokker-Planck
operator requires the introduction of specific functional inequalities for which it is needed to understand
the understanding of regularization properties of the Lévy-Fokker-Planck operator. One important
example of these inequalities is the following (see [4, Proposition 4.1] for a proof). For all ε ą 0, there
is a constant Kpεq ” Kpε, α, dq ą 0 such that

(1.7) }∇vf}
2
L2
vpµ

´1
α q

À Kpεq
´

Svαpf, fq ` }Πvf}
2
L2
vpµ

´1
α q

¯

` εSvαp∇vf,∇vfq .

where pΠvfqpvq “
`ş

Rd fpwqdw
˘

µαpvq is the orthogonal projection of f onto the kernel of Lα in the
space L2

vpµ
´1
α q.

Goal of the paper and main results. In this paper, we are interested in the numerical discretization
of (1.5) and (1.1). Our main results are the design of a consistent, stable and structure preserving nu-
merical method for these equations in dimension d “ 1 (i.e. two-dimensional in the phase-space), as well
as its analysis, implementation and simulation. The keystone is the discretization of the operator Lα.
In terms of preservation of the structure, our numerical method satisfies the properties of

‚ conservation of mass;
‚ preservation of the heavy-tailed local equilibrium µα;
‚ preservation of coercivity properties in the homogeneous case;
‚ preservation of the hypocoercivity properties in the inhomogeneous case;
‚ approximation of the fractional Fokker-Planck operator Lα on the whole line with a discretiza-
tion on a truncated domain;
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‚ preservation of the asymptotics αÑ 2´.
Let us mention that while we do not prove it, the preservation of non-negativity of solutions is also
observed numerically.

In the recent years, there has been several works around the numerical analysis of hypocoercivity
properties for discretizations of kinetic equations. The first contribution [35] concerns a finite difference
discretization of the Kolmogorov equation. For the same model, hypocoercivity properties for other
types of schemes were studied in [19, 21]. Concerning the classical kinetic Fokker-Planck equation,
there has been to our knowledge two main contributions [18, 6] dealing respectively with H1 and L2

hypocoercivity. In the present contribution, the range of models is extended to the fractional-Fokker-
Planck case. Notice also that using a perturbative argument, in [33], the exponential stability of a
model which in a sense is akin to the discretized fractional Fokker-Planck equation is proven.

Our discretization of the Lévy-Fokker-Planck operator Lα is based on a conservative finite difference /
finite volume approach. The fractional Laplacian is discretized following the Huang and Oberman finite
difference-quadrature method [27]. This method is based on the integral representation (1.2). While
they may seem natural, spectral methods based on the Fourier definition of p´∆qα{2 are not efficient
and lead to aliasing errors because of the slow decay of functions at infinity [27]. From the discrete
version of the fractional Laplacian, we introduce an equilibrium and mass preserving discretization
of the drift term ∇v ¨ pvfq. On truncated domains, we introduce consistent and structure preserving
numerical boundary conditions.

From the discretization of Lα, our scheme for the homogeneous Fokker-Planck equation is readily
obtained with a fully implicit Euler scheme in time. In the inhomogeneous case, we propose two schemes.
The first scheme is fully Eulerian, with centered discretization of the transport term and implicit in
time discretization. It is studied in depth analytically in the paper. At the end of the paper we propose
a more practical solution with a semi-Lagrangian version of our scheme, which relieves the burden of
inversion of large matrices at each time step and significantly improves computational efficiency, while
conserving structural properties.

For the Eulerian schemes in unbounded domains, we rigorously show coercivity and hypocoercivity
properties leading to exponential stability of the discrete solution. These results are stated formally in
Theorem 5.1 for the homogeneous case and Theorem 5.3 and Theorem 5.5 for the kinetic case. In order
to prove these results we need to adapt many of the continuous properties to the (more challenging)
discrete setting. Apart from the exponential stability results, many intermediate results of discrete
functional analysis have their own importance. They are gathered in Section 4 and include a discrete
version of nonlocal Poincaré inequalities as well as many new interpolation and embedding inequalities
involving discrete fractional operators and norms.

Compared to the continuous setting, there are two main challenges concerning the coercivity and
hypocoercivity analysis in the discrete setting. The first one is that Fourier analysis is not tractable
anymore for easily proving intermediate functional inequalities (interpolation, embeddings,...). The
second challenge concerns commutators between discrete operators, which are essential in hypocoercivity
estimates. They contain remainder terms which vanish when the mesh size goes to 0 but need to be
dealt with in order to close estimates.

Apart form the theoretical analysis of the schemes, we provide several numerical test cases. These
simulations illustrate the theoretical results of global stability, long-time behavior, conservation of mass
and preservation of heavy-tails in velocity. Additionally, we illustrate the experimental convergence
of the schemes in both the homogeneous and inhomogeneous cases and discuss computational time
performances.

Outline. The plan of the paper is as follows. In Section 2, the discretization of the Lévy-Fokker-Planck
operator Lα is introduced in an unbounded domain and basic properties are derived. In Section 3, the
numerical method is adapted to a truncated velocity domain: the discretization which is used in practice
is introduced. In Section 4, discrete functional analysis results are derived. They include interpolation
and embedding inequalities, and non-local Poincaré inequalities. Let us recall that in these results,
in the discretized setting, the goal is uniformity of constants with respect to the mesh size. Then,
in Section 5, we show global exponential stability following a (hypo)coercivity strategy. In Section 6,
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we perform several numerical simulations which illustrate the structural properties of the numerical
method as well convergence of the schemes. Finally, we gathered in the appendix various necessary but
technical results concerning bounds on µα and its discretization.

2. Presentation and basic properties of the numerical method in unbounded velocity
domain

In the following, unless explicitly stated otherwise, the velocity space R is discretized by a regular
subdivision pvj “ jhqjPZ with h ą 0 a given step size. For a velocity distribution f : RÑ R, fj denotes
an approximation of fpvjq and with a slight abuse of notation, we write f “ pfjqjPZ. In Section 2.1,
we present the discretization Λhα : RZ Ñ RZ of the fractional Laplacian, such that pΛhαfqj approaches
´p´∆qα{2fpvjq. Then, in Section 2.2, we introduce a discretization of the full fractional Fokker-Planck
operator, denoted Lhα :“ Γhα`Λhα where Γhα is the discretization of the drift operator ∇v ¨ pv ¨q. Finally,
in Section 2.3, we write the numerical schemes for (1.5) and (1.1).

2.1. Discretization of the fractional Laplacian. In order to discretize the fractional Laplacian op-
erator in dimension one, we follow the finite difference-quadrature approach of Huang and Oberman[27].
This method preserves the convolution structure of (1.2), and therefore monotony properties of the op-
erator, and it has a theoretical Oph3´αq accuracy. Let us briefly recall the method here and derive some
complementary results.

The integral formulation of the fractional Laplace operator given in (1.2) may be symmetrized and
split into the sum of a singular part and a tail part, respectively

p´∆vq
α{2fpvjq “ C1,α

ż h

0

fpvj ` wq ` fpvj ´ wq ´ 2fpvjq

w1`α
dw

` C1,α

ż 8

h

fpvj ` wq ` fpvj ´ wq ´ 2fpvjq

w1`α
dw

where we recall that C1,α “ 2αΓppα ` 1q{2q{pπ
1
2 |Γp´α{2q|q. The singular part is approached by using

that fpvj `wq` fpvj ´wq´2fpvjq « w2pfj`1` fj´1´2fjq{h
2 for w P r0, hs and integrating in w. The

tail part is approached by replacing f with a piecewise quadratic interpolation of the values pfjqjPZ,
and again integrating (explicitly) in w. Altogether (see [27] for details), the discrete fractional Laplace
operator is given by

(2.1) pΛhαfqj “
8
ÿ

k“1

βhk pfj`k ` fj´k ´ 2fjqh “
ÿ

kPZ
βhk pfj´k ´ fjqh ,

with weights
(2.2)

βhk :“
C1,α

h1`α

$

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

%

1

2´ α
´ ϕ2αp1q ´

ϕ1αp3q ` 3ϕ1αp1q

2
` ϕαp3q ´ ϕαp1q if k “ 1 ,

2
“

ϕ1αpk ` 1q ` ϕ1αpk ´ 1q ´ ϕαpk ` 1q ` ϕαpk ´ 1q
‰

if k “ 2, 4, 6, . . . ,

´
ϕ1αpk ` 2q ` 6ϕ1αpkq ` ϕ

1
αpk ´ 2q

2
` ϕαpk ` 2q ´ ϕαpk ´ 2q if k “ 3, 5, 7, . . . ,

βh´k if k ă 0 .

where

ϕαptq :“

$

&

%

t2´α

p2´ αqpα´ 1qα
if α ‰ 1,

t´ t lnptq if α “ 1.

Remark 2.1. The approximation of the singular part of the integral appears in the first term in the
expression of βh˘1. Observe also that the value assigned to βh0 is arbitrary as it does not appear in (2.1).

We have the following estimates on the coefficients βhk .
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Lemma 2.2. There exist positive constants bα and Bα depending only on α P p0, 2q such that

(2.3)
bα

|hk|1`α
ď βhk ď

Bα
|hk|1`α

, @k P Zzt0u .

Proof. We only deal with the case of k ą 0. For k “ 1, a direct computation yields that

βh1 “
C1,α

2αp2´ αqh1`α

“

8` p4` αq p31´α ´ 1qpα´ 1q´1
‰

, if α ‰ 1 ,

and

βh1 “
C1,1

2h2
p8´ 5 lnp3qq , if α “ 1 .

Then for k ě 2, we observe that

(2.4) βhk “
C1,α

h1`α

ż 1

´1

p1´ t2qϕp3qα pk ` tqdt , if k is even ,

and

(2.5) βhk “
C1,α

2h1`α

ż 2

´2

pt2 ´ 3|t| ` 2qϕp3qα pk ` tqdt , if k is odd .

From there, since ϕp3qα ptq “ t´1´α, the upper bounds in the even and odd cases and the lower bound in
the even case are easily derived from (2.4) and (2.5). For the last bound we use that for k ą 2 odd

2phkq1`α

C1,α
βhk ě

1

p1´ 2{kq1`α

ż ´1

´2

pt2 ´ 3|t| ` 2qdt`
1

p1` 1{kq1`α

ż 2

´1

pt2 ´ 3|t| ` 2qdt “ ψαp1{kq

with ψαpk´1q “ 3
2 p1` k

´1q´1´α ´ 1
6 p1´ 2k´1q´1´α. Clearly, ψαpk´1q ą ψαp1{5q when k ě 5 and the

right-hand side is positive, uniformly in α P p0, 2q. In the last case k “ 3, one has 2phkq1`αβh3 {C1,α “

p15´αp4p´103α`95α`15αq´p53α`185α`15αqαqq{ppα´2qpα´1qαq. The right-side is bounded from
below by logp5q ´ 8{5 ą 0 for α P p0, 2q. �

Remark 2.3 (Additional properties). Let us state here some additional properties of the operator Λhα.
The discrete fractional Laplacian satisfies the conservation of mass, namely

(2.6)
ÿ

jPZ
pΛhαuqj “ 0 .

Moreover, it is self-adjoint in the space of square summable sequences, namely

(2.7)
ÿ

jPZ
pΛhαuqjvj “

ÿ

jPZ
pΛhαvqjuj .

The discretization of the fractional Laplace operator is consistent with the usual centered finite difference
approximation of the Laplacian, namely, using that C1,α „αÑ2´ 2´ α, one can prove that

(2.8) lim
αÑ2´

hβhk “

"

h´2 if |k| “ 1
0 otherwise

and thus one recovers the usual discrete Laplacian at the limit

(2.9) lim
αÑ2´

pΛhαuqj “
uj`1 ` uj´1 ´ 2uj

h2
,

for all j P Z. Finally it is consistent at order 3´ α. When hÑ 0, one has for any u P C4
b pRq that

(2.10) sup
jPZ

ˇ

ˇ

ˇ
´p´∆qα{2uphjq ´ pΛhαuqj

ˇ

ˇ

ˇ
ď Kα }u}C4

b pRq h
3´α ,

with Kα a positive constant depending only on α.
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2.2. Discretization of the Lévy-Fokker-Planck operator. We now turn to the discretization of
the full non-local fractional Fokker-Planck operator Lα. It is discretized as follows

(2.11) Lhα “ Γhα ` Λhα

where Γhα is the discrete equivalent of Bvpv ¨q to be defined. The goal is to define a consistent approxi-
mation that preserves exactly the discrete equilibrium pMjqjPZ defined by

(2.12) Mj “ µαpvjq .

The design relies on the identities Bvpv fq “ Bv pv µα f{µαq and

vµαpvq :“
1

2

ż v

´v

p´∆wq
α{2µαpwqdw ,

which is easily obtained using that Lαµα “ 0 and that µα is symmetric.
In order to preserve the divergence structure and conserve mass, the operator Γhα is discretized in

the finite volume fashion

(2.13) pΓhαfqj :“
Fj` 1

2
´ Fj´ 1

2

h

with the numerical flux defined by the centered approximation

(2.14) Fj` 1
2

:“ pVMqj` 1
2

ˆ

fj
2Mj

`
fj`1

2Mj`1

˙

,

and

(2.15) pVMqj` 1
2
“ ´pVMq´j´ 1

2
:“ ´

1

2

j
ÿ

k“´j

pΛhαMqk h , for j ě 0 .

Remark 2.4. From the conservation of mass for the discrete fractional Laplacian (2.6) and symmetries,
one can derive other formulas for pVMq which will be useful for the analysis. In particular for any odd
m P Z,

(2.16) pVMqj`m2
“

1

2

ÿ

kPZ
sgn

`

k ´ pj ` m
2 q

˘

pΛhαMqk h

where sgnp¨q is the sign function. Using (2.1), it can for example be rewritten as

pVMqj`m2
“

1

4

ÿ

kPZ

ÿ

`PZ
sgn

`

k ´ pj ` m
2 q

˘

βh` pMk`` `Mk´` ´ 2Mkqh
2 ,

see Appendix A.3 for more details.

The following properties are direct consequences of the definition of the operators Λhα in (2.1)-(2.2)
and Lhα in (2.11)-(2.15).

Lemma 2.5 (Basic properties). The operator Lhα satisfies the following properties.
i) Mass conservation: for any suitably summable sequence u, one has

(2.17)
ÿ

jPZ
pLhαuqj h “ 0 .

ii) Preservation of local equilibrium:

(2.18) pLhαMqj “ 0 , @j P Z .

iii) Consistency: for any u P C4
b pRq, one has that

(2.19) sup
jPZ
|pLαuqphjq ´ pL

h
αuqj | ď Kα }u}C4

b pRq h
minp3´α,2q ,

for some Kα ą 0.
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Proof. The first property follows from (2.6) and (2.13). The second property is readily obtained using
that pVMqj` 1

2
´ pVMqj´ 1

2
“ ´pΛhαMqjh. The last property follows from (2.10) and the centered

discretization of the drift (2.13)-(2.15), yielding Oph2q part of the estimate. �

The discrete Lévy-Fokker-Planck operator can be split into the following symmetric / skew-symmetric
decomposition.

Proposition 2.6 (Bilinear decomposition). Given pfjqjPZ and pgjqjPZ, we introduce Fj “ fj{Mj and
Gj “ gj{Mj for any j P Z. One has the following decomposition

(2.20) ´
ÿ

jPZ
pLhαfqj gjM

´1
j h “ Shαpf, gq ` Ah

αpf, gq

where Shα and Ah
α are respectively symmetric and skew-symmetric bilinear forms defined by

(2.21) Shαpf, gq “
1

2

ÿ

pj,kqPZ2

βhk pFj ´ Fj`kq pGj ´Gj`kqMj h
2 ,

and

(2.22) Ah
αpf, gq “ ´

1

2

ÿ

pj,kqPZ2

βhk pFjGj`k ´GjFj`kqMj h
2 ´

1

2

ÿ

jPZ
pVMqj` 1

2
pFj`1Gj ´ FjGj`1q.

Proof. Observe that using the definition of Λhα in (2.1), (2.21) and (2.22) rewrite

Shαpf, gq “
1

2

ÿ

jPZ

“

pΛhαpFGqqjMj ´ fjpΛ
h
αGqj ´ gjpΛ

h
αF qj

‰

h ,

and
Ah
αpf, gq “ ´

1

2

ÿ

jPZ

`

fjpΛ
h
αGqj ´ gjpΛ

h
αF qj

˘

h´
1

2

ÿ

jPZ
pVMqj` 1

2
pFj`1Gj ´ FjGj`1q .

Therefore, with a change of index in the last term we get

Shαpf, gq `Ah
αpf, gq “

1

2

ÿ

jPZ
pΛhαpFGqqjMj h´

ÿ

jPZ
fjpΛ

h
αGqjh

´
1

2

ÿ

jPZ
pVMqj` 1

2
Fj`1Gj `

1

2

ÿ

jPZ
pVMqj´ 1

2
Fj´1Gj .

Thanks to the symmetry property (2.7), the first term of the right-hand side rewrites
1

2

ÿ

jPZ
pΛhαMqjFj Gj h “ ´

1

2

ÿ

jPZ

´

pVMqj` 1
2
´ pVMqj´ 1

2

¯

Fj Gj

By combining this equality with the previous one, we get the claim. �

Corollary 2.7. The discrete Lévy-Fokker-Planck operator Lhα, as an operator on tpfjqj |
ř

j f
2
jM

´1
j ă

`8u, has the following properties.
i) KerpLhαq “ spantpMjqjPZu

ii) ImpLhαq Ă tpgjqj |
ř

j gj “ 0u

Proof. For the first property just observe that Shαpf, fq “ 0 if and only if f P spantpMjqjPZu. The
second property follows from the computation Shαpf,Mq “ Ah

αpf,Mq “ 0. �

Lemma 2.8. In the limit αÑ 2´, one has that

lim
αÑ2´

pVMqj`1{2 “
Mj ´Mj`1

h
,

and

lim
αÑ2´

Lhαf “
Gj`1{2 ´ Gj´1{2

h
, with Gj`1{2 “

Mj `Mj`1

2h

ˆ

fj`1

Mj`1
´

fj
Mj

˙
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Remark 2.9. We recall that in the case α “ 2, the equilibrium µ2 is a standard Gaussian. It satisfies
the relation vµ2pvq “ ´µ

1
2pvq whose discrete counterpart is given by the first limit in the Lemma. When

α Ñ 2´, the scheme degenerates in a conservative finite difference / finite volume scheme which is
clearly consistent with the equivalent reformulation

L2f “ Bv

ˆ

µ2 Bv

ˆ

f

µ2

˙˙

.

All the aforementioned good properties stated above (conservation of mass, local equilibrium, ...) still
hold at the limit. A particular property is that unlike the fractional case, Lh2 is symmetric in its natural
Hilbert space. This limit discretization is in the same fashion as the famous Chang-Cooper [12, 9],
Il’In [28] and Scharfetter-Gummel discretizations [36]. It is also close to the discretization adpoted in
[6] and where the counterpart of this paper’s results were proved for classical Fokker-Planck equations.

2.3. Numerical schemes in unbounded velocity domain. The discrete Lévy-Fokker-Planck op-
erator Lhα, acting only on the velocity index j P Z, is defined by (2.11)-(2.15) and (2.1)-(2.2) in the
previous section. From there, we can now define the numerical approximation of the homogeneous (in
space) Lévy-Fokker-Planck equation Btf “ Lαf . For a time discretization tn “ n∆t with time step
∆t ą 0 an approximation fnj of fptn, vjq is computed by solving the implicit in time scheme

(2.23)
fn`1
j ´ fnj

∆t
“ pLhαfq

n`1
j , @pn, jq P Nˆ Z ,

and starts at some given initial data pf0
j qj .

In the inhomogeneous case, namely for the kinetic Lévy-Fokker-Planck equation Btf ` vBxf “ Lαf ,
set in the phase space TˆR, we need some additional discretization parameters. The space and velocity
step are ∆x “ N´1

x with Nx an odd positive integer, and ∆v respectively (instead of h). From there
we write tn “ n∆t, xi “ i∆x and vj “ j∆v for any pn, i, jq P N ˆ Z{NxZ ˆ Z. The scheme computes
the approximation of fptn, xi, vjq is denoted fnij . It is implicit in time and writes

(2.24)
fn`1
ij ´ fnij

∆t
` pT∆xfqn`1

ij “ pL∆v
α fqn`1

ij , @pn, i, jq P Nˆ Z{NxZˆ Z ,

with given initial data pf0
ijqij . The discrete transport operator writes

(2.25) pT∆xfqnij “ vj
fni`1,j ´ f

n
i´1,j

2∆x
.

Let us end by stating some elementary properties of the scheme.

Proposition 2.10. The scheme (2.24) satisfies the following properties.
i) A solution pfnijqi,j,n is a stationary solution, i.e. fn`1

ij “ fnij for all n ě 0, i P Z{NxZ and j P Z,
if and only if for some constant C P R,

fnij “ CMj “ Cµαpvjq , @pn, i, jq P Nˆ Z{NxZˆ Z .

ii) The total mass is preserved, namely for any suitably summable initial data pf0
ijqij

ÿ

iPZ{NxZ

ÿ

jPZ
fnij ∆v∆x “

ÿ

iPZ{NxZ

ÿ

jPZ
f0
ij ∆v∆x , @n P N.

iii) The solution satisfies the following global stability estimate
ÿ

iPZ{NxZ

ÿ

jPZ
pfnijq

2M´1
j ∆v∆x ď

ÿ

iPZ{NxZ

ÿ

jPZ
pf0
ijq

2M´1
j ∆v∆x , @n P N.

Proof. If one multiplies the scheme by fn`1
ij M´1

j and sums over all indices, one obtains

ÿ

iPZ{NxZ

ÿ

jPZ
pfnijq

2M´1
j ∆v∆x`

n
ÿ

k“1

ÿ

iPZ{NxZ
S∆v
α pfki , f

k
i q∆t “

ÿ

iPZ{NxZ

ÿ

jPZ
pf0
ijq

2M´1
j ∆v∆x .
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From there, the stability estimate in iii) readily follows. Concerning the first item, observe that if fnij is
stationary then by the previous estimate S∆v

α pfki , f
k
i q “ 0 for all k P N and i P Z{NxZ. As a consequence

of (2.21), the solution is of the form fnij “ ρiMj . Plugging this back in the steady version of (2.24)
yields ρi`1 ´ ρi´1 “ 0 for all i, therefore ρi “ C for all i, as Nx is odd. It proves one implication in i)
and the converse is trivial. Finally the conservation of mass in ii) is obtained by summing (2.24) over i
and j. �

Remark 2.11. Observe that as a corollary of the results of Proposition 2.10, one can derive equivalent
properties in the homogeneous case, that is for the scheme (2.23).

3. Truncation of the velocity domain

For practical computations, the discrete velocity domain has to be reduced to a finite number of
points. Despite the truncation, the discretization still needs to approximate the Fokker-Planck operator
on the whole real line. Moreover, it is desirable to preserve the structural properties of the discretization,
such as preservation of mass and equilibrium.

In this section, the domain in velocity is now reduced to a symmetric interval v P r´L,Ls with L “ Jh
and J a positive integer. The discrete velocities are

vj “ jh , j P t´J, . . . , Ju .

Let us introduce a truncated version Lh,J,Kα of the operator Lhα which satisfies the aforementioned
requirements.

3.1. Truncated discrete fractional Laplacian. For the truncated version of the fractional Lapla-
cian, we follow the method of Huang and Oberman [27, Section 5]. The singular integral version of
´p´∆vfq

α{2pvjq may be decomposed into the sum of three contributions

´ p´∆vfq
α{2pvjq “ C1,α

ż LW

´LW

pfpvj ´ wq ´ fpvjqq
dw

w1`α
looooooooooooooooooooooomooooooooooooooooooooooon

(I)

´ C1,α

ż

|w|ąLW

fpvjq
dw

w1`α
looooooooooooooomooooooooooooooon

(II)

` C1,α

ż

|w|ąLW

fpvj ´ wq
dw

w1`α
loooooooooooooooooomoooooooooooooooooon

(III)

,

where LW “ Kh is a second truncation threshold which we assume to be such that

LW ě 2L .

For technical reason, we also impose for K to be taken odd. From there, each term is discretized in a
specific way. For the first term, we just truncate the discretization of Section 2.1, namely

(I) «
K
ÿ

k“´K

pfj´k ´ fjqβ
h
k h ,

where the coefficients βhk are given by (2.2) for k “ ´K ` 1, . . . ,K ´ 1 and

(3.1) β˘K “
C1,α

2h1`α

`

2ϕ2αpKq ` 2ϕαpKq ´ 2ϕαpK ´ 2q ´ ϕ1αpK ´ 2q ´ 3ϕ1αpKq
˘

.

The integral in the second term can be computed exactly and this term is thus approximated by

(II) «
2C1,α

LαW α
fj .

For the third term, the function f is evaluated outside of the truncation domain r´L,Ls, since LW ě 2L.
As solutions of the fractional Fokker-Planck equation develop algebraic tails with known exponent, we
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approximate the function f outside the domain by fp˘vq “ f˘JpL{vq
1`α, for v ě L. It yields the

approximation (III) “ (IIIa)` (IIIb) where

(IIIa) « fJ
L1`αC1,α

L1`2α
W p1` 2αq

2F1

ˆ

1` α, 1` 2α; 1` 2α;´
j

K

˙

,

and

(IIIb) « f´J
L1`αC1,α

L1`2α
W p1` 2αq

2F1

ˆ

1` α, 1` 2α; 1` 2α;
j

K

˙

,

with 2F1 the Gauss hypergeometric function. Observe that in the approximation of (I), one needs fk
outside of the domain t´J, . . . , Ju. As for the approximation of the third term, one uses an algebraically
decaying extension, that is f˘k “ f˘JpJ{kq

1`α, for k ě J . Altogether, the quantity ´p´∆vfq
α{2pvjq

is approximated by pΛh,J,Kα fqj where the matrix Λh,J,Kα , approximating the fractional Laplace operator
on the domain r´Jh, Jhs with integral representation truncated on r´Kh,Khs (with K ą 2Jq, is given
by

(3.2) Λh,J,Kα “ ´

˜

2C1,α

αpKhqα
`

K
ÿ

k“´K

βhk h

¸

I ` Ph,J,Kα `Qh,J,Kα ,

where I is the identity matrix and for j, k P t´J, . . . , Ju

(3.3) pPh,J,Kα qjk “

$

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

%

βhj´k if |k| ă J

j`K
ÿ

l“J

βhj´l

ˆ

J

l

˙1`α

if k “ J

´J
ÿ

l“j´K

βhj´l

ˆ

J

l

˙1`α

if k “ ´J

(3.4) pQh,J,Kα qjk “

$

’

’

’

’

’

&

’

’

’

’

’

%

0 if |k| ă J

C1,αpJhq
1`α

pKhq1`2αp1` 2αq
2F1

ˆ

1` α, 1` 2α, 1` 2α,´
j

K

˙

if k “ J

C1,αpJhq
1`α

pKhq1`2αp1` 2αq
2F1

ˆ

1` α, 1` 2α, 1` 2α,
j

K

˙

if k “ ´J

3.2. Discretization of the drift and boundary fluxes. Now we turn to the discretization of the drift
term Bvpvfq. The goal here is to propose a consistent discretization Γh,J,Kα which, despite the truncation
of the domain, preserves the two important features that are preservation of mass and equilibrium for
the full truncated discrete Fokker-Planck operator (matrix)

(3.5) Lh,J,Kα “ Γh,J,Kα ` Λh,J,Kα .

Concerning conservation of mass, let us remark that at the continuous level the mass is not preserved
on the truncated domain r´L,Ls. For the classical Fokker-Planck equation, when α “ 2, it makes
sense to impose conservation of mass on the truncated domain at the discrete level because densities
decay typically like Gaussian, so that up to a choice of a large truncation parameter L ą 0, the
loss of information outside of the domain is comparable to machine precision error. In the fractional
case α ă 2, the mass outside of the truncation domain is non negligible and should be taken into
account (see Remark 3.2 for a quantitative illustration). We shall do this by imposing well-chosen
artificial boundary conditions.

The truncated discretization of the drift term still writes

(3.6) pΓh,J,Kα fqj “
1

2h

´

pVMq
J,K

j` 1
2

ˆ

fj`1

Mj`1
`

fj
Mj

˙

´ pVMq
J,K

j´ 1
2

ˆ

fj
Mj

`
fj´1

Mj´1

˙

¯

, for |j| ă J
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where the approximations pVMqJ,K
j` 1

2

of vj`1{2µαpvj`1{2q are given, as in the untruncated case, in terms
of the discrete fractional Laplacian of the equilibrium

(3.7) pVMq
J,K

j` 1
2

“ ´pVMq
J,K

´j´ 1
2

:“ ´
1

2

j
ÿ

k“´j

pΛh,J,Kα Mqk h , for j ě 0 .

It remains to define the endrows of Γh,J,Kα . We set

(3.8) pΓh,J,Kα fqJ “
1

h

´

FJ`1{2pfq ´
1

2
pVMq

J,K

j´ 1
2

ˆ

fj
Mj

`
fj´1

Mj´1

˙

¯

,

and

(3.9) pΓh,J,Kα fq´J “
1

h

´1

2
pVMq

J,K

j` 1
2

ˆ

fj`1

Mj`1
`

fj
Mj

˙

´ F´J´1{2pfq
¯

,

where the boundary fluxes are defined by

(3.10) FJ`1{2pfq “ ´h pΛh,J,Kα fqJ ´
h

2ph` ILα q

J´1
ÿ

k“´J`1

pΛh,J,Kα fqk h

`
ILα

2ph` ILα q
pVMq

J,K

J´ 1
2

ˆ

fJ
MJ

`
fJ´1

MJ´1

˙

,

and

(3.11) F´J´1{2pfq “ h pΛh,J,Kα fq´J `
h

2ph` ILα q

J´1
ÿ

k“´J`1

pΛh,J,Kα fqk h

`
ILα

2ph` ILα q
pVMq

J,K

´J` 1
2

ˆ

f´J`1

M´J`1
`

f´J
M´J

˙

.

The quantity fJILα (resp. f´JILα ) is the mass of the extension of f at the right (resp. the left) of
the truncation domain. In order to determine the parameter ILα , we assume that at the right (resp.
left) of the domain f is well approximated by a fJµαpvq{µαpLq (resp f´Jµαpvq{µαp´Lq). It may be
defined in several ways and we choose it to be such that ILα « µαpLq

´1
ş8

L
µαpvqdv. Observe that

2
ş8

L
µαpvqdv “ 1´

şL

´L
µαpvqdv so that a natural definition of ILα is

(3.12) ILα “
1

2MJ
p1´

J
ÿ

j“´J

Mj hq .

We now need to justify the expression of the boundary fluxes. Observe that the first two terms in
both (3.10) and (3.11) are consistent with 0 so these discrete fluxes are consistent with the continuous
ones (if, say, hÑ 0 and Jh remains constant). The purpose of these correction terms is illustrated by
the following proposition.

Proposition 3.1. The truncated discrete fractional Fokker-Planck operator Lh,J,Kα defined in (3.2)-
(3.11) satisfies the following properties.

(i) It preserves the equilibrium, namely

pLh,J,Kα Mqj “ 0 .

(ii) It preserves the total mass: if

fn`1 ´ fn

∆t
“ Lh,J,Kα fn`1

then
J
ÿ

j“´J

fn`1
j h` ILα pf

n`1
J ` fn`1

´J q “

J
ÿ

j“´J

fnj h` I
L
α pf

n
J ` f

n
´Jq .
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Remark 3.2. Observe that if one takes ILα “ 0, the mass is preserved inside the truncation domain. As
we stressed earlier in the section, this is however not an accurate way of discretizing the Fokker-Planck
equation with fractional diffusion. As an illustration, if we truncate the domain at L “ 100, then in the
fractional case I100

1 « 102 whereas in the classical case I100
2 « 5.10´3. To better interpret these values

we recall that 2ILα is the amount of mass of µα outside of the domain relatively to the value of µα at
the boundary of the domain.

4. Discrete functional analysis

In this section, we introduce discrete functional analysis tools, adapted to the discretization of frac-
tional diffusion in dimension 1 and which are going to be essential in order to derive the stability and
asymptotic properties of the schemes (2.23) and (2.24) in unbounded velocity domain.

4.1. Discrete functional spaces and notations. We start with some definitions and notations.
Given a mesh size h ą 0 and a positive sequence γ “ pγjqjPZ, which may depends on h, we introduce
several Hilbert spaces which we characterize by their norms. Given a norm (or a semi-norm) } ¨ }X on
the space X, the corresponding inner product is denoted and classically defined by x¨, ˚yX “ p} ¨ ` ˚

}2X ´ } ¨ ´ ˚ }
2
Xq{4. We start by the weighted discrete Lebesgue space `2hpγq. For a sequence pgjqjPZ, we

define

(4.1) }g}2`2hpγq
“

ÿ

jPZ
g2
j γj h .

The sequence γ is to be thought of as the local equilibrium M defined in (2.12) or its inverse depending
on the context. We also introduce weighted discrete fractional Sobolev seminorms

(4.2) |g|29Hshpγq
“

ÿ

jPZ

ÿ

kPZzt0u

pgj ´ gj`kq
2

|hk|1`2s
γj h

2 , s ą 0

and norms
}g}2Hshpγq

“ }g}2`2hpγq
` |g|29Hshpγq

, @s P p0, 1q .

We also introduce the finite difference operators

pD`h gqj “
gj`1 ´ gj

h
,

pDhgqj “
gj`1 ´ gj´1

2h
,

and thus
pD2

hgqj “
gj`2 ` gj´2 ´ 2gj

4h2
.

Observe that one has the integration by part formula
ř

jPZpDhgqjfj “ ´
ř

jPZ gjpDhfqj .

Finally, we define weighted H1
h-Sobolev spaces through the norm

(4.3) }g}2H1
hpγq

“ }g}2`2hpγq
` }Dhg}

2
`2hpγq

.

For flat norms and semi-norms, that is when γj “ 1 for all j P Z, we only write `2h instead of `2hpγq
and do the analogous modification of notation for the other spaces.

Remark 4.1. Beware that, with the above notation |g| 9H1
hpγq

‰ }Dhg}`2hpγq. While there is no continuous
equivalent of | ¨ | 9Hshpγq

for s ě 1 because of the singularity at 0, it is a useful intermediate quantity in
the discrete setting.

In the following, when we write A À B, we mean that there is a positive constant C which may
depend on α, and other parameters, but never on the mesh size h such that A ď C B. If A À B
and B À A, we write A „ B. If necessary, we write Àa,b,... or „a,b,... to indicate the dependance
of the constants on parameters a, b, . . . . Given sequences A “ pAjqj , B “ pBjqj and a function φ,
products and application of a function have to be understood componentwise, namely AB “ pAjBjqj ,
φpAq “ pφpAjqqj .
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Remark 4.2. Observe for instance that as a consequence of the definitions of Λhα and Lhα in Sec-
tion 2, the bounds of Lemma 2.2 and the previous definitions one has

@

´Lhαf, f
D

`2hpM
´1q
“ Shαpf, fq „

|f{M |2
9H
α{2
h pMq

.

4.2. Discrete non-local Poincaré inequalities. In this section, we establish a class of discrete func-
tional inequalities which are the counterpart of nonlocal Poincaré inequalities [20, 41]. The method of
proof is directly inspired by [41].

We assume that pγhj qjPZ and pwhj qjPZ˚ are two sequences such that

(4.4) whj “ wh´j , @j P Z˚ .
We assume moreover that there is a constant CP such that

(4.5) γhj γ
h
k ď CP pγ

h
j ` γ

h
k qw

h
j´k , @h ą 0 , @j, k P Z , j ‰ k .

Then the following discrete functional inequality holds.

Proposition 4.3. Under the assumptions (4.4) and (4.5), for any h ą 0 and any suitably summable
sequence g “ pgjqj such that

ÿ

jPZ
gj γ

h
j h “ 0 ,

one has
}g}2`2hpγhq

ď CP
ÿ

pj,kqPZ2

j‰k

whj´kpgj ´ gkq
2 γhk h

2 .

Proof. We use assumptions to get

}g}2`2hpγhq
“

ÿ

jPZ
g2
j γ

h
j h “

1

2

ÿ

jPZ

ÿ

kPZ
pgj ´ gkq

2 γhj γ
h
k h

2

ď CP
1

2

ÿ

pj,kqPZ2

j‰k

whj´k pgj ´ gkq
2 pγhk ` γ

h
j qh

2 .

After expanding the last sum and changing indices, one recovers the result. �

Thanks to the following lemma, we will show that the discrete equilibrium M satisfies assump-
tions (4.4) and (4.5).

Lemma 4.4. Let α P p0, 2q and ν : Rd Ñ R be a probability density function such that for some constant
cd,α one has

(4.6) νpvq ď
cd,α

1` |v|d`α
for all v P Rd .

Then for all v, w P Rd, one has

(4.7) νpvq νpwq ď 2d`α´1cd,α
νpvq ` νpwq

|v ´ w|d`α

Proof. By using (4.6) one has

νpvq´1 ` νpwq´1

|v ´ w|d`α
ě c´1

d,α

|v|d`α ` |w|d`α

|v ´ w|d`α
ě c´1

d,α

|v|d`α ` |w|d`α

p|v| ` |w|qd`α
ě 21´pd`αqc´1

d,α

where we used the convexity of x ÞÑ xd`α in the last inequality. �

We can now state the main result of this section. We recall that Mj “ µαpvjq and Shα is defined
in (2.21).

Proposition 4.5. For any suitably summable sequence f “ pfjqj, one has

(4.8) }f ´Πhf}
2
`2hpM

´1q
À Shαpf, fq ,

where the projection Πh is defined by the formula pΠhfqj “Mj p
ř

kPZ fk hq{p
ř

kPZMk hq.
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Proof. Let γhj “ µαphjq and whk “ |hk|´p1`αq for j P Z and k P Z˚. The symmetry assumption (4.4)
is clearly satisfied. Then, we get from Lemma 4.4 and Proposition A.2 in the appendix that for
all v, w P R with v ‰ w, one has µαpvqµαpwq ď 2α C1 pµαpvq`µαpwqq|v´w|

´p1`αq where C1 “ C1pαq
is the constant in (A.7). Therefore, (4.5) is also satisfied, thus Proposition 4.3 yields that if g is
such that

ř

jPZ gj γ
h
j h “ 0, then }g}2

`2hpγ
hq

À |g|2
9H
α{2
h pγhq

. If we take g “ pf ´ Πhfq{M , we obtain

}f ´Πhf}
2
`2hpM

´1q
À |f{M |2

9H
α{2
h pMq

. One concludes by observing that, as a consequence of Lemma 2.2,

the right-hand side is bounded by a constant depending only on α times Shαpf, fq. �

4.3. Regularization estimates. The result of Proposition 4.5 can actually be improved because the
dissipation Shαpf, fq also provides a gain of fractional Sobolev regularity, as shown in the next lemma.

Lemma 4.6. There exists a constant C ą 0 independent of h such that for any suitably summable
sequence f “ pfjqj, one has:

Shαpf, fq Á |fM´1{2|2
9H
α{2
h

´ C}fM´1{2}2`2h
.

Proof. Using that pa` bq2 ě a2{2´ b2, we have

Shαpf, fq ě
ÿ

jPZ

ÿ

kPZ˚
|k|ď1{h

βhk

ˆ

fj
Mj

´
fj`k
Mj`k

˙2

Mjh
2 ě

1

2
I1 ´ I2

with

I1 :“
ÿ

jPZ

ÿ

kPZ˚
|k|ď1{h

βhk

˜

fj
a

Mj

´
fj`k

a

Mj`k

¸2

h2

and

I2 :“
ÿ

jPZ

ÿ

kPZ˚
|k|ď1{h

βhk
f2
j`k

M2
j`k

´

a

Mj`k ´
a

Mj

¯2

h2 .

Using Lemma 2.2, the first term can be bounded from below by

I1 Á |fM´1{2|2
9H
α{2
h

´
ÿ

jPZ

ÿ

kPZ˚
|k|ą1{h

βhk

˜

fj
a

Mj

´
fj`k

a

Mj`k

¸2

h2 .

Moreover, using Lemma 2.2 and a change of index, we have:

ÿ

jPZ

ÿ

kPZ˚
|k|ą1{h

βhk

˜

fj
a

Mj

´
fj`k

a

Mj`k

¸2

h2 À
ÿ

jPZ

f2
j

Mj
h

ÿ

kPZ˚
|k|ą1{h

h

|hk|1`α
À }fM´1{2}2`2h

.

It implies that for some constant C ą 0 (which does not depend on h):

(4.9) I1 Á |fM
´1{2|2

9H
α{2
h

´ C}fM´1{2}2`2h
.

The second term can be rewritten as

I2 “
ÿ

jPZ

ÿ

kPZ˚
|k|ď1{h

βhk
f2
j`k

M2
j`k

k2

˜

k´1
ÿ

`“0

1

k

´

a

Mj```1 ´
a

Mj``

¯

¸2

h2 .

Using the convexity of the squared function and Lemma 2.2, we get:

I2 À
ÿ

jPZ

ÿ

kPZ˚
|k|ď1{h

|hk|2

|hk|1`α
1

k

k´1
ÿ

`“0

´

D`h
?
M

¯2

j``

f2
j`k

M2
j`k

h2
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À
ÿ

jPZ

ÿ

kPZ˚
|k|ď1{h

|hk|2

|hk|1`α
1

k

k´1
ÿ

`“0

`

D`h
?
M

˘2

j``

Mj``

f2
j`k

Mj`k
h2

where for the last inequality, we used that we sum over the k such that |hk| ď 1 and (A.7), so that
we can write the following bounds for any j, k and `, 0 ď ` ď k ´ 1: M´1

j`k À M´1
j À M´1

j``. Using

Corollary A.4 and estimate (A.7), we have that
`

D`h
?
M

˘2

j
M´1
j P `8j uniformly in h. Consequently,

performing a change of index, we obtain:

(4.10) I2 À
ÿ

jPZ

ÿ

kPZ˚
|k|ď1{h

|hk|2

|hk|1`α
f2
j`k

Mj`k
h2 À }fM´1{2}2`2h

.

Combining (4.9) and (4.10), we obtain the wanted result. �

Proposition 4.7. For any suitably summable sequence f “ pfjqj, one has:

Shαpf, fq Á }pf ´ΠhfqM
´1{2}2

H
α{2
h

.

Proof. One can notice that Πhf “ Π2
hf and

Shαpf, fq “ Shαpf ´Πhf, f ´Πhfq .

As a consequence, an appropriate convex combination of inequalities coming from Proposition 4.5 and
Lemma 4.6 applied to f ´Πhf shows the wanted inequality. �

4.4. Interpolation and embeddings in discrete fractional spaces. In this section, we derive
embedding and interpolation inequalities between the previously introduced discrete fractional Sobolev
spaces and mixed spaces involving discrete difference operators.

Proposition 4.8. One has, uniformly in h ą 0, the following results of continuous embeddings.
(i) For any 0 ă s2 ď s1 ă 1, one has

}f}Hs2h
À }f}Hs1h

.

(ii) For any 0 ă s ă 1, one has

}f}Hsh À }f}`2h ` }D
`
h f}`2h .

(iii) One has
}Dhf}`2h À }D`h f}`2h ď |f | 9H1

h
.

Proof. For piq, let us notice that if |hk| ď 1, then |hk|s1 ď |hk|s2 so that
ÿ

jPZ

ÿ

kPZ˚
|k|ď1{h

pfj ´ fj`kq
2

|hk|1`2s2
h2 ď

ÿ

jPZ

ÿ

kPZ˚
|k|ď1{h

pfj ´ fj`kq
2

|hk|1`2s1
h2 ď |f |29H

s2
h

.

Moreover, using the tail estimate
ÿ

|k|ě1{h

1

|k|1`2s2
À h2s2 ,

we have that
ÿ

jPZ

ÿ

kPZ˚
|k|ě1{h

pfj ´ fj`kq
2

|hk|1`2s2
h2 À

ÿ

jPZ
f2
j

ÿ

kPZ˚
|k|ě1{h

h2

|hk|1`2s2
À

ÿ

jPZ
f2
j h “ }f}

2
`2h
,

which concludes the proof of piq.
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Concerning piiq, we split the sum over k into two parts and write that

|f |29Hsh
“

ÿ

jPZ

ÿ

kPZ˚
|k|ď1{h

´

řk
`“1

1
k pfj`` ´ fj``´1q

¯2

|hk|1`2s
|hk|2 `

ÿ

jPZ

ÿ

kPZ˚
|k|ě1{h

pfj ´ fj`kq
2

|hk|1`2s
h2

“: I1 ` I2 .

For the first term, we use the convexity of the squared function, Fubini theorem and a change of index,
it gives us that:

I1 ď
ÿ

kPZ˚
|k|ď1{h

k
ÿ

`“1

ÿ

jPZ

1
k pfj ´ fj`1q

2

|hk|1`2s
|hk|2 ď

ÿ

jPZ

ÿ

kPZ˚
|k|ď1{h

pfj ´ fj`1q
2

|hk|1`2s
|hk|2 .

From this, we get

I1 ď
ÿ

jPZ

pfj ´ fj`1q
2

h

ÿ

kPZ˚
|k|ď1{h

h

|hk|1`2s´2
À }D`h f}

2
`2h
.

The second term is easier to treat, we have:

I2 À
ÿ

jPZ

ÿ

kPZ˚
|k|ě1{h

f2
j ` f

2
j`k

|hk|1`2s
h2

and thus using a change of index in j:

I2 À
ÿ

jPZ
f2
j h

ÿ

kPZ˚
|k|ě1{h

h

|hk|1`2s
À }f}2`2h

,

which yields the second result.
Finally, concerning (iii), the first inequality is straightforward. For the second one, notice that just

keeping the term corresponding to k “ 1 in the right hand side term, we have

}D`h f}
2
`2h
“

ÿ

jPZ

pfj ´ fj`1q
2

h
ď

ÿ

jPZ

ÿ

kPZ˚

pfj ´ fj`kq
2

|hk|3
h2 “ |f |29H1

h

,

which ends the proof. �

Lemma 4.9. For any positive s, β such that 0 ă s´ β ă s` β, one has

|f |29Hsh
À |f | 9Hs`βh

|f | 9Hs´βh
.

Proof. The result directly comes from Cauchy-Schwarz inequality. �

Proposition 4.10. For any s P p0, 1q, we have:

}D`h f}
2
`2h
À |f | 9H1´s

h
|Dhf | 9Hsh

.

In order to prove Proposition 4.10, we need the following elementary lemma.

Lemma 4.11. Let gk :“ 1{p1` k2q for k P Z. We have the following inequality:

k´3 À ´hpDhgqk, @k P Z˚ .

Proof. Let k P Z˚. A computation yields
1

k3
`

1

2
hpDhgqk “

4

k3pp1` pk ` 1q2qp1` pk ´ 1q2q
ď

4

5k3
,

which proves the result. �
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Proof of Proposition 4.10. Let us start by combining Proposition 4.8-(iii) with Lemma 4.11 to get

}D`h f}
2
`2h
À ´

ÿ

jPZ

ÿ

kPZ˚
pDhgqkpfj ´ fj`kq

2 “ ´
ÿ

jPZ

ÿ

kPZ
pDhgqkpfj ´ fj`kq

2 .

We now temporarily fix j and only look at the sum over k. Denoting ak “ fj ´ fj`k, we have

pDhpa
2qqk “ pak`1 ` ak´1q

ak`1 ´ ak´1

2h
“ ´pfj ´ fj`k`1 ` fj ´ fj`k´1qpDhfqj`k

From this, performing an integration by parts in k, we deduce that

´
ÿ

kPZ
pDhgqkpfj ´ fj`kq

2 “ ´
ÿ

kPZ
pDhgqka

2
k “

ÿ

kPZ
gkpDhpa

2qqk

i.e.

´
ÿ

kPZ
pDhgqkpfj ´ fj`kq

2 “ ´
ÿ

kPZ

1

1` k2
pfj ´ fj`k`1 ` fj ´ fj`k´1qpDhfqj`k .

It implies that

}D`h f}
2
`2

À ´
ÿ

j,kPZ

1

1` k2
pfj ´ fj`k`1qpDhfqj`k ´

ÿ

j,kPZ

1

1` k2
pfj ´ fj`k´1qpDhfqj`k

À ´
ÿ

j,kPZ

1

1` k2
pfj`k´1 ´ fjqpDhfqj´1 ´

ÿ

j,kPZ

1

1` k2
pfj ´ fj`k´1qpDhfqj`k

À ´
ÿ

j,kPZ

1

1` k2
pfj ´ fj`k´1qppDhfqj`k ´ pDhfqj´1q

where we performed a change of index in the first sum to get the second inequality. Now, from Cauchy-
Schwarz inequality, we get

}D`h f}
2
`2

À

˜

ÿ

j,kPZ

pfj ´ fj`k´1q
2

p1` k2q1{2`1´sh1`2p1´sq
h2

¸1{2 ˜
ÿ

j,kPZ

ppDhfqj`k ´ pDhfqj´1q
2

p1` k2q1{2`sh1`2s
h2

¸1{2

.

To conclude, performing changes of indices, we remark that
ÿ

j,kPZ

pfj ´ fj`k´1q
2

p1` k2q1{2`1´sh1`2p1´sq
h2 “

ÿ

jPZ

ÿ

kPZ˚

pfj ´ fj`kq
2

p1` pk ` 1q2q1{2`1´sh1`2p1´sq
h2

À
ÿ

jPZ

ÿ

kPZ˚

pfj ´ fj`kq
2

|hk|1`2p1´sq
h2 “ |f |29H1´s

h

and
ÿ

j,kPZ

ppDhfqj`k ´ pDhfqj´1q
2

p1` k2q1{2`sh1`2s
h2 “

ÿ

jPZ

ÿ

kPZ˚

ppDhfqj ´ pDhfqj`kq
2

p1` pk ´ 1q2q1{2`sh1`2s
h2

À
ÿ

jPZ

ÿ

kPZ˚

ppDhfqj ´ pDhfqj`kq
2

|hk|1`2s
h2 “ |Dhf |

2
9Hsh

where the two last inequalities come from the fact that 1` pk ˘ 1q2 ě k2{2. �

Theorem 4.12. Let s P p0, 1q. There is ηs ą 0 such that for any ε P p0, ηsq, there is Kpεq ą 0 such
that

(4.11) }D`h f}
2
`2h
À ε |Dhf |

2
9Hsh
` Kpεq }f}2Hsh .
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Proof. Using Proposition 4.10 combined with Young inequality, we get that for any ε1 P p0, 1q,

(4.12) }D`h f}
2
`2h
À ε1 |Dhf |

2
9Hsh
`

1

ε1
|f |29H1´s

h

.

If s ě 1{2, then 1´ s ď s and it is thus enough to conclude since from Proposition 4.8-(i), we have

|f | 9H1´s
h

À }f}Hsh .

Let us now deal with the case s ď 1{2. Consider the minimal integer q such that 1 ´ s ´ qs{2 ď s.
Coming back to (4.12), we use Lemma 4.9 and Young inequality to write that for any ε2 P p0, 1q,

}D`h f}
2
`2h
À ε1|Dhf |

2
9Hsh
`

1

ε1
ε2|f |

2
9H

1´s{2
h

`
1

ε1ε2
|f |2

9H
1´3s{2
h

.

From Proposition 4.8-(ii), we obtain

(4.13) }D`h f}
2
`2h
À ε1|Dhf |

2
9Hsh
`

1

ε1
ε2p}f}

2
`2h
` }D`h f}

2
`2h
q `

1

ε1ε2
|f |2

9H
1´3s{2
h

.

Reiterating the process, we obtain that for any ε1, . . . , εq`1 P p0, 1q:

}D`h f}
2
`2h
À ε1|Dhf |

2
9Hsh
`

˜

q
ÿ

k“1

1

Πk
`“1ε`

εq`1

¸

p}f}2`2h
` }D`h f}

2
`2h
q `

1

Πq`1
`“1ε`

|f |2
9H

1´s´qs{2
h

.

From the definition of q and Proposition 4.8-(i), we deduce that

(4.14) }D`h f}
2
`2h
À ε1|Dhf |

2
9Hsh
`

˜

q
ÿ

k“1

1

Πk
`“1ε`

εk`1

¸

}D`h f}
2
`2h
`

1

Πq`1
`“1ε`

}f}2Hsh .

In order to get the wanted inequality (4.11), we consider ε P p0, 1q and set ε` :“ ε2`´1

for any 1 ď ` ď
q ` 1. With this choice of ε`, the previous inequality (4.14) becomes

}D`h f}
2
`2h
À ε|Dhf |

2
9Hsh
` qε}D`h f}

2
`2h
`

ε

ε2q`1 }f}
2
Hsh

.

Taking ε small enough enables us to absorb the second term of the right-hand side into the left-hand
side in order to obtain the following inequality

}D`h f}
2
`2h
À ε|Dhf |

2
9Hsh
` ε1´2q`1

}f}2Hsh ,

which concludes the proof. �

4.5. A discrete interpolation inequality in weighted spaces. In the next proposition, we prove
a result which will be one of the keystones of the proof of H1-coercivity in Theorem 5.1 (and thus also
of Theorems 5.3 and 5.5). This result is a consequence of Proposition 4.7 (which comes from Poincaré
and regularization estimates) and the interpolation inequality obtained in Theorem 4.12.

Proposition 4.13. There exist η ą 0 and h0 ą 0 such that for any h P p0, h0q and for any ε P p0, ηq,
there is Kpεq ą 0 such that

}f}`2hpM´1q}Dhf}`2hpM´1q ` }Dhf}
2
`2hpM

´1q

ď Kpεq
´

Shαpf, fq ` }Πhf}
2
`2hpM

´1q

¯

` εShαpDhf,Dhfq

where we recall that pΠhfqj “Mj p
ř

kPZ fk hq{p
ř

kPZMk hq.

Proof. It is actually enough to prove that

(4.15) }Dhf}
2
`2hpM

´1q
ď Kpεq

´

Shαpf, fq ` }Πhf}
2
`2hpM

´1q

¯

` εShαpDhf,Dhfq .

Indeed, let us assume that the latter inequality is proved. Then, we can write the following bound:

}f}`2hpM´1q}Dhf}`2hpM´1q ď

´

}f ´Πhf}`2hpM´1q ` }Πhf}`2hpM´1q

¯

}Dhf}`2hpM´1q
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so that using (4.8) and (4.15),

}f}`2hpM´1q}Dhf}`2hpM´1q ď

´

Shαpf, fq1{2 ` }Πhf}`2hpM´1q

¯

}Dhf}`2hpM´1q

ď Kpεq1{2
´

Shαpf, fq1{2 ` }Πhf}`2hpM´1q

¯´

Shαpf, fq ` }Πhf}
2
`2hpM

´1q

¯1{2

` ε1{2
´

Shαpf, fq1{2 ` }Πhf}`2hpM´1q

¯

ShαpDhf,Dhfq
˘1{2

À pKpεq1{2 ` 1q
´

Shαpf, fq ` }Πhf}
2
`2hpM

´1q

¯

` εShαpDhf,Dhfq ,

which is exactly the wanted result up to changing the value of ε.
Let us now come to the proof of (4.15). We first notice that:

}Dhf}
2
`2hpM

´1q
“

ÿ

jPZ
|pDhfqjM

´1{2
j |2h

À
ÿ

jPZ

´

|pDhpfM
´1{2qqj |

2 ` |fj`1pD
`
hM

´1{2qj |
2 ` |fj´1pD

`
hM

´1{2qj´1|
2
¯

h .

Then using Corollary A.4, we deduce that

}Dhf}
2
`2hpM

´1q
À }DhpfM

´1{2q}2`2h
` }fM´1{2}2`2h

.

From Theorem 4.12, we deduce that there exists η ą 0 such that for any ε P p0, ηq, there is Kpεq ą 0
such that

}Dhf}
2
`2hpM

´1q
À ε}DhpfM

´1{2q}2
H
α{2
h

`Kpεq}fM´1{2}2
H
α{2
h

.

Then, using that pDhpfM
´1{2qqj “ pDhfqjM

´1{2
j`1 ` fj´1pDhM

´1{2qj , up to changing Kpεq and using
Corollary A.4, we get:

}Dhf}
2
`2hpM

´1q
À ε}pDhfqM

´1{2}2
H
α{2
h

`Kpεq}fM´1{2}2
H
α{2
h

,

where we used that M´1{2
j`1 ÀM

´1{2
j ÀM

´1{2
j´1 holds for h small enough. Now observe that

}fM´1{2}2
H
α{2
h

À }pf ´ΠhfqM
´1{2}2

H
α{2
h

` }pΠhfqM
´1{2}2

H
α{2
h

.

Moreover, we have:
}pΠhfqM

´1{2}2
H
α{2
h

“ }Πhf}
2
`2hpM

´1q
}M1{2}2

H
α{2
h

.

We also have from Proposition 4.8-(ii), (A.7) in Proposition A.2 and Corollary A.4,

}M1{2}
H
α{2
h

À }M1{2}`2h
` }D`h pM

1{2q}`2h
À 1

so that
}pΠhfqM

´1{2}2
H
α{2
h

À }Πhf}
2
`2hpM

´1q
.

Finally, to conclude, we remark that Dhf “ Dhf ´ΠhDhf and we use twice Proposition 4.7. �

5. Stability and long-time behavior

5.1. Main results. In the first theorem, we look at a semi-discretized version of (2.23). Since only the
variable v is discretized, to simplify the notations, we note h “ ∆v and we thus study the equation

(5.1) Btfj “ pLhαfqj , @j P Z ,

with some given initial data pf0
j qj .
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Theorem 5.1. There exists h0 ą 0 such that if f is a solution of the semi-discrete Lévy-Fokker-Planck
equation (5.1) with initial data pf0

j qj P H
1
hpM

´1q then, for all t ě 0 and h P p0, h0q one has

}fptq ´ f8}H1
hpM

´1q ď C }f0 ´ f8}H1
hpM

´1q e
´λt

where

f8 :“

@

f0
D

h

xMyh
M with xfyh :“

ÿ

jPZ
fj h

for some constants C ě 1 and λ ą 0 depending only on α.

Remark 5.2. Recall that the projection Πh is defined through pΠhfqj “Mj xfyh { xMyh so that f8 “
Πhf

0. Remark that as in Proposition 2.10, one can prove that the global mass is conserved by the
equation: if f is a solution to (5.1), then for all t ě 0, one has xfptqyh “

@

f0
D

h
.

In the second theorem, we consider a semi-discretized version of (2.24). Now, both x and v variables
appear in the equation, we thus study the equation

(5.2) Btfi,j `
`

T∆xf
˘

i,j
“
`

L∆v
α f

˘

i,j
, @pi, jq P Z{NxZˆ Z ,

where L∆v
α and T∆x are respectively defined in (2.11) and (2.25), with some given initial data pf0

i,jqi,j .
In order to prove hypocoercivity estimates for (5.2), the scalar product

xf, gy`2∆x,∆vpM´1q “
ÿ

iPZ{NxZ

ÿ

jPZ

fi,jgi,j
Mj

∆x∆v ,

for f “ pfi,jqpi,jqPZ{NxZˆZ and g “ pgi,jqpi,jqPZ{NxZˆZ is introduced as well as the associated norm
which is denoted by } ¨ }`2∆x,∆vpM´1q. In what follows, we prove that the solution pfptqqtě0 of (5.2) has
exponential decay to equilibrium for a discrete H1 weighted norm defined by

}f}2H1
∆x,∆vpM

´1q
“ }f}2`2∆x,∆vpM´1q

` }D∆xf}
2
`2∆x,∆vpM

´1q
` }D∆vf}

2
`2∆x,∆vpM

´1q
,

where D∆x and D∆v stand for centered finite differences in space and velocity

@pi, jq P Z{NxZˆ Z, pD∆xfqi,j “
fi`1,j ´ fi´1,j

2∆x
, pD∆vfqi,j “

fi,j`1 ´ fi,j´1

2∆v
.

Theorem 5.3. Suppose that Nx is odd. There exists ∆v0 ą 0 such that if f is solution of the semi-
discrete kinetic Lévy-Fokker-Planck equation (5.2) with initial data pf0

i,jqi,j P H
1
∆x,∆vpM

´1q then, for
all ∆v ă ∆v0 and for all t ě 0, one has

}fptq ´ f8}H1
∆x,∆vpM

´1q ď C}f0 ´ f8}H1
∆x,∆vpM

´1q e
´λt,

where

f8 :“

@

f0
D

∆x,∆v

xMy∆x,∆v
M with xfy∆x,∆v :“

ÿ

pi,jqPZ{NxZˆZ
fi,j ∆x∆v

for some constant C ě 1 and λ ą 0 depending only on α.

Remark 5.4. In the inhomogeneous setting one can define the macroscopic density ρi :“
ř

jPZ fi,j ∆v.
It relates to the projection Π∆v by the relation ρiMj “ xMy∆v pΠ∆vfi,¨qj. Remark also that as in
Proposition 2.10, one can prove that the global mass is conserved by the equation: if f is a solution
to (5.2), then for all t ě 0, one has xfptqy∆x,∆v “

@

f0
D

∆x,∆v
.

Notice that Theorem 5.1 can be seen as a special case of Theorem 5.3. However, we chose to present
Theorem 5.1 as well as its proof in order to highlight the main arguments that allow us to treat the
collision operator Lhα in our energy estimates. Indeed, the said arguments may be somewhat hidden in
the proof of the kinetic case in which we face additionnal difficulties coming from the transport operator
and the H1-hypocoercivity method.



22 NATHALIE AYI, MAXIME HERDA, HÉLÈNE HIVERT, AND ISABELLE TRISTANI

Finally, in the last theorem, we consider the fully discrete implicit in time discretization of (1.1),
that we recall here,

(5.3)
fn`1
i,j ´ fni,j

∆t
`
`

T∆xf
˘n`1

i,j
“
`

L∆v
α f

˘n`1

i,j
, @pi, jq P Z{NxZˆ Z, n P N.

Then, we obtain the following result.

Theorem 5.5. Suppose that Nx is odd. There exists ∆v0 ą 0 such that if f is a solution of the
discrete kinetic Lévy-Fokker-Planck equation (5.3) with initial data pf0

i,jqi,j P H
1
∆x,∆vpM

´1q, then for
all ∆v ă ∆v0 and for all n P N, one has

}fn ´ f8}H1
∆x,∆vpM

´1q ď C}f0 ´ f8}H1
∆x,∆vpM

´1q p1` 2λ∆tq´
n
2 ,

for some constants C ě 1 and λ ą 0 depending only on α. The global equilibrium f8 is the same as in
Theorem 5.3.

Remark 5.6. It can be noticed, that the constant λ ą 0 in Theorem 5.5 is the same as the one in
Theorem 5.3.

5.2. A technical lemma. Before starting the proof of our results, we prove an estimate for the com-
mutator rDh, L

h
αs which naturally arises in our computations. It will be useful in the proof of Theo-

rem 5.1 and it is worth remarking that the proof is similar in the non-homogeneous case, so that it will
also be used in the proof of Theorem 5.3. In the continuous setting, the corresponding commutator,
rBv, Lαs “ Bv, is easily computed. While the discrete case is more intricate, we are still able to obtain
nice estimates on the scalar product

@

rDh, L
h
αsf, g

D

`2hpM
´1q

.

Lemma 5.7.

(5.4)
ˇ

ˇ

ˇ

@

rDh, L
h
αsf, g

D

`2hpM
´1q

ˇ

ˇ

ˇ
À }f}`2hpM´1q}g}`2hpM´1q ` }Dhf}`2hpM´1q}g}`2hpM´1q .

Proof. Let f , g P `2hpM
´1q. The proof of Lemma 5.7 relies on an appropriate rewriting of

@

rDh, L
h
αsf, g

D

,
and on the bounds on the discrete equilibrium given in Section A.2. First of all, let us notice that we
clearly have rDh,Λ

h
αs “ 0. Therefore

@

rDh, L
h
αsf, g

D

`2hpM
´1q
“
@

rDh,Γ
h
αsf, g

D

`2hpM
´1q
“
@

DhΓhαf, g
D

`2hpM
´1q
´
@

ΓhαDhf, g
D

`2hpM
´1q

.

Let us study each term of the right-hand side. For the first term, one has
@

DhΓhαf, g
D

`2hpM
´1q
“

ÿ

jPZ

h

Mj

pΓhαfqj`1 ´ pΓ
h
αfqj´1

2h
gj ,

which yields, according to the definition of Γhα in (2.13)-(2.14),
@

DhΓhαf, g
D

`2hpM
´1q
“

ÿ

jPZ

h

Mj
pVMqj`3{2

fj`1{Mj`1 ` fj`2{Mj`2

p2hq2
gj(5.5)

´
ÿ

jPZ

h

Mj
pVMqj`1{2

fj{Mj ` fj`1{Mj`1

p2hq2
gj

´
ÿ

jPZ

h

Mj
pVMqj´1{2

fj´1{Mj´1 ` fj{Mj

p2hq2
gj

`
ÿ

jPZ

h

Mj
pVMqj´3{2

fj´2{Mj´2 ` fj´1{Mj´1

p2hq2
gj .

For the second term, we have
@

ΓhαDhf, g
D

`2hpM
´1q
“

ÿ

jPZ

h

Mj
pVMqj`1{2

ˆ

1

Mj`1

fj`2 ´ fj
p2hq2

`
1

Mj

fj`1 ´ fj´1

p2hq2

˙

gj(5.6)

´
ÿ

jPZ

h

Mj
pVMqj´1{2

ˆ

1

Mj

fj`1 ´ fj´1

p2hq2
`

1

Mj´1

fj ´ fj´2

p2hq2

˙

gj .
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Now, we sum (5.5) and (5.6), and we reorganize it to gather the terms in fj , fj´1, fj`1 and fj`2 or fj´2.
Hence

@

rDh,Γ
h
αsf, g

D

`2hpM
´1q
“ C0 ` C´1 ` C1 ` C´2,2 ,

where

C0 “
ÿ

jPZ

h

Mj

fjgj
p2hq2

ˆ

pVMqj´1{2

Mj´1
´
pVMqj´1{2

Mj
`
pVMqj`1{2

Mj`1
´
pVMqj`1{2

Mj

˙

(5.7)

C´1 “
ÿ

jPZ

h

Mj

fj´1gj
p2hq2

ˆ

pVMqj`1{2

Mj
´
pVMqj´1{2

Mj
´
pVMqj´1{2

Mj´1
`
pVMqj´3{2

Mj´1

˙

(5.8)

C1 “
ÿ

jPZ

h

Mj

fj`1gj
p2hq2

ˆ

pVMqj´1{2

Mj
´
pVMqj`1{2

Mj
´
pVMqj`1{2

Mj`1
`
pVMqj`3{2

Mj`1

˙

(5.9)

C´2,2 “
ÿ

jPZ

h

Mj

fj`2gj
p2hq2

ˆ

pVMqj`3{2

Mj`2
´
pVMqj`1{2

Mj`1

˙

(5.10)

`
ÿ

jPZ

h

Mj

fj´2gj
p2hq2

ˆ

pVMqj´3{2

Mj´2
´
pVMqj´1{2

Mj´1

˙

,

and we estimate all the terms separately. Let us start with C0, and rewrite it as

C0 “
ÿ

jPZ

h

4Mj
fj gj

pVMqj`1{2 ´ pVMqj´1{2

h

1

h

ˆ

1

Mj`1
´

1

Mj

˙

`
ÿ

jPZ

h

4Mj
fj gj pVMqj´1{2

1

h2

ˆ

1

Mj`1
´

2

Mj
`

1

Mj´1

˙

.

Thanks to Corollaries A.4 and A.6, and to Lemmas A.7 and A.8, the following inequality holds

|C0| À
ÿ

jPZ

h

Mj
|fj | |gj | ,

which yields |C0| À }f}`2hpM´1q}g}`2hpM´1q with Cauchy-Schwarz inequality. Going on with C1 and C´1,
we rewrite them as

C1 “
ÿ

jPZ

h

4Mj
fj`1gj

pVMqj`3{2 ´ pVMqj`1{2

h

1

h

ˆ

1

Mj`1
´

1

Mj

˙

`
ÿ

jPZ

h

4Mj
fj`1 gj

1

Mj

pVMqj`3{2 ´ 2pVMqj`1{2 ` pVMqj´1{2

h2
“: Ca1 ` C

b
1 ,

and similarly

C´1 “
ÿ

jPZ

h

4Mj
fj´1gj

pVMqj´3{2 ´ pVMqj´1{2

h

1

h

ˆ

1

Mj´1
´

1

Mj

˙

`
ÿ

jPZ

h

4Mj
fj´1 gj

1

Mj

pVMqj`1{2 ´ 2pVMqj´1{2 ` pVMqj´3{2

h2
“: Ca´1 ` C

b
´1 .

Thanks to Corollary A.4 and Lemma A.8, one has

|Ca1 | À
ÿ

jPZ

h

Mj
|fj`1| |gj | À

˜

ÿ

jPZ

h

Mj`1

Mj`1

Mj
f2
j`1

¸1{2

}g}`2hpM´1q .

The estimate
|Ca1 | À }f}`2hpM´1q }g}`2hpM´1q

comes thanks to Lemma A.3 and the identity Mj`1{Mj “ 1` hpD`hMqj{Mj . Similarly, one has

|Ca´1| À }f}`2hpM´1q }g}`2hpM´1q .
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Then, to handle Cb1 ` Cb´1, we first remark that

pVMqj`3{2 ´ 2pVMqj`1{2 ` pVMqj´1{2

“ pVMqj`3{2 ´ pVMqj`1{2 ´ pVMqj´1{2 ` pVMqj´3{2

´
`

pVMqj`1{2 ´ 2pVMqj´1{2 ` pVMqj´3{2

˘

.

From this, we deduce that

Cb1 “
ÿ

jPZ

h

4Mj
fj`1 gj

1

Mj

pVMqj`3{2 ´ pVMqj`1{2 ´ pVMqj´1{2 ` pVMqj´3{2

h2

´
ÿ

jPZ

h

4Mj
fj`1 gj

1

Mj

pVMqj`1{2 ´ 2pVMqj´1{2 ` pVMqj´3{2

h2
“: Cc1 ` C

d
1 .

As previously, Lemma A.9 implies that

|Cc1| À }f}`2hpM´1q }g}`2hpM´1q .

Finally, we write that

Cd1 ` C
b
´1 “

ÿ

jPZ

h

2Mj

fj´1 ´ fj`1

2h
gj

1

Mj

pVMqj`1{2 ´ 2pVMqj´1{2 ` pVMqj´3{2

h

and remark that

pVMqj`1{2 ´ 2pVMqj´1{2 ` pVMqj´3{2

“ pVMqj`1{2 ´ pVMqj´1{2 ´
`

pVMqj´1{2 ´ pVMqj´3{2

˘

.

Then, Lemma A.8 allows us to conclude that
ˇ

ˇCd1 ` C
b
´1

ˇ

ˇ À }Dhf}`2hpM´1q}g}`2hpM´1q .

Eventually, C´2,2 is once again decomposed as

C´2,2 “ Ca´2,2 ` C
b
´2,2 ,

where

Ca´2,2 “
ÿ

jPZ

h

Mj

gj
p2hq2

fj`2

Mj`2

`

pVMqj`3{2 ´ pVMqj`1{2

˘

(5.11)

´
ÿ

jPZ

h

Mj

gj
p2hq2

fj´2

Mj´2

`

pVMqj´1{2 ´ pVMqj´3{2

˘

and

Cb´2,2 “
ÿ

jPZ

h

Mj

fj`2gj
p2hq2

pVMqj`1{2

ˆ

1

Mj`2
´

1

Mj`1

˙

(5.12)

`
ÿ

jPZ

h

Mj

fj´2gj
p2hq2

pVMqj´1{2

ˆ

1

Mj´2
´

1

Mj´1

˙

,

and each term is considered independently. Let us remark that

Ca´2,2 “
ÿ

jPZ

h

4Mj
gj

1

Mj`2

pVMqj`3{2 ´ pVMqj`1{2

h

fj`2 ´ fj´2

h

`
ÿ

jPZ

h

4Mj
gj fj´2

pVMqj`3{2 ´ pVMqj`1{2

h

1

h

ˆ

1

Mj`2
´

1

Mj´2

˙

`
ÿ

jPZ

h

4Mj
gj fj´2

1

Mj´2

pVMqj`3{2 ´ pVMqj`1{2 ´ pVMqj´1{2 ` pVMqj´3{2

h2
,
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and since pfj`2 ´ fj´2q{h “ pDhfqj`1 ` pDhfqj´1 and pM´1
j`2 ´ M´1

j´2q{h “
ř1
k“´2pD

`
hM

´1qj`k,
Corollary A.4 and Lemmas A.8 and A.9 yield

|Ca´2,2| À
ÿ

jPZ

h

Mj
|gj | p|pS`Dhfqj | ` |pS´Dhfqj | ` |pS´S´fqj |q ,

where pS`fqj “ fj`1 and pS´fqj “ fj´1. The conclusion comes from

|Ca´2,2| À }g}`2hpM´1q

´

}S`Dhf}`2hpM´1q ` }S´Dhf}`2hpM´1q ` }S´S´f}`2hpM´1q

¯

,

and

}S`f}
2
`2hpM

´1q
´ }f}2`2hpM´1q

“
ÿ

jPZ

h

Mj
f2
j h
pD`hMqj´1

Mj´1
.

Indeed, thanks to Lemma A.3, the previous identity yields
ˇ

ˇ

ˇ
}S`f}

2
`2hpM

´1q
´ }f}2`2hpM´1q

ˇ

ˇ

ˇ
À h}f}2`2hpM´1q

,

so that }S`f}`2hpM´1q À }f}`2hpM´1q. The same result holds for S´, and we eventually have

|Ca´2,2| À }g}`2hpM´1q}f}`2hpM´1q ` }g}`2hpM´1q}Dhf}`2hpM´1q .

To conclude this proof, Cb´2,2 is rewritten as

Cb´2,2 “
ÿ

jPZ

h

4Mj
gj pVMqj`1{2

fj`2 ´ fj´2

h

1

h

ˆ

1

Mj`2
´

1

Mj`1

˙

`
ÿ

jPZ

h

4Mj
gj fj´2

pVMqj`1{2 ´ pVMqj´1{2

h

1

h

ˆ

1

Mj`2
´

1

Mj`1

˙

`
ÿ

jPZ

h

4Mj
gj fj´2 pVMqj´1{2

1

h2

ˆ

1

Mj`2
´

1

Mj`1
´

1

Mj´1
`

1

Mj´2

˙

,

and since

1

Mj`2
´

1

Mj`1
´

1

Mj´1
`

1

Mj´2
“

1
ÿ

k“´1

ˆ

1

Mj`k`1
´

2

Mj`k
`

1

Mj`k´1

˙

,

we obtain using Lemmas A.7-A.8 and Corollaries A.4-A.6 that

|Cb´2,2| À
ÿ

jPZ

h

Mj
|gj | p|pS`Dhfqj | ` |pS´Dhfqj | ` |pS´S´fqj |q .

Eventually, Cauchy-Schwarz inequality and the above estimate for }S˘f}`2hpM´1q yield

|Cb´2,2| À }g}`2hpM´1q}f}`2hpM´1q ` }g}`2hpM´1q}Dhf}`2hpM´1q .

�

5.3. H1-coercivity in the homogenous case: proof of Theorem 5.1. In the next proposition, we
give an estimate on the evolution of the norm of the solution to equation (5.1) and on the evolution of its
derivative. Notice that in the continuous case, this type of estimates comes from commutator equalities
that are quite simple. Here, the commutators are much more complicated but some simplifications
occur when we compute the evolution of the derivative of the solution and we are still able to get nice
bounds.

Proposition 5.8. Let f be a solution to (5.1) with Lα defined in (2.11)-(2.16). Then we have:
1

2

d

dt
}f}2`2hpM´1q

“ ´Shαpf, fq

and there exists C ą 0 (depending only on α) such that
1

2

d

dt
}Dhf}

2
`2hpM

´1q
ď´ ShαpDhf,Dhfq ` C}Dhf}

2
`2hpM

´1q
` C}f}`2hpM´1q}Dhf}`2hpM´1q .
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Proof. The first equality comes directly from the decomposition given in (2.20) since

1

2

d

dt
}f}2`2hpM´1q

“
@

Lhαf, f
D

`2hpM
´1q

.

Concerning the second part of the proposition, we start by writing that
1

2

d

dt
}Dhf}

2
`2hpM

´1q

“
@

DhL
h
αf, f

D

`2hpM
´1q
“
@

rDh, L
h
αsf,Dhf

D

`2hpM
´1q
`
@

LhαDhf,Dhf
D

`2hpM
´1q

.

The second term is computed exactly as previously:
@

LhαDhf,Dhf
D

“ ´ShαpDhf,Dhfq ,

while the first one is estimated with Lemma 5.7 to obtain the wanted result. �

We are now able to conclude the proof of the main result of this part.
Proof of Theorem 5.1. As in the continuous case, we introduce a functional which is going to be an
entropy for our equation:

Fpfq :“ }f}2`2hpM´1q
` a}Dhf}

2
`2hpM

´1q

for some positive constant a which will be chosen later on. Notice first that we clearly have the
equivalence Fpfq „ }f}2

H1
hpM

´1q
.

Without loss of generality, since (5.1) is linear, we consider an initial data pf0
j qj with vanishing mass

and fptq the associated solution of (5.1) is such that for t ě 0, Πhfptq “ 0 since (5.1) preserves mass
(see Remark 5.2). Then, from Propositions 5.8 and 4.13, there exist constants C ą 0 and η ą 0 such
that for any ε P p0, ηq, there is Kpεq ą 0 such that:

1

2

d

dt
Fpfptqq ď ´Shαpf, fq ´ aShαpDhf,Dhfq

` aC }Dhf}
2
`2hpM

´1q
` aC }f}`2hpM´1q}Dhf}`2hpM´1q

ď ´Shαpf, fq ´ aShαpDhf,Dhfq

` aC KpεqShαpf, fq ` aC εShαpDhf,Dhfq .

Choosing first ε small enough so that 1´C ε ě 1{2 and then a small enough so that 1´aC Kpεq ě 1{2,
we obtain that

d

dt
Fpfptqq ď ´Shαpf, fq ´ aShαpDhf,Dhfq .

Proposition 4.5 implies that
d

dt
Fpfptqq À ´Fpfptqq

and we can thus conclude thanks to a Gronwall type argument. �

5.4. Hypocoercivity in the inhomogeneous case: proofs of Theorems 5.3 and 5.5. To show
the long-time behavior stated in Theorem 5.3, we introduce

Hpf, fq “ }f}2`2∆x,∆vpM´1q
` a}D∆xf}

2
`2∆x,∆vpM

´1q
` b}D∆vf}

2
`2∆x,∆vpM

´1q
(5.13)

` 2c xD∆xf,D∆vfy`2∆x,∆vpM´1q .

The positive constants a, b, and c will be determined in the sequel such that c2 ă ab. With such
hypothesis, H1{2 is a norm equivalent to } ¨ }H1

∆x,∆vpM
´1q. In addition, since (5.2) is linear, there is no

loss of generality in supposing that
@

f0
D

∆x,∆v
“ 0 so that for any t ě 0, xfptqy∆x,∆v “ 0 since (5.2)

preserves the global mass (see Remark 5.4).
In what follows, shifts in velocity will be denoted S` and S´

@pi, jq P Z{NxZˆ Z, pS´fqi,j “ fi,j´1, pS`fqi,j “ fi,j`1 .
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One can notice that D∆x commutes with T∆x and S˘, however

(5.14) D∆vT
∆x “ T∆xD∆v `D∆x

S` ` S´
2

.

Eventually, it is worth noticing that T∆x is skew-symmetric for x¨, ¨y`2∆x,∆vpM´1q. We denote S∆x,∆v
α the

following operator
S∆x,∆v
α pf, fq :“

ÿ

iPZ{NxZ
pS∆v
α pf, fqqqi∆x.

The proof of Theorem 5.3 relies on the three following lemmas.

Lemma 5.9. Under the assumptions of Theorem 5.3, the following equalities hold

1

2

d

dt
}f}2`2∆x,∆vpM´1q

“ ´S∆x,∆v
α pf, fq “: E1pfq(5.15)

1

2

d

dt
}D∆xf}

2
`2∆x,∆vpM

´1q
“ ´S∆x,∆v

α pD∆xf,D∆xfq “: E2pfq(5.16)

1

2

d

dt
}D∆vf}

2
`2∆x,∆vpM

´1q
“

Bˆ

I ´
S` ` S´

2

˙

Π∆vD∆xf,D∆vf

F

`2∆x,∆vpM
´1q

(5.17)

´

Bˆ

I ´
S` ` S´

2

˙

pΠ∆v ´ IqD∆xf,D∆vf

F

`2∆x,∆vpM
´1q

` xpΠ∆v ´ IqD∆xf,D∆vfy`2∆x,∆vpM´1q

`
@

rD∆v, L
∆v
α sf,D∆vf

D

`2∆x,∆vpM
´1q
´ S∆x,∆v

α pD∆vf,D∆vfq “: E3pfq

d

dt
xD∆xf,D∆vfy`2∆x,∆vpM´1q “ ´}D∆xf}

2
`2∆x,∆vpM

´1q
´ 2S∆x,∆v

α pD∆xf,D∆vfq(5.18)

´

Bˆ

I ´
S` ` S´

2

˙

pΠ∆v ´ IqD∆xf,D∆xf

F

`2∆x,∆vpM
´1q

`

Bˆ

I ´
S` ` S´

2

˙

Π∆vD∆xf,D∆xf

F

`2∆x,∆vpM
´1q

`
@

rD∆v, L
∆v
α sf,D∆xf

D

`2∆x,∆vpM
´1q

“: E4pfq .

Proof. The expression (5.15) is obtained by injecting (5.2) in d{dt}f}2
`2∆x,∆vpM

´1q
“ 2 xBtf, fy`2∆x,∆vpM´1q.

Since T∆x is skew-symmetric, the result is straightforward using (2.20). Moreover, since D∆xf satisfies
the relation (5.2), the equality (5.16) holds true. The following equalities are obtained in the same way,
using (2.20), (5.14) and the fact that xΠ∆vD∆xf,D∆vfy`2∆x,∆vpM´1q “ 0 for (5.17). �

Lemma 5.10. Let Nx P N be odd, and f P `2∆x,∆vpM
´1q such that xfy∆x,∆v “ 0. The following

estimate holds

(5.19) }Π∆vf}`2∆x,∆vpM´1q À }D∆xf}`2∆x,∆vpM´1q .

Proof. This Lemma is a consequence of the following discrete Poincaré inequality proven in [6]: for
Nx P N odd, ∆x “ 1{Nx,

(5.20)
ÿ

iPZ{NxZ
β2
i À

ÿ

iPZ{NxZ
rD∆xβs

2
i , @pβiqiPZ{NxZ s.t.

ÿ

iPZ{NxZ
βi “ 0 .

Recalling that pΠ∆vfqi,j “ ρiMj xMy
´1
∆v (see Remark 5.4), we have

}Π∆vf}
2
`2∆x,∆vpM

´1q
“

ÿ

iPZ{NxZ
∆xρ2

i

1

xMy∆v
,
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since
ř

jPZ ∆vMj “ xMy∆v. Moreover, we have that
ř

iPZ{NxZ ρi “ 0 since
ř

iPZ{NxZ ρi∆x “ xfy∆x,∆v “

0 (see Remark 5.4). Thus, thanks to (5.20), we can obtain the estimate (5.19) with Cauchy-Schwarz
inequality. Indeed,

ÿ

iPZ{NxZ
∆xpD∆xρq

2
i

1

xMy∆v
“

ÿ

iPZ{NxZ
∆x

˜

ÿ

jPZ
pD∆xfqi,j

1

M
1{2
j

∆v
M

1{2
j

xMy
1{2
∆v

¸2

ď
ÿ

iPZ{NxZ
∆x

ÿ

jPZ
pD∆xfq

2
i,j

1

Mj
∆v ,

and the last term is equal to }D∆xf}
2
`2∆x,∆vpM

´1q
. �

Lemma 5.11. Let g P `2∆x,∆vpM
´1q. Under the assumptions of Theorem 5.3, the following estimates

hold
ˇ

ˇ

ˇ

ˇ

ˇ

Bˆ

I ´
S` ` S´

2

˙

Π∆vD∆xf, g

F

`2∆x,∆vpM
´1q

ˇ

ˇ

ˇ

ˇ

ˇ

À ∆v}g}`2∆x,∆vpM´1q}Π∆vD∆xf}`2∆x,∆vpM´1q(5.21)

ˇ

ˇ

ˇ

ˇ

ˇ

Bˆ

I ´
S` ` S´

2

˙

pΠ∆v ´ IqD∆xf, g

F

`2∆x,∆vpM
´1q

ˇ

ˇ

ˇ

ˇ

ˇ

À }g}`2∆x,∆vpM´1qS∆x,∆v
α pD∆xf,D∆xfq

1{2(5.22)

ˇ

ˇ

ˇ

@

rD∆v, L
∆v
α sf,D∆vf

D

`2∆x,∆vpM
´1q

ˇ

ˇ

ˇ
À }D∆vf}

2
`2∆x,∆vpM

´1q
` }f}`2∆x,∆vpM´1q}D∆vf}`2∆x,∆vpM´1q(5.23)

ˇ

ˇ

ˇ

@

rD∆v, L
∆v
α sf,D∆xf

D

`2∆x,∆vpM
´1q

ˇ

ˇ

ˇ
À }pΠ∆v ´ IqD∆xf}`2∆x,∆vpM´1q }f}`2∆x,∆vpM´1q(5.24)

` }pΠ∆v ´ IqD∆xf}`2∆x,∆vpM´1q }D∆vf}`2∆x,∆vpM´1q .

Proof. As a preliminary result, let us remark that thanks to Lemma A.3,

@j P Z,
ˇ

ˇ

ˇ

ˇ

pD`∆vMqj
Mj

ˇ

ˇ

ˇ

ˇ

À xj∆vy
´1

.

Noticing that Π∆vD∆xf “ D∆xρM xMy
´1
∆v (where we recall that ρ is the local mass of f), one has

xpI ´ S`qΠ∆vD∆xf, gy`2∆x,∆vpM´1q “ ∆x∆v
ÿ

iPZ{NxZ

ÿ

jPZ
pD∆xρqi

Mj

xMy∆v
gi,j

ˆ

´∆v
pD`∆vMqj

Mj

˙

1

Mj
,

which yields (5.21). Similarly, since

}S`f}
2
`2∆x,∆vpM

´1q
´ }f}2`2∆x,∆vpM´1q

“ ∆x∆v
ÿ

iPZ{NxZ

ÿ

jPZ
f2
i,j∆v

pD`∆vMqj´1

Mj´1

1

Mj
,

we obtain that }S`f}`2∆x,∆vpM´1q À }f}`2∆x,∆vpM´1q. The same estimate holds for S´, and it gives (5.22)
with (4.8).

Eventually, the last two estimates are obtained using Lemma 5.7. Indeed, as the proof relies only
on computations on the v variable, it is still true with x¨, ¨y`2∆x,∆vpM´1q instead of x¨, ¨y`2hpM´1q. The
estimate (5.23) is straightforward, while (5.24) comes from the equality

@

rD∆v, L
∆v
α sf,D∆xf

D

`2∆x,∆vpM
´1q
“
@

rD∆v, L
∆v
α sf, pI ´Π∆vqD∆xf

D

`2∆x,∆vpM
´1q

.

Indeed, still denoting Π∆vf “ ρM xMy
´1
∆v, one has

@

rD∆v, L
∆v
α sf,Π∆vD∆xf

D

`2∆x,∆vpM
´1q
“ ∆x∆v

ÿ

iPZ{NxZ

ÿ

jPZ

`

rD∆v, L
∆v
α sf

˘

i,j
pD∆xρqi

1

xMy∆v
,

but for all i P Z{NxZ,
ÿ

jPZ

`

rD∆v, L
∆v
α sf

˘

i,j
“

ÿ

jPZ

`

D∆vpL
∆v
α fq

˘

i,j
´

ÿ

jPZ

`

Λ∆v
α pD∆vfq

˘

i,j
´

ÿ

jPZ

`

Γ∆v
α pD∆vfq

˘

i,j
,
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and the three terms vanish, respectively because of the definition of D∆v, and thanks to (2.6) and (2.13).
�

The proof of Theorem 5.3 relies on these lemmas, and ad-hoc use of Young’s inequality.

Proof of Theorem 5.3. Thanks to Lemmas 5.9-5.11 and to (4.8), there exists a constant K ą 0 such
that

1

2

d

dt
Hpf, fq ` S∆x,∆v

α pf, fq ` aS∆x,∆v
α pD∆xf,D∆xfq ` bS∆x,∆v

α pD∆vf,D∆vfq

`
c

2
}Π∆vD∆xf}

2
`2∆x,∆vpM

´1q
`
c

2
}pΠ∆v ´ IqD∆xf}

2
`2∆x,∆vpM

´1q

`
c

4
}D∆xf}

2
`2∆x,∆vpM

´1q
`

c

16
}Π∆vf}

2
`2∆x,∆vpM

´1q
.

ď Kb∆v}Π∆vD∆xf}`2∆x,∆vpM´1q}D∆vf}`2∆x,∆vpM´1q

` 2KbS∆x,∆v
α pD∆xf,D∆xfq

1{2}D∆vf}`2∆x,∆vpM´1q

`Kb
´

}f}`2∆x,∆vpM´1q}D∆vf}`2∆x,∆vpM´1q ` }D∆vf}
2
`2∆x,∆vpM

´1q

¯

(5.25)

` 2K
`

c2S∆x,∆v
α pD∆xf,D∆xfq

˘1{2 `S∆x,∆v
α pD∆vf,D∆vfq

˘1{2
(5.26)

` cKS∆x,∆v
α pD∆xf,D∆xfq

1{2}D∆xf}`2∆x,∆vpM´1q

` cK∆v}Π∆vD∆xf}`2∆x,∆vpM´1q}D∆xf}`2∆x,∆vpM´1q

` cKS∆x,∆v
α pD∆xf,D∆xfq

1{2
´

}f}`2∆x,∆vpM´1q ` }D∆vf}`2∆x,∆vpM´1q

¯

.(5.27)

Up to a transformation with Cauchy-Schwarz inequality in (5.26), all lines of the previous inequality
come from Lemma 5.11. To conclude, Young’s inequality is applied, except for (5.25) which is bounded
with Proposition 4.13. This proposition is also employed to bound all the }D∆vf}

2
`2∆x,∆vpM

´1q
that

appear after the use of Young’s inequality. Hence, there exists η ą 0 and ∆v0 ą 0 such that for any
ε P p0, ηq, ∆v P p0,∆v0q and any positive constants µ, δ, ν and γ, there is Kpεq ą 0 such that

1

2

d

dt
Hpf, fq `Dpf, fq ď 0

where

Dpf, fq :“A S∆x,∆v
α pf, fq `B S∆x,∆v

α pD∆xf,D∆xfq ` C S∆x,∆v
α pD∆vf,D∆vfq

`D }Π∆vD∆xf}
2
`2∆x,∆vpM

´1q
`
c

2
}pΠ∆v ´ IqD∆xf}

2
`2∆x,∆vpM

´1q

` E }D∆xf}
2
`2∆x,∆vpM

´1q
` F }Π∆vf}

2
`2∆x,∆vpM

´1q
ď 0 ,

with

A “ 1´KbKpεq

ˆ

2`
∆v

4

˙

´
cK

2

ˆ

Kpεq

µ
`

1

δ

˙

B “ a´Kb´
Kc

2

ˆ

2c

ν
`

1

γ
` δ ` µ

˙

C “ b´Kbε

ˆ

∆v

4
` 2

˙

´Kν ´
cKε

2µ

D “
c

2
´Kb∆v ´

cK∆v

2
E “

c

4
p1´ 2K pγ `∆vqq

F “
c

16
´KbKpεq

ˆ

2`
∆v

4

˙

´
cK

2

ˆ

1

δ
`
Kpεq

µ

˙

.

Let us take

b “
c

128KKpεq
, ν “

b

2K
, γ “

1

4K
, δ “ 32K, µ “ 32KKpεq .
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Thus, we can rewrite C, E and F as follows:

C “
b

2
´Kbε

ˆ

∆v

4
` 2

˙

´
cKε

2µ

E “
c

4

ˆ

1

2
´ 2K∆v

˙

F “
c

64
´

c

128

∆v

4
.

We consecutively choose ∆v and ε small enough so thatD,E, F and C are strictly non-negative. Finally,
we take c small enough so that A ą 0 and a large enough so that B ą 0 and c2 ă ab. It yields that
the dissipation is non-negative. Eventually, thanks to Proposition 4.5 and the fact that Π∆vD∆vf “ 0,
there exists λ ą 0 such that for all f P H1

∆x,∆vpM
´1q,

λHpf, fq ď Dpf, fq .
As a consequence, the following inequality holds

1

2

d

dt
Hpf, fq ` λHpf, fq ď 0 .

Theorem 5.3 follows immediately by a Gronwall type argument and the fact that H „ } ¨ }2
H1

∆x,∆vpM
´1q

.
�

We finally can prove the result in the fully-discrete case.

Proof of Theorem 5.5. We deduce from (5.3) that

(5.28) fn`1
i,j “ fni,j ´∆t

`

T∆xf
˘n`1

i,j
`∆t

`

L∆v
α f

˘n`1

i,j
, @pi, jq P Z{NxZˆ Z, n P N .

Thus, we obtain

}fn`1}2`2∆x,∆vpM
´1q
“
@

fn`1, fn`1
D

`2∆x,∆vpM
´1q

“
@

fn`1, fn
D

`2∆x,∆vpM
´1q
´∆t

A

fn`1,
`

T∆xf
˘n`1

E

`2∆x,∆vpM
´1q

`∆t
A

fn`1,
`

L∆v
α f

˘n`1
E

`2∆x,∆vpM
´1q

“
@

fn`1, fn
D

`2∆x,∆vpM
´1q
´∆tS∆x,∆v

α pfn`1, fn`1q

“
@

fn`1, fn
D

`2∆x,∆vpM
´1q
`∆t E1pf

n`1q

and similarly,

}D∆xf
n`1}2`2∆x,∆vpM

´1q
“
@

D∆xf
n`1, D∆xf

n
D

`2∆x,∆vpM
´1q
`∆t E2pf

n`1q

where the quantities Eip¨q, i “ 1, . . . , 4 are the ones introduced in Lemma 5.9. Using again (5.28), we
deduce that

}D∆vf
n`1}2`2∆x,∆vpM

´1q
“

@

D∆vf
n`1, D∆vf

n
D

`2∆x,∆vpM
´1q
`∆t E3pf

n`1q

and

2
@

D∆vf
n`1, D∆xf

n`1
D

`2∆x,∆vpM
´1q

“
@

D∆vf
n`1, D∆xf

n
D

`2∆x,∆vpM
´1q
`
@

D∆xf
n`1, D∆vf

n
D

`2∆x,∆vpM
´1q
`∆t E4pf

n`1q .

Thus,

Hpfn`1, fn`1q “ ϕpfn`1, fnq `∆t
`

E1pf
n`1q ` a E2pf

n`1q ` b E3pf
n`1q ` c E4pf

n`1q
˘

where

ϕpfn`1, fnq “
@

fn`1, fn
D

`2∆x,∆vpM
´1q

` a
@

D∆xf
n`1, D∆xf

n
D

`2∆x,∆vpM
´1q
` b

@

D∆vf
n`1, D∆vf

n
D

`2∆x,∆vpM
´1q
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` c
@

D∆vf
n`1, D∆xf

n
D

`2∆x,∆vpM
´1q
` c

@

D∆xf
n`1, D∆vf

n
D

`2∆x,∆vpM
´1q

.

We notice that ϕ is a scalar product on H1
∆x,∆vpM

´1q and the associated norm is pHp¨qq1{2. In partic-
ular, we have

|ϕpfn`1, fnq| ď
`

Hpfn`1, fn`1q
˘1{2

pHpfn, fnqq1{2

ď
1

2
Hpfn`1, fn`1q `

1

2
Hpfn, fnq

Thus, we obtain
1

2
Hpfn`1, fn`1q ď

1

2
Hpfn, fnq `∆t

`

E1pf
n`1q ` a E2pf

n`1q ` b E3pf
n`1q ` c E4pf

n`1q
˘

.

The second term of the right-hand side of this last inequality is exactly the same one has in the previous
semi-discrete case. Thus, using the exact same inequalities and making the same choice of constants,
we obtain similarly as before that there exists λ ą 0 such that

1

2
Hpfn`1, fn`1q ď

1

2
Hpfn, fnq ´∆tDpfn`1, fn`1q

ď
1

2
Hpfn, fnq ´∆t λHpfn`1, fn`1q .

Finally, we deduce that

Hpfn`1, fn`1q ď p1` 2λ∆tq´1Hpfn, fnq
which implies

Hpfn`1, fn`1q ď p1` 2λ∆tq´nHpf0, f0q .

�

6. Numerical simulations

6.1. Implementation. The implemention of the schemes have been done in Matlab and the code is
available at gitlab.inria.fr/herda/fpfrac. Here, we give some details on the main implementation
task which is the assembling of the matrix Lh,J,Kα “ Λh,J,Kα ` Γh,J,Kα .

First, one assembles the matrix Λh,J,Kα of the fractional Laplacian. In practice, we choose the integral
truncation parameter such that K “ 10J`1. One first computes the coefficients βhk for k “ ´K, . . . ,K
using formula (2.2) for k “ ´K ` 1, . . . ,K ´ 1 and (3.1) for βh˘K . From there, the coefficients of the
matrix are given by (3.2)-(3.3).

Then one needs to assemble the matrix Γh,J,Kα of the drift term following (3.6)-(3.11). This re-
quires Λh,J,Kα as well as the discrete local equilibrium Mj « µαpjhq for j “ ´J, . . . , J . The evaluation
of Mj is not trivial when α ‰ 1, because µα is defined by an oscillatory integral. The problem enters
the larger framework of the numerical calculation of stable densities which has interested many authors
(see [2] and references therein). Here we use the efficient method of Ament and O’Neil [2] which relies
on several different representation formulas (integrals and series) and asymptotics for stable densities.
We use their Matlab code available at https://gitlab.com/s_ament/qastable.

6.2. Test case 1: convergence of the scheme. We solve the homogeneous fractional Fokker-Planck
equation Btf “ Lαf . First, we focus on convergence properties of the scheme for various values of
α ą 0. Our reference solution is

fpt, vq “
2
ÿ

i“1

θi

p1´ e´pt`1qαq
1
α

µα

ˆ

v ´ wie
´pt`1q

p1´ e´pt`1qαq
1
α

˙

,

with θ1 “ 3{4, θ2 “ 1{4, w1 “ 2 and w2 “ ´6. The truncated velocity domain is r´L,Ls with L “ 16
and the time domain of simulation is r0, T s with T “ 0.5. As we focus on the convergence of the scheme
in the velocity variable, the time step is appropriately refined at each refinement of the velocity step.

On Figure 1, we report the error of approximation with respect to the mesh size in L8t L2
v and L8t,v

norms. We observe that the experimental rate of convergence in both norms is equal to 2. This is the

gitlab.inria.fr/herda/fpfrac
https://gitlab.com/s_ament/qastable
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10´2 10´1 100
10´5

10´4

10´3

10´2

10´1
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1

2

Meshsize

Error in L8t L2pµ´1
α dvq norm

10´2 10´1 100
10´5

10´4

10´3

10´2

10´1

100

Meshsize

Error in L8t,v norm

α “ 0.8
α “ 1
α “ 1.5

Figure 1. Test case 1. Error in L8t L2pµ´1
α dvq (left) and L8t,v (right) norm between

approximate and analytical solution.

expected rate when α ď 1. In theory, the rate could be worse (3´α) when α ą 1. However, it is common
in practice that the experimental order of convergence for the Huang and Oberman discretization of the
fractional Laplacian is better than the theoretical 3´α (see [27, Fig2. and Fig 3.]), which may explain
the improved rate here. On other test cases concerning the fractional heat equation with the same
implementation and that we do not report here, we observed a slightly worsened rate of convergence
for values of α greater than 1.

6.3. Test case 2: heavy tails. For this second test case, we illustrate the preservation by the scheme
of the heavy-tails of solutions to the homogeneous fractional Fokker-Planck equation Btf “ Lαf . The
truncated velocity domain is r´L,Ls with L “ 20 and 1025 mesh points, the time step is ∆t “ 10´2

and the initial data is given by

fp0, vq “
1

2
χr´3,´1spvq `

1

4
χr0,4spvq ,

where χI is the indicator function of the set I.
On Figure 2, we plot the computed densities at different times in regular and logarithmic scales.

We observe that the computed densities develop heavy tails with the algebraic decay Op|v|´1´αq as
expected, even if the domain is truncated and the initial data is compactly supported.

6.4. Test case 3: numerical hypocoercivity (long time behavior). In this section, we illustrate
the exponential time stability of our scheme for the kinetic fractional Fokker-Planck equation on a
numerical example. In order to certify the results, we first seek a non trivial analytical solutions of the
equation.

We consider Btf ` v ¨∇xf “ L1f with x P R{p2πZq and v P R. Analytical solutions can be computed
by solving the equation in Fourier variable. One family of solutions is parametrized by t0 ą 0, v0 P R
and x0 P R P R{p2πZq and given by

(6.1) fpt´ t0, x´ x0, vq “
τptq

πpτptq2 ` wpv, v0, tq2q
`

1

π

ż

R
e´gpt,ξq cospξwpv, v0, tq ` ypx, v0, tqqdξ ,
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Figure 2. Test case 2. Approximate densities at t “ 0.5 (top) and t “ 2 (bottom).
On the right the logarithmic scale allows to see the heavy-tail decay. Here α “ 1.1.

where τptq “ 1 ´ e´t, ηptq “ t ´ τptq, wpv, v0, tq “ v ´ v0e
´t, ypx, v0, tq “ x ´ v0τptq and gpt, ξq “

şt

0
|ξe´s ` p1´ e´sq|ds . Using that

gpt, ξq “

$

’

’

&

’

’

%

ξτptq ` ηptq if ξ ě 0

ξp2´ τptqq ` ηptq ´ 2 lnp1´ ξq if ξ P r´ τptq
1´τptq , 0s

´ξτptq ´ ηptq if ξ ď ´ τptq
1´τptq

the integral in the expression of f can be computed explicitly. As the resulting expression is quite
lengthy, we do not report it here.

We run the scheme of Section 2.3, with the truncated operator of Section 3. The reference solution
is given by (6.1) with the parameters t0 “ 0.5, x0 “ 0 and v0 “ 1. The velocity domain is truncated at
L “ 16 and discretized 65 points (J “ 32). The space domain, of size 2π, is discretized with 128 points.
The time step is ∆t “ 10´2 and the final time is T “ 35. With these parameters we report an error
of 4.5 ¨ 10´2 in L8t,x,v norm between the computed solution and the reference solution. On Figure 3,
we plot the distance between solutions and the equilibrium in the natural L2

x,vpµ
´1
α dvdxq norm. We do

observe exponential decay as predicted and the rate matches that of the reference solution. On coarser
meshes, the experimental rate tends to be smaller than the exact rate.
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Figure 3. Test case 3. Time evolution of the distance between the steady state and
the approximate and reference densities in L2

x,vpµ
´1
α dvdxq norm.

6.5. Semi-Lagrangian version of the scheme. In this last part, we propose a modification of
the scheme for the kinetic fractional Fokker-Planck equation. It experimentally conserves the same
structure-preserving properties, but with a considerably lowered computational cost and increased ac-
curacy. It is based on a Strang splitting approach for solving transport and collisions. The transport
step is done with a backward semi-Lagrangian scheme. These methods are standard for kinetic equa-
tions and we refer to [15] and references therein for details. We choose piecewise Hermite polynomial
function for the reconstruction. More precisely, for any sequence u “ puiqiPZ{NxZ, the reconstruction
Πxpuq is a C1 function such that if x P rxi, xi`1s, Πxpuqpxq is the polynomial interpolating u and cen-
tered finite difference approximation of its derivatives and at xi and xi`1. Collisions are solved using
our discrete fractional Fokker-Planck operator on truncated domain. In order to improve the order of
accuracy in time, we use a Crank-Nicolson approach for the collision step. The scheme reads as follows

‚ Start from pfnijqiPZ{NxZ,jPt´J,...,Ju.
‚ Compute the transport over a time step ∆t{2,

f :i,j “ Πxppf
n
k,jqkqpxi ´ vj∆t{2q .

‚ Compute the collisions over a time step ∆t,

pf ;i,jqj “ pI ´∆t{2Lh,J,Kα q´1pI `∆t{2Lh,J,Kα qpf :i,jqj ,

where I is the identity matrix.
‚ Compute the transport over a time step ∆t{2,

fn`1
i,j “ Πxppf

;

k,jqkqpxi ´ vj∆t{2q .

Further computational improvement could be easily obtained by parallelizing the transport step. We
try this scheme on the test case of the previous section. The space and velocity steps are progressively
refined with a fixed time step. On Table 1, we report the duration of the computation as well as the errors
between the computed and analytic solutions in absolute norm. The latter is obtained on a Dell Latitude
5490 laptop with an 8th gen Intel Core i7 CPU. We observe experimental convergence. Concerning the
computational effort, the computation time on the 1024ˆ 257 mesh with the semi-Lagrangian version
of the scheme is of the same order than the computation time of the original Eulerian scheme on a
128ˆ 64 mesh. The structural properties (conservation of mass, long-time behavior, heavy-tails ...) are
also preserved by the semi-Lagrangian scheme as in the previous numerical experiments. We do not
report it here for conciseness.
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Nx Nv Error Duration
128 33 2.8 ¨ 10´1 14 sec
256 65 4.6 ¨ 10´2 40 sec
512 129 4.1 ¨ 10´2 147 sec
1024 257 1.4 ¨ 10´2 593 sec
2048 513 4.0 ¨ 10´3 2488 sec

Table 1. Semi-Lagrangian version of the scheme. Experimental convergence
result and calculation time for various mesh sizes. The time step is constant ∆t “ 10´3

and the final time is T “ 3.5. The error is taken in L8t,x,v norm.
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Appendix A. Estimates on the continuous and discrete local equilibrium

A.1. Bounds on µα and its derivatives. In this section, we provide some estimates on the stable
density µα. The results of this section are not new but are scattered among the existing literature
[23, 16, 39]. We gather them here.

As µα is defined in (1.3) by an oscillatory integral, it is not easy to derive pointwise estimates. For
that purpose another representation formula is more appropriate. It reads

(A.1) µαpvq “

ż 8

0

1

p4π uqd{2
exp

ˆ

´
|v|2

4u

˙

ηα,α´1puqdu ,

where ηα,α´1puq is a probability density which is characterized by its Laplace transform

(A.2)
ż 8

0

e´λu ηα,tpuqdu “ e´t λ
α{2

, @λ ě 0 .

The formula (A.1) is obtained by taking t “ α´1 and λ “ |ξ|2, for ξ P Rd in (A.2) and applying the
inverse Fourier transform. The density ηα,t has the following properties.

Proposition A.1. Let α P p0, 2q and t ą 0. The density ηα,t is smooth and uniquely defined by (A.2).
For any µ, u ą 0, one has the scaling property

(A.3) ηα,tpuq “ µ
2
α ηα,tµpµ

2
α uq .

Moreover, there are positive constants c1, c2 and c3 depending only on α such that

(A.4) lim
uÑ8

ηα,1puqu
1`α2 “ c1

and

(A.5) lim
uÑ0

ηα,1puqu
4´α
4´2α exp

´

c2 u
´ α

2´α

¯

“ c3 .

Proof. Using the inverse Laplace transform (or Bromwich transform) one has that

(A.6) ηα,tpuq “
1

2 i π

ż

b`iR
euλ´t λ

α{2

dλ , t ą 0 , u P p0,8q

where b ą 0 is arbitrary and λÑ λα{2 is the analytic continuation of its real counterpart on Czp´8, 0s.
The scaling property is easily obtained from (A.2).
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It follows from [16, Theorem 37.1] that the series expansion expp´λα{2q “
ř8

n“0p´1qnλnα{2{n! yields
the asymptotic expansion

ηα,1puq «uÑ8
α

2Γ
`

1´ α
2

˘

u
α
2`1

since Γp´α{2q “ ´2Γp1´ α{2q{α.
Finally for the asymptotic expansion at uÑ 0, one can use (A.6) with b “ p α2u q

2{p2´αq to write after
a change of variable

ηα,1puq “
1

2 i π

´ α

2u

¯
2

2´α

ż

1`iR
eφα,upλqdλ

where φα,upλq “ pα{2q
2

2´αu´
α

2´α

`

λ´ 2λα{2{α
˘

. Then, one uses the saddle point approximation and
obtains an equivalent of the integral when uÑ 0 by replacing φα,up1`iτq by its equivalent when τ Ñ 0.
It shows (A.5) (see [23, Lemma 1] for the expressions of c2 and c3). �

Proposition A.2. The stable density µα satisfies

(A.7) C´1
1 ď p|v|d`α ` 1qµαpvq ď C1 ,

(A.8) C´1
2 |vi| ď p|v|2`d`α ` 1qBviµαpvq sgnp´viq ď C2|vi| ,

and

(A.9) p|v|n`d`α ` 1q|Bnvi1 ... vinµαpvq| ď C3 ,

for all v P Rd for some positive constants C1, C2 depending only on α and d and C3 depending addi-
tionally on n.

Proof. We shall use the asymptotic bounds on ηα,α´1 is order to obtain the bounds on µα and its
derivatives. Let us define, for β ą 0,

να,βpvq “

ż 8

0

1

uβ
exp

ˆ

´
|v|2

4u

˙

ηα,α´1puqdu .

Observe that µα and its derivatives can be easily expressed in terms of να,β for appropriate β. Let
us derive upper and lower bounds on this quantity. We know from Proposition A.1 that ηα,α´1puq Àα
u´1´α{2. Using this inequality in the expression of να,β yields for v ‰ 0 that

να,βpvq Àα,β |v|´2β´α .

Concerning the lower bounds, we split the cases of small and large |v|. First, if |v| ď 1, one has

να,βpvq ě e´1{4

ż 8

1

1

uβ
ηα,α´1puqdu , for |v| ď 1 .

For |v| ě 1, we use that there is u0pαq such that for all u ě u0pαq, one has ηα,α´1puq Áα u´1´α{2,
implying that

να,βpvq Áα,β |v|´2β´α

ż 8

4u0pαq

|v|2

1

uβ`1`α{2
exp

ˆ

´
1

u

˙

du , for |v| ě 1 .

Observe that the integral is uniformly bounded from below since |v| ě 1. By regrouping everything, we
have showed that for some constant kpα, βq, one has

0 ă kpα, βq´1 ď p|v|2β`α ` 1qνα,βpvq ď kpα, βq .

This bound can be used repeatedly with appropriate exponents β ą 0 to prove (A.7), (A.8) and (A.9)
from the representation formula (A.1).

�
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A.2. Bounds on the discrete equilibrium Mj and its derivatives. In this subsection, we prove
a series of lemmas about decay properties of the equilibrium Mj “ µαpvjq and its discrete derivatives
which directly come from the estimates on the continuous equilibrium µα and its derivatives staten in
Section A.1.

In all the results of this subsection and the next one, the multiplicative constants that appear in our
estimates are all uniform in j P Z but not in m P Z. As already mentioned, they are always uniform in
the mesh size h, which has to be taken small in some cases.

Lemma A.3. For any j P Z, any m P Z, we have:

|pDhMqj`m| À
1

xhjy
2`α and |pD`hMqj`m| À

1

xhjy
2`α .

Proof. We only prove the first inequality, the second one is proven exactly in the same way. Using
Taylor formula and (A.9) in Proposition A.2, we have:

|pDhMqj`m| À

ż 1

0

ˇ

ˇµ1αphpj `m´ 1qh` 2hsq
ˇ

ˇ ds À

ż 1

0

1

xhpj `m´ 1q ` 2hsy
2`α ds .

Let Jm :“ 4`2|m´1| then for any |j| ě Jm and any s P r0, 1s, |pj`m´1q`2s| ě |j|{2. Consequently,
for |j| ě Jm, we get |pDhMqj`m| À xhjy

´2´α
. To conclude, we just remark that for |j| ď Jm, we have

|pDhMqj`m| À 1 À xhjy
´2´α

. �

Corollary A.4. For any j P Z, any m P Z, we have:

|pD`hM
1{2qj`m| À

1

xhjy
p3`αq{2

, |pD`hM
´1{2qj`m| À xhjy

p´1`αq{2

and |pD`hM
´1qj`m| À xhjy

α
.

Proof. We only prove the first estimate, the others are proven exactly in the same way. We write that:
pD`hM

1{2qj`m “ pD`hMqj`mpM
1{2
j`m `M

1{2
j`m`1q

´1 so that using Lemma A.3 and (A.7) in Proposi-
tion A.2, we get

ˇ

ˇpD`hM
1{2qj`m

ˇ

ˇ À xhjy
´2´α

xhjy
p1`αq{2

À xhjy
p´3´αq{2

. �

Lemma A.5. For any j P Z, any m P Z, we have:

|pD2
hMqj`m| À

1

xhjy
3`α and

ˇ

ˇ

ˇ

ˇ

Mj`m`1 `Mj`m´1 ´ 2Mj`m

h2

ˇ

ˇ

ˇ

ˇ

À
1

xhjy
3`α .

Proof. The proof is similar to the previous one, indeed, using again Taylor formula and (A.9) in Propo-
sition A.2, we have

|pD2
hMqj`m| À

ż 1

0

`
ˇ

ˇµ2αphpj `mq ` 2hsq
ˇ

ˇ`
ˇ

ˇµ2αphpj `mq ´ 2hsq
ˇ

ˇ

˘

ds

À

ż 1

0

˜

1

xhpj `mq ` 2hsy
3`α `

1

xhpj `mq ´ 2hsy
3`α

¸

ds ,

we can thus conclude in the same way. The proof of the second inequality is similar. �

Corollary A.6. For any j P Z, any m P Z, we have:

|pD2
h

`

M´1qqj`m
ˇ

ˇ À xhjy
α´1 and

ˇ

ˇ

ˇ

ˇ

1

h2

ˆ

1

Mj`m`1
`

1

Mj`m´1
´ 2

1

Mj`m

˙
ˇ

ˇ

ˇ

ˇ

À xhjy
α´1

.

Proof. We first write that

pD2
hpM

´1qqj`m “
1

4h2

2Mj`m ´Mj`m´2 ´Mj`m`2

Mj`m´2Mj`m

`
1

4h2

pMj`m´2 ´Mj`m `Mj`m ´Mj`m`2qpMj`m ´Mj`m`2q

Mj`m´2Mj`mMj`m`2
.
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The first term is treated thanks to Lemma A.5 and (A.7) in Proposition A.2:
ˇ

ˇ

ˇ

ˇ

1

4h2

2Mj`m ´Mj`m´2 ´Mj`m`2

Mj`m´2Mj`m

ˇ

ˇ

ˇ

ˇ

À

ˇ

ˇpD2
hMqj`m

ˇ

ˇ

Mj`m´2Mj`m

À
1

xhjy
3`α xhpj `m´ 2qy

1`α
xhpj `mqy

1`α
À xhjy

α´1
.

The second term is treated similarly using Lemma A.3 and (A.7) in Proposition A.2, we get:
ˇ

ˇ

ˇ

ˇ

1

4h2

pMj`m´2 ´Mj`m`2qpMj`m ´Mj`m`2q

Mj`m´2Mj`mMj`m`2

ˇ

ˇ

ˇ

ˇ

À
xhjy

3p1`αq

xhjy
2p2`αq

À xhjy
α´1

.

�

A.3. Bounds on pVMqj`1{2. We give here some decay estimates on pVMq and its derivatives. Notice
that those properties do not come straightfowardly from the estimates on the continuous equilibrium
µα. Indeed, the formula which gives pVMq in (2.16) corresponds in the continuous case to write that

vµαpvq “
1

2

ˆ
ż v

´8

p´∆qα{2µαpwqdw ´

ż `8

v

p´∆qα{2µαpwqdw

˙

.

This formulation of the operator is not so favorable to get decay estimates as |v| Ñ 8. However, using
the fact that

ş

Rp´∆qα{2µαpwqdw “ 0, one can remark that

vµαpvq “

ż v

´8

p´∆qα{2µαpwqdw “ ´

ż `8

v

p´∆qα{2µαpwqdw .

According to the sign of v, we can choose one or another of the two previous equalities and it allows to
study the behavior of vµα at infinity. We use the same type of ideas in what follows to get bounds on
pVMq in the discrete framework.

Lemma A.7. There exists h0 ą 0 such that for any j P Z, any odd m P Z and any h ď h0, we have:
ˇ

ˇpVMqj`m2
ˇ

ˇ À
1

xhjy
α .

Proof. Step 0. We introduce the following notations:

rS1 :“
ÿ

kPZ

ÿ

`PZ˚
|h`|ď1{

?
2

|βh` | |2Mk ´Mk`` ´Mk´`|h
2 ,

rS2 :“
ÿ

kPZ

ÿ

`PZ˚
|h`|ą1{

?
2

|βh` | |2Mk ´Mk`` ´Mk´`|h
2

and we are going to prove that rS1 ` rS2 À 1, which will be useful in the sequel of the proof. In order to
bound rS1, we use Taylor formula, Lemma 2.2 and (A.9) in Proposition A.2:

rS1 À
ÿ

kPZ

ÿ

`PZ˚
|h`|ď1{

?
2

1

|h`|1`α´2

ż 1

0

ˇ

ˇµ2αphk ` sh`q ` µ
2
αphk ´ sh`q

ˇ

ˇ ds h2

À
ÿ

kPZ

ÿ

`PZ˚
|h`|ď1{

?
2

1

|h`|1`α´2

ż 1

0

˜

1

xhk ` sh`y
3`α `

1

xhk ´ sh`y
3`α

¸

ds h2 .

Then, we notice that for |h`| ď 1{
?

2 and s P r0, 1s,

1` |hk ˘ sh`|2 ě 1`
|hk|2

2
´ |sh`|2 ě

1

2
p1` |hk|2q
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so that xhk ˘ sh`y´p3`αq À xhky´p3`αq. Consequently, we obtain

rS1 À
ÿ

kPZ

h

xhky
3`α

ÿ

`PZ˚
|h`|ď1{

?
2

h

|h`|1`α´2
À 1 .

For rS2, we just use changes of indices in k and (A.7) in Proposition A.2 after Fubini-Tonelli’s theorem
to get:

rS2 À
ÿ

kPZ

h

xhky
1`α

ÿ

`PZ˚
|h`|ą1{

?
2

h

|h`|1`α
À 1 .

Thanks to this, we can deduce that
ÿ

kPZ

ÿ

`PZ˚
βh` p2Mk ´Mk`` ´Mk´`qh

2 “ 0

(which is the equivalent of
ş

Rp´∆qα{2µαpwqdw “ 0 in the continuous case). Indeed, the bounds above
on rS1 and rS2 allow us to use Fubini’s theorem. Then, changes of indices in k give the result.

Coming back to the definition of pVMq in (2.16) and denoting j˘m :“ j ` pm ˘ 1q{2 and using the
fact that the mass of ΛhαM vanishes, it allows us to write that

(A.10)

pVMqj`m2 “
1

2

j´m
ÿ

k“´8

ÿ

`PZ˚
βh` p2Mk ´Mk`` ´Mk´`qh

2

“ ´
1

2

`8
ÿ

k“j`m

ÿ

`PZ˚
βh` p2Mk ´Mk`` ´Mk´`qh

2 .

In the forthcoming analysis, the idea is then to use either one of these formulas according to the sign
of j˘m for large |j|. More precisely, we will use the first equality when j´m ă 0 i.e. j ď ´pm` 1q{2 and
the second one when j`m ą 0 i.e. j ě ´pm` 1q{2` 1. The two cases being handled exactly in the same
way, in what follows, we only treat the case j`m ą 0.
Step 1. Let Jm :“ 4` |m` 1|. In this part, we consider j P Z such that |j| ď Jm. In order to prove the
wanted bound on pVMqj`m2 , it is actually enough to prove that pVMqj`m2 is bounded. But using the
definition of pVMq in (2.16), we directly have for any |j| ď J :

ˇ

ˇpVMqj`m2
ˇ

ˇ À rS1 ` rS2 À 1 À
1

xhjy
α .

Step 2. Consider now |j| ě Jm. We first split pVMqj`m{2 into two parts:

pVMqj`m2 “ ´
1

2

ÿ

kěj`m

ÿ

`PZ˚
|h`|ď1{

?
2

βh` p2Mk ´Mk`` ´Mk´`qh
2

´
1

2

ÿ

kěj`m

ÿ

`PZ˚
|h`|ą1{

?
2

βh` p2Mk ´Mk`` ´Mk´`qh
2 “: S1

j,m ` S
2
j,m .

To estimate S1
j,m, we use the same method as in Step 0 to bound rS1 and we obtain:

|S1
j,m| À

ÿ

kěj`m

h

xhky
3`α

ÿ

`PZ˚
|h`|ď1{

?
2

h

|h`|1`α´2
.

Comparing the series in k with an integral and using that |j| ě Jm, we obtain that:

|S1
j,m| À

1

xhjy
2`α .
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To deal with S2
j,m, we separate it into two parts:

S2
j,m “´

1

2

ÿ

kěj`m

ÿ

|h`|ą1{
?

2

|`|ďj`m{2

βh` p2Mk ´Mk`` ´Mk´`qh
2

´
1

2

ÿ

kěj`m

ÿ

|h`|ą1{
?

2

|`|ąj`m{2

βh` p2Mk ´Mk`` ´Mk´`qh
2 “: S21

j,m ` S
22
j,m .

For the first term S21
j,m, we use (A.7) in Proposition A.2 and the fact that for |`| ď j`m{2 and k ě j`m,

we have |k ˘ `| ě |k|{2. We obtain:

|S21
j,m| À

ÿ

kěj`m

h

xhky
1`α

ÿ

`PZ˚
|h`|ą1{

?
2

h

|h`|1`α
.

Once more, using a comparison between series and integrals and the fact that |j| ě Jm, we get that:

|S21
j,m| À

1

xhjy
α .

For S22
j,m, using changes of indices in k and (A.7) in Proposition A.2, we have:

|S22
j,m| À

ÿ

kPZ

h

xhky
1`α

ÿ

|h`|ą1{
?

2

|`|ąj`m{2

h

|h`|1`α
À

ÿ

`PZ˚
|`|ąj`m{2

h

xh`y
1`α .

As previously, we can conclude that for any |j| ě Jm,

|S22
j,m| À

1

xhjy
α .

We have thus obtained that for |j| ě Jm,
ˇ

ˇpVMqj`m2
ˇ

ˇ À
1

xhjy
α .

Conclusion in the case j`m ą 0. Step 1 gives us the wanted result for |j| ď Jm while Step 2 allows us to
conclude when |j| ě Jm. �

Lemma A.8. For any j P Z and any odd m P Z, we have:
1

h

ˇ

ˇpVMqj`m2 ´ pVMqj`
m
2 ´1

ˇ

ˇ À
1

xhjy
1`α .

Proof. In the subsequent proof, we note jm :“ j ` pm ´ 1q{2. Using the definition of pVMq in (2.16),
we have:

1

h

`

pVMqj`m2 ´ pVMqj`
m
2 ´1

˘

“
1

4h

ÿ

kPZ

ÿ

`PZ˚
βh` p2Mk ´Mk`` ´Mk´`q

ˆ

sgn

ˆ

jm `
1

2
´ k

˙

´ sgn

ˆ

jm ´
1

2
´ k

˙˙

h2

“
1

2

ÿ

`PZ˚
βh` p2Mjm ´Mjm`` ´Mjm´`qh .

As in the proof of Lemma A.7, we separate the analysis of the cases of small and large |j|. Let
Jm :“ |m´ 1|.
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Step 1. The proof of the wanted estimate for |j| follows the Steps 0 and 1 of the proof of Lemma A.7.
We consider j P Z such that |j| ď Jm. Introducing the notations

rS1
j,m :“

ÿ

`PZ˚
|h`|ď1{

?
2

|βh` | |2Mjm ´Mjm`` ´Mjm´`|h ,

rS2
j,m :“

ÿ

`PZ˚
|h`|ą1{

?
2

|βh` | |2Mjm ´Mjm`` ´Mjm´`|h ,

we get:
1

h

ˇ

ˇpVMqj`m2 ´ pVMqj`
m
2 ´1

ˇ

ˇ À rS1
j,m `

rS2
j,m À 1 À

1

xhjy
1`α .

Step 2. For |j| ě Jm, we have |jm| ě |j|{2 so that doing as in the Step 0 of the proof of Lemma A.7,
we get:

rS1
j,m À

1

xhjmy
3`α À

1

xhjy
3`α .

Concerning rS2
j,m, we split it into two parts following ideas of the proof of Lemma A.7:

rS2
j,m “

ÿ

|h`|ą1{
?

2
|`|ď|jm|{2

|βh` | |2Mjm ´Mjm`` ´Mjm´`|h

`
ÿ

|h`|ą1{
?

2
|`|ą|jm|{2

|βh` | |2Mjm ´Mjm`` ´Mjm´`|h “: rS21
j,m `

rS22
j,m .

The first part is easily bounded because when |`| ď |jm|{2, we have:

|2Mjm ´Mjm`` ´Mjm´`| À
1

xhjmy
1`α À

1

xhjy
1`α

where we used that |j| ě Jm to write the last inequality, and because
ÿ

|h`|ą1{
?

2

|βh` |h À 1 .

For the second one, using that for |h`| ą 1{
?

2 and |`| ą |jm|{2, we have

|h`|1`α Á xh`y
1`α

Á xhjmy
1`α

,

so that using changes of indices, we get:

rS22
j,m ÀMjm

ÿ

|h`|ą1{
?

2

h

|h`|1`α
`

1

xhjmy
1`α

ÿ

`PZ
pMjm`` `Mjm´`qh

À
1

xhjmy
1`α `

1

xhjmy
1`α

ÿ

`PZ

h

xh`y
1`α À

1

xhjmy
1`α À

1

xhjy
1`α ,

which yields the wanted result. �

Lemma A.9. There exists h0 ą 0 such that for any j P Z, any odd m P Z and any h ď h0, we have:
1

h2

ˇ

ˇpVMqj`m2 ´ pVMqj`
m
2 ´1 ´ pVMqj`m2 ´2 ` pVMqj`m2 ´3

ˇ

ˇ À
1

xhjy
2`α .

Proof. In the subsequent proof, we note jm :“ j ` pm ´ 1q{2. Using the definition of pVMq in (2.16),
we have:

1

h2

`

pVMqj`m2 ´ pVMqj`
m
2 ´1 ´ pVMqj`m2 ´2 ` pVMqj`m2 ´3

˘
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“
1

h2

ÿ

`PZ˚
|h`|ď1{

?
2

βh`
`

Mjm ´Mjm`` ´Mjm´2 `Mjm´2``

˘

h2

`
1

h2

ÿ

`PZ˚
|h`|ą1{

?
2

βh`
`

Mjm ´Mjm`` ´Mjm´2 `Mjm´2``

˘

h2 “: S1
j,m ` S

2
j,m .

To deal with S1
j,m, we first notice that

S1
j,m “

1

2h2

ÿ

`PZ˚
|h`|ď1{

?
2

βh`

´

p2Mjm ´Mjm`` ´Mjm´`q

´ p2Mjm´2 ´Mjm´2`` ´Mjm´2´`q

¯

h2 .

We use Taylor formula to write:

|S1
j,m| À

ÿ

`PZ˚
|h`|ď1{

?
2

βh`

ż 1

0

ˇ

ˇµ2αphjm ` sh`q ´ µ
2
αphpjm ´ 2q ` sh`q

ˇ

ˇ ds |h`|2.

Using once more Taylor formula, Lemma 2.2 and (A.9) in Proposition A.2, we obtain:

|S1
j,m| À

ÿ

`PZ˚
|h`|ď1{

?
2

βh`

ż 1

0

ż 2

0

ˇ

ˇµ3αphpjm ´ 2q ` sh`` htq
ˇ

ˇ dtds h|h`|2

À
ÿ

`PZ˚
|h`|ď1{

?
2

h

|h`|1`α´2

ż 1

0

ż 2

0

1

xhpjm ´ 2q ` sh`` hty
4`α dtds .

At this point defining Jm :“ 8` |m´ 1|, we see that if |j| ď Jm, we directly have:

|S1
j,m| À 1 À

1

xhjy
2`α .

If |j| ě Jm, then one can show that for s P r0, 1s, t P r0, 2s and |h`| ď 1{
?

2, we have:

1

xhpjm ´ 2q ` sh`` hty
4`α À

1

xhjy
4`α ,

which provides the wanted estimate for S1
j,m for large |j|. We thus have obtained that for any j,

(A.11) |S1
j,m| À

1

xhjy
2`α .

We now come to the analysis of S2
j,m and define

S21
j,m :“

1

2h2

ÿ

`PZ˚
|h`|ą1{

?
2

βh`
`

Mjm ´Mjm´2

˘

h2 ,

S22
j,m :“

1

2h2

ÿ

`PZ˚
|h`|ą1{

?
2

βh`
`

Mjm`` ´Mjm``´2

˘

h2 .

Using Taylor formula, Lemma 2.2 and (A.9) in Proposition A.2, we have:

|S21
j,m| À

ÿ

`PZ˚
|h`|ą1{

?
2

h

|h`|1`α

ż 2

0

|µ1αphpjm ´ 2q ` shq|ds
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À
ÿ

`PZ˚
|h`|ą1{

?
2

h

|h`|1`α

ż 2

0

1

xhpjm ´ 2q ` shy
2`α ds .

Recalling that Jm “ 8 ` |m ´ 1| and separating the cases |j| ď Jm and |j| ě Jm, as previously, we
obtain the wanted estimate: for any j, we have

(A.12) |S21
j,m| À

1

xhjy
2`α .

The analysis of S22
j,m is trickier and requires more attention. We first separate it into two parts: noting

N “ Npj,m, hq :“ tmax
`

1{p
?

2hq, |jm|{2
˘

u` 1,

S22
j,m “

1

2

ÿ

|`|ď|jm|{2

|h`|ą1{
?

2

βh`
`

Mjm`` ´Mjm``´2

˘

`
1

2

ÿ

|`|ěN

βh`
`

Mjm`` ´Mjm``´2

˘

“: S221
j,m ` S

222
j,m .

The first part is simply treated thanks to Taylor formula, Lemma 2.2 and (A.9) in Proposition A.2:
ˇ

ˇS221
j,m

ˇ

ˇ À
ÿ

|`|ď|jm|{2

|h`|ą1{
?

2

h

|h`|1`α

ż 2

0

1

xhpjm ` `´ 2q ` hsy
2`α ds .

We note rJm :“ 16` |m´ 1|, then separating the cases |j| ď rJm and |j| ě rJm (similarly as what we did
for S21

j,m) and using that |`| ď |jm|{2, we get that for any j:

(A.13)
ˇ

ˇS221
j,m

ˇ

ˇ À
1

xhjy
2`α .

It remains to deal with the most complicated part S222
j,m. We first perform an integration by parts:

(A.14)
2S222

j,m “
ÿ

`ěN

Mjm``pβ
h
` ´ β

h
``2q `

ÿ

`ď´N´2

Mjm``pβ
h
` ´ β

h
``2q

` βhN pMjm´N ´Mjm`N´2q ´ β
h
N`1pMjm´N´1 ´Mjm`N´1q

where we used that βhj “ βh´j for any j P Z to rewrite the last two terms, on which we will first
concentrate. If |j| ď rJm, using Lemma 2.2 and (A.7) in Proposition A.2, we directly have:

ˇ

ˇβhN pMjm´N ´Mjm`N´2q
ˇ

ˇ À 1 À
1

xhjy
2`α

where we used that hN Á 1 to bound |hN |´1´α by 1. On the other hand, if |j| ě rJm, using Taylor
formula, Lemma 2.2 and (A.9) in Proposition A.2, we have:

(A.15)
ˇ

ˇβhN pMjm´N ´Mjm`N´2q
ˇ

ˇ À
h

xhNy
1`α

ż 2pN´1q

0

1

xhpjm ´N ` sqy
2`α ds

where we used that hN Á 1 to bound |hN |´1´α by xhNy´1´α.
Let us first suppose that N “ t1{p

?
2hqu`1, then for h small enough, N À 1{h. Then, since N ě |jm|{2,

we have:
ˇ

ˇβhN pMjm´N ´Mjm`N´2q
ˇ

ˇ À
h

xhjmy
1`α

ż 2pN´1q

0

1

xhpjm ´N ` sqy
ds .

Moreover, using Peetre’s inequality and the fact that for s P r0, 2pN ´ 1qs, |s´N | ď N , we get:
ˇ

ˇβhN pMjm´N ´Mjm`N´2q
ˇ

ˇ À
1

xhjmy
2`α 2hpN ´ 1q xhNy À

1

xhjmy
2`α À

1

xhjy
2`α

since hN À 1 and |j| ě rJm.
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We now suppose that N “ t|jm|{2u` 1 P r|jm|{2, |jm|{2` 1s. We come back to (A.15) and notice that
for s P r0, 2pN ´ 1qs and |j| ě rJm, we have

1

xhpjm ´N ` sqy
2`α À

1

xhjmy
2`α

so that
ˇ

ˇβhN pMjm´N ´Mjm`N´2q
ˇ

ˇ À
1

xhjmy
1`α 2hpN ´ 1q

1

xhjmy
2`α

À
1

xhjmy
1`α xhjmy

1

xhjmy
2`α À

1

xhjmy
2`2α À

1

xhjy
2`2α .

In the end, we have obtained that for any j:

(A.16)
ˇ

ˇβhN pMjm´N ´Mjm`N´2q
ˇ

ˇ À
1

xhjy
2`α .

Exactly in the same way, we can also prove that for any j, we have:

(A.17)
ˇ

ˇβhN`1pMjm´N´1 ´Mjm`N´1q
ˇ

ˇ À
1

xhjy
2`α .

Coming back to (A.14), it remains to deal with the first two sums. We are first going to give an estimate
of βh``2 ´ β

h
` for any ` ě N . Notice that N ě 1{p

?
2hq so that for h small enough, we have N ě 2. We

can thus use the definitions of βh` given in (2.4) and (2.5). Let us restrict to the case where ` is even,
the case where ` is odd is handled similarly. If ` is even, using Taylor formula, we have:

ˇ

ˇβh``2 ´ β
h
`

ˇ

ˇ “
C1,α

h1`α

ˇ

ˇ

ˇ

ˇ

ż 1

0

p1´ t2q

ż 2

0

´

ϕp4qα p`` t` sq ` ϕ
p4q
α p`´ t` sq

¯

dsdt

ˇ

ˇ

ˇ

ˇ

.

Recalling that ϕp3qα ptq “ t´1´α, we deduce that

(A.18)
ˇ

ˇβh``2 ´ β
h
`

ˇ

ˇ À h

ż 1

0

ż 2

0

ˆ

1

ph|`` t` s|q2`α
`

1

ph|`´ t` s|q2`α

˙

dsdt .

Consider |j| ď rJm. Since ` ě N ě 1{p
?

2hq, for any t P r0, 1s, s P r0, 2s, for h small enough, we have:

|hp`˘ t` sq| ě 1{
?

2´ 4h Á 1

so that

(A.19)
ˇ

ˇβh``2 ´ β
h
`

ˇ

ˇ À h .

Using (2.5), we can prove that this estimate also holds when ` is odd. Then, from (A.19), we deduce
that

ˇ

ˇ

ˇ

ˇ

ˇ

ÿ

`ěN

Mjm``pβ
h
` ´ β

h
``2q

ˇ

ˇ

ˇ

ˇ

ˇ

À
ÿ

`ěN

Mjm``h À
ÿ

`PZ

h

xh`y
1`α À 1 À

1

xhjy
2`α .

Consider now |j| ě rJm. Then, since N ě |jm|{2, for ` ě N , for any s P r0, 2s and t P r0, 1s, we have:

|`˘ t` s| Á |`| .

Coming back to (A.18), we thus have that

(A.20)
ˇ

ˇβh``2 ´ β
h
`

ˇ

ˇ À
h

|h`|2`α
À

h

xhjy
2`α

where we used that |h`| ě hN Á 1 so that |h`|´2´α À xh`y
´2´α and |`| ě N Á |jm| Á |j| because

|j| ě rJm. Using (2.5), we can prove that this estimate also holds when ` is odd. Then, from (A.20), we
deduce that

(A.21)

ˇ

ˇ

ˇ

ˇ

ˇ

ÿ

`ěN

Mjm``pβ
h
` ´ β

h
``2q

ˇ

ˇ

ˇ

ˇ

ˇ

À
1

xhjy
2`α

ÿ

`PZ

h

xh`y
1`α À

1

xhjy
2`α .
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Similarly, we can prove that

(A.22)

ˇ

ˇ

ˇ

ˇ

ˇ

ÿ

`ď´N´2

Mjm``pβ
h
` ´ β

h
``2q

ˇ

ˇ

ˇ

ˇ

ˇ

À
1

xhjy
2`α .

Coming back to (A.14), gathering (A.16)-(A.17) and (A.21)-(A.22), we can conclude that for any j:

(A.23)
ˇ

ˇS222
j,m

ˇ

ˇ À
1

xhjy
2`α .

Estimates (A.13) and (A.23) give the wanted result for S22
j,m, for any j, we have:

(A.24) |S22
j,m| À

1

xhjy
2`α .

The bounds obtained in (A.11), (A.12) and (A.24) yield the final result. �
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