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Spatiotemporal modulations of the elastic properties of materials can be used to break time and parity symmetry
of elastic waves. We show that the form of the elastic band structure depends not only on the spatial and temporal
periodicity of a spatiotemporal modulation but also on its shape through its Fourier components. We demonstrate
that hybridization gaps open from interactions between the Bloch modes of the periodic medium in absence of
the temporal variation of the modulation and the combined sinusoidal components of the Fourier decomposition
of the periodic modulation.
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I. INTRODUCTION

Several approaches offer pathways to access the deliberate
design of elastic media with broken symmetry (inversion,
time reversal, parity, chiral, particle-hole); symmetry can be
broken either intrinsically or extrinsically. Symmetry breaking
then may lead to nonreciprocity in wave propagation [1].
Symmetry in intrinsic systems is broken by different “internal”
degrees of freedom such as through internal resonance [2]
or symmetry-breaking structural features (e.g., inversion or
chirality symmetry) [3–5] and without addition of energy from
the outside. In contrast, energy can be added extrinsically to
break symmetry. In this case, symmetry of elastic waves can
be broken by moving fluids [6,7], gyroscopic inclusions [8],
or directed and externally driven spatiotemporal modulations
of the elastic properties of the medium [9–13]. For the
sake of completeness, one may note that investigation of
nonreciprocity in the propagation of electromagnetic waves
[14–19] has preceded their elastic counterparts.

Previous studies [9–13] have theoretically and computa-
tionally demonstrated that time-reversal symmetry can be bro-
ken by creating a moving-superlattice-like spatial modulation
of the elastic constants in a one-dimensional elastic medium.
The symmetry breaking, in a time-dependent superlattice
leads to bulk phonon modes with nonconventional topology,
which do not possess the conventional mirror symmetry in
momentum space [9–13]. In all cases, the spatiotemporal
modulation results in effects such as frequency splitting of
a monochromatic incident signal that is analogous to Brillouin
scattering [10]. In previous work, such as Ref. [9], sinusoidal
modulations were typically used. Here we study how the shape
of the periodic spatially varying modulation of a material’s
elastic constants affects the nonreciprocal band structure.
Using a one-dimensional model of an elastic medium, we con-
sider three different shapes of the spatiotemporal modulation.
These modulations, each traveling at the same velocity, are
one-dimensional superlattices with identical period in space
but different shapes. The three modulations include a periodic
set of Gaussian functions and two Fourier expansions (in
terms of sinusoidal functions) of the Gaussian modulation
at different orders of truncation. The lowest order expansion
corresponds to a single sinusoidal modulation, and the higher

order expansion includes multiple sinusoidal terms that will
be shown to simultaneously interact with elastic waves to open
additional asymmetric band gaps in the elastic band structure.
We calculate the band structures associated with the three
modulations using the spectral energy density (SED) method
[20], and conduct a theoretical analysis, within the framework
of multiple time scale perturbation theory, of the origin of the
symmetry breaking and of formation of asymmetric band gaps.
We demonstrate unambiguously in this paper that the shape
of the periodic spatiotemporal modulation which determines
the number and characteristics of the sinusoidal components
in its Fourier series expansion leads to nonlinear effects that
involve low order interactions between the elastic waves and
the individual Fourier components, but also importantly higher
order interactions between elastic waves and combinations of
Fourier components. The principal result of the present study
is therefore that interactions with multiple Fourier components
of a generally shaped modulation offer another pathways and
a rich parameter space to deliberately design elastic wave band
structure with broken symmetry.

In Sec. II of this paper we present a one-dimensional model
of an elastic medium subjected to three related spatiotemporal
modulations of the material’s stiffness. These modulations,
each traveling at the same velocity, are one-dimensional
superlattices with identical period in space but different
shapes. The more general superlattice takes the form of a
periodic set of Gaussian functions. The other two superlattices
represent Fourier expansions (in terms of sinusoidal functions)
of the general superlattice at different orders of truncation.
The lowest order of truncation actually corresponds to a
single sinusoidal modulation. The present study demonstrates
clearly that the next order in truncation includes multiple
sinusoidal terms that combine and simultaneously interact
with elastic waves to open additional asymmetric band gaps in
the elastic band structure. The results of SED calculations
are reported in Sec. III. A theoretical analysis, within the
framework of multiple time scale perturbation theory, of
the origin of symmetry breaking and of the formation of
asymmetric elastic band gaps due to the combined effect
of multiple Fourier components of the modulation, is also
reported in Sec. III. For the sake of tractability, we consider
the interaction of elastic waves with a modulation composed
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of only two superposed sinusoidal Fourier components. The
two components have different spatial characteristics but are
subjected to identical temporal evolutions. We demonstrate
in this section that the nonlinear interactions between elastic
waves and the two combined sinusoidal components indeed
lead to a rich parameter space for the design and control of
the conditions for breaking symmetry of elastic wave band
structures. Conclusions and contextualization of this work are
presented in Sec. IV. In particular, having demonstrated that
the shape of a modulation extends the realm of parameters that
can be used to tailor elastic band structures beyond the spatial
and temporal periodicities, this work suggests the possibility
of creating on-demand functions such as nonreciprocity than
can be programmed into—and elicited from—a material’s
“microstructure” topography (shape of the modulation and
therefore the components of its Fourier series) in addition to
its time evolution.

II. MODEL AND METHODS

We consider the propagation of longitudinal elastic waves
along a one-dimensional material supporting spatial and
temporal modulations of its stiffness. The giant photoelastic
effects in chalcogenide glasses [21] are exploited to practically
achieve the desired stiffness modulations by, for instance,
illuminating the material with light of spatially and temporally
varying intensity. Illuminating GeSe4 chalcogenide glasses
with near band gap laser radiation of increasing power results
in a reduction of the longitudinal elastic constant (C11) by
nearly 50%. Depending on the power of the laser irradiating
the glass, C11 values for GeSe4 can vary between 9.2 (full
power) to 18.4 GPa (zero power) [21]. This photo softening
is athermal and reversible making it ideal as a means to
realize time-dependent modulations. We assume constant
density for GeSe4(4361 kg/m3), therefore the minimum and
maximum values of C11 coincide with sound velocities of
1452 and 2054 m/s, respectively. The vibrational properties
of the time-dependent elastic superlattices are investigated
numerically. We represent the chalcogenide glass by a discrete
one-dimensional mass-spring system with a spatial modulation
of the stiffness of the springs that propagates in time with the
velocity +V (see schematic illustration in Fig. 1).

Individual masses (m = 4.361 × 10−9 kg) are equally
spaced by a = 0.1 mm. This mass corresponds to that of a
continuous segment of length a. The masses are connected
by springs in which the spring constant varies between

βmin = 920 and βmax = 1840 kN/m. The range of values
of spring constants is therefore �β = 920 kN/m.

For the calculation of the elastic band structure of the
superlattice, we use a one-dimensional discrete chain model
that contains N = 3200 masses with Born–von Karman
boundary conditions, where the system takes the form of a
ring. We have chosen the value of 100 intermass spacings for
the period of the stiffness modulation, such that the period
L = 100a. The system contains NC = 32 cells of 100 masses
each. This system is simulated using the method of molecular
dynamics (MD).

We consider three spatiotemporal modulations of the ma-
terial’s stiffness with different but related shapes, as is shown
in Fig. 2. The first modulation, named Gaussian superlattice,
shown in Fig. 2(a), is constructed from the sum of a periodic
set of Gaussian functions, where the stiffness of spring n is
constructed from the following relation:

β(1)
n = βmax − �β

i=+T∑
i=−T

e
(

−(xn−x′
i
)2

2σ2 )
, (1)

with x ′
i = (i − 1

2 )L, xn = (n − 1
2 )a, and σ = 8a. T serves

as a cut-off parameter which is a large enough integer
beyond which contributions to the variation in stiffness are
negligible. The other two superlattices represent expansions
of the general Gaussian superlattice as a series of sinusoidal
functions at different orders of truncation. The lowest order
of truncation, shown in Fig. 2(b), corresponds to a single
sinusoidal modulation with the same period as that of the
Gaussian modulation. It is formulated analytically as

β(2)
n = 0.75βmax − 0.5�β sin

(
2π

L
xn

)
. (2)

The next order in truncation, shown in Fig. 2(c), includes
three sinusoidal terms:

β(3)
n = 0.9βmax − 0.35�β

[
sin

(
2π

L
xn

)
− 3

4
cos

(
2

2π

L
xn

)

− 1

2
sin

(
3

2π

L
xn

)]
. (3)

The time dependence of the three modulations is achieved
by replacing xn by xn − V t where t is the time.

The dynamical trajectories generated by the MD simulation
are analyzed within the framework of the spectral energy
density (SED) method [20] for generating the elastic band

FIG. 1. Schematic representation of a one-dimensional mass spring system with periodically varying stiffness (spring constant) moving at
a velocity V.
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FIG. 2. Illustration of the three superlattices constructed by modulating the spring constant βn over position n.

structure of the model superlattice. Formally, for a three-
dimensional system, the expression for SED is written as
follows:

�(�k,ω) = 1

4πτ0N

∑
α

B∑
b

mb

×
∣∣∣∣∣
∫ T0

0

N∑
nx

vα

(
nx

b
; t

)
e(i

−→
k ·−→r0 − iωt)dt

∣∣∣∣∣
2

,

where T0 represents the length of time over which velocity data
is collected, N is the total number of unit cells represented in
the MD simulation, vα(nx,y,z

b ; t) represents the velocity of mass
mb in unit cell nx,y,z in the α direction, and B is . . . . For
a specified wave vector (�k), the spectrum relating SED to
frequency is found by adding the square of the absolute value
of the Fourier transform of the discrete temporal signal

f (t) =
N∑

nx,y,z

vα

(
nx,y,z

b
; t

)
e(i

−→
k ·−→r0)

for every [α, b] pair. The temporal Fourier transform is
calculated using a fast Fourier transform algorithm. A SED
value represents the average kinetic energy per unit cell as
a function of wave vector and frequency. A peak in the
spectrum relating SED to frequency signifies a vibrational
eigenmode for wave vector (�k). In our one-dimensional system,
the wave vector reduces to a wave number and we have 32
cells of 100 masses each. To ensure adequate sampling of the
system’s phase space, our reported SED calculations represent
an average over four individual MD simulations each with time
step dt = 1.5 ns and total simulation time of 220 time steps.

III. RESULTS AND DISCUSSION

Figure 3 shows the calculated band structure of the Gaussian
superlattice β(1)

n with velocities V = 350 m/s.
The time-dependent superlattice with spatial modulation

β(1)
n and velocity V = 350 m/s possesses a band structure

which exhibits a number of features in the form of faint
additional bands and hybridization gaps. Note that the intensity
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FIG. 3. (a) Band structures resulting from a moving periodic Gaussian modulations β (1)
n . A and A′ are band gaps arising from hybridization

between zeroth-order modes n = 0 [static modulation and see Fig. 4(a)] and first-order modes (n = 1) resembling Stokes and anti-Stokes
modes associated with Brillouin scattering due to the moving modulation. B and B′ are hybridization gaps between second-order Stokes and
anti-Stokes modes (n = 2) and zeroth-order modes. (b) Same band structure as (a) but with black, gray, and white solid lines serving as guides
to the eyes and highlighting zeroth-order, first–order, and second-order modes, respectively. To enhance the contrast, the contour plots represent
the SED intensity at the power 1/400. The frequency is in kHz and the wave number is in units of L.

of the bands relates to the sampling of the modes. The SED
intensities are calculated as averages over four individual MD
simulations. While this average is sufficient to observe all
the modes relevant to this study, the relative intensity of the
different modes may not be sampled efficiently.

We have shown previously that the interaction between
elastic waves with frequency ν0 and a spatiotemporal mod-
ulation of the elastic constants leads to a frequency splitting
that resembles Brillouin scattering [10]. As will be demon-
strated in the following theoretical analysis, the frequency
of the Brillouin modes contains harmonics of the frequency
associated with the moving modulation: υn = υ0 ± nF , where
F = �

2π
= V

L
and n = 1,2,3, . . .. These harmonic components

appear as faint Stokes and anti-Stokes bands parallel to the
folded bands of the static superlattice. The scattered modes
hybridize with the static folded bands to form band gaps. The
hybridization gaps form asymmetrically with respect to the
wave number origin. For instance, the gaps A and A′ in Fig. 3(a)
result from the hybridization between a first-order Brillouin
harmonic (n = 1) and the first and second zeroth-order bands
of a static superlattice. These gaps occur in the positive wave
number side of the Brillouin zone without an equivalent gap in
the negative side. While observation of gaps of type A and A’
had already been reported in Ref. [10], the primary result of
this study is the observation of hybridization between second
harmonics (n = 2) and the second and third zeroth-order static
bands which produces the gaps labeled B and B′. Similarly to

the A and A′ gaps, the gaps B and B′ form only on one side of
the Brillouin zone and in particular on its negative side. This
phenomenon is where frequency as a function of wave number
ν(k) �= ν(−k) has been called spectral nonreciprocity [19].

The A, A′ asymmetric gaps of the type observed here are
known to lead to an unconventional topology of the bulk
longitudinal modes in the temporally and spatially modu-
lated systems [9]. Similarly, the B and B′ asymmetric gaps
will also result in longitudinal modes with nonconventional
topology. The asymmetric band structure is characteristic
of systems with broken parity and time-reversal symmetry
[9]. At frequencies within the gaps, bulk modes can only
propagate in one direction, that is, they possess nonreciprocity
in their direction of propagation. In Ref. [9] we used the finite
difference time domain (FDTD) method to investigate the
transmission spectrum of a finite system with a sinusoidal
modulation. The system was simulated by applying a tread-
milling spatiotemporal modulation onto a finite system. The
relation between the band structure and transmission can be
understood as follows. First we consider a forward wave (+k)
with a frequency falling with the range of gap A that propagates
from a homogeneous region through a region subjected to
the spatiotemporal modulation. The corresponding mode with
wave number −k has a negative group velocity and will
be reflected by the modulated region. A wave propagating
in the backward direction (−k) has then a positive group
velocity which leads to transmission. Since the B and B′ gaps
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FIG. 4. Elastic band structures induced as a result of scattering by (a) static periodic Gaussian modulation, (b) moving modulation composed
of a single sinusoidal function β (2)

n with the same spatial period as β (1)
n , and (c) moving modulation β (3)

n composed of the first three sinusoidal
Fourier components of β (1)

n . To enhance the contrast, the contour plots represent the SED intensity at the power 1/400. Frequency is in kHz
and wave number is in units of L.

appear on the other side of the Brillouin zone relative to the
A and A′ gaps, transmission and reflection of elastic waves
in the B and B′ frequency range will occur in the opposite
direction of what was observed for the A and A′ gaps. Of
course nonreciprocity is not complete as a small amount of
transmission (reflection) will occur due to the harmonic modes.
Because of the nonreciprocity, modes with frequencies lying in
the A, A′ gaps showed immunity to backscattering by a mass
defect embedded the region subjected to the spatiotemporal
modulation [9]. The B, B′gaps will also possess immunity to
back scattering but in the opposite direction to A and A′.

We now provide an explanation for the observation of B
and B′ hybridization gaps between second-order Stokes and
anti-Stokes modes and zeroth-order modes.

Figure 4(a) is characteristic of the band structure of a
superlattice that does not evolve in time. It consists of the usual
folded bands of 1D periodic systems with Bragg gaps opening
at the edges of the Brillouin zone and at the wave number
origin. We note that the SED is less intense at the low frequency
due to poor sampling of long-wavelength modes in the MD
simulation of a finite length system. Figures 4(b) and 4(c) are
band structures corresponding to the truncated modulations
β(2)

n and β(3)
n , moving with the same velocity V = 350 m/s.

In Fig. 4(b), the band structure of the system with the β(2)
n

spatiotemporal modulation only shows the A and A′ gaps and
not the B and B′ gaps. We recall that this modulation has the
same period and velocity as the general Gaussian modulation
but contains only the sinusoidal function sin( 2π

L
xn). Figure 4(c)

shows that when one approximates the Gaussian periodic
modulation with a Fourier-like series of sinusoidal functions
at several orders: sin( 2π

L
xn), cos(2 2π

L
xn), and sin(3 2π

L
xn), one

recovers the features A, A′ and more importantly B, B′. The
gaps B and B′ arise from a mixing of different Fourier
components of the Gaussian modulation. This mixing can

be understood by considering a model of propagation of
longitudinal waves in a one-dimensional medium subjected
to a spatiotemporal modulation of its stiffness C(x,t) that is
the superposition of two sinusoidal functions. In the long-
wavelength limit, the propagation of longitudinal elastic waves
obeys the following equation of motion:

ρ
∂2u(x,t)

∂t2
= ∂

∂x

(
C(x,t)

∂u(x,t)

∂x

)
. (4)

In Eq. (4), u(x,t) is the displacement field and ρ is the
mass density of the medium. Here the variation of the stiffness
contains the superposition of two sinusoidal functions of
position and time:

C(x,t) = C0 + 2C1 sin (K1x + �t) + 2C2 sin (K2x + �t),

(5)

where C0, C1, and C2 are positive constants. Ki = 2π
Li

, where
Li is the period of the stiffness modulation i = 1,2. The
frequency � is associated with the velocity of the stiffness
modulations V. We emphasize that the two modulations
possess the same velocity. The quantities Ki are independent
of V . The sign of � determines the direction of propagation
of the modulations. We now assume that the Ki values and
the associated periods are related through L2 = L1/2 (i.e.,
K2 = 2K1). This model is equivalent to an expansion of the
general modulation in terms of the first two terms in Eq. (3).
In Eq. (5), for the sake of simplicity, the second-order term
is chosen to be a sine function instead of the cosine function
in Eq. (3). These modulations therefore only differ to a global
phase which does not impact the outcomes of the analytical
model.

The periodicity of the modulated one-dimensional medium
L = L1 = 2L2 suggests that we should be seeking solutions
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of Eq. (4) in the form of Bloch waves:

u(x,t) =
∑

k

∑
g

u(k,g,t)ei(k+g)x, (6)

where x ∈ [0,L]. The wave number k is limited to the first
Brillouin zone [−π

L
,π
L

] and g = 2π
L

m with m being a positive
or negative integer. With this choice of form for the solution
and inserting Eq. (6) into Eq. (4), the equation of propagation
becomes

∂2u(k + g,t)

∂t2
+ v2

a(k + g)2u(k + g,t)

= iε{f1(k + g − K1)u(k + g − K1,t)e
+i�t

+αf2(k + g − K2)u(k + g − K2,t)e
i�t

+h1(k + g + K1)u(k + g + K1,t)e
−i�t

+αh2(k + g + K2)u(k + g + K2,t)e
−i�t}, (7)

where f1(k) = K1k + k2, f2(k) = K2k + k2, h1(k) = K1k −
k2, h2(k) = K2k − k2. In Eq. (7) we have defined v2

a = C0
ρ

and

ε = C1
ρ

. Furthermore, we have introduced the ratio α = C2
C1

.
The analysis of Eq. (7) is conducted within the framework of
multiple time scale perturbation theory [22]. To explain the
main result of this paper, namely the observation of the B and
B′ gaps, the analysis has to be conducted up to fourth order in
perturbation. Details of this analysis are given in the Appendix.
Here we summarize the important results that provide insight
into the origin of the features observed in the band structures
of Fig. 3 and in particular the emergence of the gaps B and B′.

To zeroth order in perturbation, we obtain the usual disper-
sion relation ω2

0 = v2
a(k + g)2 correspodning to folded bands.

To first order in perturbation, we find particular solutions of
the form ei[ω0(k+g∓K1)±�]τ0 , ei[ω0(k+g∓K2)±�]τ0 . These particular
solutions correspond to the first-order (n = 1) Brillouin
harmonics observed in the band structures of Figs. 3, 4(b),
and 4(c). The second-order expansion leads to a correction to
the zeroth-order dispersion relation:

δω0(k + g) = ε2

2ω0(k + g)

{
f1(k + g − K1)h1(k + g)

ω2
0(k + g − K1) − [ω0(k + g) − �]2 + αf2(k + g − K2)h2(k + g)

ω2
0(k + g − K2) − [ω0(k + g) − �]2

+ h1(k + g + K1)f1(k + g)

ω2
0(k + g + K1) − [ω0(k + g) + �]2 + αh2(k + g + K2)f2(k + g)

ω2
0(k + g + K2) − [ω0(k + g) + �]2

}

This frequency shift is the signature of the formation of
hybridization band gaps between the zeroth-order modes and
the first Brillouin harmonics at the resonance wave numbers.
The denominators of the resonance conditions: ω2

0(k′) −
[ω0(k′ + g) − �]2 = 0 and ω2

0(k′′) − [ω0(k′′ + g) + �]2 = 0
with k′ = k + g − K and k′′ = k + g + K , determine the
location of the formation of the two hybridization gaps A
and A′ observed in Fig. 3(d). For instance, in the case of
K = K1, these conditions predict hybridization gaps where the
lowest zeroth-order dispersion branch (g = 0) and the branch
(g = − 2π

L
) intersect a first-order harmonic Brillouin mode.

The two gaps form only on one side (positive or negative side)
of the first Brillouin zone depending on the sign of � (i.e.,
the direction of propagation of the modulation of the stiffness)
(see Fig. 5). These two gaps occur at the same wave number
kg . As already noted, this leads to a band structure that does
not possess mirror symmetry about the frequency axis. For
K = K2, hybridization gaps may occur at higher frequencies
outside the range reported in Figs. 3 and 4.

The particular solutions to second order in pertur-
bation contain terms of the form ei[ω0(k+g∓K1∓K2)±2�]τ0 ,
ei[ω0(k+g∓2K1)±2�]τ0 , ei[ω0(k+g∓2K2)±2�]τ0 which correspond to
second harmonic Brillouin modes. To third order in pertur-
bation, third-order harmonics appear. These are of the form
ei[ω0(k+g−2K1−K2)+3�]τ0 with varying signs combinations of 3�,
K1, and K2. The third-order solution also contains terms of the
form ei[ω0(k+g+K2)−�]τ0 which when driving the fourth-order
equation, leads to secular terms. Elimination of these secular
terms results in a correction of the zeroth-order dispersion
relation that includes additional resonant terms. Some of these
resonant terms are proportional to α, that is they only arise due

to a combination of effects from the two sinusoidal components
of the modulation of the stiffness.

The complete set of secular driving terms proportional to α

include resonances of the type

1

ω2
0(k + g − K1 − K2) − [ω0(k + g) − 2�]2 , (8a)

1

ω2
0(k + g − 2K1) − [ω0(k + g) − 2�]2 , (8b)

1

ω2
0(k + g − 2K2) − [ω0(k + g) − 2�]2 , (8c)

1

ω2
0(k + g + K1 + K2) − [ω0(k + g) + 2�]2 , (8d)

1

ω2
0(k + g + 2K1) − [ω0(k + g) + 2�]2 , (8e)

1

ω2
0(k + g + 2K2) − [ω0(k + g) + 2�]2 . (8f)

These resonances can correct the dispersion relation in
an asymmetric way and may lead to asymmetric band gaps
within the Brillouin zone resulting from hybridization between
a zeroth-order mode and second Brillouin harmonic bands
shifted in frequency by 2�. The gaps labeled B and B′ in Figs. 3
and 4 result from the resonance conditions (8b) and (8e) (see
Fig. 5). Because K2 > K1, the other resonance conditions may
lead to gaps at frequencies higher than the range of frequencies
studied in this paper.
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FIG. 5. Schematic illustration of the band structure of the static
superlattice and of the Brillouin harmonic bands involved in the
formation of the hybridization gaps A and A′, and B and B′. The
gap A is formed at the intersection of ω0(k) and ω0(k − K1) − �

(i.e., when g = 0). The gap A′ forms at the intersection of ω0(k − 2π

L
)

and ω0(k − 2π

L
+ K1) + � =ω0(k) + � (i.e., when g = − 2π

L
). The

gaps B and B′ are occurring where the conditions ω2
0(k + g − 2K1) −

[ω0(k + g) − 2�]2 and ω2
0(k + g + 2K1) − [ω0(k + g) + 2�]2 are

satisfied. The B point is the intersection between ω0(k − 2π

L
+ 2K1) =

ω0(k + 2π

L
) and ω0(k − 2π

L
) − 2�. The B′ point is the intersection

between ω0(k + 2π

L
− 2K1) = ω0(k − 2π

L
) and ω0(k + 2π

L
) + 2�.

In this theoretical analysis, we limited ourselves to the inter-
action between two sinusoidal components of the spatiotem-
poral modulation of stiffness. Other hybridization modes will
arise from a combination of additional sinusoidal functions in
the expansion of a general periodic function. The content of a
Fourier series representing some general periodic modulation
of stiffness can therefore be viewed as a means of designing

specific symmetry breaking features in the band structure of
an elastic material.

IV. CONCLUSIONS

We have demonstrated the significant effect of changing
the shape of spatiotemporal stiffness modulation on the nonre-
ciprocal band structure of elastic waves propagating in a one-
dimensional elastic medium. A spatial modulation composed
of periodic arrangements of Gaussian functions leads to a
number of features in the elastic band structure that include
harmonic modes reminiscent of Brillouin scattering and
hybridization band gaps. The hybridization gaps result from
interactions between the Bloch modes of the medium subjected
to the static modulation and the sinusoidal components of the
Fourier decomposition of the modulation. We show with a
theoretical model that two Fourier components of some general
periodic modulation can combine to lead to new gaps that were
not present when considering a single sinusoidal modulation.
Shaping the spatiotemporal modulations of stiffness can then
be employed as a tool for elastic band structure design, i.e.,
designing specific symmetry breaking band features. This
concept vindicates the notion of functional on-demand elastic
materials. By deliberately modifying material’s properties
(e.g., stiffness) using an external and contact or noncontact
stimulating field we can envision the possibility of creating
on-demand writable and rewritable artificial “microstructures”
through spatiotemporal modulations. Rewritable microstruc-
tures extend the geometric scale and dynamic range of
the conventional arrangement of “phases”, “interfaces, and
defects” that a material can support by overcoming thermody-
namics and kinetic microstructural constraints. By combining
spatiotemporal control with intrinsic materials properties, we
enable the creation of on-demand functions than can be pro-
grammed into—and elicited from—a material’s microstruc-
ture topography and time evolution. Such an approach extends
the realm of materials properties far beyond those achievable
with conventional materials microstructural design. Using the
dynamic coupling between the programmed microstructure
and individual materials properties (e.g., photonic, electronic,
phononic, magnonic, etc.) as a steering wheel, offers a vast
array of pathways to access by design: materials with broken
symmetry (time reversal, parity, chiral, particle-hole), new
topological classes of materials, Dirac materials, the controlled
transport reciprocity and manipulation of electron, photon, and
phonon trajectories in materials.
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APPENDIX

For the sake of analytical simplicity in the context of multiple time scale perturbation theory, we treat ε in Eq. (7) as a
perturbation and write the displacement as a fourth-order power series in the perturbation, namely

u(k + g, τ0,τ1,τ2,τ3,τ4) = u0(k + g, τ0,τ1,τ2,τ3,τ4) + εu1(k + g, τ0,τ1,τ2,τ3,τ4) + ε2u2(k + g, τ0,τ1,τ2,τ3,τ4)

+ ε3u3(k + g, τ0,τ1,τ2,τ3,τ4) + ε4u4(k + g, τ0,τ1,τ2,τ3,τ4). (A1)
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In Eq. (A1), ui with i = 0,1,2,3,4 are displacement functions expressed to zeroth, first, second, third and fourth order in the
perturbation. We have also replaced the single time variable t by five variables representing different time scales: τn = εnt = εnτ0

with n = 0,1,2,3,4. We can subsequently decompose Eq. (7) into five equations: one equation to zeroth order in ε, one equation
to first order in ε, a third equation to second order in ε, a fourth equation to third order in ε, and a fifth equation to fourth
order in ε.

The zeroth-order equation:

∂2u0(k + g,τ0,τ1,τ2,τ3,τ4)

∂τ 2
0

+ v2
a(k + g)2u0(k + g,τ0,τ1,τ2,τ3,τ4) = 0 (A2)

has solution

u0(k + g,τ0,τ1,τ2,τ3,τ4) = a0(k + g,τ1,τ2,τ3,τ4)eiω0(k+g)τ0 , (A3a)

with the eigenvalue

ω2
0 = v2

a(k + g)2. (A3b)

To first order, the equation of motion is

∂2u1(k + g,τ0,τ1,τ2,τ3,τ4)

∂τ 2
0

+ 2
∂2u0(k + g,τ0,τ1,τ2,τ3,τ4)

∂τ1∂τ0
+ v2

a(k + g)2u1(k + g,τ0,τ1,τ2,τ3,τ4)

= i{f1(k + g − K1)u0(k + g − K1,t)e
+i�τ0 + αf2(k + g − K2)u0(k + g − K2,t)e

i�τ0

+h1(k + g + K1)u0(k + g + K1,t)e
−i�τ0 + αh2(k + g + K2)u0(k + g + K2,t)e

−i�τ0}. (A4)

Inserting the zeroth-order solution [Eq. (A3a)] into Eq. (A4) will make the second term on the right-hand side of the equation
lead to a secular term. We eliminate this term by making u0 independent of τ1. Subsequently, we will make displacements at all
order independent of τ1. In anticipation of the appearance of similar secular terms in the fourth-order equation of motion, we will
also make all displacements independent of τ3. In fact, we eliminate dependencies on the time scales with odd powers of ε.

With this, the solution of Eq. (A4) is composed of a homogeneous solution and a particular solution:

u1(k + g,τ0,τ2,τ4) = u1,H (k + g,τ0,τ2,τ4) + u1,P (k + g,τ0,τ2,τ4)

= a1(k + g,τ2,τ4)eiω0(k+g)τ0 + i
f1(k + g − K1)a0(k + g − K1,τ2,τ4)

ω2
0(k + g) − [ω0(k + g − K1) + �]2 ei[ω0(k+g−K1)+�]τ0

+ i
αf2(k + g − K2)a0(k + g − K2,τ2,τ4)

ω2
0(k + g) − [ω0(k + g − K2) + �]2 ei[ω0(k+g−K2)+�]τ0

+ i
h1(k + g + K1)a0(k + g + K1,τ2,τ4)

ω2
0(k + g) − [ω0(k + g + K1) − �]2 ei[ω0(k+g+K1)−�]τ0

+ i
αh2(k + g + K2)a0(k + g + K2,τ2,τ4)

ω2
0(k + g) − [ω0(k + g + K2) − �]2 ei[ω0(k+g+K2)−�]τ0 . (A5)

Note that the fractions in Eq. (A5) may diverge. One may add a small imaginary term (damping) to the denominators to
eliminate the divergence. The zero limit of the imaginary term would be eventually taken. For the sake of presenting the most
compact equations, we have elected in the subsequent derivations to omit this damping term.

To second order, the equation of motion takes the form

∂2u2(k + g,τ0,τ2,τ4)

∂τ 2
0

+ 2
∂2u0(k + g,τ0,τ2,τ4)

∂τ2∂τ0
+ v2

a(k + g)2u2(k + g,τ0,τ2,τ4)

= i{f1(k + g − K1)u1(k + g − K1,τ0,τ2,τ4)ei�τ0 + αf2(k + g − K2)u1(k + g − K2,τ0,τ2,τ4)ei�τ0

+h1(k + g + K1)u1(k + g + K1,τ0,τ2,τ4)e−i�τ0 + αh2(k + g + K2)u1(k + g + K2,τ0,τ2,τ4)e−i�τ0}. (A6)
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We need to insert Eq. (A5) into Eq. (A6). Equation (A6) is separated into two equations. The first equation is used to eliminate
secular terms:

2
∂2u0(k + g,τ0,τ2,τ4)

∂τ2∂τ0

= −f1(k + g − K1)h1(k + g)a0(k + g,τ2,τ4)

ω2
0(k + g − K1) − (ω0(k + g) − �)2 eiω0(k+g)τ0 − αf2(k + g − K2)h2(k + g)a0(k + g,τ2,τ4)

ω2
0(k + g − K2) − (ω0(k + g) − �)2 eiω0(k+g)τ0

− h1(k + g + K1)f1(k + g)a0(k + g,τ2,τ4)

ω2
0(k + g + K1) − (ω0(k + g) + �)2 eiω0(k+g)τ0 − αh2(k + g + K2)f2(k + g)a0(k + g,τ2,τ4)

ω2
0(k + g + K2) − (ω0(k + g) + �)2 eiω0(k+g)τ0 . (A7)

This equation will lead to a second-order correction to the zeroth-order eigenvalue [Eq. (A3b)]. To do this, we express the zeroth-
order amplitude in the complex form a0(k + g,τ4) = α0(τ4)eiϕ(k+g)τ2 . With this u0(k + g,τ0,,τ2,τ4) = α0(τ4)eiω0(k+g)τ0eiϕ(k+g)τ2 =
α0(τ4)ei[ω0(k+g)+ϕ(k+g)ε2]τ0 = α0(τ4)eiω∗

0 (k+g)τ0 .
Then one obtains a correction to ω0(k + g), leading to a frequency shift and damping. This frequency shift is most pronounced

for values of the wave number leading to strong resonances and is given by

δω0(k + g) = ω∗
0(k + g) − ω0(k + g) = ε2ϕ

= ε2

2ω0(k + g)

{
f1(k + g − K1)h1(k + g)

ω2
0(k + g − K1) − [ω0(k + g) − �]2 + αf2(k + g − K2)h2(k + g)

ω2
0(k + g − K2) − [ω0(k + g) − �]2

+ h1(k + g + K1)f1(k + g)

ω2
0(k + g + K1) − [ω0(k + g) + �]2 + αh2(k + g + K2)f2(k + g)

ω2
0(k + g + K2) − [ω0(k + g) + �]2

}
. (A8)

The second-order equation takes the form

∂2u2(k + g,τ )

∂τ 2
0

+ v2
a(k + g)2u2(k + g,τ ) = A1 + A2 + A3 + A4, (A9)

where

A1 = {if1(k + g − K1)a1(k + g − K1,τ )ei[ω0(k+g−K1)+�]τ0 + iαf2(k + g − K2)a1(k + g − K2,τ )ei[ω0(k+g−K2)+�]τ0

+ ih1(k + g + K1)a1(k + g + K1,τ )ei[ω0(k+g+K1)−�]τ0 + iαh2(k + g + K2)a1(k + g + K2,τ )ei[ω0(k+g+K2)−�]τ0}
and

A2 =
{
−f1(k + g − K1)αh2(k + g − K1 + K2)a0(k + g − K1 + K2,τ )

ω2
0(k + g − K1) − [ω0(k + g − K1 + K2) − �]2 ei(ω0(k+g−K1+K2))τ0

− αh2(k + g + K2)f1(k + g − K1 + K2)a0(k + g − K1 + K2,τ )

ω2
0(k + g + K2) − (ω0(k + g − K1 + K2) + �)2 ei(ω0(k+g−K1+K2))τ0

− αf2(k + g − K2)h1(k + g + K1 − K2)a0(k + g + K1 − K2,τ )

ω2
0(k + g − K2) − (ω0(k + g + K1 − K2) − �)2 ei(ω0(k+g+K1−K2))τ0

− h1(k + g + K1)αf2(k + g + K1 − K2)a0(k + g + K1 − K2,τ )

ω2
0(k + g + K1) − (ω0(k + g + K1 − K2) + �)2 ei(ω0(k+g+K1−K2))τ0

}

and

A3 =
{
−f1(k + g − K1)αf2(k + g − K1 − K2)a0(k + g − K1 − K2,τ )

ω2
0(k + g − K1) − (ω0(k + g − K1 + K2) + �)2 ei(ω0(k+g−K1−K2)+2�)τ0

− αf2(k + g − K2)f1(k + g − K1 − K2)a0(k + g − K1 − K2,τ )

ω2
0(k + g − K2) − (ω0(k + g − K1 − K2) + �)2 ei(ω0(k+g−K1−K2)+2�)τ0

− f1(k + g − K1)f1(k + g − 2K1)a0(k + g − 2K1,τ )

ω2
0(k + g − K1) − (ω0(k + g − 2K1) + �)2 ei(ω0(k+g−2K1)+2�)τ0

− αf2(k + g − K2)αf2(k + g − 2K2)a0(k + g − 2K2,τ )

ω2
0(k + g − K2) − (ω0(k + g − 2K2) + �)2 ei(ω0(k+g−2K2)+2�)τ0

}
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and

A4 =
{
−h1(k + g + K1)αh2(k + g + K1 + K2)a0(k + g + K1 + K2,τ )

ω2
0(k + g + K1) − (ω0(k + g + K1 + K2) − �)2 ei(ω0(k+g+K1+K2)−2�)τ0

− αh2(k + g + K2)h1(k + g + K1 + K2)a0(k + g + K1 + K2,τ )

ω2
0(k + g + K2) − (ω0(k + g + K1 + K2) − �)2 ei(ω0(k+g+K1+K2)−2�)τ0

− h1(k + g + K1)h1(k + g + 2K1)a0(k + g + 2K1,τ )

ω2
0(k + g + K1) − (ω0(k + g + 2K1) − �)2 ei(ω0(k+g+2K1)−2�)τ0

− αh2(k + g + K2)αh(k + g + 2K2)a0(k + g + 2K2,τ )

ω2
0(k + g + K2) − (ω0(k + g + 2K2) − �)2 ei(ω0(k+g+2K2)−2�)τ0

}
.

For the sake of compactness, in the preceding relations we have replaced the dependency on τ0,τ2,τ4 by a single symbol τ .
We now seek the solution of Eq. (A9) in the form of the sum of a homogenous part and a particular part:

u2 = u2,H + u2,P . (A10)

The homogenous solution is

u2,H (k + g,τ ) = a2(k + g,τ )eiω0(k+g)τ0 .

The particular solution u2,p includes several parts arising from the driving terms A1, A2, A3, and A4. The term A1 leads to the
following contributions to the particular solution:

u
(1)
2,p =

{
1

ω2
0(k + g) − (ω0(k + g − K1) + �)2 if1(k + g − K1)a1(k + g − K1,τ )ei(ω0(k+g−K1)+�)τ0

+ 1

ω2
0(k + g) − (ω0(k + g − K2) + �)2 iαf2(k + g − K2)a1(k + g − K2,τ )ei(ω0(k+g−K2)+�)τ0

+ 1

ω2
0(k + g) − (ω0(k + g + K1) − �)2 ih1(k + g + K1)a1(k + g + K1,τ )ei(ω0(k+g+K1)−�)τ0

+ 1

ω2
0(k + g) − (ω0(k + g + K2) − �)2 iαh2(k + g + K2)a1(k + g + K2,τ )ei(ω0(k+g+K2)−�)τ0

}
.

The term A2 leads to the following contributions to the particular solution:

u
(2)
2,p = 1

ω2
0(k + g) − ω2

0(k + g − K1 + K2)

{
−f1(k + g − K1)αh2(k + g − K1 + K2)a0(k + g − K1 + K2,τ )

ω2
0(k + g − K1) − (ω0(k + g − K1 + K2) − �)2

− αh2(k + g + K2)f1(k + g − K1 + K2)a0(k + g − K1 + K2,τ )

ω2
0(k + g + K2) − (ω0(k + g − K1 + K2) + �)2

}
ei(ω0(k+g−K1+K2))τ0

+ 1

ω2
0(k + g) − ω2

0(k + g + K1 − K2)

{
−αf2(k + g − K2)h1(k + g + K1 − K2)a0(k + g + K1 − K2,τ )

ω2
0(k + g − K2) − (ω0(k + g + K1 − K2) − �)2

− h1(k + g + K1)αf2(k + g + K1 − K2)a0(k + g + K1 − K2,τ )

ω2
0(k + g + K1) − (ω0(k + g + K1 − K2) + �)2

}
ei(ω0(k+g+K1−K2))τ0 .

The term A3 gives

u
(3)
2,p = 1

ω2
0(k + g) − (ω0(k + g − K1 − K2) + 2�)2

{
−f1(k + g − K1)αf2(k + g − K1 − K2)a0(k + g − K1 − K2,τ )

ω2
0(k + g − K1) − (ω0(k + g − K1 − K2) + �)2

− αf2(k + g − K2)f1(k + g − K1 − K2)a0(k + g − K1 − K2,τ )

ω2
0(k + g − K2) − (ω0(k + g − K1 − K2) + �)2

}
ei(ω0(k+g−K1−K2)+2�)τ0

− 1

ω2
0(k + g) − (ω0(k + g − 2K1) + 2�)2

f1(k + g − K1)f1(k + g − 2K1)a0(k + g − 2K1,τ )

ω2
0(k + g − K1) − (ω0(k + g − 2K1) + �)2 ei(ω0(k+g−2K1)+2�)τ0

− 1

ω2
0(k + g) − (ω0(k + g − 2K2) + 2�)2

αf2(k + g − K2)αf2(k + g − 2K2)a0(k + g − 2K2,τ )

ω2
0(k + g − K2) − (ω0(k + g − 2K2) + �)2 ei(ω0(k+g−2K2)+2�)τ0 .
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The term A4 leads to

u
(4)
2,p = 1

ω2
0(k + g) − (ω0(k + g + K1 + K2) − 2�)2

{
−h1(k + g + K1)αh2(k + g + K1 + K2)a0(k + g + K1 + K2,τ )

ω2
0(k + g + K1) − (ω0(k + g + K1 + K2) − �)2

− αh2(k + g + K2)h1(k + g + K1 + K2)a0(k + g + K1 + K2,τ )

ω2
0(k + g + K2) − (ω0(k + g + K1 + K2) − �)2

}
ei(ω0(k+g+K1+K2)−2�)τ0

− 1

ω2
0(k + g) − (ω0(k + g + 2K1) − 2�)2

h1(k + g + K1)h1(k + g + 2K1)a0(k + g + 2K1,τ )

ω2
0(k + g + K1) − (ω0(k + g + 2K1) − �)2 ei(ω0(k+g+2K1)−2�)τ0

− 1

ω2
0(k + g) − (ω0(k + g + 2K2) − 2�)2

αh2(k + g + K2)αh(k + g + 2K2)a0(k + g + 2K2,τ )

ω2
0(k + g + K2) − (ω0(k + g + 2K2) − �)2 ei(ω0(k+g+2K2)−2�)τ0 .

The wave equation to third order is given by

∂2u3(k + g,τ )

∂τ 2
0

+ 2
∂2u1(k + g,τ )

∂τ0∂τ2
+ v2

a(k + g)2u3(k + g,τ )

= i{f1(k + g − K1)u2(k + g − K1,τ )ei�τ0 + αf2(k + g − K2)u2(k + g − K2,τ )ei�τ0

+h1(k + g + K1)u2(k + g + K1,τ )e−i�τ0 + αh2(k + g + K2)u2(k + g + K2,τ )e−i�τ0}. (A11)

This equation is rewritten in the form

∂2u3(k + g,τ )

∂τ 2
0

+ 2
∂2u1(k + g,τ )

∂τ0∂τ2
+ v2

a(k + g)2u3(k + g,τ ) = i{B1 + B2 + B3 + B4}.

We find

∂2u1(k + g,τ )

∂τ0∂τ2
= ∂a1(k + g,τ )

∂τ2
iω0(k + g)eiω0(k+g)τ0 + i

f1(k + g − K1)

ω2
0(k + g) − (ω0(k + g − K1) + �)2 α0iϕ(k + g − K1)

× eiϕ(k+g−K1)τ2 i(ω0(k+g − K1)+�)ei(ω0(k+g−K1)+�)τ0

+i
αf2(k+g − K2)

ω2
0(k+g) − (ω0(k+g − K2)+�)2 α0iϕ(k+g − K2)eiϕ(k+g−K2)τ2 i(ω0(k+g − K2)+�)ei(ω0(k+g−K2)+�)τ0

+i
h1(k+g+K1)

ω2
0(k+g) − (ω0(k+g+K1) − �)2 α0iϕ(k+g+K1)eiϕ(k+g+K1)τ2 i(ω0(k+g+K1) − �)ei(ω0(k+g+K1)−�)τ0

+i
αh2(k+g+K2)

ω2
0(k+g) − (ω0(k+g+K2) − �)2 α0iϕ(k+g+K2)eiϕ(k+g+K2)τ2 i(ω0(k+g+K2) − �)ei(ω0(k+g+K2)−�)τ0

(A12)

We now use Eqs. (A5) and (A10) to evaluate B1, B2, B3, and B4.
We illustrate the process with the term B1:

iB1 = if1(k + g − K1)u2(k + g − K1,τ )ei�τ0

= if1(k + g − K1)a2(k + g − K1,τ )ei(ω0(k+g−K1)+�)τ0 + if1 (k + g − K1)

×
{

1

ω2
0(k + g − K1) − (ω0(k + g − 2K1) + �)2 if1(k + g − 2K1)a1(k + g − 2K1,τ )ei(ω0(k+g−2K1)+2�)τ0

+ 1

ω2
0(k + g − K1) − (ω0(k + g − K1 − K2) + �)2 iαf2(k + g − K1 − K2)a1(k + g − K1 − K2,τ )ei(ω0(k+g−K1−K2)+2�)τ0

+ 1

ω2
0(k + g − K1) − (ω0(k + g) − �)2 ih1(k + g)a1(k + g,τ )ei(ω0(k+g))τ0

+ 1

ω2
0(k + g − K1) − (ω0(k + g − K1 + K2) − �)2 iαh2(k + g − K1 + K2)a1(k + g − K1 + K2,τ )ei(ω0(k+g−K1+K2))τ0

}

+ if1 (k + g − K1)

{
1

ω2
0(k + g − K1) − ω2

0(k + g − 2K1 + K2)

×
{
−f1(k + g − 2K1)αh2(k + g − 2K1 + K2)a0(k + g − 2K1 + K2,τ )

ω2
0(k + g − 2K1) − (ω0(k + g − 2K1 + K2) − �)2

064304-11



DEYMIER, GOLE, LUCAS, VASSEUR, AND RUNGE PHYSICAL REVIEW B 96, 064304 (2017)

− αh2(k + g − K1 + K2)f1(k + g − 2K1 + K2)a0(k + g − 2K1 + K2,τ )

ω2
0(k + g − K1 + K2) − (ω0(k + g − 2K1 + K2) + �)2

}
ei(ω0(k+g−2K1+K2)+�)τ0

+ 1

ω2
0(k + g − K1) − ω2

0(k + g − K2)

×
{
−αf2(k + g − K1 − K2)h1(k + g − K2)a0(k + g − K2,τ )

ω2
0(k + g − K1 − K2) − (ω0(k + g − K2) − �)2

− h1(k + g)αf2(k + g − K2)a0(k + g − K2,τ )

ω2
0(k + g) − (ω0(k + g − K2) + �)

}
ei(ω0(k+g−K2)+�)τ0

}

+ if1 (k + g − K1)

{
1

ω2
0(k + g − K1) − (ω0(k + g − 2K1 − K2) + 2�)2

×
{
−f1(k + g − 2K1)αf2(k + g − 2K1 − K2)a0(k + g − 2K1 − K2,τ )

ω2
0(k + g − 2K1) − (ω0(k + g − 2K1 + K2) + �)2

−αf2(k + g − K1 − K2)f1(k + g − 2K1 − K2)a0(k + g − 2K1 − K2,τ )

ω2
0(k + g − K1 − K2) − (ω0(k + g − 2K1 − K2) + �)2

}
ei(ω0(k+g−2K1−K2)+3�)τ0

− 1

ω2
0(k + g − K1) − (ω0(k + g − 3K1) + 2�)2

f1(k + g − 2K1)f1(k + g − 3K1)a0(k + g − 3K1,τ )

ω2
0(k + g − 2K1) − (ω0(k + g − 3K1) + �)2 ei(ω0(k+g−3K1)+3�)τ0

− 1

ω2
0(k + g − K1) − (ω0(k + g − K1 − 2K2) + 2�)2

× αf2(k + g − K1 − K2)αf2(k + g − K1 − 2K2)a0(k + g − K1 − 2K2,τ )

ω2
0(k + g − K1 − K2) − (ω0(k + g − K1 − 2K2) + �)2 ei(ω0(k+g−K1−2K2)+3�)τ0

}

+ if1 (k + g − K1)

{
1

ω2
0(k + g − K1) − (ω0(k + g + K2) − 2�)2

{
h1(k + g)αh2(k + g + K2)a0(k + g + K2,τ )

ω2
0(k + g) − (ω0(k + g + K2) − �)2

−αh2(k + g − K1 + K2)h1(k + g + K2)a0(k + g + K2,τ )

ω2
0(k + g − K1 + K2) − (ω0(k + g + K2) − �)2

}
ei(ω0(k+g+K2)−�)τ0

− 1

ω2
0(k + g − K1) − (ω0(k + g + K1) − 2�)2

h1(k + g)h1(k + g + K1)a0(k + g + K1,τ )

ω2
0(k + g) − (ω0(k + g + K1) − �)2 ei(ω0(k+g+K1)−�)τ0

− 1

ω2
0(k + g − K1) − (ω0(k + g − K1 + 2K2) − 2�)2

× αh2(k + g − K1 + K2)αh(k + g − K1 + 2K2)a0(k + g − K1 + 2K2,τ )

ω2
0(k + g − K1 + K2) − (ω0(k + g − K1 + 2K2) − �)2 ei(ω0(k+g−K1+2K2)−�)τ0

}

Similarly complex expressions will be found for the other driving terms. We note that all the secular terms of form eiω0(k+g)τ0

will be used to eliminate the first term on the right-hand side of Eq. (A12). We are particularly interested in driving terms with
the form ei(ω0(k∗)±�)τ0 and resonant amplitudes with denominators of the form ω2

0(k + g + K ′) − (ω0(k + g + K ′′) ± 2�)2. For
instance, the term B2 leads to terms of the form

iαf2(k + g − K2)

{
1

ω2
0(k + g − K2) − (ω0(k + g + K1) − 2�)2

{
−h1(k+g+K1 − K2)αh2(k+g+K1K2)a0(k+g+K1,τ )

ω2
0(k+g+K1) − (ω0(k+g+K1+K2) − �)2

−αh2(k + g)h1(k + g + K1)a0(k + g + K1,τ )

ω2
0(k + g) − (ω0(k + g + K1) − �)2

}
ei(ω0(k+g+K1)−�)τ0

− 1

ω2
0(k + g − K2) − (ω0(k + g + 2K1 − K2) − 2�)2

h1(k + g + K1 − K2)h1(k + g + 2K1 − K2)a0(k + g + 2K1 − K2,τ )

ω2
0(k + g + K1 − K2) − (ω0(k + g + 2K1 − K2) − �)2

× ei(ω0(k+g+2K1−K2)−�)τ0

− 1

ω2
0(k + g − K2) − (ω0(k + g + K2) − 2�)2

αh2(k + g)αh(k + g + K2)a0(k + g + K2,τ )

ω2
0(k + g) − (ω0(k + g + K2) − �)2 ei(ω0(k+g+K2)−�)τ0

}
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The term B3 gives

ih1(k + g + K1)

{
1

ω2
0(k + g + K1) − (ω0(k + g − K2) + 2�)2

{
− f1(k + g)αf2(k + g − K2)a0(k + g − K2,τ )

ω2
0(k + g) − (ω0(k + g − K2) + �)2

−αf2(k + g + K1 − K2)f1(k + g − K2)a0(k + g − K2,τ )

ω2
0(k + g + K1 − K2) − (ω0(k + g − K2) + �)2

}
ei(ω0(k+g−K2)+�)τ0

− 1

ω2
0(k + g + K1) − (ω0(k + g − K1) + 2�)2

f1(k + g)f1(k + g − K1)a0(k + g − K1,τ )

ω2
0(k + g) − (ω0(k + g − K1) + �)2 ei(ω0(k+g−K1)+�)τ0

− 1

ω2
0(k + g + K1) − (ω0(k + g + K1 − 2K2) + 2�)2

× αf2(k + g + K1 − K2)αf2(k + g + K1 − 2K2)a0(k + g + K1 − 2K2,τ )

ω2
0(k + g + K1 − K2) − (ω0(k + g + K1 − 2K2) + �)2 ei(ω0(k+g+K1−2K2)+�)τ0

}

Finally, B4 gives

iαh2(k + g + K2)

{
1

ω2
0(k + g + K2) − (ω0(k + g − K1) + 2�)2

{
−f1(k + g − K1 + K2)αf2(k + g − K1)a0(k + g − K1,τ )

ω2
0(k + g − K1 + K2) − (ω0(k + g − K1) + �)2

−αf2(k + g)f1(k + g − K1)a0(k + g − K1,τ )

ω2
0(k + g) − (ω0(k + g − K1) + �)2

}
ei(ω0(k+g−K1)+�)τ0

− 1

ω2
0(k + g + K2) − (ω0(k + g − 2K1 + K2) + 2�)2

f1(k + g − K1 + K2)f1(k + g − 2K1 + K2)a0(k + g − 2K1 + K2,τ )

ω2
0(k + g − K1 + K2) − (ω0(k + g − 2K1 + K2) + �)2

× ei(ω0(k+g−2K1+K2)+�)τ0

− 1

ω2
0(k + g + K2) − (ω0(k + g − K2) + 2�)2

αf2(k + g)αf2(k + g − K2)a0(k + g − K2,τ )

ω2
0(k + g) − (ω0(k + g − K2) + �)2 ei(ω0(k+g−K2)+�)τ0

}

We are not solving for the complete third-order solution but we gain insight into some of the terms. For instance consider a
driving term of the form ζei(ω0(k+g+K2)−�)τ0 with ζ = 1

ω2
0(k+g−K1)−(ω0(k+g+K2)−2�)2 ξ , then its contribution to the particular solution

is u∗
3,P = 1

ω2
0(k+g)−(ω0(k+g+K2)−�)2 ζei(ω0(k+g+K2)−�)τ0 . Now these solutions will drive the fourth-order equation:

∂2u4(k + g,τ )

∂τ 2
0

+ 2
∂2u2(k + g,τ )

∂τ0∂τ2
+ 2

∂2u0(k + g,τ )

∂τ4∂τ0
+ ∂2u0(k + g,τ )

∂τ 2
2

+ v2
a(k + g)2u4(k + g,τ )

= {if1(k + g − K1)u3(k + g − K1,τ )e+i�τ0 + αf2(k + g − K2)u3(k + g − K2,τ )ei�τ0

+h1(k + g + K1)u3(k + g + K1,τ )e−i�τ0 + αh2(k + g + K2)u3(k + g + K2,τ )e−i�τ0} (A13)

The driving term iαf2(k + g − K2)u3(k + g − K2,τ )ei�τ0 will lead to secular terms of the form
iαf2(k + g − K2) 1

ω2
0(k+g−K2)−(ω0(k+g)−�)2

1
ω2

0(k+g−K1−K2)−(ω0(k+g)−2�)2 ξ (k + g − K2)eiω0(k+g)τ0 . In this expression

ξ (k + g − K2) = if1 (k + g − K1 − K2){− h1(k+g−K2)αh2(k+g)a0(k+g,τ )
ω2

0(k+g−K2)−(ω0(k+g)−�)2 − αh2(k+g−K1)h1(k+g)a0(k+g,τ )
ω2

0(k+g−K1)−(ω0(k+g)−�)2 }. This secular term will

need to cancel in part the secular terms arising from 2 ∂2u0(k+g,τ )
∂τ4∂τ0

+ ∂2u0(k+g,τ )
∂τ 2

2
in Eq. (A13). Note that for doing this, we will need

to use a0(k + g,τ4) = α0(τ4)eiϕ(k+g)τ2 = α
′
0e

iψτ4eiϕτ2 with the unknown quantity being ψ . Here we note that the quantity ξ is
proportional to the quantity α. The secular terms proportional to α represent mixing of the two sinusoidal modulations. Indeed
if α = 0, the problem reduces to that of a single sinusoidal modulation. The terms that contribute to the frequency correction of
the zeroth-order bands are given in the main text [Eqs. (8a)–(8f)].
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